JP2004026979A - Organosiloxane resin composition and polycarbonate resin molding having surface protected with the resin - Google Patents

Organosiloxane resin composition and polycarbonate resin molding having surface protected with the resin Download PDF

Info

Publication number
JP2004026979A
JP2004026979A JP2002184229A JP2002184229A JP2004026979A JP 2004026979 A JP2004026979 A JP 2004026979A JP 2002184229 A JP2002184229 A JP 2002184229A JP 2002184229 A JP2002184229 A JP 2002184229A JP 2004026979 A JP2004026979 A JP 2004026979A
Authority
JP
Japan
Prior art keywords
ppm
parts
coating
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002184229A
Other languages
Japanese (ja)
Inventor
Tatsuya Ekinaka
浴中 達矢
Yoshihiko Imanaka
今中 嘉彦
Toshinori Kajiwara
梶原 俊典
Akira Niimi
新見 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2002184229A priority Critical patent/JP2004026979A/en
Priority to PCT/JP2003/007883 priority patent/WO2004000551A1/en
Priority to KR1020047002490A priority patent/KR100984993B1/en
Priority to EP03760926.0A priority patent/EP1516722B1/en
Priority to US10/487,218 priority patent/US7070859B2/en
Priority to AU2003244100A priority patent/AU2003244100A1/en
Priority to CA 2460387 priority patent/CA2460387C/en
Priority to CNB038011859A priority patent/CN100519178C/en
Publication of JP2004026979A publication Critical patent/JP2004026979A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thermosetting organosiloxane resin for optically transparent coating for providing excellent abrasion resistance and a polycarbonate resin molding having a surface protected with the resin. <P>SOLUTION: The organosiloxane resin composition comprises colloidal silica, a hydrolytic condensate of a trialkoxysilane, a curing catalyst and a solvent. The organosiloxane resin composition has chemical shifts of a silicon atom using silicon NMR of 0.002≤[X]/[S]≤0.200 and 0.60≤[Y]/[Z]≤3.00 when an integral value from -46.5ppm to -70.0ppm is [S], an integral value from -46.5ppm to -48.5ppm is [X], an integral value from -52.5ppm to -61.0ppm is [Y] and an integral value from -61.0ppm to -70.0ppm is [Z]. The surface-protected polycarbonate resin molding is obtained by thermally curing the organosiloxane resin to give a coating film layer and lamination of the coating film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はオルガノシロキサン樹脂組成物およびオルガノシロキサン樹脂で表面を保護されたポリカーボネート樹脂成形体、さらに詳しくは優れた耐摩耗性を付与する光学的に透明なコーティング用熱硬化型オルガノシロキサン樹脂および該オルガノシロキサン樹脂で表面を保護されたポリカーボネート樹脂成形体組成物に関する。
【0002】
【従来の技術】
基材の表面保護に役立つコーティング用組成物については現在までに種々のものが使用されており、特に高いレベルの耐摩耗性を要求される用途にはシロキサン系の熱硬化型ハードコート剤が使用されている。このシロキサン系ハードコート剤については数多くの技術提案がなされており、例えば特開昭51−2736号公報には式CHSi(OH)で表わせるシラノールの縮合物のアルコール水溶液に分散させたコロイド状シリカの分散系を含むコーティング用組成物が記載されている。また、特開昭48−26822号公報および特開昭51−33128号公報にはアルキルトリアルコキシシランとテトラアルコキシシランとの加水分解縮合物を主成分とするコーティング用組成物が記載されている。さらに特開昭63−278979号公報および特開平1−306476号公報にはアルキルトリアルコキシシランとテトラアルコキシシランとの加水分解縮合物にコロイド状シリカを添加したコーティング用組成物が記載されている。
【0003】
ところでシロキサン系ハードコート剤においてはその調製法、つまりアルコキシシランの加水分解、縮合法によってアルコキシシランの加水分解、縮合の程度が異なり、この結果コート剤の性能が大きく変化することが知られている。しかし上述の従来技術ではアルコキシシランの適切な加水分解・縮合割合についての示唆を与えていない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、優れた耐摩耗性を付与する光学的に透明なコーティング用熱硬化型オルガノシロキサン樹脂および該オルガノシロキサン樹脂で表面を保護されたポリカーボネート樹脂成形体を提供することにある。
【0005】
本発明者は、この目的を達成するために鋭意研究を重ねた結果、オルガノシロキサン樹脂組成物の、シリコン核磁気共鳴スペクトル(29Si−NMR)の測定結果が一定条件を満たすオルガノシロキサン樹脂を、基材表面に塗布し、熱硬化させることによって高いレベルの耐摩耗性が得られることを見出し本発明に到達した。
【0006】
【課題を解決するための手段】
すなわち、本発明によれば、(A)コロイダルシリカ(a成分)、
(B)下記式(1)で表わされるアルコキシシランの加水分解縮合物(b成分)、
【0007】
【化3】

Figure 2004026979
【0008】
(但し、式中R、Rはそれぞれ炭素数1〜4のアルキル基、ビニル基、またはメタクリロキシ基、アミノ基、グリシドキシ基、3,4−エポキシシクロヘキシル基からなる群から選ばれる1以上の基で置換された炭素数1〜3のアルキル基であり、Rは炭素数1〜4のアルキル基であり、m、nはそれぞれ0、1、2のいずれかの整数であり、m+nは0、1、2のいずれかの整数である)
(C)硬化触媒および
(D)溶媒
該オルガノシロキサン樹脂組成物は測定溶媒として重水(DO)を用い、観測周波数79MHz、観測パルス6.0μs、繰り返し時間30秒、ブロードニングファクター5Hzの条件でシリコン核磁気共鳴スペクトル(29Si−NMR)測定した時、オルガノシロキサン樹脂組成物のシリコン原子のケミカルシフトが、テトラメチルシランのシリコン原子を0ppmとして、−46.5ppmから−70.0ppmの範囲のすべてのピークの積分値を[S]、該ピーク積分値中で−46.5ppmから−48.5ppmの範囲のピーク積分値を[X]、−52.5ppmから−61.0ppmの範囲のピーク積分値を[Y]、−61.0ppmから−70.0ppmの範囲のピーク積分値を[Z]と表わしたとき、0.002≦[X]/[S]≦0.200であり、かつ0.60≦[Y]/[Z]≦3.00であることを特徴とするオルガノシロキサン樹脂組成物、及び上記のオルガノシロキサン樹脂を熱硬化した塗膜層を積層してなることを特徴とする表面を保護されたポリカーボネート樹脂成形体が提供される。
【0009】
本発明でa成分として用いられるコロイダルシリカは、直径5〜200nm、好ましくは5〜40nmのシリカ微粒子が水または有機溶媒中にコロイド状に分散されたものである。該コロイダルシリカは、水分散型および有機溶媒分散型のどちらでも使用できるが、水分散型のものを用いるのが好ましい。水分散型のコロイダルシリカの場合、シリカ微粒子の表面に多数の水酸基が存在し、これがアルコキシシラン加水分解縮合物と強固に結合するため、より耐摩耗性に優れたプラスチック積層体が得られるものと考えられる。
【0010】
また、水分散型コロイダルシリカはさらに酸性水溶液分散型と塩基性水溶液分散型に分かれる。該水分散型コロイダルシリカは酸性水溶液分散型と塩基性水溶液分散型のどちらでも使用できるが硬化触媒選択の多様性、メチルトリアルコキシシランの適切な加水分解、縮合状態の実現の観点から酸性水溶液分散型コロイダルシリカが好ましく使用される。
【0011】
かかるコロイダルシリカとして、具体的には、酸性水溶液中で分散させた商品として日産化学工業(株)のスノーテックスO、触媒化成工業(株)のカタロイドSN、塩基性水溶液中で分散させた商品として日産化学工業(株)のスノーテックス30、スノーテックス40、触媒化成工業(株)のカタロイドS30、カタロイドS40、有機溶剤に分散させた商品として日産化学工業(株)のMA−ST、IPA−ST、NBA−ST、IBA−ST、EG−ST、XBA−ST、NPC−ST、DMAC−ST、触媒化成工業(株)のOSCAL1132、OSCAL1232、OSCAL1332、OSCAL1432、OSCAL1532、OSCAL1632、OSCAL1732等が挙げられる。
【0012】
本発明のb成分であるアルコキシシランの加水分解縮合物は、前記式(1)のアルコキシシランを加水分解縮合反応させたものである。
【0013】
アルコキシシランとしては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシラン、テトライソブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリエトキシシラン、ジメチルジメトキシシラン、ビニルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−アミノプロピルメチルジエトキシシラン等が挙げられ、なかでもアルキルトリアルコキシシランが好ましく、特にメチルトリメトキシシランおよびメチルトリエトキシシランが好ましい。これらは単独もしくは混合して使用できる。
【0014】
該オルガノシロキサン樹脂組成物は例えば以下のプロセスを経て調製される。
【0015】
コロイダルシリカ分散液中で前記式(1)のアルコキシシランを酸性条件下加水分解縮合反応させる。
【0016】
ここで、アルコキシシランの加水分解反応に必要な水は水分散型のコロイダルシリカ分散液を使用した場合はこの分散液から供給され、必要であればさらに水を加えてもよい。アルコキシシラン1当量に対して通常1〜10当量、好ましくは1.5〜7当量、さらに好ましくは3〜5当量の水が用いられる。
【0017】
前述のようにアルコキシシランの加水分解縮合反応は、酸性条件下で行う必要がある。かかる条件で加水分解を行なうために一般的には加水分解剤として酸が使用される。かかる酸は、予めアルコキシシランまたはコロイダルシリカ分散液に添加するか、両者を混合後に添加してもよい。また、該添加は1回或いは2回以上に分けることもできる。また酸性水溶液分散型コロイダルシリカを用いる場合、コロイダルシリカ中の酸が反応液を酸性条件下に保つので酸の使用は必ずしも必要ない。かかる酸としては塩酸、硫酸、硝酸、リン酸、亜硝酸、過塩素酸、スルファミン酸等の無機酸、ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸、乳酸、パラトルエンスルホン酸等の有機酸が挙げられ、pHのコントロールの容易さの観点からギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸等の有機カルボン酸が好ましく、酢酸が特に好ましい。
【0018】
かかる酸として無機酸を使用する場合は通常0.0001〜2mol/l、好ましくは0.001〜0.1mol/lの濃度で使用し、有機酸を使用する場合はメチルトリアルコキシシラン100重量部に対して0.1〜50重量部、好ましくは1〜30重量部の範囲で使用される。
【0019】
アルコキシシランの加水分解、縮合反応の条件は使用するアルコキシシランの種類、系中に共存するコロイダルシリカの種類、量によって変化するので一概には云えないが、通常、系の温度が20〜40℃、反応時間が1時間〜数日間である。アルコキシシランの加水分解反応は発熱反応だが、系の温度は最高でも60℃を超えないことが望ましい。このような条件で十分に加水分解反応を進行させた上で、コート剤の安定化のため40〜80℃で1時間〜数日間縮合反応を進行させることも好ましく行われる。上述の条件で加水分解、縮合反応を行うことで0.002≦[X]/[S]≦0.200であり、かつ0.60≦[Y]/[Z]≦3.00を実現することができる。
【0020】
この反応で前記式(1)のアルコキシシランは加水分解されて下記式(3)
【0021】
【化4】
Figure 2004026979
【0022】
(但し、式中R、Rはそれぞれ炭素数1〜4のアルキル基、ビニル基、またはメタクリロキシ基、アミノ基、グリシドキシ基、3,4−エポキシシクロヘキシル基からなる群から選ばれる1以上の基で置換された炭素数1〜3のアルキル基であり、m、nはそれぞれ0、1、2のいずれかの整数であり、m+nは0、1、2のいずれかの整数である)
で表わされる加水分解物となり、生成したSi−OHはコロイダルシリカ中のSi−OHや、この分子とは別のトリアルコキシシラン加水分解物分子のSi−OHと縮合反応を起こしてSi−O−Si結合を形成し、生成した縮合物もまた別のSi−OHと縮合反応を起こしてSi−O−Si結合を形成する。この加水分解反応及び縮合反応は完全ではなく部分的に進行する。
【0023】
反応液をシリコン核磁気共鳴スペクトル(29Si−NMR)測定すると、オルガノシロキサン樹脂組成物のケミカルシフトが、テトラメチルシランのシリコン原子を0ppmとして、トリアルコキシシラン2量体縮合物のシリコン原子ピークで−46.5ppmから−48.5ppmに、シリコーンオリゴマーで末端のトリアルコキシシラン由来でかつ、一つの水酸基だけが縮合反応したシリコン原子団に基づくピークが−52.5ppmから−61.0ppmに、シリコーンオリゴマーで、トリアルコキシシラン由来でかつ、2つの水酸基が縮合反応したシリコン原子団に基づくピークが−61.0ppmから−70.0ppmに、シリコーンオリゴマーで、トリアルコキシシラン由来でかつ、3つの水酸基が縮合反応したシリコン原子団に基づくピークおよび、コロイダルシリカに結合したシリコン原子団に基づくピークが−95ppmから−130ppmになる。また、テトラアルコキシシランおよびジアルコキシシランのシリコン原子に基づくピークは前述の領域以外にピークが現れる。オルガノシロキサン樹脂組成物には適切な加水分解、縮合割合が存在し、加水分解反応の進行が不十分だと熱硬化時に原料トリアルコキシシランの蒸散、急激な硬化反応の進行等の原因でヘアークラックが発生する。また、縮合反応が進行しすぎるとゾル中の粒子径が大きくなりすぎ、適切な架橋反応が不可能になるため耐摩耗性が低下する。
【0024】
本発明者らは適切な加水分解、縮合状態の実現を鋭意検討した結果、前述の条件でシリコン核磁気共鳴スペクトル(29Si−NMR)測定結果、各積分値が0.002≦[X]/[S]≦0.200であり、かつ0.60≦[Y]/[Z]≦3.00であるオルガノシロキサン樹脂組成物は熱硬化時にクラック発生なく、十分な耐摩耗性を有する塗膜層を形成することを見出した。各積分値の範囲は好ましくは0.003≦[X]/[S]≦0.150であり、かつ0.75≦[Y]/[Z]≦2.25、最も好ましくは0.003≦[X]/[S]≦0.150であり、かつ0.75≦[Y]/[Z]≦2.00である。[X]/[S]が0.2を超えたの場合、または[Y]/[Z]が3.00を越えた場合はオルガノシロキサン樹脂の縮合反応の進行が不十分であるため塗膜層熱硬化時にクラックが発生する。また、[X]/[S]が0.002未満の場合、または[Y]/[Z]が0.60未満の場合は縮合反応が進行しすぎるため、塗膜層に十分な耐摩耗性をだすことができない。なお、オルガノシロキサン樹脂組成物にコロイダルシリカを用いないときには、本発明のシリコン核磁気共鳴スペクトルの範囲にあっても耐擦傷性等が不足する場合がある。
