JP2004022691A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2004022691A
JP2004022691A JP2002173587A JP2002173587A JP2004022691A JP 2004022691 A JP2004022691 A JP 2004022691A JP 2002173587 A JP2002173587 A JP 2002173587A JP 2002173587 A JP2002173587 A JP 2002173587A JP 2004022691 A JP2004022691 A JP 2004022691A
Authority
JP
Japan
Prior art keywords
layer
oxidation
gate electrode
insulating film
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173587A
Other languages
English (en)
Other versions
JP4232396B2 (ja
Inventor
Tsutomu Asakawa
浅川 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002173587A priority Critical patent/JP4232396B2/ja
Publication of JP2004022691A publication Critical patent/JP2004022691A/ja
Application granted granted Critical
Publication of JP4232396B2 publication Critical patent/JP4232396B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】低抵抗でかつ寄生容量を低減し得る高速動作の絶縁ゲート型電界効果トランジスタを実現する半導体装置及びその製造方法を提供する。
【解決手段】第1導電型(P型またはN型)の半導体層11のチャネル領域12上にゲート絶縁膜13及びこのゲート絶縁膜13上にシリサイド層19を含むポリサイド構造のゲート電極14が構成されている。また、ゲート電極14の側部に耐酸化性膜16の被覆を介して側壁絶縁膜17が設けられている。この側壁絶縁膜17は半導体層11との間に主に耐酸化性膜16を部分的になくすることによって形成される中空部18を有する。上記ゲート電極14及び側壁絶縁膜17の領域を隔てて第2導電型(N型またはP型)の不純物拡散層15上にシリサイド層19が設けられている。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、より微細化、高集積化が進み、特に線幅が0.13μm以降のパターンを有する絶縁ゲート型電界効果トランジスタを含んだ半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
微細化、高速化が要求される近年の半導体集積回路では、MISFET(絶縁ゲート型電界効果トランジスタ)の微細化、高速化は必須条件である。MOSFETでは、ソース・ドレイン拡散層及びポリシリコンゲート電極上部を自己整合的にシリサイド化する、いわゆるサリサイドプロセスが用いられる。これにより、素子の寄生抵抗を低減する。
【0003】
また、ドレインの領域近くの電界を緩和させるため、拡散層の不純物分布をLDD(Lightly Doped Drain )構造にする対策は周知の技術である。このため、ゲート電極のサイドウォールスペーサ(側壁絶縁膜)形成前に、低濃度不純物拡散層を形成しておき、サイドウォールスペーサ形成後にソース・ドレインとしての高濃度不純物拡散層を形成する。すなわち、ゲート電極の側壁絶縁膜下にはソース・ドレインのエクステンション領域が存在する形態となる。
【0004】
【発明が解決しようとする課題】
上記構成によれば、ゲート電極とソース・ドレインのエクステンション領域との間に側壁絶縁膜を介した寄生容量が存在する。この寄生容量はトランジスタの駆動速度に悪影響を及ぼしてしまう。
【0005】
本発明は上記のような事情を考慮してなされたもので、低抵抗でかつ寄生容量を低減し得る高速動作の絶縁ゲート型電界効果トランジスタを実現する半導体装置及びその製造方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明の[請求項1]に係る半導体装置は、
第1導電型の半導体層のチャネル領域上に形成されたゲート絶縁膜及びこのゲート絶縁膜上に構成されるゲート電極と、
前記半導体層に前記チャネル領域を隔てて設けられた第2導電型の不純物拡散層と、
前記ゲート電極の側部に耐酸化性膜の被覆を介して設けられた前記半導体層との間に中空部を有する側壁絶縁膜と、
前記ゲート電極及び側壁絶縁膜を隔てて前記不純物拡散層上に設けられたシリサイド層と、
を具備したことを特徴とする。
