JP2004022643A - Method for manufacturing substrate - Google Patents

Method for manufacturing substrate Download PDF

Info

Publication number
JP2004022643A
JP2004022643A JP2002172687A JP2002172687A JP2004022643A JP 2004022643 A JP2004022643 A JP 2004022643A JP 2002172687 A JP2002172687 A JP 2002172687A JP 2002172687 A JP2002172687 A JP 2002172687A JP 2004022643 A JP2004022643 A JP 2004022643A
Authority
JP
Japan
Prior art keywords
substrate
hole
abrasive
grinding materials
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002172687A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawakatsu
川勝 哲夫
Masato Tose
戸瀬 誠人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002172687A priority Critical patent/JP2004022643A/en
Publication of JP2004022643A publication Critical patent/JP2004022643A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate manufacturing method for efficiently manufacturing a highly reliable substrate by efficiently removing any molten alterated layer generated at the time of forming a through-hole by a laser working method without damaging a substrate. <P>SOLUTION: After a through-hole is formed by irradiating the predetermined position of a substrate with a laser, grinding materials including almost spherical grinding materials whose corners are rounded are sprayed to the internal wall of the through-hole to remove any melting degeneracy layer formed at the internal wall of the through-hole. Also, almost spherical grinding materials fulfilling requirements that the degree of sphericity(practical sphericity) of Wadell is ranging from 0.9 to 1, and that the roundness of Wadell is ranging from 0.9 to 1, are used as the grinding materials, and the almost sphercial grinding materials whose particle size distribution is ±50% of a mean particle diameter are used as the grinding materials while the rate of the almost spherical grinding materials in the grinding materials is not less than 80 weight %. Also, the almost spherical grinding materials are constituted of glass system materials as primary components. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、表裏両面に形成された回路パターンや電極を導通させるためのスルーホールを備えた基板の製造方法、詳しくは、レーザ加工法によりスルーホールが形成される基板の製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、セラミックスなどからなる微細配線用途の基板に、位置精度よくスルーホールを形成する方法として、基板焼成後に炭酸ガスレーザを用いてスルーホール加工を行う方法が利用されている。
【0003】
ところで、このレーザ加工法は、レーザの熱エネルギーを用いてスルーホールを形成するものであることから、セラミックスの一部が溶融後冷却されて固化することにより、周囲のセラミックスとは組成ずれの生じた異質な層であるガラス質の溶融変質層(再溶融凝固層、ドロス層)がスルーホールの内壁部に形成される。
【0004】
この溶融変質層には、熱ストレスによる多数のクラックが存在し、スルーホールに形成される導電膜の密着性が損なわれることになるため、レーザ加工後にサンドブラスト法により除去する方法が提案されている(特開平6−334301号)。
しかしながら、このようなサンドブラスト法による溶融変質層の除去には、一般に表面に鋭角状の突起部などを有する研削材(鋭角状研削材)が用いられていることから、溶融変質層のみならず、セラミックス基板まで研削されてしまうという問題点がある。
【0005】
このような問題点を解決するために、レーザ加工前にセラミックス基板表面に耐サンドブラスト性の良好な保護層を形成し、その上からレーザ加工を行った後、保護層をマスクとして、サンドブラスト法によりスルーホール内の溶融変質層のみを除去する方法が提案されている(特開2001−111197号)。
この方法によれば、セラミックス基板の表面が保護層により保護されるため、スルーホール内の溶融変質層のみを除去することが可能になる。しかし、保護層の形成工程及び除去工程が必要になり、製造プロセスが複雑になって、コストの増大を招くという問題点がある。
【0006】
本発明は、かかる問題を解決するためになされたものであり、レーザ加工法によりスルーホールを形成する際に、その内壁部に生じる溶融変質層を、基板にダメージを与えることなく除去することが可能で、信頼性の高い基板を効率よく製造することが可能な基板の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明(請求項1)の基板の製造方法は、
基板の所定位置にレーザを照射してスルーホールを形成する工程と、