【0025】
本発明において、オルガノシロキサン樹脂固形分であるa、b成分の各成分の混合割合はオルガノシロキサン樹脂組成物の安定性、得られる硬化膜の透明性、耐摩耗性、耐擦傷性、密着性及びクラック発生の有無等の点から決められ、a成分、b成分の合計100重量%としたとき、この2成分の好ましい混合割合はa成分が10〜60重量%、b成分がR SiO(4−m−n)/2に換算して40〜90重量%、好ましくはa成分が10〜40重量%、b成分がR SiO(4−m−n)/2に換算して60〜90重量%である。
【0026】
本発明のオルガノシロキサン樹脂組成物はさらに硬化触媒を含有する。かかる触媒としては、ギ酸、プロピオン酸、酪酸、乳酸、酒石酸、コハク酸等の脂肪族カルボン酸のリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、ベンジルトリメチルアンモニウム塩、コリン塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等の4級アンモニウム塩が挙げられ、具体的には酢酸ナトリウム、酢酸カリウム、酢酸コリン、酢酸ベンジルトリメチルアンモニウムが好ましく使用される。コロイダルシリカとして塩基性水分散型コロイダルシリカを使用し、アルコキシシランの加水分解の際に酸として脂肪族カルボン酸を使用した場合には、該オルガノシロキサン樹脂組成物中に既に硬化触媒が含有されていることになる。必要含有量はオルガノシロキサン樹脂の組成、加水分解、縮合反応の進行度、熱硬化条件により変化するが、オルガノシロキサン樹脂固形分100重量部に対して、硬化触媒を0.01〜10重量部であり、好ましくは0.1〜5重量部である。含有量が0.01重量部より少ないと十分な硬化速度が得られず、10重量部より多いとオルガノシロキサン樹脂組成物の保存安定性が低下したり、沈殿物を生じたりして好ましくない。
【0027】
本発明のオルガノシロキサン樹脂組成物に用いられる溶媒としては前記オルガノシロキサン樹脂固形分が安定に溶解することが必要であり、そのためには少なくとも20重量%以上、好ましくは50重量%以上がアルコールであることが望ましい。かかるアルコールとしては例えばメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−エトキシエタノール、4−メチル−2−ペンタノール、2−ブトキシエタノール等が挙げられ、炭素数1〜4の低沸点アルコールが好ましく、溶解性、安定性及び塗工性の点で2−プロパノールが特に好ましい。該溶媒中には水分散型コロイダルシリカ中の水で該加水分解反応に関与しない水分、アルコキシシランの加水分解に伴って発生する低級アルコール、有機溶媒分散型のコロイダルシリカを使用した場合にはその分散媒の有機溶媒、オルガノシロキサン樹脂組成物のpH調節のために添加される酸も含まれる。pH調節のために使用される酸としては塩酸、硫酸、硝酸、リン酸、亜硝酸、過塩素酸、スルファミン酸等の無機酸、ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸、乳酸、パラトルエンスルホン酸等の有機酸が挙げられ、pHのコントロールの容易さの観点からギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、コハク酸、マレイン酸等の有機カルボン酸が好ましい。その他の溶媒としては水/アルコールと混和することが必要であり、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル類、酢酸エチル、酢酸エトキシエチル等のエステル類が挙げられる。溶媒はオルガノシロキサン樹脂固形分100重量部に対して50〜900重量部、好ましくは150〜700重量部である。
【0028】
本発明のオルガノシロキサン樹脂組成物は、酸及び硬化触媒の含有量を調節することによりpHを3.0〜6.0、好ましくは4.0〜5.5に調製することが望ましい。これにより、常温でのオルガノシロキサン樹脂組成物のゲル化を防止し、保存安定性を増すことができる。該オルガノシロキサン樹脂組成物は、通常数時間から数日間更に熟成させることにより安定な組成物になる。
【0029】
さらに、本発明のオルガノシロキサン樹脂組成物には塗工性並びに得られる塗膜の平滑性を向上する目的で公知のレベリング剤を配合することができる。配合量はオルガノシロキサン樹脂組成物100部に対して0.01〜2重量部の範囲が好ましい。また、本発明の目的を損なわない範囲で紫外線吸収剤、染料、顔料、フィラーなどを添加してもよい。
【0030】
このようにして調製されたオルガノシロキサン樹脂組成物は、ポリカーボネート樹脂等の透明樹脂成形体に塗布できる。特にポリカーボネート樹脂上にプライマー層としてアクリル樹脂層を形成した成形体に好ましく塗布できる。
【0031】
本発明で使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを界面重縮合法または溶融法等で反応させて得られるポリカーボネート樹脂である。二価フェノールの代表的な例としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、9,9−ビス{(4−ヒドロキシ−3−メチル)フェニル}フルオレン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンおよびα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン、ビス(4−ヒドロキシフェニル)サルファイド、ビス(4−ヒドロキシフェニル)スルホン等を挙げられ、なかでもビスフェノールAが好ましい。これらの二価フェノールは単独または2種以上を混合して使用できる。
【0032】
カーボネート前駆体としてはカルボニルハライド、カーボネートエステルまたはハロホルメート等が使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメート等が挙げられる。
【0033】
上記二価フェノールとカーボネート前駆体を界面重縮合法または溶融法によって反応させてポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールの酸化防止剤等を使用してもよい。またポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂であっても、芳香族または脂肪族の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂であってもよく、また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
【0034】
ホスゲンを使用する界面重縮合法は、酸結合剤及び有機溶媒の存在下で反応させる。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物又はピリジン等のアミン化合物が用いられ、溶媒としては例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミン又は第四級アンモニウム塩等の触媒を用いることもできる。反応温度は通常0〜40℃であり、反応時間は数分〜5時間である。
【0035】
また、ジフェニルカーボネートを用いる溶融法は、不活性ガス雰囲気下所定割合の二価フェノール成分とジフェニルカーボネートとを加熱しながら攪拌して、生成するアルコール又はフェノール類を留出させる方法により行われる。反応温度は生成するアルコール又はフェノール類の沸点等により異なるが、通常120〜300℃の範囲である。反応はその初期から減圧にして生成するアルコール又はフェノール類を留出させながら完結させる。また、反応を促進するために通常のエステル交換反応用触媒を使用することもできる。
【0036】
ポリカーボネート樹脂の分子量は、粘度平均分子量(M)で10,000〜50,000が好ましく、15,000〜35,000がより好ましい。かかる粘度平均分子量を有するポリカーボネート樹脂は、十分な強度が得られ、また、成形時の溶融流動性も良好であり好ましい。本発明でいう粘度平均分子量は塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液から求めた比粘度(ηsp)を次式に挿入して求めたものである。
ηsp/c=[η]+0.45×[η]
[η]=1.23×10−40.83
(但しc=0.7、[η]は極限粘度)
【0037】
かかるポリカーボネート樹脂を製造する際に、必要に応じて亜燐酸エステル、燐酸エステル、ホスホン酸エステル等の安定剤、テトラブロムビスフェノールA、テトラブロムビスフェノールAの低分子量ポリカーボネート、デカブロモジフェノール等の難燃剤、着色剤、滑剤等を添加することができる。
【0038】
ポリカーボネート樹脂上に好ましく形成される塗膜樹脂に用いられるアクリル樹脂は、下記式(2)
【0039】
【化5】
Figure 2004026979
【0040】
(但し、式中Rは炭素数1〜4のアルキル基である。)
で示される繰り返し単位を50モル%以上含むアクリル樹脂であり、具体的には50モル%以上のアルキルメタクリレートモノマーと50モル%以下のビニル系モノマーを重合して得られるポリマーがあげられる。アルキルメタクリレートモノマーとしては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレートおよびブチルメタクリレートが挙げられ、これらは単独または2種以上を混合して使用できる。なかでもメチルメタクリレートおよびエチルメタクリレートが好ましい。
【0041】
また、他のビニル系モノマーとしてはアルキルメタクリレートモノマーと共重合可能なものであり、殊に接着性あるいは耐候性等の耐久性の面で、アクリル酸、メタクリル酸またはそれらの誘導体が好ましく使用される。具体的にはアクリル酸、メタクリル酸、アクリル酸アミド、メタクリル酸アミド、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2−エチルヘキシルメタクリレート、ドデシルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、N,N−ジエチルアミノエチルメタクリレート、グリシジルメタクリレート、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、2−(2′−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾール、2−(2′−ヒドロキシ−5−アクリロキシエチルフェニル)−2H−ベンゾトリアゾール等が挙げられ、これらは単独または2種以上を混合して使用できる。また、アクリル樹脂の2種以上を混合した混合物であってもよい。
【0042】
また、かかるアクリル樹脂は、熱硬化型であることが好ましく、0.01モル%〜50モル%の架橋性の反応基を持つビニル系モノマーを含有することが望ましい。かかる架橋性の反応基を持つビニル系モノマーとしてはアクリル酸、メタクリル酸、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、ビニルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。
【0043】
なかでも、架橋性の反応基をもつビニル系モノマーとして2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート等の水酸基をもつアクリルモノマーを利用し、架橋剤としてポリイソシアネート化合物もしくはその誘導体を生成するポリイソシアネート化合物前駆体を利用した熱硬化型ウレタンアクリル樹脂を好ましく使用することができる。
【0044】
上記アクリル樹脂の分子量は、重量平均分子量で20,000以上が好ましく、50,000以上がより好ましく、また、重量平均分子量で1千万以下のものが好ましく使用される。かかる分子量範囲の上記アクリル樹脂は、第1層としての密着性や強度などの性能が十分に発揮され好ましい。
【0045】
本発明に用いる上記塗膜樹脂(第1層)を形成する方法としては、アクリル樹脂等の塗膜樹脂成分および後述する光安定剤や紫外線吸収剤等の添加成分を、基材である透明プラスチックと反応したり該透明プラスチックを溶解したりしない揮発性の溶媒に溶解して、このコーティング組成物を透明プラスチック基材表面に塗布し、次いで該溶媒を加熱等により除去することにより行われる。必要であれば溶媒の除去後にさらに40〜140℃に加熱して架橋性基を架橋させることも好ましく行われる。
【0046】
かかる溶媒としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル類、酢酸エチル、酢酸エトキシエチル等のエステル類、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−エトキシエタノール、4−メチル−2−ペンタノール、2−ブトキシエタノール等のアルコール類、n−ヘキサン、n−ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン、ガソリン、軽油、灯油等の炭化水素類、アセトニトリル、ニトロメタン、水等が挙げられ、これらは単独で使用してもよいし2種以上を混合して使用してもよい。かかるコーティング組成物中の塗膜樹脂からなる固形分の濃度は1〜50重量%が好ましく、3〜30重量%がより好ましい。
【0047】
また、上記コーティング組成物にはプラスチック基材の耐候性を改良する目的で光安定剤、紫外線吸収剤、シランカップリング剤を含有することができる。
【0048】
該光安定剤としては、例えばビス(2,2,6,6−テトラメチル−4−ピペリジル)カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)サクシネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−オクタノイルオキシ−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)ジフェニルメタン−p,p′−ジカーバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)ベンゼン−1,3−ジスルホネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)フェニルホスファイト等のヒンダードアミン類、ニッケルビス(オクチルフェニルサルファイド、ニッケルコンプレクス−3,5−ジ−t−ブチル−4−ヒドロキシベンジルリン酸モノエチラート、ニッケルジブチルジチオカーバメート等のニッケル錯体が挙げられる。これらの剤は単独もしくは2種以上を併用してもよく、塗膜樹脂100重量部に対して好ましくは1〜50重量部、より好ましくは1〜10重量部用いられる。
【0049】
また、該紫外線吸収剤としては例えば2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2,2′−ジヒドロキシ−4,4′−ジメトキシベンゾフェノン等のベンゾフェノン類、2−(5′−メチル−2′−ヒドロキシフェニル)ベンゾトリアゾール、2−(3′−t−ブチル−5′−メチル−2′−ヒドロキシフェニル)ベンゾトリアゾール、2−(3′,5′−ジ−t−ブチル−2′−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−5′−t−オクチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール類、エチル−2−シアノ−3,3−ジフェニルアクリレート、2−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等のシアノアクリレート類、フェニルサリシレート、p−オクチルフェニルサリシレート等のサリシレート類、ジエチル−p−メトキシベンジリデンマロネート、ビス(2−エチルヘキシル)ベンジリデンマロネート等のベンジリデンマロネート類、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(メチル)オキシ〕−フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(エチル)オキシ〕−フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(プロピル)オキシ〕−フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(ブチル)オキシ〕−フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(ヘキシル)オキシ〕−フェノール等のトリアジン類、2−(2′−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体、2−(2′−ヒドロキシ−5−アクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体、酸化チタン酸化セリウム、酸化亜鉛、酸化スズ、酸化タングステン、硫化亜鉛、硫化カドミウムなの金属酸化物微粒子類が挙げられる。中でも2−(2′−ヒドロキシ−5′−t−オクチルフェニル)ベンゾトリアゾールが好ましい。これらの剤は単独もしくは2種以上を併用してもよく、塗膜樹脂100重量部に対して好ましくは0.1〜100重量部、より好ましくは0.1〜50重量部用いられる。
【0050】