【0007】
上記本発明に係る半導体装置によれば、ゲート電極の側壁絶縁膜が耐酸化性膜の被覆を介して設けられるのでゲート電極は酸化劣化され難く、特性の維持に寄与する。また、ゲート電極の側壁絶縁膜は半導体層との間に中空部を有している。これにより、側壁絶縁膜下に延在する不純物拡散層、つまりソース・ドレインのエクステンション部における寄生容量は低減される。
【0008】
なお、本発明の[請求項2]に係る半導体装置は、[請求項1]に従属され、前記ゲート電極は、ポリシリコン層上に形成されたシリサイドを有することを特徴とする。すなわち、ゲート電極の低抵抗化に寄与する。
【0009】
また、本発明の[請求項3]に係る半導体装置は、[請求項1]に従属され、
前記ゲート電極は金属部材を含み、この金属部材は、耐酸化性の第1金属層及びこの第1金属層上における主たる厚さの第2金属層及びこの第2金属層上における耐酸化性の第3金属層を有すること特徴とする。このような特徴によれば、ゲート電極の側壁絶縁膜が耐酸化性膜の被覆を介して設けられ、ゲート電極を構成する金属部材の側部酸化は防止される。これにより、実効的なゲート長が減少するようなことはない。さらに、少なくとも主たる厚さの第2金属層を耐酸化性の第1金属層及び第3金属層で挟む形態となり、上下寸法の酸化は阻止される。ゲート絶縁膜に影響が及ばないように、また、上層からの酸化影響防止に寄与する。
【0010】
また、本発明の[請求項4]に係る半導体装置は、[請求項1]または[請求項3]に従属され、
前記耐酸化性膜の被覆は前記ゲート電極上部にも延在していることを特徴とする。主たる厚さの第2金属層が酸化の影響を受けないように、また、側壁絶縁膜の固着の下地としてより確実に配備する。
また、本発明の[請求項5]に係る半導体装置は、[請求項1]〜[請求項4]いずれか一つに従属され、前記耐酸化性膜の被覆は窒化シリコン膜であることを特徴とする。
【0011】
また、本発明の[請求項6]に係る半導体装置は、[請求項1]〜[請求項5]いずれか一つに従属され、
前記中空部は、前記中空部は、前記耐酸化性膜またはそれに加えて前記ゲート絶縁膜が除去された空隙であることを特徴とする。中空部を形成する有効な構成となる。
【0012】
また、本発明の[請求項7]に係る半導体装置は、[請求項1]〜[請求項6]いずれか一つに従属され、
前記半導体層は、バルクのシリコン基板、SOI基板のいずれかに設けられることを特徴とする。いずれの基板にも有用である。
【0013】
本発明の[請求項8]に係る半導体装置の製造方法は、
第1導電型の半導体層のチャネル領域上にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極を最上層に第1の耐酸化性膜を伴い形成する工程と、
前記第1の耐酸化性膜と同じ第2の耐酸化性膜を前記ゲート電極全体に被覆するように形成する工程と、
前記第2の耐酸化性膜上に前記ゲート電極の側壁絶縁膜を形成する工程と、
前記側壁絶縁膜下に中空部ができるように少なくとも前記第2の耐酸化性膜の所定領域をエッチング除去する工程と、
前記ゲート電極及び側壁絶縁膜を隔ててソース・ドレインのシリサイド層を形成する工程と、
を具備したことを特徴とする。
【0014】
上記本発明に係る半導体装置の製造方法によれば、ゲート電極の側壁絶縁膜が第2の耐酸化性膜の被覆を介して設けられる。これにより、ゲート電極の側部は酸化劣化され難く、特性の維持に寄与する。また、少なくとも第2の耐酸化性膜の所定領域をエッチング除去することにより、ゲート電極の側壁絶縁膜下に関し半導体層との間に中空部を有するようにする。これにより、側壁絶縁膜下に延在する不純物拡散層、つまりソース・ドレインのエクステンション部における寄生容量は低減される。
【0015】
なお、本発明の[請求項9]に係る半導体装置の製造方法は、[請求項8]に従属され、
前記側壁絶縁膜下に中空部ができるようにチャネル領域上部以外のゲート絶縁膜をエッチング除去する工程をさらに具備することを特徴とする。これにより、さらなる寄生容量の低減に寄与する。
【0016】
なお、本発明の[請求項10]に係る半導体装置の製造方法は、[請求項8]または[請求項9]に従属され、
前記第2の耐酸化性膜を形成する工程の前または後に前記ゲート電極の領域をマスクに第2導電型の不純物を導入し不純物拡散層を形成する工程を具備したことを特徴とする。
また、本発明の[請求項11]に係る半導体装置の製造方法は、[請求項8]または[請求項9]に従属され、
前記ゲート電極及び側壁絶縁膜の領域をマスクに第2導電型の不純物を導入し不純物拡散層を形成する工程を具備したことを特徴とする。
また、本発明の[請求項12]に係る半導体装置の製造方法は、[請求項8]または[請求項9]に従属され、
前記耐酸化性膜を形成する工程の前または後に前記ゲート電極の領域をマスクに第2導電型の不純物を導入し第1不純物拡散層を形成する工程と、
前記側壁絶縁膜の形成後からシリサイド層を形成する工程の間に前記ゲート電極及び側壁絶縁膜の領域をマスクに第2導電型の不純物を導入し第2の不純物拡散層を形成する工程と、