前記スルーホールの内壁部に、角部が丸みを帯びた略球形状研削材を含む研削材を吹き付けて、スルーホールの内壁部に形成された溶融変質層を除去する工程と
を具備することを特徴としている。
【0008】
本発明の基板の製造方法においては、レーザを照射して基板にスルーホールを形成した後、略球形状研削材を含む研削材を吹き付けて、スルーホールの内壁部に形成された溶融変質層(例えばガラス質固化層)を除去するようにしているので、研削材により基板が研削されてダメージを受けることを抑制しつつ、溶融変質層を効率よく除去することが可能になる。
すなわち、従来のサンドブラスト法では、鋭角状の研削材が、被加工表面を切削、研削しながら除去するのに対して、本発明においては、主として、略球形状研削材のハンマー効果(衝突による衝撃)により被加工面が研削されることから、通常はAlやSiCなどの基板構成材料よりも硬度が小さく、脆い、溶融変質層(例えばガラス質固化層)が選択的に除去され、基板が研削されてダメージを受けることが確実に抑制される。
したがって、本発明によれば、従来の鋭角状研削材を用いたサンドブラスト法によりスルーホールの内壁部の溶融変質層を除去する場合に比べて、加工時の基板表面の研削量を大幅に(例えば1/10以下に)低減することが可能になる。そして、その結果、保護層を用いることなく、スルーホールの内壁部の溶融変質層を選択的に除去することが可能になり、製造工程を簡略してコストの低減を図ることが可能になる。
【0009】
なお、本発明の基板の製造方法を適用することが可能な基板の種類には特別の制約はなく、一般的なアルミナ系材料からなる基板、SiO系材料からなる基板、誘電体セラミックスなどからなる焼結後の基板に好適に適用することが可能である。
【0010】
また、本発明の基板の製造方法において、スルーホールの形成に用いるレーザの種類に特別の制約はないが、アルミナ基板や誘電体セラミックス基板などの加工性に優れた炭酸ガスレーザなどが一般的に用いられる。なお、炭酸ガスレーザによる加工はその熱エネルギーを用いた熱加工であることから、基板が溶融して硬化した後、組成ずれを起こして異質な層(溶融変質層)が形成されることになるが、本発明においては、この溶融変質層が略球形状研削材を含む研削材により効率よく除去されることになる。
【0011】
また、請求項2の基板の製造方法は、前記略球形状研削材が、
(a)Wadellの球形度(実用球形度)が0.9〜1、
(b)Wadellの丸み度が0.9〜1
の両方の要件を満たすものであることを特徴としている。
【0012】
Wadellの球形度(実用球形度)が0.9〜1で、かつ、Wadellの丸み度が0.9〜1の略球形状研削材を用いることにより、基板が研削されてしまうことを抑制して、さらに選択的に溶融変質層のみを除去することが可能になる。
なお、Wadellの球形度(実用球形度)は下記の式(1)から求められ、Wadellの丸み度は下記の式(2)から求められる値である。
[Wadellの球形度(実用球形度)]
(粒子の投影面積に等しい面積の円の直径)/(粒子の投影像に外接する最小
円の直径)                  ……(1)
[Wadellの丸み度]
(r1+r2+r3+・・・+rN)/RN  ……(2)
但し、
r1,r2,r3・・・ :粒子の輪郭の、それぞれの角の曲率半径で、丸みのない角はゼロにとる
R:最大内接円の半径
N:測定した角の全数
【0013】
また、請求項3の基板の製造方法は、前記略球形状研削材として、粒度分布が平均粒径の±50%の範囲内にあるものを用いることを特徴としている。
【0014】
粒度分布が、その平均粒径の±50%の範囲内にある略球形状研削材を用いることにより、さらに選択的に溶融変質層のみが除去され、基板が研削されてしまうことを抑制することが可能になる。
なお、粒度分布が平均粒径の±50%の範囲内にあるとは、略球形状研削材を構成する個々の粒子のほぼ全体が、平均粒径の−50%から+50%の範囲の粒径を有するものであることを意味する概念であり、わずかな部分が、平均粒径の−50%から+50%の範囲を外れているような場合を本発明の範囲から排除することを意図するものではない。
【0015】
また、請求項4の基板の製造方法は、前記研削材中における略球形状研削材の割合が80重量%以上であることを特徴としている。
【0016】
研削材中における略球形状研削材の割合を80重量%以上とすることにより、選択的に溶融変質層のみを除去して、基板にダメージを与えることを抑制することが可能になり、本発明を実効あらしめることが可能になる。なお、略球形状研削材の割合に上限はなく、実質的に研削材のすべてが略球形状研削材から構成されていてもよい。
【0017】
また、請求項5の基板の製造方法は、前記略球形状研削材がガラス系材料を主成分とするものであることを特徴としている。
【0018】
略球形状研削材として、ガラス系材料を主成分とするものを用いた場合、高硬度のAlやSiCなどからなる基板が研削されてしまうことを確実に抑制しつつ、スルーホールの内壁部に形成されるガラス質固化層などの溶融変質層のみをより確実に研削、除去することが可能になり本発明をさらに実効あらしめることができる。
【0019】
【実施例】
以下、本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。
(1)図1に示すように、セラミックスからなる厚みが0.6mmの焼結後の基板(この実施例では、バリウム、チタンなどからなる誘電体セラミックス基板)1を用意し、炭酸ガスレーザ加工装置を用いて所望の位置に直径が100μmのスルーホール(貫通孔)2を形成した。この実施例では、レーザ加工条件を、周波数100Hz、パルス幅110μS、ショット数20とし、1.5mmピッチで735個のスルーホール(貫通孔)2を形成した。
なお、このスルーホール(貫通孔)2の形成工程において、スルーホール2の内壁部に溶融変質層であるガラス質固化層3が形成されるとともに、溶融物(図示せず)が基板1の表面に飛散する。
したがって、このスルーホール(貫通孔)2の形成工程で、レーザ加工の条件を適切に制御することによって、スルーホール(貫通孔)2の内壁部に形成される溶融変質層(ガラス質固化層)3の厚みを薄くするとともに、基板1の表面に飛散する溶融物を減らすことが、後工程での飛散溶融物及び溶融変質層の除去を容易ならしめることが可能になり、好ましい。
【0020】
(2)次に、基板1の表面に飛散した溶融物を除去する。溶融物を除去する方法に特に制約はなく、基板1を他の基板(図示せず)と擦り合わせる方法などにより除去することができる。
【0021】
(3)その後、図2に示すように、スルーホール(貫通孔)2の内壁部の溶融変質層3に、研削剤(この実施例では下記の略球形状研削材)4を吹き付けて、スルーホール(貫通孔)2の内壁部に形成された溶融変質層3を除去する。
この実施例では、研削材として、粒径#400の球形ガラスビーズ(略球形状研削材)を用いた。そして、この球形ガラスビーズ(略球形状研削材)を、レーザ加工の際にレーザを照射した面側から、
(a)噴射量:50g/min、
(b)噴射圧力:0.45Mpa、
(c)噴射時間:1分間,5分間,10分間,15分間
の条件で、所定の範囲で角度を変えながら基板1に噴射し、スルーホール2の内壁部に形成された溶融変質層3(図2)を除去した(図3)。
【0022】
なお、ここで用いた球形ガラスビーズ#400は、

