JP2004025232A - Lead-free solder composition and soldered article - Google Patents

Lead-free solder composition and soldered article Download PDF

Info

Publication number
JP2004025232A
JP2004025232A JP2002184719A JP2002184719A JP2004025232A JP 2004025232 A JP2004025232 A JP 2004025232A JP 2002184719 A JP2002184719 A JP 2002184719A JP 2002184719 A JP2002184719 A JP 2002184719A JP 2004025232 A JP2004025232 A JP 2004025232A
Authority
JP
Japan
Prior art keywords
solder
free solder
based alloy
solder composition
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002184719A
Other languages
Japanese (ja)
Other versions
JP4240356B2 (en
Inventor
Hidekiyo Takaoka
高岡 英清
Kunihiko Hamada
浜田 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002184719A priority Critical patent/JP4240356B2/en
Publication of JP2004025232A publication Critical patent/JP2004025232A/en
Application granted granted Critical
Publication of JP4240356B2 publication Critical patent/JP4240356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free solder composition having excellent heat resistance by improving the bonding strength of a Bi-based alloy solder. <P>SOLUTION: This composition contains 0.3-0.5 wt.% Ni in a Bi-based alloy containing at least one of Ag, Cu, Zn and Sb as a sub composition. Its solidus temperature is ≥ 250°C and its liquidus temperature is ≤ 300°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、不可避不純物を除いてPbを含まない高温はんだ組成物、および該はんだ組成物を用いたはんだ付け物品に関する。
【0002】
【従来の技術】
従来より、はんだ耐熱性が必要な電子部品の構成部材などのはんだ付けには、Pb比率の高いSn−Pb系はんだを使用することが一般的に行われてきた。しかしながら、従来のSn−Pb系はんだは、Pbを含んでいるため、環境面より使用が制限されつつある。
【0003】
そこで近年、Pbを含まないいわゆるPbフリーはんだが検討されている。そのなかで、耐熱性に優れたいわゆる高温Pbフリーはんだとしては、はんだ合金の固相線温度が比較的高いBi基合金が有力である。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の高耐熱性Bi基合金は脆く、はんだとしての接合強度が小さいという問題点を有している。
【0005】
そこで、本発明の目的は、Bi基合金はんだの接合強度を改善して、耐熱性に優れたPbフリーはんだ組成物を提供することにある。また、このはんだ組成物を用いたはんだ付け物品を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明のPbフリーはんだ組成物は、副成分としてAg、Cu、ZnおよびSbのうちの少なくとも1種を含有するBi基合金に、0.3〜0.5重量%のNiを含有してなり、固相線温度が250℃以上であり、液相線温度が300℃以下であることを特徴とする。