を具備したことを特徴とする。
上記のような本発明の各特徴によれば、不純物拡散層を形成する工程をいずれかで挿入する。
【0017】
本発明の[請求項13]に係る半導体装置の製造方法は、[請求項8]〜[請求項12]いずれか一つに従属され、
前記ゲート電極の形成は、
前記ゲート絶縁膜上にポリシリコン層を形成しパターニングする工程と、
前記ソース・ドレインのシリサイド層を形成する工程に伴い前記ポリシリコン上にもシリサイド層を形成する工程と、
を含むこと特徴とする。すなわち、ゲート電極の低抵抗化に寄与する。
【0018】
本発明の[請求項14]に係る半導体装置の製造方法は、[請求項8]〜[請求項12]いずれか一つに従属され、
前記ゲート電極の形成は、
前記ゲート絶縁膜上に耐酸化性の第1金属層をスパッタ形成する工程と、
前記第1金属層上に主たる導電部材としての第2金属層を第1金属層より厚くスパッタ形成する工程と、
前記第2金属層上に耐酸化性の第3金属層を第2金属層より薄くスパッタ形成する工程と、
前記第1金属層、第2金属層及び第3金属層をパターニングする工程と、
を含むこと特徴とする。
【0019】
また、本発明の[請求項15]に係る半導体装置の製造方法は、[請求項8]〜[請求項12]いずれか一つに従属され、
前記ゲート電極の形成は、
前記ゲート絶縁膜上に耐酸化性の第1金属層をスパッタ形成する工程と、
前記第1金属層上に主たる導電部材としての第2金属層を第1金属層より厚くスパッタ形成する工程と、
前記第2金属層上に耐酸化性の第3金属層を第2金属層より薄くスパッタ形成する工程と、
前記第1金属層、第2金属層及び第3金属層をパターニングする工程と、
を含み、
前記第1、第3金属層は、それぞれ前記第2金属層におけるスパッタ金属を窒化雰囲気中で成膜することを特徴とする。
【0020】
上記本発明の[請求項14]、[請求項15]に係る各特徴によれば、少なくとも主たる厚さの第2金属層を耐酸化性の第1金属層及び第3金属層で挟む形態となり、上下寸法の酸化は阻止される。ゲート絶縁膜に影響が及ばないように、また、上層からの酸化影響防止に寄与する。さらに、第2金属層形成の同一工程内の窒化雰囲気中で第1金属層、さらには第3金属層を成膜することができ、形成時間の短縮に寄与する。
【0021】
また、本発明の[請求項16]に係る半導体装置の製造方法は、[請求項8]〜[請求項15]いずれか一つに従属され、
前記耐酸化性膜の被覆は、窒化シリコン膜の被覆により実現され、前記耐酸化性膜の所定領域をエッチング除去する工程は、ウェットエッチングによることを特徴とする。これにより、等方的にエッチングされ膜厚のより薄い側壁絶縁膜下の耐酸化性膜をエッチング除去する。
【0022】
【発明の実施の形態】
図1は、本発明の第1実施形態に係る半導体装置の要部を示す断面図である。半導体層11に形成されるポリサイドゲート(ポリシリコンゲート上部がシリサイド)を有するMOSFETの構成であり、半導体層11がP型であればNチャネルMOSFET、半導体層11がN型であればPチャネルMOSFETである。半導体層11は、SOI(Silicon On Insulator)基板に設けられる。あるいは所定の不純物濃度を有する所定導電型のバルクのシリコン基板に設けられる。
【0023】
第1導電型(P型またはN型)の半導体層11のチャネル領域12上にゲート絶縁膜13及びこのゲート絶縁膜13上に金属部材で構成されるゲート電極14が形成されている。ここでのゲート絶縁膜13はシリコン酸化膜またはシリコン窒化膜を含む。また、ゲート電極14は、ポリシリコン層141、シリサイド層142を含む。
【0024】
上記半導体層11にはチャネル領域12を隔てて第2導電型(N型またはP型)の不純物拡散層15(151,152)が設けられている。また、ゲート電極14の側部に耐酸化性膜16の被覆があり、この耐酸化性膜16を介して側壁絶縁膜17が設けられている。この側壁絶縁膜17は半導体層11との間に中空部18を有する。中空部18はゲート絶縁膜13と耐酸化性膜16の厚さ分の隙間を有し、層間絶縁層20の部材も多くは入らず保たれる。
【0025】
耐酸化性膜16は例えば窒化シリコン膜である。また、側壁絶縁膜17は酸化シリコン膜とし、上記窒化シリコン膜よりも厚い。耐酸化性膜16の窒化シリコン膜は、側壁絶縁膜17の酸化シリコン膜とエッチング選択比が大きく取れ、かつ、ゲート電極14の実質部材を酸化劣化から保護する役割を果たす。ストレスの影響が大きくならないよう、だいたい10〜50nmの範囲の所定膜厚にする。この窒化シリコン膜(16)が側壁絶縁膜(酸化シリコン膜)17下では除去されている形態になっている。
【0026】
上記ゲート電極14及び側壁絶縁膜17の領域を隔てて不純物拡散層15上にシリサイド層142が設けられている。シリサイド層142はニッケルシリサイド、コバルトシリサイド、チタンシリサイド、その他適当な高融点金属のシリサイドが採用できる。
【0027】