Figure 2004022643
のものであり、粒度分布が平均粒径の±50%の範囲内に入るものである。
【0023】
(4)それから、上記条件で溶融変質層3の除去を行った基板1の、スルーホール(貫通孔)2を含む領域を厚み方向に切断し、溶融変質層(ガラス質固化層)3の除去の状態及び基板1の表面の研削状態(研削深さ(基板表面の削り取られた量))を観察、測定した。その結果を表1に示す。
【0024】
【表1】
Figure 2004022643
【0025】
表1に示すように、噴射時間10分で、溶融変質層(ガラス質固化層)を確実に除去できることが確認された。また、そのときの基板1の表面の研削深さは5μmであった。なお、この研削深さ5μmは、実用上問題のない値である。
【0026】
また、比較例として、粒径#400の鋭角状ガラスパウダーを研削材として用い、
(a)噴射量:50g/min、
(b)噴射圧力:0.45Mpa、
(c)噴射時間:1分間,5分間,10分間,15分間
の条件で基板に噴射し、スルーホールの内壁部に形成された溶融変質層を除去した。なお、この比較例で用いた研削材(鋭角状ガラスパウダー)の平均粒径及び粒度分布は、上記実施例で用いた研削材(球形ガラスビーズ)とほぼ同じである。
【0027】
それから、上記条件で溶融変質層を除去した基板の、スルーホール(貫通孔)2を含む領域を厚み方向に切断し、溶融変質層(ガラス質固化層)3の除去の状態及び基板1の表面の研削状態(研削深さ(基板表面の削り取られた量))を観察、測定した。その結果を表2に示す。
【0028】
【表2】
Figure 2004022643
【0029】
表2に示すように、鋭角状ガラスパウダーを研削材として用いた比較例の場合、5分間の噴射時間で溶融変質層(ガラス質固化層)を除去することはできたが、そのときの基板表面の研削深さ(基板表面が削り取られた量)は55μmで、粒径#400の球形ガラスビーズ(略球形状研削材)を用いた場合の研削深さ5μmの10倍以上となることが確認された。
上記の実施例及び比較例より、本発明の方法(略球形状研削材を用いて研削する方法)によれば、研削材によって基板表面が研削されることを抑制して、溶融変質層を選択的に、効率よく除去できることがわかる。
【0030】
なお、図4は、本発明の方法により形成された基板を用いて製造されたセラミックス回路基板を示す断面図である。このセラミックス回路基板は、表裏両面の回路パターン24,25が、基板1のスルーホール2内に充填された電極22により互いに接続された構造を有している。
【0031】
このセラミックス回路基板は、図5に示すように、溶融変質層(ガラス質固化層)を除去した後の基板1のスルーホール(貫通孔)2に導電性ペースト21を充填し、焼成した後、基板1の表面が平坦になるように研磨して、図6に示すように、電極22の盛り上がった不要部分22a(図5)を除去し、スルーホール2内に充填された電極22を覆うようにスルーホール保護膜23を形成した後、図4に示すように、基板1の表裏両面に回路パターン24,25を形成し、必要に応じて回路素子(図示せず)などを実装することにより製造される。なお、スルーホール2への導電性ペースト21の充填、スルーホール保護膜の形成、回路パターン24,25の形成、回路素子(図示せず)の実装などは公知の方法を適用することにより、特に問題なく行うことが可能である。
【0032】
なお、上記実施例では、スルーホール(貫通穴)の直径が100μmである場合について説明したが、研削材の粒径を適宜制御することにより、種々の直径を有するスルーホールの内壁部の溶融変質層(ガラス質固化層)を、基板が研削されてしまうことを抑制しつつ、効率よく除去することができる。
【0033】
また、上記実施例では、略球形状研削材として球形ガラスビーズを用いた場合を例にとって説明したが、研削材としては、略球形状のものであれば、種々のものを用いることが可能であり、被加工体である基板の硬度などに応じて、研削材の種類(材料)を変更することが可能であり、例えば、亜鉛、銅、鉄などを主材料とする球形状の研削材などを用いることも可能である。
【0034】
なお、上記実施例では、略球形状研削材として、ガラスビーズを用いているが、一部に鋭角状の研削材が含まれていても、略球形状研削材の割合が80重量%以上である場合には、基板に与えるダメージを小さく抑えることが可能であり、本発明の基本的な効果を得ることが可能である。
【0035】
また、本発明を実施する際に、研削材を噴射するのに用いられる装置(サンドブラスト装置)としては、一般に用いられる重力式、直圧式のいずれの装置を用いることも可能であるが、直圧式の方が、より短時間で溶融変質層(ガラス質固化層)を除去することができて好ましい。
【0036】
本発明は、さらにその他の点においても上記実施例に限定されるものではなく、基板の構成材料、レーザ加工の具体的な条件、略球形状研削材の粒度分布、研削材中における略球形状研削材の割合、などに関し、発明の範囲内において、種々の応用、変形を加えることができる。
【0037】
【発明の効果】
上述のように、本発明(請求項1)の基板の製造方法は、レーザを照射して基板にスルーホールを形成した後、略球形状研削材を含む研削材を吹き付けて、スルーホールの内壁部に形成された溶融変質層を除去するようにしているので、研削材により基板が研削されてダメージを受けることを抑制しつつ、溶融変質層を効率よく除去することが可能になる。
すなわち、従来のサンドブラスト法では、鋭角状の研削材が、被加工表面を切削、研削しながら除去するのに対して、本発明においては、主として、略球形状研削材のハンマー効果(衝突による衝撃)により被加工面が研削されることから、通常はAlやSiCなどの基板構成材料よりも硬度が小さく、脆い、溶融変質層(例えばガラス質固化層)が選択的に除去され、基板が研削されてダメージを受けることが確実に抑制される。
したがって、本発明によれば、従来の鋭角状研削材を用いたサンドブラスト法によりスルーホールの内壁部の溶融変質層を除去する場合に比べて、加工時の基板表面の研削量を大幅に(例えば1/10以下に)低減することが可能になる。そして、その結果、保護層を用いることなく、スルーホールの内壁部の溶融変質層を選択的に除去することが可能になり、製造工程を簡略してコストの低減を図ることができる。
【0038】
また、請求項2の基板の製造方法のように、研削材として、Wadellの球形度(実用球形度)が0.9〜1で、かつ、Wadellの丸み度が0.9〜1の要件を満たす略球形状研削材を含むものを用いた場合、より選択的に溶融変質層のみが除去され、基板が研削されてしまうことを抑制することができるようになる。
【0039】
また、請求項3の基板の製造方法のように、粒度分布が、その平均粒径の±50%の範囲内にある略球形状研削材を用いた場合、さらに選択的に溶融変質層のみが除去され、基板が研削されてしまうことを抑制することが可能になる。
【0040】
また、請求項4の基板の製造方法のように、研削材中における略球形状研削材の割合を80重量%以上とすることにより、選択的に溶融変質層のみを除去して、基板にダメージを与えることを抑制することが可能になり、本発明を実効あらしめることができる。
【0041】
また、請求項5の基板の製造方法のように、略球形状研削材として、ガラス系材料を主成分とするものを用いた場合、高硬度のAlやSiCなどからなる基板が研削されてしまうことを確実に抑制しつつ、スルーホールの内壁部に形成されるガラス質固化層などの溶融変質層のみをより確実に研削、除去することが可能になり本発明をさらに実効あらしめることができる。
【図面の簡単な説明】
【図1】本発明の実施例にかかる基板の製造方法の一工程において、レーザ加工により基板にスルーホール用の貫通孔を形成した状態を示す断面図である。
【図2】本発明の実施例にかかる基板の製造方法の一工程において、スルーホールの内壁部の溶融変質層に研削材を吹き付けて溶融変質層を除去している状態を示す断面図である。
【図3】本発明の実施例にかかる基板の製造方法の一工程において、スルーホールの内壁部の溶融変質層が除去された状態を示す断面図である。
【図4】本発明の方法により形成された基板を用いて製造されたセラミックス回路基板を示す断面図である。
【図5】スルーホール用の貫通孔に導電性ペーストを充填し、焼成した状態を示す断面図である。
【図6】スルーホール用の貫通孔に導電性ペーストを充填し、焼成し、基板の表面を研磨した後、スルーホール内に充填された電極を覆うようにスルーホール保護膜を形成した状態を示す断面図である。
【符号の説明】
1      基板
2      スルーホール(貫通孔)
3      溶融変質層(ガラス質固化層)
4      略球形状研削材(球形ガラスビーズ)
21     導電性ペースト
22     電極
22a    電極の盛り上がった不要部分
23     スルーホール保護膜
24,25  回路パターン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a substrate provided with through holes for conducting circuit patterns and electrodes formed on both front and back surfaces, and more particularly to a method of manufacturing a substrate having through holes formed by a laser processing method. .
[0002]
Problems to be solved by the prior art and the invention
2. Description of the Related Art Conventionally, as a method of forming through holes with high positional accuracy on a substrate for fine wiring made of ceramics or the like, a method of performing through hole processing using a carbon dioxide gas laser after baking the substrate has been used.
[0003]
By the way, in this laser processing method, through holes are formed by using the thermal energy of a laser, and a part of the ceramics is cooled and solidified after being melted, causing a composition deviation from the surrounding ceramics. A vitreous molten altered layer (remelted solidified layer, dross layer), which is a different layer, is formed on the inner wall of the through hole.
[0004]
Since a large number of cracks due to thermal stress are present in the melt-altered layer and the adhesion of the conductive film formed in the through-holes is impaired, a method of removing them by a sandblast method after laser processing has been proposed. (JP-A-6-334301).
However, in order to remove the melt-altered layer by such a sandblasting method, a grinding material (an acute-angled abrasive) having an acute-angled projection on the surface is generally used. There is a problem that the ceramic substrate is ground.
[0005]
To solve such problems, a protective layer with good sandblast resistance is formed on the surface of the ceramic substrate before laser processing, and laser processing is performed on the protective layer. There has been proposed a method of removing only a molten altered layer in a through hole (JP-A-2001-111197).
According to this method, since the surface of the ceramic substrate is protected by the protective layer, it is possible to remove only the molten altered layer in the through hole. However, there is a problem that a process of forming and removing a protective layer is required, which complicates a manufacturing process and causes an increase in cost.
[0006]
The present invention has been made to solve such a problem, and when forming a through hole by a laser processing method, it is possible to remove a molten altered layer generated on an inner wall portion thereof without damaging a substrate. It is an object of the present invention to provide a method for manufacturing a substrate that can efficiently manufacture a highly reliable substrate that is possible.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a substrate according to the present invention (claim 1) includes:
Irradiating a laser on a predetermined position of the substrate to form a through hole,