【0007】
すなわち、発明者らは、Bi基合金の強度向上手段として、母相への異相の析出が効果的であると考えた。そして、Bi基合金に異相を析出する元素としては種々の元素があるが、その中でも特定量のNiが特に有効であることを見出した。
【0008】
また、本発明のはんだ付け物品は、物品の導体部をはんだにより接合してなるはんだ付け物品であって、前記はんだは、上述のPbフリーはんだ組成物を用いたことを特徴とする。
【0009】
【発明の実施の形態】
本発明のPbフリーはんだ組成物は、副成分としてAg、Cu、ZnおよびSbのうちの少なくとも1種を含有するBi基合金に、0.3〜0.5重量%のNiを含有してなり、固相線温度が250℃以上であり、液相線温度が300℃以下のものである。
【0010】
すなわち、本発明のBi基はんだ合金は高耐熱性のPbフリーはんだ合金である。これに対して、同じBi系はんだでも、例えばBi−Sn合金はんだやBi−In合金はんだの場合は、固相線温度が150℃以下と低く、はんだ耐熱性に劣り、高耐熱性という本発明のはんだ組成物の条件を満足し得ない。なお、固相線温度は、はんだ付け物品をリフローなどで再加熱したときの、はんだの再溶融を防ぐ点より、250℃以上に限定されるものである。また、液相線温度は、はんだ付け時の温度を抑えて、はんだ付け作業を容易にすると共に、はんだ付け物品に及ぼす特性劣化などの熱影響を防止する点より、300℃以下に限定されるものである。
【0011】
また、Bi基合金に異相を析出する元素としてのNiの含有量は、0.3〜0.5重量%の範囲内とされる。Niの含有量が0.3重量%未満の場合には、Bi母相への異相の析出量が少なく接合強度向上への効果が小さい。一方、Niの含有量が0.5重量%を超える場合には、液相線温度が上昇し、はんだ付け時にブリッジ不良などのはんだ付き不良、外観不良が生じる。この問題点を解消させるために、より高い温度ではんだ付けをすると、高温により電子部品などのはんだ付け物品の特性が劣化するという問題点が新たに発生する。
【0012】
なお、本発明のPbフリーはんだは、はんだ組成中に上記成分以外に微量の不可避不純物を含むものであってもよい。不可避不純物としては、例えばPb、Naなどが挙げられる。
【0013】
上述した本発明のPbフリーはんだ組成物を用いることによって、実用上十分な接合強度を有し、且つ高いはんだ耐熱性を有するはんだ付け物品を得ることができる。
【0014】
次に、本発明のはんだ付け物品の実施の形態を、はんだ付け物品がセラミックコンデンサである場合を例にして、図1に基づいて説明する。
【0015】
セラミックコンデンサ1は、セラミック素体2と、セラミック素体2の両主面に形成された一対の容量電極3,3と、容量電極3,3にはんだ5,5で電気的・機械的に接合されたリード線4,4と、セラミック素体2と容量電極3,3とはんだ5,5を完全に覆い、リード線4,4の一端を覆うように形成された外装樹脂6とからなる。このセラミックコンデンサ1において、はんだ5,5が本発明のPbフリーはんだ組成物からなる。
【0016】
セラミック素体2は、例えばBaTiO系の誘電体セラミックからなる。容量電極3は、Ag、Cu、Niなどからなり、セラミック素体2の表面に焼付、めっきなどの方法で形成される。リード線4は、はんだ引きCu線、Sn引き導線などからなる。また、外装樹脂6はエポキシ系樹脂、フェノール系樹脂、シリコン系樹脂などが用いられる。
【0017】
なお、本発明のはんだ付け物品は、上記セラミックコンデンサに限定されるものではない。複数の誘電体層と容量電極が交互に積み重ねられた積層タイプのセラミックコンデンサ、セラミック素体が圧電体材料からなる圧電フィルタなどの圧電体デバイス、セラミック素体が半導体材料からなる正特性サーミスタなどの半導体デバイス、セラミック素体が磁性体材料からなるインダクタなどの磁性体デバイス、さらには、絶縁基板上にL、C、R、半導体チップなどが集積されたハイブリッドICなど、はんだ付け部分を備える種々の物品を対象とするものである。
【0018】
【実施例】
まず、表1に示す組成からなる実施例1〜6、および比較例1〜7のはんだ組成物を作製した。表1には、それぞれのはんだ組成物の溶融特性(固相線温度および液相線温度)を示す。なお、溶融特性は熱流束DSC(示差走査熱量測定法)で測定した。
【0019】
【表1】