また、シランカップリング剤としては、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン・塩酸塩、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシルジメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド、γ−ウレイドプロピルトリエトキシシラン等が挙げられ、また上記シランカップリング剤の部分加水分解縮合物も使用できる。かかる剤を添加することにより、透明プラスチック基材と第一層および第一層と第二層の密着力が長期にわたり持続される。これらの剤は単独もしくは2種以上を併用してもよく、塗膜樹脂100重量部に対して好ましくは0.1〜50重量部、より好ましくは0.2〜10重量部用いられる。
【0051】
また、上記コーティング組成物には紫外線吸収剤を含有したものが好ましい。
【0052】
上記コーティング組成物のプラスチック基材への塗布はバーコート法、ディップコート法、フローコート法、スプレーコート法、スピンコート法、ローラーコート法等の方法を、塗装される基材の形状に応じて適宜選択することができる。かかるコーティング組成物が塗布された基材は、通常常温から該基材の熱変形温度以下の温度下で溶媒の乾燥、除去が行われ、さらに必要であれば溶媒の除去後に40〜140℃に加熱して架橋性基を架橋させ、第1層として、上記塗膜樹脂を積層した透明プラスチック基材が得られる。
【0053】
第1層の塗膜樹脂層の厚さは、透明プラスチック基材と第2層とを十分に接着し、また、前記添加剤の必要量を保持し得るのに必要な膜厚であればよく、好ましくは0.1〜10μmであり、より好ましくは1〜5μmである。
【0054】
前記アクリル樹脂を主とする塗膜樹脂からなる第1層を形成することにより、第2層と透明プラスチック基材との密着性が良好となり、耐摩耗性および耐候性に優れた透明プラスチック成形体を得ることができる。
【0055】
上述のアクリル樹脂層に積層して形成されるオルガノシロキサン樹脂組成物のコート方法としては、ディップコート法、フローコート法、スプレーコート法、スピンコート法、ローラーコート法、バーコート法等の方法を、塗装される基材の形状に応じて適宜選択することができる。
【0056】
コート層の厚みは、通常2〜10μm、好ましくは3〜8μmである。コート層の厚みがかかる範囲であると、熱硬化時に発生する応力のためにコート層にクラックが発生したり、コート層と基材との密着性が低下したりすることがなく、本発明の目的とする十分な耐摩耗性を有するコート層が得られることとなる。
【0057】
コート層は塗装後熱硬化して基板と密着させる。熱硬化は基材の耐熱性に問題がない範囲で高い温度で行う方がより早く硬化を完了することができ好ましい。なお、常温では、熱硬化が進まず、硬化被膜を得ることができない。これは、本発明のオルガノシロキサン樹脂組成物中のオルガノシロキサン樹脂固形分が部分的に縮合したものであることを意味する。かかる熱硬化の過程で、残留するSi−OHが縮合反応を起こしてSi−O−Si結合を形成し、耐摩耗性に優れたコート層となる。熱硬化は通常50℃〜400℃の範囲で10分間〜4時間、好ましくは80℃〜160℃の範囲で20分間〜2時間、ポリカーボネート基材に塗布する場合もっとも好ましくは110℃〜135℃で30分間〜1時間加熱硬化する。
【0058】
本発明のオルガノシロキサン樹脂組成物はコート層の耐摩耗性、耐擦傷性、硬度、耐熱水性、耐有機溶剤性、耐酸性、基材との密着性の各点に優れた透明なコート層を形成し、高いレベルで基材表面の摩耗を防ぐことが出来る。
【0059】
【実施例】
以下、実施例により本発明を更に詳細に説明する。なお、得られた積層体は以下の方法によって評価した。また、実施例中の部は重量部を意味する。
(1)外観評価:目視にて試験片の両面コート層外観(異物やハジキ、まだら模様の有無)、ひび割れ(クラック)の有無を確認した。
(2)密着性:両面コート層の1面にカッターナイフで1mm間隔の100個の碁盤目を作りニチバン製粘着テープ(商品名“セロテープ”)を圧着し、垂直に強く引き剥がして基材上に残った碁盤目の数で評価した(JIS K5400に準拠)。
(3)耐擦傷性:両面コート層の1面を#0000のスチールウールで擦った後、表面の傷つきの状態を目視により5段階で評価した。
1:強く擦っても全く傷つかない
2:強く擦ると僅かに傷つく
3:強く擦ると少し傷つく
4:強く擦ると傷つく
5:弱く擦るだけで傷つく
(4)耐摩耗性:両面コート層の1面をCalibrase社製CS−10Fの摩耗輪を用い、荷重500gで1000回転テーバー摩耗試験を行い、テーバー摩耗試験後のヘーズとテーバー摩耗試験前のヘーズとの差△Hを測定して評価した(ASTM D1044に準拠)。(ヘーズ=Td/Tt×100、Td:散乱光線透過率、Tt:全光線透過率)
(5)耐熱水性:試験片を沸騰水中に2時間浸漬した後のコート層の外観変化、密着性を評価した。
【0060】
[参照例1](第1層用組成物の調製)
還流冷却器及び撹拌装置を備え、窒素置換したフラスコ中にメチルメタクリレート(以下MMAと略称する)80.1部、2−ヒドロキシエチルメタクリレート(以下HEMAと略称する)13部、アゾビスイソブチロニトリル(以下AIBNと略称する)0.14部及び1,2−ジメトキシエタン200部を添加混合し、溶解させた。次いで、窒素気流中70℃で6時間攪拌下に反応させた。得られた反応液をn−ヘキサンに添加して再沈精製し、MMA/HEMAの組成比90/10(モル比)のコポリマー(アクリル樹脂(I))80部を得た。アクリル樹脂(I)8.9部および2−(2′−ヒドロキシ−5′−t−オクチルフェニル)ベンゾトリアゾール1.5部をメチルエチルケトン20部、メチルイソブチルケトン30部および2−プロパノール30部からなる混合溶媒に溶解し、さらにこの溶液に前記アクリル樹脂(I)のヒドロキシ基1当量に対してイソシアネート基が1.5当量となるようにヘキサメチレンジイソシアネート1.1部を添加して25℃で5分間攪拌し第1層用組成物(I−1)を調製した。
【0061】
[参照例2](第1層用組成物の調製)
還流冷却器および攪拌装置を備え、窒素置換したフラスコ中にMMA65部、2−(2−ヒドロキシ−5−メタクリロキシエチルフェニル)ベンゾトリアゾール(以下MEBTと略称する)25部、3−メタクリロキシプロピルトリメトキシシラン(以下MPTMSと略称する)10部、アゾビスイソブチロニトリル0.16部および1,2−ジメトキシエタン200部を添加混合し、溶解させた。次いで、窒素気流中70℃で6時間攪拌下に反応させた。得られた反応液をn−ヘキサンに添加して再沈精製し、MMA/MEBT/MPTMSの組成比が重量比で65/25/10(モル比で85/10/5)の第1層用組成物(I−2)を調製した。
【0062】
[参照例3](テトラアルコキシシラン加水分解縮合物反応液の調製)
テトラエトキシシラン208部、0.01mol/lの塩酸81部を氷水で冷却下混合した。この混合液を25℃で3時間攪拌し、イソプロパノール11部で希釈してテトラエトキシシラン加水分解縮合物溶液(S2)300部を得た。
【0063】
[実施例1]
水分散型コロイダルシリカ分散液(触媒化成工業(株)製 カタロイドSN−35、 固形分濃度30重量%)80部を氷水浴で冷却下メチルトリメトキシシラン127部に加えた。この混合液を25℃で1時間半攪拌後、70℃で2時間攪拌した反応液を氷水冷却し、これに、酢酸24部および硬化触媒として酢酸ナトリウム2部を氷水冷却下で混合し、第2層用コーティング用組成物(i)を得た。該オルガノシロキサン樹脂組成物(i)を、測定溶媒として重水(DO)を用い、観測周波数79MHz、観測パルス6.0μs、繰り返し時間30秒、ブロードニングファクター5Hzの条件でシリコン核磁気共鳴スペクトル(29Si−NMR)測定した。以下の実施例でも各コート剤を同条件でシリコン核磁気共鳴スペクトル(29Si−NMR)測定した。オルガノシロキサン樹脂組成物のシリコン原子のケミカルシフトが、テトラメチルシランのシリコン原子を0ppmとして、−46.5ppmから−70.0ppmの範囲のすべてのピークの積分値を[S]、該ピーク積分値中で−46.5ppmから−48.5ppmの範囲のピーク積分値を[X]、−52.5ppmから−61.0ppmの範囲のピーク積分値を[Y]、−61.0ppmから−70.0ppmの範囲のピーク積分値を[Z]と表わしたとき、[X]/[S]=0.010、[Y]/[Z]=0.96であった。予め第1層用組成物(I−1)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な2mm厚のポリカーボネート製シートに、かかるコーティング用組成物(i)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0064】
[実施例2]
水分散型コロイダルシリカ分散液(触媒化成工業(株)製 カタロイドSN−35、 固形分濃度30重量%)80部に酢酸12部を加えて攪拌し、この分散液に氷水浴で冷却下メチルトリメトキシシラン127部を加えた。この混合液を30℃で1時間半攪拌後、70℃で4時間攪拌した反応液を氷水冷却し、これに、硬化触媒として酢酸ナトリウム2部を氷水冷却下で混合し、第2層用コーティング用組成物(ii)を得た。該コーティング用組成物(ii)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.006、[Y]/[Z]=0.82であった。予め第1層用組成物(I−1)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な2mm厚のポリカーボネート製シートに、かかるコーティング用組成物(ii)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0065】
[実施例3]
水分散型コロイダルシリカ分散液(触媒化成工業(株)製 カタロイドSN−35、 固形分濃度30重量%)60部に蒸留水15部、を加えて攪拌し、この分散液に氷水浴で冷却下メチルトリメトキシシラン146部を加えた。この混合液を25℃で2時間半攪拌後、60℃で1時間攪拌した反応液を氷水冷却し、これに、酢酸20部および硬化触媒として45%コリン溶液0.5部を氷水冷却下で混合し、イソプロパノール9部で希釈して第2層用コーティング用組成物(iii)を調製した。該コーティング用組成物(i ii)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.090、[Y]/[Z]=1.65であった。予め第1層用組成物(I−2)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な5mm厚のポリカーボネート製シートに、かかるコーティング用組成物(iii)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0066】
[実施例4]
水分散型コロイダルシリカ分散液(触媒化成工業(株)製 カタロイドSN−35、 固形分濃度30重量%)80部に氷水浴で冷却下メチルトリメトキシシラン118部を加えた。この混合液を25℃で1時間半攪拌後、参照例3で得られたテトラエトキシシラン加水分解縮合反応液(S2)20部を加え、さらに25℃で30分間攪拌した。その後70℃で2時間攪拌した反応液を氷水冷却し、硬化触媒として酢酸ナトリウム0.2部を氷水冷却下で混合し、第2層用コーティング用組成物(iv)を得た。該コーティング用組成物(iv)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.020、[Y]/[Z]=1.32であった。予め第1層用組成物(I−2)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な5mm厚のポリカーボネート製シートに、かかるコーティング用組成物(iv)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0067】
また、得られたシートを自動車のサンルーフ窓枠に嵌め込み、1年間使用したが、傷つきも少なく、自動車サンルーフ用ガラスとして好適に使用できた。
【0068】
[実施例5]
水分散型コロイダルシリカ分散液(触媒化成工業(株)製 カタロイドSN−35、 固形分濃度30重量%)80部、メチルトリメトキシシラン142部、蒸留水20部を氷水で冷却下混合した。この混合液を25℃で1時間半攪拌後、70℃で1時間攪拌した反応液を氷水冷却し、酢酸15部および硬化触媒として酢酸ナトリウム2部を氷水冷却下で混合し、イソプロパノール116部で希釈して第2層用コーティング用組成物(v)を得た。該コーティング用組成物(v)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.025、[Y]/[Z]=1.12であった。予め第1層用組成物(I−2)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な3mm厚のポリカーボネート製シートに、かかるコーティング用組成物(v)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0069】
[実施例6]
水分散型コロイダルシリカ分散液(触媒化成工業(株)製 カタロイドSN−35、 固形分濃度30重量%)80部に酢酸24部、蒸留水10部を加えて攪拌し、この分散液を氷水浴で冷却下、メチルトリメトキシシラン118部とテトラエトキシシラン14部の混合液に加えた。この混合液を25℃で1時間半攪拌後、50℃で8時間攪拌した反応液を氷水冷却し、これに、硬化触媒として45%コリン溶液0.5部を氷水冷却下で混合し、第2層用コーティング用組成物(vi)を得た。該コーティング用組成物(vi)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.050、[Y]/[Z]=1.450であった。予め第1層用組成物(I−2)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な5mm厚のポリカーボネート製シートに、かかるコーティング用組成物(vi)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0070】
[比較例1]
水分散型コロイダルシリカ分散液(日産化学工業(株)製 スノーテックス30 固形分濃度30重量%)80部に酢酸24部を加えて攪拌し、この分散液を氷水浴で冷却下メチルトリメトキシシラン127部に加えた。この混合液を40℃で2時間攪拌した反応液を氷水冷却し、これに、硬化触媒として酢酸ナトリウム2部を氷水冷却下で混合し、第2層用コーティング用組成物(vii)を得た。該コーティング用組成物(vii)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.18、[Y]/[Z]=3.20であった。予め第1層用組成物(I−1)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な2mm厚のポリカーボネート製シートに、かかるコーティング用組成物(vii)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0071】
[比較例2]
水分散型コロイダルシリカ分散液(日産化学工業(株)製 スノーテックス30 固形分濃度30重量%)80部に酢酸24部、イソプロパノール10部を加えて攪拌し、この分散液を氷水浴で冷却下メチルトリメトキシシラン127部に加えた。この混合液を25℃で1時間半攪拌後、75℃で4時間攪拌した反応液を氷水冷却し、これに、硬化触媒として酢酸ナトリウム2部を氷水冷却下で混合し、第2層用コーティング用組成物(v iii)を得た。該コーティング用組成物(viii)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.003、[Y]/[Z]=0.52であった。予め第1層用組成物(I−1)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な2mm厚のポリカーボネート製シートに、かかるコーティング用組成物(viii)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0072】
[比較例3]
水分散型コロイダルシリカ分散液(触媒化成工業(株)製 カタロイドSN−35、 固形分濃度30重量%)60部に蒸留水15部、酢酸20部を加えて攪拌し、この分散液に氷水浴で冷却下メチルトリメトキシシラン146部を加えた。この混合液を25℃で30分間攪拌した反応液を氷水冷却し、これに、酢酸ナトリウム0.2部を氷水冷却下で混合し、イソプロパノール9部で希釈して第2層用コーティング用組成物(ix)を調製した。該コーティング用組成物(ix)のプロトン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、シリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.350、[Y]/[Z]=1.32であった。であった。予め第1層用組成物(I−2)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な2mm厚のポリカーボネート製シートに、かかるコーティング用組成物(ix)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0073】
[比較例4]
水分散型コロイダルシリカ分散液(日産化学工業(株)製 スノーテックス30 固形分濃度30重量%)80部に酢酸6部を氷水浴で冷却下メチルトリメトキシシラン118部に加えた。この混合液を10℃で1時間半攪拌後、70℃で30分攪拌した反応液を氷水冷却し、これに、参照例3で得られたテトラエトキシシラン加水分解縮合反応液(S2)20部と硬化触媒として酢酸ナトリウム0.2部を氷水冷却下で混合し、さらに40℃で500時間攪拌して第2層用コーティング用組成物(x)を得た。該コーティング用組成物(x)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]は[X]の領域にピークを確認できず0、[Y]/[Z]=1.320であった。予め第1層用組成物(I−2)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な2mm厚のポリカーボネート製シートに、かかるコーティング用組成物(x)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0074】