Spraying an abrasive containing an approximately spherical abrasive having rounded corners on the inner wall of the through-hole to remove a molten altered layer formed on the inner wall of the through-hole. Features.
[0008]
In the method for manufacturing a substrate according to the present invention, a through-hole is formed in the substrate by irradiating a laser, and then a grinding material including a substantially spherical grinding material is sprayed thereon, so that the molten altered layer formed on the inner wall portion of the through-hole ( Since the vitrified layer (for example, a vitrified layer) is removed, the molten deteriorated layer can be efficiently removed while suppressing the substrate from being damaged by the grinding material.
That is, in the conventional sandblasting method, the sharp-angled abrasive is removed while cutting and grinding the surface to be processed. In the present invention, however, the hammer effect of the substantially spherical abrasive (impact due to collision) is mainly achieved. ), The work surface is ground, so that the hardness is usually lower than that of the substrate constituting material such as Al 2 O 3 or SiC, and the brittle, molten altered layer (for example, a vitrified layer) is selectively removed. The substrate is reliably prevented from being damaged by grinding.
Therefore, according to the present invention, the amount of grinding of the substrate surface during processing is greatly reduced (for example, compared to the case where the molten deteriorated layer on the inner wall portion of the through hole is removed by the sandblasting method using a conventional sharp-angled abrasive). (Less than 1/10). Then, as a result, it becomes possible to selectively remove the melt-degraded layer on the inner wall portion of the through hole without using a protective layer, thereby simplifying the manufacturing process and reducing the cost.
[0009]
There are no particular restrictions on the types of substrates to which the method for manufacturing a substrate of the present invention can be applied, and a substrate made of a general alumina-based material, a substrate made of a SiO 2 -based material, a dielectric ceramic, or the like can be used. It can be suitably applied to a substrate after sintering.
[0010]
In the method for manufacturing a substrate of the present invention, there is no particular limitation on the type of laser used for forming the through-hole, but a carbon dioxide gas laser having excellent workability such as an alumina substrate or a dielectric ceramic substrate is generally used. Can be Since the processing by the carbon dioxide gas laser is thermal processing using the thermal energy, after the substrate is melted and hardened, a composition deviation occurs, and a different layer (melted deteriorated layer) is formed. In the present invention, the molten altered layer is efficiently removed by the abrasive including the substantially spherical abrasive.
[0011]
In the method for manufacturing a substrate according to claim 2, the substantially spherical abrasive is
(A) Wadell's sphericity (practical sphericity) is 0.9 to 1,
(B) Roundness of Wadell is 0.9 to 1
It satisfies both requirements.
[0012]
By using a substantially spherical abrasive having a Wadell sphericity (practical sphericity) of 0.9 to 1 and a Wadell roundness of 0.9 to 1, the substrate is prevented from being ground. As a result, it is possible to more selectively remove only the molten altered layer.
Note that Wadell's sphericity (practical sphericity) is obtained from the following equation (1), and Wadell's roundness is a value obtained from the following equation (2).
[Wadell sphericity (practical sphericity)]
(Diameter of a circle having an area equal to the projected area of the particle) / (diameter of the smallest circle circumscribing the projected image of the particle) (1)
[Wadell roundness]
(R1 + r2 + r3 +... + RN) / RN (2)
However,
r1, r2, r3...: the radius of curvature of each corner of the contour of the particle, the rounded corner being zero R: the radius of the largest inscribed circle N: the total number of measured corners
Further, the method of manufacturing a substrate according to claim 3 is characterized in that a material having a particle size distribution within a range of ± 50% of an average particle size is used as the substantially spherical abrasive.
[0014]
By using a substantially spherical abrasive having a particle size distribution within a range of ± 50% of the average particle size, it is possible to further selectively remove only the molten alteration layer and suppress the substrate from being ground. Becomes possible.
In addition, that the particle size distribution is within the range of ± 50% of the average particle size means that almost all of the individual particles constituting the substantially spherical abrasive have a particle size in the range of −50% to + 50% of the average particle size. This is a concept that means having a diameter, and is intended to exclude from the scope of the present invention a case where a small portion is out of the range of −50% to + 50% of the average particle size. Not something.
[0015]
Further, the method of manufacturing a substrate according to claim 4 is characterized in that a ratio of the substantially spherical abrasive in the abrasive is 80% by weight or more.
[0016]
By setting the proportion of the substantially spherical abrasive in the abrasive to 80% by weight or more, it is possible to selectively remove only the molten altered layer and to suppress damage to the substrate. Can be made effective. It should be noted that there is no upper limit on the ratio of the substantially spherical abrasive, and substantially all of the abrasive may be composed of the substantially spherical abrasive.
[0017]
Further, the method of manufacturing a substrate according to claim 5 is characterized in that the substantially spherical abrasive has a glass-based material as a main component.
[0018]
When a glass-based material is used as the substantially spherical abrasive, a substrate made of high-hardness Al 2 O 3 , SiC, or the like is surely prevented from being ground, and the through-hole is prevented. Only the molten altered layer such as the vitrified layer formed on the inner wall portion can be ground and removed more reliably, and the present invention can be further effectively demonstrated.
[0019]
【Example】
Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.