上記実施形態によれば、ゲート電極14の側壁絶縁膜17が耐酸化性膜16の被覆を介して設けられている。ゲート電極14の酸化劣化の保護に寄与する。また、耐酸化性膜16が選択的に除去されゲート電極14の側壁絶縁膜17は半導体層11との間に中空部18を有している。これにより、側壁絶縁膜17下に延在する不純物拡散層151、つまりソース・ドレインのエクステンション部との寄生容量は大幅に低減される。
【0028】
図2〜図6は、それぞれ図1のMOSFETにおける要部の製造方法を工程順に示す断面図である。
図2に示すように、第1導電型(P型またはN型)のシリコン半導体層11に素子領域として必要なイオン注入を経た後、チャネル領域12上にゲート絶縁膜(シリコン酸化膜またはシリコン窒化膜)13を形成する。次に、このゲート絶縁膜13上においてCVD(Chemical Vapor Deposition )法によりポリシリコン層141を成膜する。
【0029】
次に、マスクパターンも兼ねた窒化シリコン膜の耐酸化性膜161を形成し、図示しないフォトリソグラフィ工程を経てマスクパターンに従ってエッチングすることにより、ゲート電極パターンが形成される。ポリシリコン層141上には耐酸化性膜161が残留する。このゲート電極パターンの領域をマスクにイオン注入を施し、ソース・ドレインに関係する第2導電型(N型またはP型)の不純物拡散層151を設ける。
【0030】
次に、図3に示すように、CVD法により窒化シリコン膜を成膜し、耐酸化性膜161を含んだゲート電極パターンの領域全体を10〜50nmの範囲の所定厚さで被覆する。これにより、少なくともポリシリコン層141の側部に耐酸化性膜16が配される。ポリシリコン層141上部の耐酸化性膜16は予め形成していた耐酸化性膜161に加えられる。なお、不純物拡散層151のイオン注入は、図1の構成のときに実施する代りに、この耐酸化性膜16形成後に実施することも考えられる。
【0031】
次に、図4に示すように、CVD法を用いて、耐酸化性膜16上に酸化シリコン膜を厚く堆積する。その後、異方性のドライエッチングを経ることにより側壁絶縁膜17を形成する。
【0032】
次に、図5に示すように、熱リン酸等のウェットエッチングにより、少なくとも側壁絶縁膜17下に亘ってソース・ドレイン領域の耐酸化性膜16を除去する。これは、ウェットエッチング時間で制御することができる。このとき、ポリシリコン層141上部の耐酸化性膜16は他より厚いが、側壁絶縁膜17下に比べてエッチングされ易い。結局、側壁絶縁膜17下の耐酸化性膜16が除去される頃にはポリシリコン層141上部の耐酸化性膜16は無くなる。また、そのような厚さ関係に制御しておく。これにより、図5のような形態が得られる。
【0033】
次に、図6に示すように、ゲート電極14及び側壁絶縁膜17の領域をマスクにイオン注入を施し、ソース・ドレインに関係する第2導電型(N型またはP型)の不純物拡散層152を設ける。次に、フッ酸等を利用した軽いウェットエッチによりゲート絶縁膜13におけるチャネル部12以外の領域を除去する。次に、ポリシリコン層141上及び所定のソース・ドレイン領域となる半導体層11にスパッタ法を利用して高融点金属層、例えばコバルト層を成膜する。スパッタ法によるコバルト層は側壁絶縁膜17下の半導体層11上にはほとんど回り込まない。その後、シリサイド化のための熱処理等を経て、ポリシリコン層141上部及び不純物拡散層15上にシリサイド層142が設けられる。これにより、ポリサイド構造のゲート電極14及びシリサイド層142を有するソース・ドレイン電極が形成される。次に、CVD法により酸化シリコンでなる層間絶縁層20を形成する。これにより、側壁絶縁膜17下の中空部18が現出される。
【0034】
上記実施形態の方法によれば、ゲート電極14全体を耐酸化性膜16で被覆した上でゲート電極14の実質的なサイドウォールスペーサである側壁絶縁膜17を形成する。これにより、ゲート電極14の側部は酸化劣化され難く、特性の維持に寄与する。
【0035】
また、エッチング選択比を利用してゲート電極14の側壁絶縁膜17は半導体層11との間の少なくとも耐酸化性膜16を除去して中空部18を構成することができる。さらには、ゲート絶縁膜13におけるチャネル部12以外の領域を除去する工程を加え、より確実な中空部18を構成することもできる。これにより、側壁絶縁膜17下に延在する不純物拡散層15、つまりソース・ドレインのエクステンション部における寄生容量は大幅に低減される。
【0036】
なお、上記実施形態の構成は、ゲート電極14として示したポリサイドゲート構造の他、より低抵抗のメタルゲート構造のMOSFETにも十分適用可能である。ゲートポリシリコンは不純物を高濃度でドープしているが、空乏化を起こし容量を大きくしてしまう懸念がある。メタルゲートならば、ゲート電極において空乏化を生じることはない。
【0037】
図7は、本発明の第2実施形態に係る半導体装置の要部を示す断面図である。前記第1実施形態と同様の箇所には同一の符号を付して説明する。半導体層11に形成されるメタルゲートを有するMOSFETの構成であり、半導体層11がP型であればNチャネルMOSFETであり、半導体層11がN型であればPチャネルMOSFETである。半導体層11は、SOI(Silicon On Insulator)基板に設けられる。あるいは所定の不純物濃度を有する所定導電型のバルクのシリコン基板に設けられる。