Figure 2004025232
【0020】
次に、Ni板を準備し、このNi板をU字型リード線で挟み、表1に示す組成の溶融はんだに浸漬し、はんだ付けして試料を作製した。なお、Ni板には圧延Ni板(8mm×8mm×0.1mm)を用い、U字成形リ−ド線には0.56mmφ溶融SnメッキCu線を用い、そしてフラックスにはH−52(タムラ製作所製)を用いてはんだ付けした。また、はんだ付け温度は330℃、はんだ浸漬時間は5秒とし、はんだ浸漬深さは10mm、浸漬速度は10mm/秒とした。
【0021】
次に、得られた試料について、接合強度を評価した。具体的には、U字型リード線のU字部を切断したあと、リード線を双方向に定速で引張り破断時の強度を求めた。
【0022】
また、はんだ耐熱性を評価した。具体的には、得られた試料をピーク温度260℃でリフロー加熱した後、はんだの流れまたはリード線取れのいずれかの不良が発生していないかどうかを確認した。
【0023】
以上の評価結果を表2に示す。
【0024】
【表2】
Figure 2004025232
【0025】
表1および表2から明らかなように、副成分としてAg、Cu、ZnおよびSbのうちの少なくとも1種を含有するBi基合金に、0.3〜0.5重量%のNiを含有させ、固相線温度が250℃以上であって、液相線温度が300℃以下のはんだ組成物とすることにより、接合強度が大きく耐熱性に優れたPbフリーはんだ組成物を得ることができる。
【0026】
まず接合強度について、副成分としてAg、またはAgおよびCuを含有するBi基合金に0.3〜0.5重量%のNiを含有させた実施例1〜3は、Agを含有するBi基合金であってNiを含有しない比較例2よりも接合強度が大きい。同様に、副成分としてCuを含有するBi基合金にNiを含有させた実施例4は、Niを含有しない比較例4よりも接合強度が大きい。副成分としてZnを含有するBi基合金にNiを含有させた実施例5は、Niを含有しない比較例5よりも接合強度が大きい。副成分としてSbを含有するBi基合金にNiを含有させた実施例6は、Niを含有しない比較例6よりも接合強度が大きい。また、副成分としてAgを含有するBi基合金に0.1重量%のNiを含有させた比較例3は、Niを含有しない比較例2と同等の接合強度しか得られない。
【0027】
以上のことより、副成分としてAg、Cu、ZnおよびSbのうちの少なくとも1種を含有するBi基合金の接合強度向上のためには、0.3〜0.5重量%のNiを含有させるのが有効であることが分かる。
【0028】
なお、従来の汎用Sn−Pbはんだである比較例1、汎用Pbフリーはんだである比較例7と比較すると、実施例1〜6ははいずれも相対的に小さい接合強度を示している。しかしながら、実施例1〜6が示す0.23N・mm−2以上の接合強度自体は、実用上問題になることのない十分な強度である。
【0029】
次に、はんだ耐熱性について、実施例1〜4、6のはんだ流れ・端子取れ不良率は0%であり、また実施例5のはんだ流れ・端子取れ不良率は5%であり、いずれも良好なはんだ耐熱性を示す。
【0030】
一方、従来の汎用Sn−Pbはんだである比較例1のはんだ流れ・端子取れ不良率は20%であり、実施例と比較して若干はんだ耐熱性に劣る。また、汎用Pbフリーはんだである比較例7については、はんだ流れ・端子取れ不良率は100%であり、はんだ耐熱性に劣る。これは、これらはんだの固相線温度が182℃または221℃と、はんだ耐熱試験温度の260℃よりも大幅に低く、はんだ耐熱試験時にはんだが完全に再溶融したためであると考えられる。
【0031】
【発明の効果】
以上の説明で明らかなように、本発明のPbフリーはんだ組成物によれば、副成分としてAg、Cu、ZnおよびSbのうちの少なくとも1種を含有するBi基合金に、0.3〜0.5重量%のNiを含有させ、固相線温度を250℃以上とし、液相線温度を300℃以下とすることにより、実用上十分な接合強度を有し、かつ優れたはんだ耐熱性を有するはんだ組成物と、このはんだ組成物を用いたはんだ付け物品を得ることができる。
【図面の簡単な説明】
【図1】本発明のはんだ付け物品の一例を示すセラミックコンデンサの断面図である。
【符号の説明】
1   セラミックコンデンサ
2   セラミック素体
3   容量電極
4   リード線
5   はんだ
6   外装樹脂[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-temperature solder composition containing no Pb except unavoidable impurities, and a soldered article using the solder composition.
[0002]
[Prior art]
Conventionally, Sn-Pb-based solder having a high Pb ratio has generally been used for soldering components of electronic components that require solder heat resistance. However, since the conventional Sn-Pb-based solder contains Pb, its use is being restricted from an environmental point of view.
[0003]
In recent years, a so-called Pb-free solder containing no Pb has been studied. Among them, as a so-called high-temperature Pb-free solder having excellent heat resistance, a Bi-based alloy having a relatively high solidus temperature of a solder alloy is effective.
[0004]
[Problems to be solved by the invention]
However, conventional high heat-resistant Bi-based alloys have the problem that they are brittle and have low bonding strength as solder.
[0005]
Therefore, an object of the present invention is to provide a Pb-free solder composition having improved heat resistance by improving the bonding strength of a Bi-based alloy solder. Another object of the present invention is to provide a soldered article using the solder composition.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the Pb-free solder composition of the present invention contains 0.3 to 0.5% by weight of a Bi-based alloy containing at least one of Ag, Cu, Zn and Sb as a subcomponent. And the solidus temperature is 250 ° C. or higher and the liquidus temperature is 300 ° C. or lower.
[0007]
That is, the inventors considered that the precipitation of a heterogeneous phase in the mother phase was effective as a means for improving the strength of the Bi-based alloy. Then, various elements are precipitated as elements that precipitate a different phase in the Bi-based alloy, and it has been found that a specific amount of Ni is particularly effective among them.
[0008]
Further, a soldered article of the present invention is a soldered article obtained by joining conductors of the article by solder, wherein the solder uses the above-described Pb-free solder composition.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The Pb-free solder composition of the present invention contains 0.3 to 0.5% by weight of Ni in a Bi-based alloy containing at least one of Ag, Cu, Zn and Sb as a sub-component. The solidus temperature is 250 ° C. or higher and the liquidus temperature is 300 ° C. or lower.
[0010]