[比較例5]
メチルトリメトキシシラン142部、蒸留水72部、酢酸20部を氷水で冷却下混合した。この混合液をこの混合液を25℃で1時間半攪拌後、70℃で2時間攪拌した反応液を氷水冷却し、これに、参照例3で得られたテトラエトキシシラン加水分解縮合反応液(S2)20部と硬化触媒として酢酸ナトリウム2部を氷水冷却下で混合し、イソプロパノール116部で希釈して第2層用コーティング用組成物(xi)を得た。該コーティング用組成物(xi)のシリコン核磁気共鳴スペクトル測定を実施した結果、各ピーク積分値は、[X]/[S]=0.03、[Y]/[Z]=1.32であった。予め第1層用組成物(I−2)を硬化膜厚4μmになるようにディップコートで両面塗布し120℃、1時間熱硬化した透明な2mm厚のポリカーボネート製シートに、かかるコーティング用組成物(xi)を硬化膜厚5μmになるようにディップコートで両面塗布し、120℃、1時間熱硬化してコート層を有する透明ポリカーボネート積層体シートを得た。得られたコート層を有するポリカーボネート積層体シートを評価した結果を表1に示した。
【0075】
【表1】
Figure 2004026979
【0076】
【発明の効果】
本発明のオルガノシロキサン樹脂組成物から得られるコート層は、外観、透明性、耐擦傷性、硬度、耐熱水性、密着性、耐有機溶剤性、耐酸性が良好で、特に耐摩耗性に優れ、従来に無い高いレベルで基材表面の摩耗を防ぐことができる。特に、これをポリカーボネートシート表面の片面または両面にコート(両面コートが好ましい)したものは自動車用窓ガラスやサンルーフに好適に使用され、その奏する工業的効果は格別である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organosiloxane resin composition and a molded article of a polycarbonate resin whose surface is protected by an organosiloxane resin, and more specifically, an optically transparent thermosetting organosiloxane resin for coating which imparts excellent abrasion resistance, and the organosiloxane resin. The present invention relates to a polycarbonate resin molding composition whose surface is protected by a siloxane resin.
[0002]
[Prior art]
A variety of coating compositions have been used to help protect the surface of substrates, and siloxane-based thermosetting hard coat agents are used especially for applications requiring a high level of abrasion resistance. Have been. Numerous technical proposals have been made for this siloxane-based hard coat agent. For example, JP-A-51-2736 discloses that a silanol condensate represented by the formula CH 3 Si (OH) 3 is dispersed in an aqueous alcohol solution. Coating compositions comprising a dispersion of colloidal silica are described. Further, JP-A-48-26822 and JP-A-51-33128 describe coating compositions containing a hydrolyzed condensate of an alkyltrialkoxysilane and a tetraalkoxysilane as a main component. Further, JP-A-63-278799 and JP-A-1-306476 describe coating compositions in which colloidal silica is added to a hydrolyzed condensate of an alkyltrialkoxysilane and a tetraalkoxysilane.
[0003]
By the way, it is known that the degree of hydrolysis and condensation of the alkoxysilane varies depending on the preparation method, that is, the hydrolysis and condensation method of the alkoxysilane, in the siloxane-based hard coating agent, and as a result, the performance of the coating agent is greatly changed. . However, the above-mentioned prior art does not give any suggestion on an appropriate hydrolysis / condensation ratio of alkoxysilane.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an optically transparent thermosetting organosiloxane resin for coating which imparts excellent abrasion resistance, and a polycarbonate resin molded article whose surface is protected by the organosiloxane resin.
[0005]
The inventor of the present invention has conducted intensive studies in order to achieve this object. As a result, an organosiloxane resin having a measurement result of a silicon nuclear magnetic resonance spectrum ( 29 Si-NMR) of an organosiloxane resin composition which satisfies certain conditions has been obtained. The present inventors have found that a high level of abrasion resistance can be obtained by applying the composition to the surface of a substrate and thermally curing the composition, and arrived at the present invention.
[0006]
[Means for Solving the Problems]
That is, according to the present invention, (A) colloidal silica (a component),
(B) a hydrolyzed condensate of an alkoxysilane represented by the following formula (1) (component (b)):
[0007]
Embedded image
Figure 2004026979
[0008]
(Wherein, R 1 and R 2 are each one or more selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, a vinyl group, a methacryloxy group, an amino group, a glycidoxy group, and a 3,4-epoxycyclohexyl group. A substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, R 3 is an alkyl group having 1 to 4 carbon atoms, m and n are each an integer of 0, 1, or 2, and m + n is Is an integer of 0, 1, or 2)
(C) Curing catalyst and (D) Solvent The organosiloxane resin composition uses heavy water (D 2 O) as a measuring solvent, an observation frequency of 79 MHz, an observation pulse of 6.0 μs, a repetition time of 30 seconds, and a broadening factor of 5 Hz. when silicon nuclear magnetic resonance spectra (29 Si-NMR) was measured in chemical shift of the silicon atoms of the organosiloxane resin composition, the silicon atoms of tetramethylsilane as 0 ppm, the range of -46.5ppm of -70.0ppm [S], the peak integrated value in the range of -46.5 ppm to -48.5 ppm in the peak integrated value [X], and the integrated value of the peak in the range -52.5 ppm to -61.0 ppm. The peak integrated value is [Y], and the peak integrated value in the range of -61.0 ppm to -70.0 ppm is [Z]. Wherein the organosiloxane resin composition satisfies 0.002 ≦ [X] / [S] ≦ 0.200 and 0.60 ≦ [Y] / [Z] ≦ 3.00. And a polycarbonate resin molded product having a protected surface, which is obtained by laminating a coating layer obtained by thermally curing the above-mentioned organosiloxane resin.
[0009]
The colloidal silica used as the component a in the present invention is a colloidal dispersion of silica fine particles having a diameter of 5 to 200 nm, preferably 5 to 40 nm, in water or an organic solvent. The colloidal silica can be used in either an aqueous dispersion type or an organic solvent dispersion type, but it is preferable to use an aqueous dispersion type. In the case of water-dispersed colloidal silica, a large number of hydroxyl groups are present on the surface of the silica fine particles, which are strongly bonded to the alkoxysilane hydrolyzed condensate, so that a plastic laminate excellent in wear resistance can be obtained. Conceivable.
[0010]
The water-dispersed colloidal silica is further divided into an acidic aqueous solution-dispersed type and a basic aqueous solution-dispersed type. The water-dispersed colloidal silica can be used in either an acidic aqueous solution-dispersed type or a basic aqueous solution-dispersed type. Type colloidal silica is preferably used.
[0011]
As such colloidal silica, specifically, as a product dispersed in an acidic aqueous solution, as Snowtex O of Nissan Chemical Industry Co., Ltd., as a product dispersed in a basic aqueous solution, Cataloid SN of Catalyst Chemical Industry Co., Ltd. Nissan Chemical Industries, Ltd. Snowtex 30, Snowtex 40, Catalyst Kasei Kogyo Co., Ltd. Cataloid S30, Cataloid S40, Nissan Chemical Industries Co., Ltd. MA-ST, IPA-ST , NBA-ST, IBA-ST, EG-ST, XBA-ST, NPC-ST, DMAC-ST, OSCAL1132, OSCAL1232, OSCAL1332, OSCAL1432, OSCAL1532, OSCAL1632, OSCAL1732, and the like of Catalyst Chemical Industries, Ltd.
[0012]
The hydrolysis-condensation product of alkoxysilane, which is the component b of the present invention, is obtained by subjecting the alkoxysilane of the formula (1) to a hydrolysis-condensation reaction.
[0013]
As the alkoxysilane, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyl Trimethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltri Methoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-A Nopropyltriethoxysilane, dimethyldimethoxysilane, vinylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, etc. Trialkoxysilanes are preferred, especially methyltrimethoxysilane and methyltriethoxysilane. These can be used alone or in combination.
[0014]
The organosiloxane resin composition is prepared, for example, through the following process.
[0015]
In the colloidal silica dispersion, the alkoxysilane of the formula (1) is hydrolyzed and condensed under acidic conditions.