(1) As shown in FIG. 1, a sintered substrate (dielectric ceramics substrate made of barium, titanium or the like in this embodiment) 1 made of ceramics and having a thickness of 0.6 mm is prepared, and a carbon dioxide gas laser processing apparatus is prepared. A through-hole (through-hole) 2 having a diameter of 100 μm was formed at a desired position by using. In this example, laser processing conditions were set to a frequency of 100 Hz, a pulse width of 110 μS, and the number of shots was 20, and 735 through holes (through holes) 2 were formed at a 1.5 mm pitch.
In the step of forming the through hole (through hole) 2, the vitreous solidified layer 3, which is a molten altered layer, is formed on the inner wall of the through hole 2, and the molten material (not shown) is applied to the surface of the substrate 1. Splatters.
Therefore, in the step of forming the through hole (through hole) 2, by appropriately controlling the conditions of the laser processing, a molten altered layer (vitrified layer) formed on the inner wall portion of the through hole (through hole) 2 It is preferable to reduce the thickness of the substrate 3 and reduce the amount of the molten material scattered on the surface of the substrate 1 because the scattered molten material and the altered layer in the subsequent process can be easily removed.
[0020]
(2) Next, the melt scattered on the surface of the substrate 1 is removed. There is no particular limitation on the method of removing the melt, and the substrate 1 can be removed by a method of rubbing with another substrate (not shown).
[0021]
(3) Then, as shown in FIG. 2, an abrasive (in the present embodiment, a substantially spherical abrasive described below) 4 is sprayed on the molten deteriorated layer 3 on the inner wall of the through-hole (through-hole) 2, and The molten deteriorated layer 3 formed on the inner wall of the hole (through hole) 2 is removed.
In this example, spherical glass beads having a particle diameter of # 400 (substantially spherical abrasive) were used as the abrasive. Then, these spherical glass beads (substantially spherical abrasives) are applied from the side irradiated with laser during laser processing.
(A) injection amount: 50 g / min,
(B) injection pressure: 0.45 Mpa,
(C) Injection time: Injection is performed on the substrate 1 while changing the angle within a predetermined range under the conditions of 1 minute, 5 minutes, 10 minutes, and 15 minutes, and the molten altered layer 3 (formed on the inner wall portion of the through hole 2) 2) was removed (FIG. 3).
[0022]
The spherical glass beads # 400 used here are:
Figure 2004022643
And the particle size distribution falls within the range of ± 50% of the average particle size.
[0023]
(4) Then, the region including the through hole (through hole) 2 of the substrate 1 from which the molten deteriorated layer 3 has been removed under the above conditions is cut in the thickness direction, and the molten deteriorated layer (vitrified solidified layer) 3 is removed. And the grinding state of the surface of the substrate 1 (grinding depth (amount of the substrate surface removed)) were observed and measured. Table 1 shows the results.
[0024]
[Table 1]
Figure 2004022643
[0025]
As shown in Table 1, it was confirmed that the molten deteriorated layer (vitrified layer) can be reliably removed in the injection time of 10 minutes. Further, the grinding depth of the surface of the substrate 1 at that time was 5 μm. The grinding depth of 5 μm is a value that does not cause any practical problem.
[0026]
In addition, as a comparative example, an acute angle glass powder having a particle size of # 400 was used as an abrasive,
(A) injection amount: 50 g / min,
(B) injection pressure: 0.45 Mpa,
(C) Injection time: Injection was performed on the substrate under the conditions of 1 minute, 5 minutes, 10 minutes, and 15 minutes to remove the molten altered layer formed on the inner wall of the through hole. The average particle size and the particle size distribution of the abrasive (sharp glass powder) used in this comparative example are almost the same as those of the abrasive (spherical glass beads) used in the above example.
[0027]
Then, the region including the through-hole (through-hole) 2 of the substrate from which the molten deteriorated layer has been removed under the above conditions is cut in the thickness direction to remove the molten deteriorated layer (vitrified layer) 3 and the surface of the substrate 1. The state of grinding (grinding depth (amount of the substrate surface removed)) was observed and measured. Table 2 shows the results.
[0028]
[Table 2]
Figure 2004022643
[0029]
As shown in Table 2, in the case of the comparative example in which the sharp glass powder was used as the abrasive, the molten altered layer (the vitrified layer) could be removed in 5 minutes of the injection time, but the substrate at that time was removed. The grinding depth of the surface (the amount of the substrate surface scraped off) is 55 μm, which may be 10 times or more the grinding depth of 5 μm when spherical glass beads having a particle diameter of # 400 (substantially spherical abrasives) are used. confirmed.
From the above Examples and Comparative Examples, according to the method of the present invention (method of grinding using a substantially spherical abrasive), it is possible to prevent the substrate surface from being ground by the abrasive and to select a molten altered layer. Thus, it can be seen that it can be efficiently removed.
[0030]
FIG. 4 is a cross-sectional view showing a ceramic circuit board manufactured using the substrate formed by the method of the present invention. This ceramic circuit board has a structure in which circuit patterns 24 and 25 on both sides are connected to each other by electrodes 22 filled in through holes 2 of the board 1.
[0031]
In this ceramic circuit board, as shown in FIG. 5, a conductive paste 21 is filled in through-holes (through-holes) 2 of the board 1 from which a molten deteriorated layer (a vitrified layer) has been removed, and baked. The surface of the substrate 1 is polished so as to be flat, and as shown in FIG. 6, the raised unnecessary portion 22a (FIG. 5) of the electrode 22 is removed, and the electrode 22 filled in the through hole 2 is covered. After forming a through-hole protective film 23, circuit patterns 24 and 25 are formed on the front and back surfaces of the substrate 1 as shown in FIG. 4, and circuit elements (not shown) and the like are mounted as necessary. Manufactured. The filling of the conductive paste 21 into the through-holes 2, the formation of the through-hole protective film, the formation of the circuit patterns 24 and 25, the mounting of circuit elements (not shown), and the like are performed by applying a known method. It can be done without any problems.
[0032]