That is, the Bi-based solder alloy of the present invention is a Pb-free solder alloy having high heat resistance. On the other hand, in the case of the same Bi-based solder, for example, in the case of a Bi-Sn alloy solder or a Bi-In alloy solder, the solidus temperature is as low as 150 ° C. or lower, the solder heat resistance is poor, and the present invention has high heat resistance. Cannot satisfy the conditions of the solder composition. Note that the solidus temperature is limited to 250 ° C. or higher from the viewpoint of preventing the solder from re-melting when the soldering article is reheated by reflow or the like. In addition, the liquidus temperature is limited to 300 ° C. or less from the viewpoint of suppressing the temperature at the time of soldering, facilitating the soldering operation, and preventing thermal effects such as property deterioration on the soldered article. Things.
[0011]
The content of Ni as an element that precipitates a different phase in the Bi-based alloy is in the range of 0.3 to 0.5% by weight. When the content of Ni is less than 0.3% by weight, the amount of foreign phase precipitated in the Bi matrix is small, and the effect of improving the bonding strength is small. On the other hand, when the Ni content exceeds 0.5% by weight, the liquidus temperature rises, and soldering defects such as bridge defects and appearance defects occur during soldering. If soldering is performed at a higher temperature in order to solve this problem, a new problem arises in that the characteristics of soldered articles such as electronic components are deteriorated due to the high temperature.
[0012]
The Pb-free solder of the present invention may contain a small amount of inevitable impurities in addition to the above components in the solder composition. Examples of the inevitable impurities include Pb and Na.
[0013]
By using the above-described Pb-free solder composition of the present invention, it is possible to obtain a soldered article having practically sufficient bonding strength and high solder heat resistance.
[0014]
Next, an embodiment of the soldering article of the present invention will be described based on FIG. 1 by taking a case where the soldering article is a ceramic capacitor as an example.
[0015]
The ceramic capacitor 1 is electrically and mechanically bonded to the ceramic body 2, a pair of capacitance electrodes 3, 3 formed on both main surfaces of the ceramic body 2, and solders 5, 5 to the capacitance electrodes 3, 3. And the exterior resin 6 formed so as to completely cover the ceramic body 2, the capacitor electrodes 3, 3 and the solders 5, and to cover one end of the leads 4, 4. In this ceramic capacitor 1, the solders 5, 5 are made of the Pb-free solder composition of the present invention.
[0016]
The ceramic body 2 is made of, for example, a BaTiO 3 -based dielectric ceramic. The capacitor electrode 3 is made of Ag, Cu, Ni, or the like, and is formed on the surface of the ceramic body 2 by a method such as baking or plating. The lead wire 4 is made of a soldered Cu wire, a Sn drawn wire, or the like. The exterior resin 6 is made of an epoxy resin, a phenol resin, a silicon resin, or the like.
[0017]
The soldering article of the present invention is not limited to the above ceramic capacitor. Laminated ceramic capacitors in which a plurality of dielectric layers and capacitor electrodes are alternately stacked, piezoelectric devices such as piezoelectric filters in which the ceramic body is made of a piezoelectric material, and PTC thermistors in which the ceramic body is made of a semiconductor material Various types of devices including soldering parts, such as semiconductor devices, magnetic devices such as inductors whose ceramic body is made of a magnetic material, and hybrid ICs in which L, C, R, and semiconductor chips are integrated on an insulating substrate. It is intended for articles.
[0018]
【Example】
First, solder compositions of Examples 1 to 6 and Comparative Examples 1 to 7 having compositions shown in Table 1 were prepared. Table 1 shows the melting characteristics (solidus temperature and liquidus temperature) of each solder composition. The melting characteristics were measured by heat flux DSC (differential scanning calorimetry).
[0019]
[Table 1]
Figure 2004025232
[0020]
Next, a Ni plate was prepared, the Ni plate was sandwiched between U-shaped lead wires, immersed in molten solder having the composition shown in Table 1, and soldered to prepare a sample. A rolled Ni plate (8 mm × 8 mm × 0.1 mm) was used for the Ni plate, a 0.56 mmφ molten Sn-plated Cu wire was used for the U-shaped lead wire, and H-52 (Tamura) was used for the flux. (Manufactured by Seisakusho). The soldering temperature was 330 ° C., the solder immersion time was 5 seconds, the solder immersion depth was 10 mm, and the immersion speed was 10 mm / sec.