[0016]
Here, the water required for the hydrolysis reaction of the alkoxysilane is supplied from a water-dispersed colloidal silica dispersion when the dispersion is used, and water may be further added if necessary. Usually, 1 to 10 equivalents, preferably 1.5 to 7 equivalents, more preferably 3 to 5 equivalents of water are used per 1 equivalent of alkoxysilane.
[0017]
As described above, the hydrolysis-condensation reaction of the alkoxysilane needs to be performed under acidic conditions. In order to carry out hydrolysis under such conditions, an acid is generally used as a hydrolyzing agent. Such an acid may be added in advance to the alkoxysilane or colloidal silica dispersion, or may be added after mixing both. Further, the addition can be divided into one time or two or more times. When an acidic aqueous solution-dispersed colloidal silica is used, the acid in the colloidal silica does not always need to be used because the acid keeps the reaction solution under acidic conditions. Examples of such an acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, and sulfamic acid, formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, maleic acid, lactic acid, and paratoluene sulfone. Organic acids such as acids are mentioned, and from the viewpoint of easy control of pH, organic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, and maleic acid are preferable, and acetic acid is particularly preferable.
[0018]
When an inorganic acid is used as the acid, it is usually used at a concentration of 0.0001 to 2 mol / l, preferably 0.001 to 0.1 mol / l. When an organic acid is used, 100 parts by weight of methyltrialkoxysilane is used. 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight.
[0019]
The conditions for the hydrolysis and condensation reaction of the alkoxysilane vary depending on the type of the alkoxysilane used, the type and the amount of colloidal silica coexisting in the system, and therefore cannot be specified unconditionally, but usually the system temperature is 20 to 40 ° C. The reaction time is one hour to several days. Although the hydrolysis reaction of the alkoxysilane is exothermic, it is desirable that the temperature of the system does not exceed 60 ° C. at the maximum. After the hydrolysis reaction is sufficiently advanced under such conditions, the condensation reaction is preferably performed at 40 to 80 ° C. for 1 hour to several days in order to stabilize the coating agent. By performing the hydrolysis and condensation reaction under the above conditions, 0.002 ≦ [X] / [S] ≦ 0.200 and 0.60 ≦ [Y] / [Z] ≦ 3.00 are realized. be able to.
[0020]
In this reaction, the alkoxysilane of the above formula (1) is hydrolyzed to give the following formula (3)
[0021]
Embedded image
Figure 2004026979
[0022]
(Wherein, R 1 and R 2 are each one or more selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, a vinyl group, a methacryloxy group, an amino group, a glycidoxy group, and a 3,4-epoxycyclohexyl group. Is an alkyl group having 1 to 3 carbon atoms substituted with a group, m and n are each an integer of 0, 1, or 2, and m + n is any integer of 0, 1, or 2)
The resulting Si-OH undergoes a condensation reaction with Si-OH in colloidal silica or Si-OH of a trialkoxysilane hydrolyzate molecule different from this molecule to form Si-O- A Si bond is formed, and the formed condensate also undergoes a condensation reaction with another Si-OH to form a Si-O-Si bond. The hydrolysis reaction and the condensation reaction proceed partially, not completely.
[0023]
When the reaction liquid was measured by a silicon nuclear magnetic resonance spectrum ( 29 Si-NMR), the chemical shift of the organosiloxane resin composition was defined as the silicon atom peak of the trialkoxysilane dimer condensate with the silicon atom of tetramethylsilane being 0 ppm. From -46.5 ppm to -48.5 ppm, the peak derived from the silicon atom derived from the trialkoxysilane at the end of the silicone oligomer and only one hydroxyl group was condensed from -52.5 ppm to -61.0 ppm, In the oligomer, the peak derived from the trialkoxysilane and the silicon atom group in which the two hydroxyl groups are condensed and reacted is from -61.0 ppm to -70.0 ppm, and the silicone oligomer is derived from the trialkoxysilane and three hydroxyl groups are present. Silicon source after condensation reaction Peak based on Dan and peaks based on silicon atomic group bound to the colloidal silica is -130ppm from -95Ppm. Further, peaks based on silicon atoms of tetraalkoxysilane and dialkoxysilane appear outside the above-mentioned region. The organosiloxane resin composition has an appropriate hydrolysis and condensation ratio, and if the hydrolysis reaction is insufficient, hair cracks may occur due to evaporation of the starting trialkoxysilane during thermal curing and rapid progress of the curing reaction. Occurs. On the other hand, if the condensation reaction proceeds too much, the particle size in the sol becomes too large, making it impossible to carry out an appropriate crosslinking reaction, resulting in reduced wear resistance.
[0024]
The present inventors have intensively studied the realization of appropriate hydrolysis and condensation states, and as a result of measurement of silicon nuclear magnetic resonance spectrum ( 29 Si-NMR) under the above-mentioned conditions, each integral value was 0.002 ≦ [X] / The organosiloxane resin composition in which [S] ≦ 0.200 and 0.60 ≦ [Y] / [Z] ≦ 3.00 has a coating film with sufficient abrasion resistance without cracking during thermosetting. It has been found that a layer is formed. The range of each integral value is preferably 0.003 ≦ [X] / [S] ≦ 0.150, and 0.75 ≦ [Y] / [Z] ≦ 2.25, most preferably 0.003 ≦ [X] / [S] ≦ 0.150 and 0.75 ≦ [Y] / [Z] ≦ 2.00. When [X] / [S] exceeds 0.2, or when [Y] / [Z] exceeds 3.00, the progress of the condensation reaction of the organosiloxane resin is insufficient, so that the coating film is formed. Cracks occur during layer thermal curing. In addition, when [X] / [S] is less than 0.002 or [Y] / [Z] is less than 0.60, the condensation reaction proceeds excessively, so that the coating layer has sufficient abrasion resistance. Can't get out. When colloidal silica is not used in the organosiloxane resin composition, scratch resistance and the like may be insufficient even in the range of the silicon nuclear magnetic resonance spectrum of the present invention.
[0025]
In the present invention, the mixing ratio of each component of the organosiloxane resin solid components a and b is determined by the stability of the organosiloxane resin composition, the transparency of the obtained cured film, the abrasion resistance, the abrasion resistance, the adhesion and Determined from the viewpoint of the occurrence of cracks and the like, and assuming that the total of the components a and b is 100% by weight, the preferable mixing ratio of the two components is 10 to 60% by weight for the component a and R 1 m R 2 for the component b. n SiO (4-m-n ) / 2 40~90 wt% in terms of, preferably a component from 10 to 40 wt%, b components R 1 m R 2 n SiO ( 4-m-n) / 2 , which is 60 to 90% by weight.
[0026]
The organosiloxane resin composition of the present invention further contains a curing catalyst. Examples of such a catalyst include lithium salts of aliphatic carboxylic acids such as formic acid, propionic acid, butyric acid, lactic acid, tartaric acid and succinic acid, alkali metal salts such as sodium salt and potassium salt, benzyltrimethylammonium salt, choline salt, and tetramethylammonium. And quaternary ammonium salts such as tetraethylammonium salt. Specific examples thereof include sodium acetate, potassium acetate, choline acetate, and benzyltrimethylammonium acetate. When a basic water-dispersed colloidal silica is used as the colloidal silica and an aliphatic carboxylic acid is used as the acid during hydrolysis of the alkoxysilane, a curing catalyst is already contained in the organosiloxane resin composition. Will be. The necessary content varies depending on the composition of the organosiloxane resin, the degree of progress of the hydrolysis and condensation reactions, and the thermosetting conditions. The curing catalyst is used in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the solid content of the organosiloxane resin. And preferably 0.1 to 5 parts by weight. If the content is less than 0.01 part by weight, a sufficient curing rate cannot be obtained, and if the content is more than 10 parts by weight, the storage stability of the organosiloxane resin composition is lowered or a precipitate is formed.
[0027]
As a solvent used in the organosiloxane resin composition of the present invention, it is necessary that the solid content of the organosiloxane resin is stably dissolved. For this purpose, at least 20% by weight or more, preferably 50% by weight or more is alcohol. It is desirable. Examples of such alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethoxyethanol, 4-methyl-2-pentanol, and 2-butoxy. Ethanol and the like are mentioned, and a low-boiling alcohol having 1 to 4 carbon atoms is preferable, and 2-propanol is particularly preferable in terms of solubility, stability, and coatability. In the solvent, water not involved in the hydrolysis reaction with water in water-dispersed colloidal silica, a lower alcohol generated by the hydrolysis of alkoxysilane, when an organic solvent-dispersed colloidal silica is used, An organic solvent for the dispersion medium and an acid added for adjusting the pH of the organosiloxane resin composition are also included. Acids used for pH adjustment include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, nitrous acid, perchloric acid, sulfamic acid, formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, and maleic acid. Organic acids such as acid, lactic acid, and paratoluenesulfonic acid are exemplified, and organic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, succinic acid, and maleic acid are preferable from the viewpoint of easy control of pH. Other solvents must be miscible with water / alcohol, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, ethers such as tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, acetic acid Esters such as ethyl and ethoxyethyl acetate are exemplified. The solvent is used in an amount of 50 to 900 parts by weight, preferably 150 to 700 parts by weight, based on 100 parts by weight of the solid content of the organosiloxane resin.
[0028]
The pH of the organosiloxane resin composition of the present invention is desirably adjusted to 3.0 to 6.0, preferably 4.0 to 5.5 by adjusting the contents of the acid and the curing catalyst. Thereby, gelation of the organosiloxane resin composition at normal temperature can be prevented, and storage stability can be increased. The organosiloxane resin composition usually becomes a stable composition when further aged for several hours to several days.
[0029]
Further, a known leveling agent can be blended with the organosiloxane resin composition of the present invention for the purpose of improving coatability and smoothness of the obtained coating film. The compounding amount is preferably in the range of 0.01 to 2 parts by weight based on 100 parts of the organosiloxane resin composition. Further, an ultraviolet absorber, a dye, a pigment, a filler, and the like may be added as long as the object of the present invention is not impaired.
[0030]
The organosiloxane resin composition thus prepared can be applied to a transparent resin molded body such as a polycarbonate resin. In particular, it can be preferably applied to a molded article in which an acrylic resin layer is formed as a primer layer on a polycarbonate resin.
[0031]
The polycarbonate resin used in the present invention is a polycarbonate resin obtained by reacting a dihydric phenol with a carbonate precursor by an interfacial polycondensation method or a melting method. Representative examples of dihydric phenols include 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), 2,2-bis (3-methyl-4-hydroxyphenyl) propane, Bis (3,5-dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4-hydroxy Phenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 9,9-bis {(4-hydroxy-3-methyl) phenyl} fluorene, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) 3,3,5-trimethylcyclohexane and α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, etc. However, bisphenol A is preferred. These dihydric phenols can be used alone or in combination of two or more.
[0032]
As the carbonate precursor, carbonyl halide, carbonate ester or haloformate is used, and specific examples include phosgene, diphenyl carbonate or dihaloformate of dihydric phenol.
[0033]
In producing the polycarbonate resin by reacting the dihydric phenol and the carbonate precursor by an interfacial polycondensation method or a melting method, a catalyst, a terminal stopper, an antioxidant for the dihydric phenol, and the like are used as necessary. May be. Further, the polycarbonate resin may be a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate resin obtained by copolymerizing an aromatic or aliphatic bifunctional carboxylic acid, Further, a mixture of two or more of the obtained polycarbonate resins may be used.
[0034]
In the interfacial polycondensation method using phosgene, the reaction is performed in the presence of an acid binder and an organic solvent. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide and amine compounds such as pyridine. Examples of the solvent include halogenated hydrocarbons such as methylene chloride and chlorobenzene. Further, a catalyst such as a tertiary amine or a quaternary ammonium salt can be used to promote the reaction. The reaction temperature is usually from 0 to 40 ° C, and the reaction time is from several minutes to 5 hours.
[0035]
Further, the melting method using diphenyl carbonate is carried out by a method in which a predetermined ratio of a dihydric phenol component and a diphenyl carbonate are stirred while heating under an inert gas atmosphere to distill off the alcohol or phenols produced. The reaction temperature varies depending on the boiling point of the produced alcohol or phenol, and is usually in the range of 120 to 300 ° C. The reaction is completed while reducing the pressure from the beginning to distill off the produced alcohol or phenol. In addition, a usual ester exchange reaction catalyst can be used to promote the reaction.
[0036]
The molecular weight of the polycarbonate resin is preferably 10,000 to 50,000, more preferably 15,000 to 35,000 in terms of viscosity average molecular weight (M). A polycarbonate resin having such a viscosity average molecular weight is preferable because sufficient strength is obtained and the melt fluidity during molding is good. The viscosity average molecular weight referred to in the present invention is obtained by inserting the specific viscosity (ηsp) obtained from a solution obtained by dissolving 0.7 g of a polycarbonate resin in 100 ml of methylene chloride at 20 ° C. into the following equation.