In the above embodiment, the case where the diameter of the through-hole (through-hole) is 100 μm has been described. However, by appropriately controlling the particle size of the abrasive, the melting and alteration of the inner wall portion of the through-hole having various diameters can be performed. The layer (the vitrified layer) can be efficiently removed while suppressing the substrate from being ground.
[0033]
Further, in the above embodiment, the case where spherical glass beads are used as the substantially spherical abrasive has been described as an example. However, various abrasives can be used as long as they are substantially spherical. Yes, it is possible to change the type (material) of the abrasive according to the hardness of the substrate as the workpiece, for example, a spherical abrasive mainly composed of zinc, copper, iron, etc. Can also be used.
[0034]
In the above-described embodiment, glass beads are used as the substantially spherical abrasives. However, even when a sharp abrasive is included in a part thereof, the ratio of the substantially spherical abrasives is 80% by weight or more. In some cases, damage to the substrate can be kept small, and the basic effects of the present invention can be obtained.
[0035]
Further, when the present invention is carried out, as a device (sandblasting device) used to inject abrasives, any of a commonly used gravity type and a direct pressure type can be used. Is preferred since the molten altered layer (vitreous solidified layer) can be removed in a shorter time.
[0036]
The present invention is not limited to the above-described embodiment in other respects as well, and the material of the substrate, the specific conditions of the laser processing, the particle size distribution of the substantially spherical abrasive, the substantially spherical shape in the abrasive Various applications and modifications can be made within the scope of the invention with respect to the ratio of the abrasive.
[0037]
【The invention's effect】
As described above, in the method of manufacturing a substrate according to the present invention (claim 1), after irradiating a laser to form a through hole in the substrate, a grinding material including a substantially spherical grinding material is sprayed, and the inner wall of the through hole is blown. Since the melt-altered layer formed in the portion is removed, it is possible to efficiently remove the melt-altered layer while suppressing the substrate from being damaged by the abrasive being ground.
That is, in the conventional sandblasting method, the sharp-angled abrasive is removed while cutting and grinding the surface to be processed. In the present invention, however, the hammer effect of the substantially spherical abrasive (impact due to collision) is mainly achieved. ), The work surface is ground, so that the hardness is usually lower than that of the substrate constituting material such as Al 2 O 3 or SiC, and the brittle, molten altered layer (for example, a vitrified layer) is selectively removed. The substrate is reliably prevented from being damaged by grinding.
Therefore, according to the present invention, the amount of grinding of the substrate surface during processing is greatly reduced (for example, compared to the case where the molten deteriorated layer on the inner wall portion of the through hole is removed by the sandblasting method using a conventional sharp-angled abrasive). (Less than 1/10). As a result, it is possible to selectively remove the melt-degraded layer on the inner wall of the through hole without using a protective layer, thereby simplifying the manufacturing process and reducing the cost.
[0038]
Further, as in the method of manufacturing a substrate according to claim 2, as the abrasive, Wadell's sphericity (practical sphericity) is 0.9-1 and Wadell's roundness is 0.9-1. When a material containing a substantially spherical abrasive material that satisfies is used, only the molten deteriorated layer is more selectively removed, and it is possible to suppress the substrate from being ground.
[0039]
Further, when a substantially spherical abrasive having a particle size distribution within a range of ± 50% of the average particle size is used as in the method of manufacturing a substrate according to the third aspect, only the molten alteration layer is selectively selectively formed. It is possible to suppress the removal and the grinding of the substrate.
[0040]
Further, when the proportion of the substantially spherical abrasive in the abrasive is 80% by weight or more as in the method of manufacturing a substrate according to the fourth aspect, only the molten altered layer is selectively removed to damage the substrate. Can be suppressed, and the present invention can be made effective.
[0041]
Further, as in the method of manufacturing a substrate according to the fifth aspect, when a material mainly composed of a glass-based material is used as the substantially spherical abrasive, the substrate made of high-hardness Al 2 O 3 or SiC is ground. It is possible to more reliably grind and remove only the molten alteration layer such as the vitrified layer formed on the inner wall portion of the through hole while reliably suppressing the formation of the through hole, thereby making the present invention more effective. be able to.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state in which a through hole for a through hole is formed in a substrate by laser processing in one step of a method of manufacturing a substrate according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a state in which a molten material is removed by spraying an abrasive onto a molten deteriorated layer on an inner wall portion of a through hole in one step of a method of manufacturing a substrate according to an embodiment of the present invention. .
FIG. 3 is a cross-sectional view showing a state in which a molten deteriorated layer on an inner wall portion of a through hole has been removed in one step of a method of manufacturing a substrate according to an example of the present invention.
FIG. 4 is a cross-sectional view illustrating a ceramic circuit board manufactured using a substrate formed by the method of the present invention.
FIG. 5 is a cross-sectional view showing a state in which a conductive paste is filled in a through-hole for a through-hole and fired.
FIG. 6 shows a state in which a conductive paste is filled in a through-hole for a through-hole, baked, the surface of the substrate is polished, and a through-hole protective film is formed so as to cover the electrode filled in the through-hole. FIG.
[Explanation of symbols]
1 board 2 through hole (through hole)
3 Melt alteration layer (vitreous solidified layer)
4. Substantially spherical abrasive (spherical glass beads)
21 Conductive paste 22 Electrode 22a Unwanted portion of raised electrode 23 Through-hole protective film 24, 25 Circuit pattern