[0021]
Next, the bonding strength of the obtained sample was evaluated. Specifically, after cutting the U-shaped portion of the U-shaped lead wire, the lead wire was bidirectionally pulled at a constant speed to determine the strength at break.
[0022]
In addition, solder heat resistance was evaluated. Specifically, after the obtained sample was reflow-heated at a peak temperature of 260 ° C., it was confirmed whether any of the defects such as the flow of the solder or the removal of the lead wire occurred.
[0023]
Table 2 shows the above evaluation results.
[0024]
[Table 2]
Figure 2004025232
[0025]
As is clear from Tables 1 and 2, a Bi-based alloy containing at least one of Ag, Cu, Zn and Sb as a sub-component contains 0.3 to 0.5% by weight of Ni, By using a solder composition having a solidus temperature of 250 ° C. or higher and a liquidus temperature of 300 ° C. or lower, a Pb-free solder composition having high bonding strength and excellent heat resistance can be obtained.
[0026]
First, regarding the bonding strength, Examples 1 to 3 in which 0.3 to 0.5% by weight of Ni was contained in a Bi-based alloy containing Ag or Ag and Cu as sub-components were used in the Bi-based alloy containing Ag. Therefore, the bonding strength is higher than that of Comparative Example 2 containing no Ni. Similarly, Example 4 in which Ni was contained in a Bi-based alloy containing Cu as an auxiliary component had higher bonding strength than Comparative Example 4 in which Ni was not contained. Example 5 in which Ni was contained in a Bi-based alloy containing Zn as an auxiliary component had higher bonding strength than Comparative Example 5 not containing Ni. Example 6 in which Ni was contained in the Bi-based alloy containing Sb as an auxiliary component had higher bonding strength than Comparative Example 6 not containing Ni. Further, Comparative Example 3 in which 0.1% by weight of Ni was contained in a Bi-based alloy containing Ag as an auxiliary component could only obtain the same bonding strength as Comparative Example 2 containing no Ni.
[0027]
As described above, in order to improve the bonding strength of a Bi-based alloy containing at least one of Ag, Cu, Zn and Sb as a subcomponent, 0.3 to 0.5% by weight of Ni is contained. Is effective.
[0028]
In comparison with Comparative Example 1 which is a conventional general-purpose Sn-Pb solder and Comparative Example 7 which is a general-purpose Pb-free solder, Examples 1 to 6 all show relatively low bonding strength. However, the bonding strength itself of 0.23 N · mm −2 or more shown in Examples 1 to 6 is a sufficient strength that does not cause a problem in practical use.
[0029]
Next, regarding the solder heat resistance, the solder flow / terminal removal failure rate of Examples 1 to 4 and 6 was 0%, and the solder flow / terminal removal failure rate of Example 5 was 5%. High solder heat resistance.
[0030]
On the other hand, the solder flow / terminal removal defect rate of Comparative Example 1, which is a conventional general-purpose Sn-Pb solder, is 20%, and is slightly inferior in solder heat resistance as compared with Examples. Also, in Comparative Example 7, which is a general-purpose Pb-free solder, the solder flow / terminal removal defect rate is 100%, which is inferior in solder heat resistance. This is considered to be because the solidus temperature of these solders was 182 ° C. or 221 ° C., which was significantly lower than the solder heat resistance test temperature of 260 ° C., and the solder was completely remelted during the solder heat resistance test.
[0031]
【The invention's effect】
As is clear from the above description, according to the Pb-free solder composition of the present invention, the Bi-based alloy containing at least one of Ag, Cu, Zn and Sb as an auxiliary component has a content of 0.3 to 0. By containing 0.5% by weight of Ni, the solidus temperature is set to 250 ° C. or more, and the liquidus temperature is set to 300 ° C. or less, it has practically sufficient bonding strength and excellent solder heat resistance. And a soldering article using the solder composition.
[Brief description of the drawings]
FIG. 1 is a sectional view of a ceramic capacitor showing an example of a soldering article of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic capacitor 2 Ceramic body 3 Capacitance electrode 4 Lead wire 5 Solder 6 Exterior resin