【0038】
第1導電型(P型またはN型)の半導体層11のチャネル領域12上にゲート絶縁膜13及びこのゲート絶縁膜13上に金属部材で構成されるゲート電極24が形成されている。ここでのゲート絶縁膜13はシリコン酸化膜またはシリコン窒化膜を含む。また、ゲート電極24は、窒化タンタル層241、体心立方格子相のタンタル層242、窒化タンタル層243の積層を含む。このうち、タンタル層242はゲート電極24全体の厚さの5割以上を占める。
【0039】
上記半導体層11にはチャネル領域12を隔てて第2導電型(N型またはP型)の不純物拡散層15(151,152)が設けられている。また、ゲート電極24の側部に耐酸化性膜16の被覆があり、この耐酸化性膜16を介して側壁絶縁膜17が設けられている。この側壁絶縁膜17は半導体層11との間に中空部18を有する。中空部18はゲート絶縁膜13と耐酸化性膜16の厚さ分の隙間を有し、層間絶縁層20の部材も多くは入らず保たれる。
【0040】
耐酸化性膜16は例えば窒化シリコン膜である。また、側壁絶縁膜17は酸化シリコン膜とし、上記窒化シリコン膜よりも厚い。耐酸化性膜16の窒化シリコン膜は、側壁絶縁膜17の酸化シリコン膜とエッチング選択比が大きく取れ、かつゲート電極24の実質部材であるタンタル層242の側部からの酸化を防止する。耐酸化性膜16の窒化シリコン膜は、ストレスの影響も考慮してだいたい10〜50nmの範囲の所定膜厚にする。この窒化シリコン膜が側壁絶縁膜(酸化シリコン膜)17下では除去されている形態になっている。
【0041】
上記ゲート電極24及び側壁絶縁膜17の領域を隔てて不純物拡散層15上にシリサイド層19が設けられている。シリサイド層19はニッケルシリサイド、コバルトシリサイド、チタンシリサイド、その他適当な高融点金属のシリサイドが採用できる。
【0042】
上記実施形態によれば、ゲート電極24の側壁絶縁膜17が耐酸化性膜16の被覆を介して設けられているので、ゲート電極24の実質部分を構成するタンタル層242の側部酸化が防止できる。これにより、実効的なゲート長は変わることなく特性が維持できる。また、耐酸化性膜16が選択的に除去されゲート電極24の側壁絶縁膜17は半導体層11との間に中空部18を有している。これにより、側壁絶縁膜17下に延在する不純物拡散層151、つまりソース・ドレインのエクステンション部における寄生容量は大幅に低減される。
【0043】
図8〜図12は、それぞれ図7のMOSFETにおける要部の製造方法を工程順に示す断面図である。
図8に示すように、第1導電型(P型またはN型)のシリコン半導体層11に素子領域として必要なイオン注入を経てチャネル領域12上にゲート絶縁膜(シリコン酸化膜またはシリコン窒化膜)13を形成する。次に、このゲート絶縁膜13上にスパッタ法により窒化タンタル層241、体心立方格子相のタンタル層242、窒化タンタル層243を順次連続的に成膜する。窒化タンタル層(241,243)は、例えばタンタルのターゲットを、キセノンガスを用いた窒素雰囲気中でスパッタして成膜する。また、タンタル層(242)は、上記タンタルのターゲットを、キセノンガスを用いスパッタして成膜する。
【0044】
次に、マスクパターンも兼ねた窒化シリコン膜の耐酸化性膜162を厚く形成し、図示しないフォトリソグラフィ工程を経てマスクパターンに従ってエッチングすることにより、ゲート電極24が形成される。ゲート電極24の最上層には耐酸化性膜162が厚く残留する。このゲート電極24の領域をマスクにイオン注入を施し、ソース・ドレインに関係する第2導電型(N型またはP型)の不純物拡散層151を設ける。
【0045】
次に、図9に示すように、CVD法(Chemical Vapor Deposition )により窒化シリコン膜を成膜し、耐酸化性膜161を含んだゲート電極24の領域全体を10〜50nmの範囲の所定厚さで被覆する。これにより、少なくともゲート電極24の側部に耐酸化性膜16が配される。ゲート電極24上部の耐酸化性膜16は予め形成していた耐酸化性膜162に加えられるので、他よりも相当厚い。なお、不純物拡散層151のイオン注入は、図1の構成のときに実施する代りに、この耐酸化性膜16形成後に実施することも考えられる。
【0046】
次に、図10に示すように、CVD法を用いて、耐酸化性膜16上に酸化シリコン膜を厚く堆積する。その後、異方性のドライエッチングを経ることにより側壁絶縁膜17を形成する。
【0047】
次に、図11に示すように、熱リン酸等のウェットエッチングにより、少なくとも側壁絶縁膜17下に亘ってソース・ドレイン領域の耐酸化性膜16を除去する。これは、ウェットエッチング時間で制御することができる。このとき、ゲート電極24上部の耐酸化性膜16は厚い分残留し、側壁絶縁膜17の固着の基礎は保持されるようになっている。
【0048】