ηsp / c = [η] + 0.45 × [η] 2 c
[Η] = 1.23 × 10 −4 M 0.83
(However, c = 0.7, [η] is the limiting viscosity)
[0037]
When producing such a polycarbonate resin, if necessary, stabilizers such as phosphites, phosphates, phosphonates, etc., tetrabromobisphenol A, low molecular weight polycarbonates of tetrabromobisphenol A, and flame retardants such as decabromodiphenol , A coloring agent, a lubricant and the like can be added.
[0038]
The acrylic resin used for the coating resin preferably formed on the polycarbonate resin has the following formula (2)
[0039]
Embedded image
Figure 2004026979
[0040]
(However, in the formula, R 4 is an alkyl group having 1 to 4 carbon atoms.)
Is an acrylic resin containing 50 mol% or more of the repeating unit represented by the formula, and specifically, a polymer obtained by polymerizing 50 mol% or more of an alkyl methacrylate monomer and 50 mol% or less of a vinyl monomer. Examples of the alkyl methacrylate monomer include methyl methacrylate, ethyl methacrylate, propyl methacrylate and butyl methacrylate, and these can be used alone or in combination of two or more. Of these, methyl methacrylate and ethyl methacrylate are preferred.
[0041]
Further, as other vinyl monomers, those which can be copolymerized with an alkyl methacrylate monomer, particularly acrylic acid, methacrylic acid or derivatives thereof are preferably used in terms of durability such as adhesion or weather resistance. . Specifically, acrylic acid, methacrylic acid, acrylamide, methacrylamide, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, N, N-diethylaminoethyl methacrylate, glycidyl methacrylate, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 2- (2'- Hydroxy-5-methacryloxyethylphenyl) -2H-benzotriazole, 2- (2'-hydroxy-5-acryloxyethyl) Eniru) -2H- benzotriazole, etc. These can be used alone or in combination. Further, a mixture of two or more acrylic resins may be used.
[0042]
The acrylic resin is preferably of a thermosetting type, and desirably contains 0.01 to 50 mol% of a vinyl monomer having a crosslinkable reactive group. Examples of the vinyl monomer having such a crosslinkable reactive group include acrylic acid, methacrylic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, vinyl trimethoxysilane, and 3-methacryloxypropyl trimethoxysilane. , 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and the like.
[0043]
Among them, a vinyl monomer having a crosslinkable reactive group is an acrylic monomer having a hydroxyl group such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, or 2-hydroxypropyl methacrylate, and a polyisocyanate compound or a polyisocyanate compound is used as a crosslinking agent. A thermosetting urethane acrylic resin using a polyisocyanate compound precursor that generates a derivative can be preferably used.
[0044]
The acrylic resin has a molecular weight of preferably 20,000 or more, more preferably 50,000 or more, and more preferably 10,000,000 or less in weight average molecular weight. The acrylic resin having such a molecular weight range is preferable because performance such as adhesion and strength as the first layer is sufficiently exhibited.
[0045]
As a method for forming the coating resin (first layer) used in the present invention, a coating resin component such as an acrylic resin and an additive component such as a light stabilizer and an ultraviolet absorber described below are added to a transparent plastic substrate. This is carried out by dissolving in a volatile solvent that does not react with or dissolve the transparent plastic, apply this coating composition to the surface of the transparent plastic substrate, and then remove the solvent by heating or the like. If necessary, after removing the solvent, it is also preferable to further heat to 40 to 140 ° C. to crosslink the crosslinkable group.
[0046]
Such solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, ketones such as cyclohexanone, tetrahydrofuran, 1,4-dioxane, ethers such as 1,2-dimethoxyethane, ethyl acetate, esters such as ethoxyethyl acetate, methanol, Alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-ethoxyethanol, 4-methyl-2-pentanol, 2-butoxyethanol, n -Hexane, n-heptane, isooctane, benzene, toluene, xylene, gasoline, gas oil, hydrocarbons such as kerosene, acetonitrile, nitromethane, water and the like, and these may be used alone or in combination of two or more. You may mix and use. The concentration of the solid content of the coating film resin in such a coating composition is preferably 1 to 50% by weight, and more preferably 3 to 30% by weight.
[0047]
The coating composition may contain a light stabilizer, an ultraviolet absorber, and a silane coupling agent for the purpose of improving the weather resistance of the plastic substrate.
[0048]
Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis (2 2,6,6-tetramethyl-4-piperidyl) sebacate, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-octanoyloxy-2,2,6,6-tetramethylpiperidine, Bis (2,2,6,6-tetramethyl-4-piperidyl) diphenylmethane-p, p'-dicarbamate, bis (2,2,6,6-tetramethyl-4-piperidyl) benzene-1,3- Hindered amines such as disulfonate and bis (2,2,6,6-tetramethyl-4-piperidyl) phenyl phosphite; nickel bis (octylphenyl sulfite) And nickel complexes such as nickel complex-3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. These agents may be used alone or in combination of two or more. It is preferably used in an amount of 1 to 50 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of the coating resin.
[0049]
Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 2,2'-dihydroxy-4,4'-dimethoxybenzophenone. Benzophenones, 2- (5'-methyl-2'-hydroxyphenyl) benzotriazole, 2- (3'-t-butyl-5'-methyl-2'-hydroxyphenyl) benzotriazole, 2- (3 ' Benzotriazoles such as 5,5'-di-t-butyl-2'-hydroxyphenyl) -5-chlorobenzotriazole and 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole; -Cyano-3,3-diphenylacrylate, 2-ethylhexyl-2-cyano-3, Cyanoacrylates such as diphenyl acrylate, salicylates such as phenyl salicylate and p-octylphenyl salicylate, benzylidene malonates such as diethyl-p-methoxybenzylidene malonate, bis (2-ethylhexyl) benzylidene malonate, 2- ( 4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(methyl) oxy] -phenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl ) -5-[(Ethyl) oxy] -phenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(propyl) oxy] -phenol, 2- (4 , 6-Diphenyl-1,3,5-triazin-2-yl) -5-[(butyl) oxy] -phenol, 2- (4,6- Triazines such as phenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- (2'-hydroxy-5-methacryloxyethylphenyl) -2H-benzotriazole And a copolymer of 2- (2'-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole with a vinyl monomer copolymerizable with the monomer. Fine particles of metal oxides such as copolymers, titanium oxide cerium oxide, zinc oxide, tin oxide, tungsten oxide, zinc sulfide, and cadmium sulfide can be given. Among them, 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole is preferable. These agents may be used alone or in combination of two or more, and are preferably used in an amount of 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight, based on 100 parts by weight of the coating resin.
[0050]
Examples of the silane coupling agent include γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, vinyltriacetoxysilane, γ-anilinopropyltrimethoxy Examples thereof include silane, vinyltrimethoxysilane, octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride, and γ-ureidopropyltriethoxysilane, and a partially hydrolyzed condensate of the above silane coupling agent can also be used. By adding such an agent, the adhesive strength between the transparent plastic substrate and the first layer and between the first layer and the second layer is maintained for a long time. These agents may be used alone or in combination of two or more, and are preferably used in an amount of 0.1 to 50 parts by weight, more preferably 0.2 to 10 parts by weight, based on 100 parts by weight of the coating resin.
[0051]
The coating composition preferably contains an ultraviolet absorber.
[0052]
The coating composition is applied to a plastic substrate by a bar coating method, a dip coating method, a flow coating method, a spray coating method, a spin coating method, a roller coating method, etc., depending on the shape of the substrate to be coated. It can be selected as appropriate. The substrate coated with such a coating composition is usually dried at room temperature to a temperature equal to or lower than the heat deformation temperature of the substrate, and the solvent is dried and removed. Heat is applied to crosslink the crosslinkable groups, and as a first layer, a transparent plastic substrate on which the above-mentioned coating resin is laminated is obtained.
[0053]
The thickness of the coating resin layer of the first layer may be any thickness as long as the transparent plastic base material and the second layer are sufficiently adhered to each other and the necessary amount of the additive can be maintained. , Preferably 0.1 to 10 μm, more preferably 1 to 5 μm.
[0054]
By forming the first layer made of the coating resin mainly composed of the acrylic resin, the adhesion between the second layer and the transparent plastic substrate is improved, and the transparent plastic molded article having excellent wear resistance and weather resistance Can be obtained.
[0055]
Examples of the method of coating the organosiloxane resin composition formed by laminating the acrylic resin layer described above include methods such as dip coating, flow coating, spray coating, spin coating, roller coating, and bar coating. Can be appropriately selected according to the shape of the substrate to be coated.
[0056]
The thickness of the coat layer is usually 2 to 10 μm, preferably 3 to 8 μm. When the thickness of the coat layer is within the above range, cracks are generated in the coat layer due to stress generated at the time of thermosetting, and the adhesion between the coat layer and the base material is not reduced, and the present invention The intended coat layer having sufficient wear resistance can be obtained.
[0057]
The coating layer is thermoset after coating and is brought into close contact with the substrate. It is preferable to perform the thermal curing at a high temperature within a range in which there is no problem with the heat resistance of the substrate because the curing can be completed earlier. At room temperature, thermosetting does not proceed and a cured film cannot be obtained. This means that the solid content of the organosiloxane resin in the organosiloxane resin composition of the present invention is partially condensed. In the course of the heat curing, the remaining Si-OH causes a condensation reaction to form a Si-O-Si bond, and a coat layer having excellent wear resistance is obtained. The thermosetting is usually performed at 50 ° C to 400 ° C for 10 minutes to 4 hours, preferably at 80 ° C to 160 ° C for 20 minutes to 2 hours, and most preferably at 110 ° C to 135 ° C when applied to a polycarbonate substrate. Heat and cure for 30 minutes to 1 hour.
[0058]
The organosiloxane resin composition of the present invention provides a transparent coat layer having excellent wear resistance, scratch resistance, hardness, hot water resistance, organic solvent resistance, acid resistance, and adhesion to a substrate of the coat layer. It can be formed to prevent abrasion of the substrate surface at a high level.
[0059]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, the obtained laminated body was evaluated by the following method. Parts in the examples mean parts by weight.
(1) Appearance evaluation: The appearance of the double-sided coating layer of the test piece (the presence or absence of foreign matters, cissing, and mottle patterns) and the presence or absence of cracks (cracks) were visually confirmed.
(2) Adhesion: 100 cross-cuts at 1 mm intervals were made on one side of the double-sided coat layer with a cutter knife, Nichiban adhesive tape (trade name "Cellotape") was pressed, and strongly peeled vertically, onto the substrate Was evaluated based on the number of crosscuts remaining (based on JIS K5400).
(3) Scratch resistance: After rubbing one surface of the double-sided coat layer with # 0000 steel wool, the state of scratches on the surface was visually evaluated on a five-point scale.
1: No damage at all when rubbed strongly 2: Slightly damaged when rubbed strongly 3: Slightly damaged when rubbed strongly 4: Damaged when rubbed strongly 5: Damaged only by rubbing weakly (4) Abrasion resistance: One side of the double-sided coating layer Was subjected to a 1000-rotor Taber abrasion test under a load of 500 g using a wear wheel of CS-10F manufactured by Caliberase, and the difference ΔH between the haze after the Taber abrasion test and the haze before the Taber abrasion test was measured and evaluated (ASTM). D1044). (Haze = Td / Tt × 100, Td: scattered light transmittance, Tt: total light transmittance)
(5) Hot water resistance: The test piece was immersed in boiling water for 2 hours, and the appearance change and adhesion of the coat layer were evaluated.
[0060]
[Reference Example 1] (Preparation of composition for first layer)
Equipped with a reflux condenser and a stirrer, in a flask purged with nitrogen, 80.1 parts of methyl methacrylate (hereinafter abbreviated as MMA), 13 parts of 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA), azobisisobutyronitrile 0.14 parts (hereinafter abbreviated as AIBN) and 200 parts of 1,2-dimethoxyethane were added, mixed and dissolved. Next, the reaction was carried out in a nitrogen stream at 70 ° C. for 6 hours with stirring. The obtained reaction solution was added to n-hexane and purified by reprecipitation to obtain 80 parts of a copolymer (acrylic resin (I)) having a composition ratio of MMA / HEMA of 90/10 (molar ratio). 8.9 parts of acrylic resin (I) and 1.5 parts of 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole consist of 20 parts of methyl ethyl ketone, 30 parts of methyl isobutyl ketone and 30 parts of 2-propanol. The resin was dissolved in a mixed solvent, and 1.1 parts of hexamethylene diisocyanate was added to the solution so that the isocyanate group was 1.5 equivalents to 1 equivalent of the hydroxy group of the acrylic resin (I). The mixture was stirred for 1 minute to prepare the first layer composition (I-1).