Claims (2)

副成分としてAg、Cu、ZnおよびSbのうちの少なくとも1種を含有するBi基合金に、0.3〜0.5重量%のNiを含有してなり、固相線温度が250℃以上であり、液相線温度が300℃以下であることを特徴とするPbフリーはんだ組成物。A Bi-based alloy containing at least one of Ag, Cu, Zn and Sb as a sub-component contains 0.3 to 0.5% by weight of Ni and has a solidus temperature of 250 ° C. or higher. A Pb-free solder composition having a liquidus temperature of 300 ° C. or lower. 物品の導体部をはんだにより接合してなるはんだ付け物品であって、前記はんだは、請求項1に記載のPbフリーはんだ組成物を用いたことを特徴とする、はんだ付け物品。A soldered article formed by joining conductors of an article by solder, wherein the solder uses the Pb-free solder composition according to claim 1.
JP2002184719A 2002-06-25 2002-06-25 Pb-free solder composition and soldered article Expired - Fee Related JP4240356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184719A JP4240356B2 (en) 2002-06-25 2002-06-25 Pb-free solder composition and soldered article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184719A JP4240356B2 (en) 2002-06-25 2002-06-25 Pb-free solder composition and soldered article

Publications (2)

Publication Number Publication Date
JP2004025232A true JP2004025232A (en) 2004-01-29
JP4240356B2 JP4240356B2 (en) 2009-03-18

Family

ID=31180570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184719A Expired - Fee Related JP4240356B2 (en) 2002-06-25 2002-06-25 Pb-free solder composition and soldered article

Country Status (1)

Country Link
JP (1) JP4240356B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414343A (en) * 2004-05-20 2005-11-23 Tdk Corp A capacitor with lead free soldered terminal leads.
WO2007075763A1 (en) * 2005-12-19 2007-07-05 Honeywell International, Inc. Modified and doped solder alloys for electrical interconnects, methods of production and uses thereof
WO2007136009A1 (en) * 2006-05-24 2007-11-29 Panasonic Corporation Bonding material, electronic component, bonding structure and electronic device
JP2008161881A (en) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd Joining material and module structure
JP2008161882A (en) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd Electronic component, joint structure body, and electronic instrument
JP2008168330A (en) * 2007-01-15 2008-07-24 Matsushita Electric Ind Co Ltd Bonding material and electronic device using the same
WO2009084155A1 (en) * 2007-12-27 2009-07-09 Panasonic Corporation Bonding material, electronic component, and bonded structure
CN101454114B (en) * 2006-05-24 2011-08-10 松下电器产业株式会社 Bonding material, electronic component, bonding structure and electronic device
JP2011161495A (en) * 2010-02-12 2011-08-25 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY
JP2011251329A (en) * 2010-06-04 2011-12-15 Sumitomo Metal Mining Co Ltd High-temperature lead-free solder paste
WO2011158668A1 (en) * 2010-06-16 2011-12-22 住友金属鉱山株式会社 Bi-Al-Zn-BASED Pb-FREE SOLDER ALLOY
WO2012002147A1 (en) * 2010-06-28 2012-01-05 住友金属鉱山株式会社 Pb-FREE SOLDER ALLOY
WO2012120733A1 (en) * 2011-03-08 2012-09-13 住友金属鉱山株式会社 Pb-free solder paste
US8421246B2 (en) 2008-06-23 2013-04-16 Panasonic Corporation Joint structure and electronic component
WO2014163253A1 (en) * 2013-04-05 2014-10-09 부산대학교 산학협력단 High melting point lead-free solder composition, manufacturing method for high melting point lead-free solder alloy and application thereof
KR20150046337A (en) * 2013-01-28 2015-04-29 니혼한다가부시끼가이샤 Solder alloy for die bonding