次に、図12に示すように、ゲート電極24及び側壁絶縁膜17の領域をマスクにイオン注入を施し、ソース・ドレインに関係する第2導電型(N型またはP型)の不純物拡散層152を設ける。次に、フッ酸等を利用した軽いウェットエッチによりゲート絶縁膜13におけるチャネル部12以外の領域を除去する。次に、所定のソース・ドレイン領域となる半導体層11にスパッタ法を利用して遷移金属層、例えばコバルト層を成膜する。スパッタ法によるコバルト層は側壁絶縁膜17下の半導体層11上にはほとんど回り込まない。その後、シリサイド化のための熱処理等を経て、不純物拡散層15上にシリサイド層19が設けられる。次に、CVD法により酸化シリコンでなる層間絶縁層20を形成する。これにより、側壁絶縁膜17下の中空部18が現出される。
【0049】
上記実施形態の方法によれば、ゲート電極24全体を耐酸化性膜16で被覆した上でゲート電極24の実質的なサイドウォールスペーサである側壁絶縁膜17を形成する。これにより、ゲート電極24を構成する金属部材の側部酸化を防止することができる。これにより、実効的なゲート長が減少するようなことはなく、特性の維持に寄与する。
【0050】
また、エッチング選択比を利用してゲート電極24の側壁絶縁膜17は半導体層11との間の少なくとも耐酸化性膜16を除去して中空部18を構成することができる。さらには、ゲート絶縁膜13におけるチャネル部12以外の領域を除去する工程を加え、より確実な中空部18を構成することもできる。これにより、側壁絶縁膜17下に延在する不純物拡散層15、つまりソース・ドレインのエクステンション部における寄生容量は大幅に低減される。
【0051】
なお、上記実施形態のゲート電極24は、窒化タンタル層241/タンタル層242/窒化タンタル層243の積層を示したが、これに限らず様々なメタルゲートが考えられる。例えばゲート電極24の実質部分を構成する金属部材はタンタルの他、タングステン、モリブデンでもよく、その場合、窒化タンタル層241の代りに窒化チタン層を設けるようにしてもよい。
【0052】
【発明の効果】
以上説明したように本発明によれば、ゲート電極の側壁絶縁膜が耐酸化性膜の被覆を介して設けられる。これにより、ゲート電極の酸化劣化を防止すると共に側壁絶縁膜とのエッチング選択比の違いを利用して耐酸化性膜の所定領域をエッチング除去して、ゲート電極の側壁絶縁膜に関し半導体層との間に中空部を有するようにする。これにより、側壁絶縁膜下に延在する不純物拡散層、つまりソース・ドレインのエクステンション部における寄生容量は低減される。この結果、低抵抗でかつ寄生容量を低減し得る高速動作の絶縁ゲート型電界効果トランジスタを実現する半導体装置及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る半導体装置の要部を示す断面図である。
【図2】図1の構成における要部の製造方法を工程順に示す第1の断面図である。
【図3】図2に続く第2の断面図である。
【図4】図3に続く第3の断面図である。
【図5】図4に続く第4の断面図である。
【図6】図5に続く第5の断面図である。
【図7】本発明の第2実施形態に係る半導体装置の要部を示す断面図である。
【図8】図7の構成における要部の製造方法を工程順に示す第1の断面図である。
【図9】図8に続く第2の断面図である。
【図10】図9に続く第3の断面図である。
【図11】図10に続く第4の断面図である。
【図12】図11に続く第5の断面図である。
【符号の説明】
11…半導体層
12…チャネル領域
13…ゲート絶縁膜
14,24…ゲート電極
141…ポリシリコン層
142,19…シリサイド層
241,243…窒化タンタル層
242…タンタル層
15,151,152…不純物拡散層
16,161,162…耐酸化性膜
17…側壁絶縁膜
18…中空部
20…層間絶縁層

Claims (16)

  1. 第1導電型の半導体層のチャネル領域上に形成されたゲート絶縁膜及びこのゲート絶縁膜上に構成されるゲート電極と、
    前記半導体層に前記チャネル領域を隔てて設けられた第2導電型の不純物拡散層と、
    前記ゲート電極の側部に耐酸化性膜の被覆を介して設けられた前記半導体層との間に中空部を有する側壁絶縁膜と、
    前記ゲート電極及び側壁絶縁膜を隔てて前記不純物拡散層上に設けられたシリサイド層と、
    を具備したことを特徴とする半導体装置。
  2. 前記ゲート電極は、ポリシリコン層上に形成されたシリサイドを有することを特徴とする請求項1記載の半導体装置。
  3. 前記ゲート電極は金属部材を含み、この金属部材は、耐酸化性の第1金属層及びこの第1金属層上における主たる厚さの第2金属層及びこの第2金属層上における耐酸化性の第3金属層を有すること特徴とする請求項1記載の半導体装置。
  4. 前記耐酸化性膜の被覆は前記ゲート電極上部にも延在していることを特徴とする請求項1または3記載の半導体装置。
  5. 前記耐酸化性膜の被覆は窒化シリコン膜であることを特徴とする請求項1〜4いずれか一つに記載の半導体装置。
  6. 前記中空部は、前記耐酸化性膜またはそれに加えて前記ゲート絶縁膜が除去された空隙であることを特徴とする請求項1〜5いずれか一つに記載の半導体装置。