[0061]
[Reference Example 2] (Preparation of composition for first layer)
Equipped with a reflux condenser and stirrer, 65 parts of MMA, 25 parts of 2- (2-hydroxy-5-methacryloxyethylphenyl) benzotriazole (hereinafter abbreviated as MEBT), 25 parts of 3-methacryloxypropyl 10 parts of methoxysilane (hereinafter abbreviated as MPTMS), 0.16 parts of azobisisobutyronitrile and 200 parts of 1,2-dimethoxyethane were added, mixed and dissolved. Next, the reaction was carried out in a nitrogen stream at 70 ° C. for 6 hours with stirring. The obtained reaction solution was added to n-hexane and purified by reprecipitation, and the first layer having a composition ratio of MMA / MEBT / MPTMS of 65/25/10 by weight (85/10/5 by mole) was used. Composition (I-2) was prepared.
[0062]
Reference Example 3 (Preparation of Tetraalkoxysilane Hydrolysis Condensate Reaction Solution)
208 parts of tetraethoxysilane and 81 parts of 0.01 mol / l hydrochloric acid were mixed under cooling with ice water. This mixture was stirred at 25 ° C. for 3 hours and diluted with 11 parts of isopropanol to obtain 300 parts of a tetraethoxysilane hydrolyzed condensate solution (S2).
[0063]
[Example 1]
80 parts of a water-dispersed colloidal silica dispersion (catalyst SN-35, manufactured by Catalysis Chemical Industry Co., Ltd., solid content concentration: 30% by weight) was added to 127 parts of methyltrimethoxysilane under cooling with an ice water bath. The mixture was stirred at 25 ° C. for 1.5 hours and then stirred at 70 ° C. for 2 hours. The reaction solution was cooled with ice water, and 24 parts of acetic acid and 2 parts of sodium acetate as a curing catalyst were mixed under ice water cooling. A two-layer coating composition (i) was obtained. A silicon nuclear magnetic resonance spectrum of the organosiloxane resin composition (i) was prepared using heavy water (D 2 O) as a measurement solvent under the conditions of an observation frequency of 79 MHz, an observation pulse of 6.0 μs, a repetition time of 30 seconds, and a broadening factor of 5 Hz. (29 Si-NMR) was measured. Also silicon nuclear magnetic resonance spectra (29 Si-NMR) measured by the respective coating agent under the same conditions in the following examples. The chemical shift of the silicon atom of the organosiloxane resin composition is represented by the integral value of all peaks in the range of -46.5 ppm to -70.0 ppm [S], where the silicon atom of tetramethylsilane is 0 ppm. Among them, the peak integrated value in the range of -46.5 ppm to -48.5 ppm is [X], the peak integrated value in the range of -52.5 ppm to -61.0 ppm is [Y], and the peak integrated value is -61.0 ppm to -70. When the peak integrated value in the range of 0 ppm was expressed as [Z], [X] / [S] = 0.010 and [Y] / [Z] = 0.96. The first layer composition (I-1) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and then cured at 120 ° C. for 1 hour on a transparent 2 mm-thick polycarbonate sheet. (I) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0064]
[Example 2]
12 parts of acetic acid was added to 80 parts of a water-dispersed colloidal silica dispersion (catalyst SN-35, manufactured by Catalysis Chemical Industry Co., Ltd., solid content concentration: 30% by weight), and the mixture was stirred. 127 parts of methoxysilane were added. The mixture was stirred at 30 ° C. for 1.5 hours, then stirred at 70 ° C. for 4 hours, cooled with ice water, and mixed with 2 parts of sodium acetate as a curing catalyst under ice water cooling to form a second layer coating. A composition for use (ii) was obtained. As a result of measuring the silicon nuclear magnetic resonance spectrum of the coating composition (ii), the peak integrated values were [X] / [S] = 0.006, [Y] / [Z] = 0.82. there were. The first layer composition (I-1) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and then cured at 120 ° C. for 1 hour on a transparent 2 mm-thick polycarbonate sheet. (Ii) was dip-coated on both sides with a cured film thickness of 5 μm, and heat-cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0065]
[Example 3]
15 parts of distilled water was added to 60 parts of a water-dispersed colloidal silica dispersion liquid (Cataloid SN-35, manufactured by Catalysis Chemical Industry Co., Ltd., solid content concentration: 30% by weight), and the mixture was stirred. The dispersion was cooled in an ice water bath. 146 parts of methyltrimethoxysilane were added. After stirring the mixture at 25 ° C. for 2.5 hours, the reaction solution stirred at 60 ° C. for 1 hour was cooled with ice water, and 20 parts of acetic acid and 0.5 part of a 45% choline solution as a curing catalyst were cooled with ice water. The mixture was mixed and diluted with 9 parts of isopropanol to prepare a second layer coating composition (iii). As a result of performing a silicon nuclear magnetic resonance spectrum measurement of the coating composition (i ii), each peak integrated value was [X] / [S] = 0.090, [Y] / [Z] = 1.65. Met. The first layer composition (I-2) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and then heat-cured at 120 ° C. for 1 hour on a transparent 5 mm-thick polycarbonate sheet. (Iii) was coated on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0066]
[Example 4]
118 parts of methyltrimethoxysilane was added to 80 parts of a water-dispersed colloidal silica dispersion (Cataloid SN-35, manufactured by Catalysis Chemical Industry Co., Ltd., solid content concentration: 30% by weight) while cooling in an ice water bath. After stirring this mixture at 25 ° C. for 1.5 hours, 20 parts of the tetraethoxysilane hydrolysis-condensation reaction liquid (S2) obtained in Reference Example 3 was added, and the mixture was further stirred at 25 ° C. for 30 minutes. Thereafter, the reaction solution stirred at 70 ° C. for 2 hours was cooled with ice water, and 0.2 parts of sodium acetate as a curing catalyst was mixed under cooling with ice water to obtain a coating composition for second layer (iv). As a result of performing a silicon nuclear magnetic resonance spectrum measurement of the coating composition (iv), each peak integrated value was [X] / [S] = 0.020, [Y] / [Z] = 1.32. there were. The first layer composition (I-2) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and then heat-cured at 120 ° C. for 1 hour on a transparent 5 mm-thick polycarbonate sheet. (Iv) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0067]
Further, the obtained sheet was fitted into a sunroof window frame of an automobile and used for one year. However, the sheet was less damaged and could be suitably used as a glass for an automobile sunroof.
[0068]
[Example 5]
80 parts of a water-dispersed colloidal silica dispersion (catalyst SN-35, manufactured by Catalysis Chemical Industry Co., Ltd., solid content concentration: 30% by weight), 142 parts of methyltrimethoxysilane, and 20 parts of distilled water were mixed under cooling with ice water. The mixture was stirred at 25 ° C. for 1 hour and a half, and then stirred at 70 ° C. for 1 hour. The reaction solution was cooled with ice water, 15 parts of acetic acid and 2 parts of sodium acetate as a curing catalyst were mixed under ice water cooling, and 116 parts of isopropanol were mixed. After dilution, the coating composition (v) for the second layer was obtained. As a result of measuring the silicon nuclear magnetic resonance spectrum of the coating composition (v), the peak integrated values were [X] / [S] = 0.025 and [Y] / [Z] = 1.12. there were. The first layer composition (I-2) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and then cured at 120 ° C. for 1 hour on a transparent 3 mm-thick polycarbonate sheet. (V) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0069]
[Example 6]
24 parts of acetic acid and 10 parts of distilled water were added to 80 parts of a water-dispersed colloidal silica dispersion (cataloid SN-35, manufactured by Catalysis Chemical Industry Co., Ltd., solid content concentration: 30% by weight), and the mixture was stirred. The mixture was added to a mixture of 118 parts of methyltrimethoxysilane and 14 parts of tetraethoxysilane under cooling. The mixture was stirred at 25 ° C. for 1.5 hours and then stirred at 50 ° C. for 8 hours. The reaction solution was cooled with ice water, and 0.5 part of a 45% choline solution as a curing catalyst was mixed under ice water cooling. A two-layer coating composition (vi) was obtained. As a result of performing a silicon nuclear magnetic resonance spectrum measurement of the coating composition (vi), each peak integrated value was [X] / [S] = 0.050 and [Y] / [Z] = 1.450. there were. The first layer composition (I-2) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and then heat-cured at 120 ° C. for 1 hour on a transparent 5 mm-thick polycarbonate sheet. (Vi) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0070]
[Comparative Example 1]
24 parts of acetic acid was added to 80 parts of a water-dispersed colloidal silica dispersion (Snowtex 30 solid content concentration: 30% by weight, manufactured by Nissan Chemical Industries, Ltd.), and the mixture was stirred. The resulting dispersion was cooled in an ice-water bath while cooling methyltrimethoxysilane. 127 parts. The reaction mixture was stirred at 40 ° C. for 2 hours, cooled with ice water, and mixed with 2 parts of sodium acetate as a curing catalyst under ice water cooling to obtain a second layer coating composition (vii). . As a result of performing a silicon nuclear magnetic resonance spectrum measurement of the coating composition (vii), each peak integrated value was [X] / [S] = 0.18, [Y] / [Z] = 3.20. there were. The first layer composition (I-1) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and then cured at 120 ° C. for 1 hour on a transparent 2 mm-thick polycarbonate sheet. (Vii) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0071]
[Comparative Example 2]
24 parts of acetic acid and 10 parts of isopropanol were added to 80 parts of a water-dispersed colloidal silica dispersion (Snowtex 30 solid content concentration: 30% by weight, manufactured by Nissan Chemical Industries, Ltd.) and stirred, and the dispersion was cooled in an ice water bath. It was added to 127 parts of methyltrimethoxysilane. The mixture was stirred at 25 ° C. for 1.5 hours, then stirred at 75 ° C. for 4 hours, cooled with ice water, and mixed with 2 parts of sodium acetate as a curing catalyst under ice water cooling to form a second layer coating. The composition for use (viii) was obtained. As a result of measuring the silicon nuclear magnetic resonance spectrum of the coating composition (viii), the peak integrated values were [X] / [S] = 0.003 and [Y] / [Z] = 0.52. there were. The first layer composition (I-1) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and then cured at 120 ° C. for 1 hour on a transparent 2 mm-thick polycarbonate sheet. (Viii) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coating layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0072]
[Comparative Example 3]
15 parts of distilled water and 20 parts of acetic acid were added to 60 parts of a water-dispersed colloidal silica dispersion (Cataloid SN-35, manufactured by Catalyst Chemical Industry Co., Ltd., solid content concentration: 30% by weight), and the mixture was stirred. Under cooling, 146 parts of methyltrimethoxysilane was added. The mixture was stirred at 25 ° C. for 30 minutes, and the reaction mixture was cooled with ice water. To this, 0.2 part of sodium acetate was mixed under cooling with ice water, and diluted with 9 parts of isopropanol to form a coating composition for the second layer. (Ix) was prepared. As a result of measuring the proton nuclear magnetic resonance spectrum of the coating composition (ix), the peak integrated value was determined by measuring the silicon nuclear magnetic resonance spectrum, and each peak integrated value was determined by [X] / [S]. = 0.350, [Y] / [Z] = 1.32. Met. The first layer composition (I-2) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and was heat-cured at 120 ° C. for 1 hour to form a transparent 2 mm-thick polycarbonate sheet. (Ix) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0073]
[Comparative Example 4]
To 80 parts of a water-dispersed colloidal silica dispersion (Snowtex 30 manufactured by Nissan Chemical Industries, Ltd., solid content concentration: 30% by weight), 6 parts of acetic acid was added to 118 parts of methyltrimethoxysilane under cooling with an ice water bath. The mixture was stirred at 10 ° C. for 1.5 hours, then stirred at 70 ° C. for 30 minutes, cooled with ice water, and added with 20 parts of the tetraethoxysilane hydrolysis-condensation reaction solution (S2) obtained in Reference Example 3. And 0.2 parts of sodium acetate as a curing catalyst were mixed under cooling with ice water, followed by stirring at 40 ° C. for 500 hours to obtain a second layer coating composition (x). As a result of performing a silicon nuclear magnetic resonance spectrum measurement of the coating composition (x), the peak integrated values were [X] / [S] where no peak could be confirmed in the [X] region, and 0 and [Y] /[Z]=1.320. The first layer composition (I-2) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and was heat-cured at 120 ° C. for 1 hour to form a transparent 2 mm-thick polycarbonate sheet. (X) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0074]
[Comparative Example 5]
142 parts of methyltrimethoxysilane, 72 parts of distilled water, and 20 parts of acetic acid were mixed while cooling with ice water. The mixture was stirred at 25 ° C. for 1.5 hours, then stirred at 70 ° C. for 2 hours, cooled with ice water, and added to the tetraethoxysilane hydrolysis-condensation reaction obtained in Reference Example 3 ( S2) 20 parts of sodium acetate as a curing catalyst and 2 parts of sodium acetate were mixed under cooling with ice water and diluted with 116 parts of isopropanol to obtain a second layer coating composition (xi). As a result of measuring the silicon nuclear magnetic resonance spectrum of the coating composition (xi), the peak integrated values were [X] / [S] = 0.03 and [Y] / [Z] = 1.32. there were. The first layer composition (I-2) was previously coated on both sides by dip coating so as to have a cured film thickness of 4 μm, and was heat-cured at 120 ° C. for 1 hour to form a transparent 2 mm-thick polycarbonate sheet. (Xi) was applied on both sides by dip coating so as to have a cured film thickness of 5 μm, and was thermally cured at 120 ° C. for 1 hour to obtain a transparent polycarbonate laminate sheet having a coat layer. Table 1 shows the results of evaluating the polycarbonate laminate sheet having the obtained coat layer.