Claims (5)

基板の所定位置にレーザを照射してスルーホールを形成する工程と、前記スルーホールの内壁部に、角部が丸みを帯びた略球形状研削材を含む研削材を吹き付けて、スルーホールの内壁部に形成された溶融変質層を除去する工程と
を具備することを特徴とする基板の製造方法。
Irradiating a laser to a predetermined position of the substrate to form a through-hole, and spraying an abrasive containing a substantially spherical abrasive having rounded corners on the inner wall of the through-hole, thereby forming an inner wall of the through-hole. Removing the melt-altered layer formed in the portion.
前記略球形状研削材が、
(a)Wadellの球形度(実用球形度)が0.9〜1、
(b)Wadellの丸み度が0.9〜1
の両方の要件を満たすものであることを特徴とする請求項1記載の基板の製造方法。
The substantially spherical abrasive,
(A) Wadell's sphericity (practical sphericity) is 0.9 to 1,
(B) Roundness of Wadell is 0.9 to 1
The method for manufacturing a substrate according to claim 1, wherein both of the above requirements are satisfied.
前記略球形状研削材として、粒度分布が平均粒径の±50%の範囲内にあるものを用いることを特徴とする請求項1又は2記載の基板の製造方法。3. The method for manufacturing a substrate according to claim 1, wherein the substantially spherical abrasive has a particle size distribution within a range of ± 50% of an average particle size. 前記研削材中における略球形状研削材の割合が80重量%以上であることを特徴とする請求項1〜3のいずれかに記載の基板の製造方法。4. The method according to claim 1, wherein a ratio of the substantially spherical abrasive in the abrasive is 80% by weight or more. 前記略球形状研削材がガラス系材料を主成分とするものであることを特徴とする請求項1〜4のいずれかに記載の基板の製造方法。The method for manufacturing a substrate according to claim 1, wherein the substantially spherical abrasive is mainly composed of a glass-based material.
JP2002172687A 2002-06-13 2002-06-13 Method for manufacturing substrate Withdrawn JP2004022643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172687A JP2004022643A (en) 2002-06-13 2002-06-13 Method for manufacturing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172687A JP2004022643A (en) 2002-06-13 2002-06-13 Method for manufacturing substrate