  7. 前記半導体層は、バルクのシリコン基板、SOI基板のいずれかに設けられることを特徴とする請求項1〜6いずれか一つに記載の半導体装置。
  8. 第1導電型の半導体層のチャネル領域上にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上にゲート電極を最上層に第1の耐酸化性膜を伴い形成する工程と、
    前記第1の耐酸化性膜と同じ第2の耐酸化性膜を前記ゲート電極全体に被覆するように形成する工程と、
    前記第2の耐酸化性膜上に前記ゲート電極の側壁絶縁膜を形成する工程と、
    前記側壁絶縁膜下に中空部ができるように少なくとも前記第2の耐酸化性膜の所定領域をエッチング除去する工程と、
    少なくとも前記ゲート電極及び側壁絶縁膜を隔ててソース・ドレインのシリサイド層を形成する工程と、
    を具備したことを特徴とする半導体装置の製造方法。
  9. 前記側壁絶縁膜下に中空部ができるようにチャネル領域上部以外のゲート絶縁膜をエッチング除去する工程をさらに具備することを特徴とする請求項8記載の半導体装置の製造方法。
  10. 前記第2の耐酸化性膜を形成する工程の前または後に前記ゲート電極の領域をマスクに第2導電型の不純物を導入し不純物拡散層を形成する工程を具備したことを特徴とする請求項8または9記載の半導体装置の製造方法。
  11. 前記ゲート電極及び側壁絶縁膜の領域をマスクに第2導電型の不純物を導入し不純物拡散層を形成する工程を具備したことを特徴とする請求項8または9記載の半導体装置の製造方法。
  12. 前記耐酸化性膜を形成する工程の前または後に前記ゲート電極の領域をマスクに第2導電型の不純物を導入し第1不純物拡散層を形成する工程と、
    前記側壁絶縁膜の形成後からシリサイド層を形成する工程の間に前記ゲート電極及び側壁絶縁膜の領域をマスクに第2導電型の不純物を導入し第2の不純物拡散層を形成する工程と、
    を具備したことを特徴とする請求項8または9記載の半導体装置の製造方法。
  13. 前記ゲート電極の形成は、
    前記ゲート絶縁膜上にポリシリコン層を形成しパターニングする工程と、
    前記ソース・ドレインのシリサイド層を形成する工程に伴い前記ポリシリコン上にもシリサイド層を形成する工程と、
    を含むこと特徴とする請求項8〜12いずれか一つに記載の半導体装置の製造方法。
  14. 前記ゲート電極の形成は、
    前記ゲート絶縁膜上に耐酸化性の第1金属層をスパッタ形成する工程と、
    前記第1金属層上に主たる導電部材としての第2金属層を第1金属層より厚くスパッタ形成する工程と、
    前記第2金属層上に耐酸化性の第3金属層を第2金属層より薄くスパッタ形成する工程と、
    前記第1金属層、第2金属層及び第3金属層をパターニングする工程と、
    を含むこと特徴とする請求項8〜12いずれか一つに記載の半導体装置の製造方法。
  15. 前記ゲート電極の形成は、
    前記ゲート絶縁膜上に耐酸化性の第1金属層をスパッタ形成する工程と、
    前記第1金属層上に主たる導電部材としての第2金属層を第1金属層より厚くスパッタ形成する工程と、
    前記第2金属層上に耐酸化性の第3金属層を第2金属層より薄くスパッタ形成する工程と、
    前記第1金属層、第2金属層及び第3金属層をパターニングする工程と、
    を含み、
    前記第1、第3金属層は、それぞれ前記第2金属層におけるスパッタ金属を窒化雰囲気中で成膜することを特徴とする請求項8〜12いずれか一つに記載の半導体装置の製造方法。
  16. 前記耐酸化性膜の被覆は、窒化シリコン膜の被覆により実現され、前記耐酸化性膜の所定領域をエッチング除去する工程は、ウェットエッチングによることを特徴とする請求項8〜15いずれか一つに記載の半導体装置の製造方法。
JP2002173587A 2002-06-14 2002-06-14 半導体装置及びその製造方法 Expired - Fee Related JP4232396B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173587A JP4232396B2 (ja) 2002-06-14 2002-06-14 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173587A JP4232396B2 (ja) 2002-06-14 2002-06-14 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004022691A true JP2004022691A (ja) 2004-01-22
JP4232396B2 JP4232396B2 (ja) 2009-03-04

Family