[0075]
[Table 1]
Figure 2004026979
[0076]
【The invention's effect】
The coat layer obtained from the organosiloxane resin composition of the present invention has good appearance, transparency, scratch resistance, hardness, hot water resistance, adhesion, organic solvent resistance, and acid resistance, and is particularly excellent in abrasion resistance. It is possible to prevent abrasion of the substrate surface at a higher level than ever before. In particular, those coated on one or both sides of the polycarbonate sheet surface (preferably on both sides) are suitably used for window glasses and sunroofs for automobiles, and their industrial effects are outstanding.

Claims (3)

(A)コロイダルシリカ(a成分)、
(B)下記式(1)で表わされるアルコキシシランの加水分解縮合物(b成分)、
Figure 2004026979
(但し、式中R、Rはそれぞれ炭素数1〜4のアルキル基、ビニル基、またはメタクリロキシ基、アミノ基、グリシドキシ基、3,4−エポキシシクロヘキシル基からなる群から選ばれる1以上の基で置換された炭素数1〜3のアルキル基であり、Rは炭素数1〜4のアルキル基であり、m、nはそれぞれ0、1、2のいずれかの整数であり、m+nは0、1、2のいずれかの整数である)
(C)硬化触媒および
(D)溶媒
からなるオルガノシロキサン樹脂組成物であって、該オルガノシロキサン樹脂組成物は測定溶媒として重水(DO)を用い、観測周波数79MHz、観測パルス6.0μs、繰り返し時間30秒、ブロードニングファクター5Hzの条件でシリコン核磁気共鳴スペクトル(29Si−NMR)測定した時、オルガノシロキサン樹脂組成物のシリコン原子のケミカルシフトが、テトラメチルシランのシリコン原子を0ppmとして、−46.5ppmから−70.0ppmの範囲のすべてのピークの積分値を[S]、該ピーク積分値中で−46.5ppmから−48.5ppmの範囲のピーク積分値を[X]、−52.5ppmから−61.0ppmの範囲のピーク積分値を[Y]、−61.0ppmから−70.0ppmの範囲のピーク積分値を[Z]と表わしたとき、0.002≦[X]/[S]≦0.200であり、かつ0.60≦[Y]/[Z]≦3.00であることを特徴とするオルガノシロキサン樹脂組成物。
(A) colloidal silica (a component),
(B) a hydrolyzed condensate of an alkoxysilane represented by the following formula (1) (component (b)):
Figure 2004026979
(Wherein, R 1 and R 2 are each one or more selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, a vinyl group, or a methacryloxy group, an amino group, a glycidoxy group, and a 3,4-epoxycyclohexyl group. A substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, R 3 is an alkyl group having 1 to 4 carbon atoms, m and n are each an integer of 0, 1, or 2, and m + n is 0, 1, or 2)
An organosiloxane resin composition comprising (C) a curing catalyst and (D) a solvent, wherein the organosiloxane resin composition uses heavy water (D 2 O) as a measurement solvent, an observation frequency of 79 MHz, an observation pulse of 6.0 μs, repetition time 30 seconds, when the silicon nuclear magnetic resonance spectra (29 Si-NMR) measured at the broadening factor 5 Hz, chemical shift of the silicon atoms of the organosiloxane resin composition, the silicon atoms of tetramethylsilane as 0 ppm, The integrated value of all peaks in the range of -46.5 ppm to -70.0 ppm is [S], and the integrated value of peaks in the range of -46.5 ppm to -48.5 ppm is [X],- The peak integrated value in the range of 52.5 ppm to -61.0 ppm was calculated from [Y] and -61.0 ppm. When the peak integrated value in the range of 70.0 ppm is expressed as [Z], 0.002 ≦ [X] / [S] ≦ 0.200 and 0.60 ≦ [Y] / [Z] ≦ 3 An organosiloxane resin composition having a molecular weight of 0.000.
オルガノシロキサン樹脂組成物のシリコン原子のケミカルシフトが、0.003≦[X]/[S]≦0.150であり、かつ0.75≦[Y]/[Z]≦2.25である請求項1記載のオルガノシロキサン樹脂組成物。The chemical shift of the silicon atom of the organosiloxane resin composition is 0.003 ≦ [X] / [S] ≦ 0.150 and 0.75 ≦ [Y] / [Z] ≦ 2.25. Item 7. The organosiloxane resin composition according to Item 1. ポリカーボネート基材表面の少なくとも片面に、第1層として、塗膜樹脂の少なくとも50重量%がアクリル樹脂であって、且つ該アクリル樹脂は、下記式(2)
Figure 2004026979
(但し、式中Rは炭素数1〜4のアルキル基である。)
で示される繰り返し単位を50モル%以上含むアクリル樹脂に由来する塗膜樹脂を積層し、次いで、その上に第2層として、請求項1または請求項2記載のオルガノシロキサン樹脂を熱硬化した塗膜層を積層してなることを特徴とする表面を保護されたポリカーボネート樹脂成形体。
On at least one side of the surface of the polycarbonate substrate, as a first layer, at least 50% by weight of the coating resin is an acrylic resin, and the acrylic resin has the following formula (2)
Figure 2004026979
(However, in the formula, R 4 is an alkyl group having 1 to 4 carbon atoms.)
3. A coating obtained by laminating a coating resin derived from an acrylic resin containing at least 50 mol% of a repeating unit represented by the formula (2), and then forming a second layer thereon by thermosetting the organosiloxane resin according to claim 1 or 2. A polycarbonate resin molded product having a protected surface, comprising a laminate of film layers.
JP2002184229A 2002-06-21 2002-06-25 Organosiloxane resin composition and polycarbonate resin molding having surface protected with the resin Pending JP2004026979A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002184229A JP2004026979A (en) 2002-06-25 2002-06-25 Organosiloxane resin composition and polycarbonate resin molding having surface protected with the resin
PCT/JP2003/007883 WO2004000551A1 (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminates made by using them
KR1020047002490A KR100984993B1 (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminates made by using them
EP03760926.0A EP1516722B1 (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminates made by using them
US10/487,218 US7070859B2 (en) 2002-06-21 2003-06-20 Acrylic resin composition organosiloxane resin composition and laminate comprising the same
AU2003244100A AU2003244100A1 (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminates made by using them
CA 2460387 CA2460387C (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminate comprising the same
CNB038011859A CN100519178C (en) 2002-06-21 2003-06-20 Acrylic resin composition, organosiloxane resin composition and laminate comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184229A JP2004026979A (en) 2002-06-25 2002-06-25 Organosiloxane resin composition and polycarbonate resin molding having surface protected with the resin

Publications (1)

Publication Number Publication Date
JP2004026979A true JP2004026979A (en) 2004-01-29

Family

ID=31180196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184229A Pending JP2004026979A (en) 2002-06-21 2002-06-25 Organosiloxane resin composition and polycarbonate resin molding having surface protected with the resin

Country Status (1)

Country Link
JP (1) JP2004026979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239242A (en) * 2007-06-22 2009-10-15 Mitsubishi Chemicals Corp Member forming liquid for semiconductor light emitting device, member for semiconductor light emitting device, member for aerospace industry, semiconductor light emitting device, and phosphor composition
WO2010137721A1 (en) 2009-05-26 2010-12-02 帝人化成株式会社 Organosiloxane resin composition and laminate comprising same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512736A (en) * 1974-06-25 1976-01-10 Dow Corning
JPS5594971A (en) * 1978-11-30 1980-07-18 Gen Electric Silicone resin coating composition
JPS56161871A (en) * 1980-05-16 1981-12-12 Sumitomo Chem Co Ltd Protection of surface
JPS60219234A (en) * 1984-04-16 1985-11-01 Toray Ind Inc Production of composite membrane
JPS61103966A (en) * 1984-10-26 1986-05-22 Toray Ind Inc Production of composite film
JPS62169832A (en) * 1985-12-25 1987-07-27 Toshiba Silicone Co Ltd Surface protection of plastic molding
JPH06220402A (en) * 1993-01-25 1994-08-09 Matsushita Electric Works Ltd Coating composition
JP2002060527A (en) * 2000-08-11 2002-02-26 Teijin Chem Ltd Polycarbonate resin compostion molded article
JP2002060528A (en) * 2000-08-17 2002-02-26 Teijin Chem Ltd Polycarbonate resin composition molded article
JP2002338719A (en) * 2001-05-16 2002-11-27 Teijin Chem Ltd Surface-protected transparent plastic molded product
JP2003342472A (en) * 2002-05-27 2003-12-03 Teijin Chem Ltd Organosiloxane resin composition and polycarbonate resin molding with its surface protected by organosiloxane resin
JP2004026873A (en) * 2002-06-21 2004-01-29 Teijin Chem Ltd Method of preparation of organosiloxane resin composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512736A (en) * 1974-06-25 1976-01-10 Dow Corning
JPS5594971A (en) * 1978-11-30 1980-07-18 Gen Electric Silicone resin coating composition
JPS56161871A (en) * 1980-05-16 1981-12-12 Sumitomo Chem Co Ltd Protection of surface
JPS60219234A (en) * 1984-04-16 1985-11-01 Toray Ind Inc Production of composite membrane
JPS61103966A (en) * 1984-10-26 1986-05-22 Toray Ind Inc Production of composite film
JPS62169832A (en) * 1985-12-25 1987-07-27 Toshiba Silicone Co Ltd Surface protection of plastic molding
JPH06220402A (en) * 1993-01-25 1994-08-09 Matsushita Electric Works Ltd Coating composition
JP2002060527A (en) * 2000-08-11 2002-02-26 Teijin Chem Ltd Polycarbonate resin compostion molded article
JP2002060528A (en) * 2000-08-17 2002-02-26 Teijin Chem Ltd Polycarbonate resin composition molded article
JP2002338719A (en) * 2001-05-16 2002-11-27 Teijin Chem Ltd Surface-protected transparent plastic molded product
JP2003342472A (en) * 2002-05-27 2003-12-03 Teijin Chem Ltd Organosiloxane resin composition and polycarbonate resin molding with its surface protected by organosiloxane resin
JP2004026873A (en) * 2002-06-21 2004-01-29 Teijin Chem Ltd Method of preparation of organosiloxane resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239242A (en) * 2007-06-22 2009-10-15 Mitsubishi Chemicals Corp Member forming liquid for semiconductor light emitting device, member for semiconductor light emitting device, member for aerospace industry, semiconductor light emitting device, and phosphor composition
WO2010137721A1 (en) 2009-05-26 2010-12-02 帝人化成株式会社 Organosiloxane resin composition and laminate comprising same

Similar Documents

Publication Publication Date Title
CA2460387C (en) Acrylic resin composition, organosiloxane resin composition and laminate comprising the same
JP4902126B2 (en) Adhesive of transparent resin laminate having colored layer and metal frame
JP4681372B2 (en) Adhesive of transparent resin laminate having colored layer and metal frame
EP1164005A1 (en) Surface-protected transparent plastic composite
JP2004026873A (en) Method of preparation of organosiloxane resin composition
JP4007925B2 (en) Polymer resin laminate and vehicle window material
JP2006131734A (en) Method for preparing organosiloxane resin coating
JP2004027110A (en) Method for forming coated polycarbonate sheet-like molded product
JP2004018811A (en) Organosiloxane resin composition and polycarbonate resin molded product of which the surface is protected by the resin
JP2004026979A (en) Organosiloxane resin composition and polycarbonate resin molding having surface protected with the resin
JP4046156B2 (en) Surface-protected transparent plastic molded article and primer coating composition for organosiloxane resin composition
JP2000318106A (en) Surface-protected transparent polycarbonate resin molding
JP2004035608A (en) Organosiloxane resin composition and polycarbonate resin molded product having protected surface
JP2004035614A (en) Coated polycarbonate plate-like molded article
JP2002036870A (en) Automobile resin window with protected surface
JP2005161652A (en) Polycarbonate resin laminate having protected curved surface and skylight for building machine formed thereof
JP2004027107A (en) Coated polycarbonate sheet-like molded product
JP4287015B2 (en) Transparent plastic composite with protected surface
JP4046157B2 (en) Surface-protected transparent plastic molded article and primer coating composition for organosiloxane resin composition
JP2004034338A (en) Surface protected transparent plastic molded object and undercoating composition for organosiloxane resin composition
JP2000219845A (en) Transparent plastic molded article whose surface is protected
JP2002338719A (en) Surface-protected transparent plastic molded product
JP4152132B2 (en) Organosiloxane resin composition and surface-protected polycarbonate resin molding
JP2004035612A (en) Surface-protected transparent plastic molding and primer composition for organosiloxane resin
JP2004035607A (en) Organosiloxane resin composition and polycarbonate resin molded product having protected surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318