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414343B (en) * 2004-05-20 2008-03-26 Tdk Corp High-voltage ceramic capacitor
US7023686B2 (en) 2004-05-20 2006-04-04 Tdk Corporation High-voltage ceramic capacitor
GB2414343A (en) * 2004-05-20 2005-11-23 Tdk Corp A capacitor with lead free soldered terminal leads.
WO2007075763A1 (en) * 2005-12-19 2007-07-05 Honeywell International, Inc. Modified and doped solder alloys for electrical interconnects, methods of production and uses thereof
CN101454114B (en) * 2006-05-24 2011-08-10 松下电器产业株式会社 Bonding material, electronic component, bonding structure and electronic device
US8227090B2 (en) 2006-05-24 2012-07-24 Panasonic Corporation Bonding material, electronic component, bonding structure and electronic device
WO2007136009A1 (en) * 2006-05-24 2007-11-29 Panasonic Corporation Bonding material, electronic component, bonding structure and electronic device
JP2008161881A (en) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd Joining material and module structure
JP2008161882A (en) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd Electronic component, joint structure body, and electronic instrument
JP4692479B2 (en) * 2006-12-27 2011-06-01 パナソニック株式会社 Bonding materials and modular structures
JP4692480B2 (en) * 2006-12-27 2011-06-01 パナソニック株式会社 Junction structure and electronic device
JP2008168330A (en) * 2007-01-15 2008-07-24 Matsushita Electric Ind Co Ltd Bonding material and electronic device using the same
JP4692491B2 (en) * 2007-01-15 2011-06-01 パナソニック株式会社 Bonding material
WO2009084155A1 (en) * 2007-12-27 2009-07-09 Panasonic Corporation Bonding material, electronic component, and bonded structure
US8421246B2 (en) 2008-06-23 2013-04-16 Panasonic Corporation Joint structure and electronic component
JP2011161495A (en) * 2010-02-12 2011-08-25 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER ALLOY
JP2011251329A (en) * 2010-06-04 2011-12-15 Sumitomo Metal Mining Co Ltd High-temperature lead-free solder paste
DE112011102028T5 (en) 2010-06-16 2013-04-18 Sumitomo Metal Mining Co. Ltd. Bi-Al-Zn-based Pb-free solder alloy
CN103068518A (en) * 2010-06-16 2013-04-24 住友金属矿山股份有限公司 Bi-al-zn-based pb-free solder alloy
DE112011102028B4 (en) * 2010-06-16 2017-02-09 Sumitomo Metal Mining Co., Ltd. Bi-Al-Zn-based Pb-free solder alloy
GB2494831A (en) * 2010-06-16 2013-03-20 Sumitomo Metal Mining Co Bi-Al-Zn-based Pb-free solder alloy
GB2494831B (en) * 2010-06-16 2014-03-12 Sumitomo Metal Mining Co Bi-Al-Zn-based Pb-free solder alloy
US9211614B2 (en) 2010-06-16 2015-12-15 Sumitomo Metal Mining Co., Ltd. Bi—Al—Zn—based Pb-free solder alloy
JP5212573B2 (en) * 2010-06-16 2013-06-19 住友金属鉱山株式会社 Bi-Al-Zn Pb-free solder alloy
WO2011158668A1 (en) * 2010-06-16 2011-12-22 住友金属鉱山株式会社 Bi-Al-Zn-BASED Pb-FREE SOLDER ALLOY
CN103038020A (en) * 2010-06-28 2013-04-10 住友金属矿山股份有限公司 Pb-free solder alloy
DE112011102163T5 (en) 2010-06-28 2013-05-16 Sumitomo Metal Mining Co., Ltd. Pb-free solder alloy
WO2012002147A1 (en) * 2010-06-28 2012-01-05 住友金属鉱山株式会社 Pb-FREE SOLDER ALLOY
GB2494847B (en) * 2010-06-28 2013-06-26 Sumitomo Metal Mining Co Pb-free solder alloy
TWI401132B (en) * 2010-06-28 2013-07-11 Sumitomo Metal Mining Co Pb-free solder alloy
CN103038020B (en) * 2010-06-28 2014-05-14 住友金属矿山股份有限公司 Pb-free solder alloy and electronic circuit board using same
US9199339B2 (en) 2010-06-28 2015-12-01 Sumitomo Metal Mining Co., Ltd. Pb-free solder alloy
DE112011102163B4 (en) * 2010-06-28 2015-09-24 Sumitomo Metal Mining Co., Ltd. Pb-free solder alloy
GB2494847A (en) * 2010-06-28 2013-03-20 Sumitomo Metal Mining Co Pb-Free solder alloy
CN103561902A (en) * 2011-03-08 2014-02-05 住友金属矿山株式会社 Pb-free solder paste
DE112011105017B4 (en) * 2011-03-08 2016-07-07 Sumitomo Metal Mining Co., Ltd. Pb-free solder paste
JP2012183575A (en) * 2011-03-08 2012-09-27 Sumitomo Metal Mining Co Ltd Pb-FREE SOLDER PASTE
CN103561902B (en) * 2011-03-08 2015-04-01 住友金属矿山株式会社 Pb-free solder paste
GB2502237B (en) * 2011-03-08 2014-08-06 Sumitomo Metal Mining Co Pb-free solder paste
US9227273B2 (en) 2011-03-08 2016-01-05 Sumitomo Metal Mining Co., Ltd. Pb-free solder paste
WO2012120733A1 (en) * 2011-03-08 2012-09-13 住友金属鉱山株式会社 Pb-free solder paste
DE112011105017T5 (en) 2011-03-08 2013-12-19 Sumitomo Metal Mining Co., Ltd. Pb-free solder paste
GB2502237A (en) * 2011-03-08 2013-11-20 Sumitomo Metal Mining Co Pb-free solder paste
CN104703749A (en) * 2013-01-28 2015-06-10 日本半田株式会社 Solder alloy for die bonding
KR20150046337A (en) * 2013-01-28 2015-04-29 니혼한다가부시끼가이샤 Solder alloy for die bonding
KR101711411B1 (en) * 2013-01-28 2017-03-02 니혼한다가부시끼가이샤 Solder alloy for die bonding
US10189119B2 (en) 2013-01-28 2019-01-29 Nihon Handa Co., Ltd. Solder alloy for die bonding
WO2014163253A1 (en) * 2013-04-05 2014-10-09 부산대학교 산학협력단 High melting point lead-free solder composition, manufacturing method for high melting point lead-free solder alloy and application thereof