Publications (1)

Publication Number Publication Date
JP2004022643A true JP2004022643A (en) 2004-01-22

Family

ID=31172180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172687A Withdrawn JP2004022643A (en) 2002-06-13 2002-06-13 Method for manufacturing substrate

Country Status (1)

Country Link
JP (1) JP2004022643A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036602A (en) * 2004-07-28 2006-02-09 Kyocera Corp Ceramic member, its producing method, and electronic component using the same
JP2006248861A (en) * 2005-03-11 2006-09-21 Ngk Spark Plug Co Ltd Ceramic product, probe card, and method for production of ceramic product
JP2009128230A (en) * 2007-11-26 2009-06-11 Nippon Electric Glass Co Ltd Method of evaluating spherical object diameter inequality, sorting method, and sorter of spherical object
JP2009206234A (en) * 2008-02-27 2009-09-10 Kyocera Corp Ceramic substrate and method of manufacturing the same
JP2011114103A (en) * 2009-11-26 2011-06-09 Kyocera Corp Wiring board
US7985458B2 (en) 2006-10-31 2011-07-26 Kyocera Corporation Ceramic member, method of forming groove in ceramic member, and substrate for electronic part
CN102377401A (en) * 2010-08-23 2012-03-14 精工电子有限公司 Electronic device, electronic apparatus, and electronic device manufacturing method
JP2013232546A (en) * 2012-04-27 2013-11-14 Seiko Epson Corp Base substrate, electronic device, and method for manufacturing base substrate
JP2017225030A (en) * 2016-06-16 2017-12-21 株式会社村田製作所 Piezoelectric vibrator and manufacturing method therefor
JP2020150554A (en) * 2020-05-29 2020-09-17 株式会社村田製作所 Piezoelectric vibrator and manufacturing method therefor
CN112512218A (en) * 2020-11-18 2021-03-16 深圳崇达多层线路板有限公司 Manufacturing method for improving small crimping hole of circuit board

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036602A (en) * 2004-07-28 2006-02-09 Kyocera Corp Ceramic member, its producing method, and electronic component using the same
JP4744110B2 (en) * 2004-07-28 2011-08-10 京セラ株式会社 Ceramic member, method for manufacturing the same, and electronic component using the same
JP2006248861A (en) * 2005-03-11 2006-09-21 Ngk Spark Plug Co Ltd Ceramic product, probe card, and method for production of ceramic product
US7985458B2 (en) 2006-10-31 2011-07-26 Kyocera Corporation Ceramic member, method of forming groove in ceramic member, and substrate for electronic part
JP2009128230A (en) * 2007-11-26 2009-06-11 Nippon Electric Glass Co Ltd Method of evaluating spherical object diameter inequality, sorting method, and sorter of spherical object
JP2009206234A (en) * 2008-02-27 2009-09-10 Kyocera Corp Ceramic substrate and method of manufacturing the same
JP2011114103A (en) * 2009-11-26 2011-06-09 Kyocera Corp Wiring board
CN102377401A (en) * 2010-08-23 2012-03-14 精工电子有限公司 Electronic device, electronic apparatus, and electronic device manufacturing method
JP2013232546A (en) * 2012-04-27 2013-11-14 Seiko Epson Corp Base substrate, electronic device, and method for manufacturing base substrate
JP2017225030A (en) * 2016-06-16 2017-12-21 株式会社村田製作所 Piezoelectric vibrator and manufacturing method therefor
JP2020150554A (en) * 2020-05-29 2020-09-17 株式会社村田製作所 Piezoelectric vibrator and manufacturing method therefor
CN112512218A (en) * 2020-11-18 2021-03-16 深圳崇达多层线路板有限公司 Manufacturing method for improving small crimping hole of circuit board

Similar Documents

Publication Publication Date Title
KR101637801B1 (en) Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus
JP2004022643A (en) Method for manufacturing substrate
JP6084464B2 (en) Plasma etching apparatus component and method for manufacturing plasma etching apparatus component
KR101920170B1 (en) Target material for sputtering and method for manufacturing same
JP6326210B2 (en) Quartz glass part and method for producing quartz glass part
KR100859955B1 (en) Internal memeber of plasma processing container and method for preparing the same
JP2003268566A (en) Method of preparing surface for adhesion
KR100536507B1 (en) Abrasive, method and device for manufacturing abrasive
JP4744110B2 (en) Ceramic member, method for manufacturing the same, and electronic component using the same
JP5183717B2 (en) Electronic components
CN105191511A (en) Insulating substrate having through-holes
JP2004087266A (en) Manufacturing method of substrate for thin display device
JP3842719B2 (en) Metal powder for partition wall grinding of plasma display panel
JP4926428B2 (en) Method for producing sputtering target material
KR102182690B1 (en) Internal member applying plasma treatment apparatus and method for manufacturing the same
JP2007314824A (en) Masking tool for thermal spraying
JP3894594B2 (en) Thick film pattern forming method
JP3860709B2 (en) Manufacturing method of glass ceramic substrate
JP2005303149A (en) Ceramic substrate, method for manufacturing the same, and electronic component using the same
KR20150022149A (en) Aerosol coating method and plasma-resistant member formed by the same
JP7122206B2 (en) thermal spray film
JP2005199386A (en) Mechanochemical polishing/grinding method
JP2006321702A (en) Ceramic member and method of manufacturing the same and electronic component using the ceramic member
JP4148359B2 (en) Display panel manufacturing method
JPH07106173A (en) Manufacture of ceramic electronic component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906