ID=31172772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173587A Expired - Fee Related JP4232396B2 (ja) 2002-06-14 2002-06-14 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4232396B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200972A (ja) * 2006-01-24 2007-08-09 Nec Electronics Corp 半導体装置およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4303442A1 (en) 2021-03-01 2024-01-10 Daikin Industries, Ltd. Compressor and refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200972A (ja) * 2006-01-24 2007-08-09 Nec Electronics Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP4232396B2 (ja) 2009-03-04

Similar Documents

Publication Publication Date Title
US7388259B2 (en) Strained finFET CMOS device structures
EP1565931B1 (en) Strained finfet cmos device structures
TWI485848B (zh) 半導體裝置及其製造方法
JP4767946B2 (ja) 異なるゲート誘電体を用いたnmos及びpmosトランジスタを具備する相補型金属酸化物半導体集積回路
US7067379B2 (en) Silicide gate transistors and method of manufacture
JP4971593B2 (ja) 半導体装置の製造方法
US20070215951A1 (en) Semiconductor devices having silicided electrodes
US7861406B2 (en) Method of forming CMOS transistors with dual-metal silicide formed through the contact openings
JP3485103B2 (ja) Mos型トランジスタ及びその製造方法
US8530303B2 (en) Method of fabricating semiconductor device
US20080073733A1 (en) Semiconductor device and method for manufacturing the same
US7397073B2 (en) Barrier dielectric stack for seam protection
US7348233B1 (en) Methods for fabricating a CMOS device including silicide contacts
JPH11284179A (ja) 半導体装置およびその製造方法
US7833867B2 (en) Semiconductor device and method for manufacturing the same
JPWO2011030396A1 (ja) 半導体装置およびその製造方法
US8076203B2 (en) Semiconductor device and method of manufacturing the same
KR100549006B1 (ko) 완전한 실리사이드 게이트를 갖는 모스 트랜지스터 제조방법
JP4232396B2 (ja) 半導体装置及びその製造方法
US20080299767A1 (en) Method for Forming a Semiconductor Device Having a Salicide Layer
JP2005311058A (ja) 半導体装置及びその製造方法
JP2004022690A (ja) 半導体装置及びその製造方法
KR100546390B1 (ko) 듀얼 실리사이드화 공정을 이용한 mos 트랜지스터의제조 방법
JP2004022689A (ja) 半導体装置及びその製造方法
TWI255553B (en) Silicon on partial insulator MOSFET and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Effective date: 20070501

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Effective date: 20081023

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20131219

LAPS Cancellation because of no payment of annual fees