Also Published As

Publication number Publication date
JP4240356B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP3671815B2 (en) Solder composition and soldered article
JP4240356B2 (en) Pb-free solder composition and soldered article
KR101561894B1 (en) High-temperature lead-free solder alloy
KR102153273B1 (en) Solder alloy, solder paste, solder ball, resin-embedded solder and solder joint
JP3684811B2 (en) Solder and soldered articles
JP6624322B1 (en) Solder alloy, solder ball, solder preform, solder paste and solder joint
JP4453612B2 (en) Lead-free solder alloy
JP3575311B2 (en) Pb-free solder and soldering article
KR101738841B1 (en) HIGH-TEMPERATURE SOLDER JOINT COMPRISING Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
GB2346380A (en) Nickel containing tin-based solder alloys
CN101563185A (en) Lead-free soft solder having improved properties at elevated temperatures
KR102194027B1 (en) Solder alloy, solder paste, solder ball, resin-embedded solder and solder joint
JP2016040051A (en) Lead-free solder, lead-free solder ball, solder joint using lead-free solder, and semiconductor circuit having solder joint
JPH11291083A (en) Solder alloy
EP2799181B1 (en) Sn-Cu-Al-Ti BASED LEAD-FREE SOLDER ALLOY
KR101406174B1 (en) Lead free solder containing Sn, Ag and Bi
JP3878978B2 (en) Lead-free solder and lead-free fittings
JP5958811B2 (en) Solder material and mounting structure using the same
JP4560874B2 (en) Ceramic electronic components
JP7059751B2 (en) Electronic components and manufacturing methods for electronic components
JP3700668B2 (en) Solder and soldered articles
JP3685202B2 (en) Solder and soldered articles
JP2012245554A (en) Pb-FREE SOLDER, SOLDER-COVERED CONDUCTOR, AND ELECTRICAL COMPONENT USING THE CONDUCTOR
JP2004261873A (en) Pb-FREE SOLDER
JP2005324257A (en) Soldered article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees