JP2009128230A - Method of evaluating spherical object diameter inequality, sorting method, and sorter of spherical object - Google Patents

Method of evaluating spherical object diameter inequality, sorting method, and sorter of spherical object Download PDF

Info

Publication number
JP2009128230A
JP2009128230A JP2007304596A JP2007304596A JP2009128230A JP 2009128230 A JP2009128230 A JP 2009128230A JP 2007304596 A JP2007304596 A JP 2007304596A JP 2007304596 A JP2007304596 A JP 2007304596A JP 2009128230 A JP2009128230 A JP 2009128230A
Authority
JP
Japan
Prior art keywords
diameter
spherical body
maximum
minimum
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007304596A
Other languages
Japanese (ja)
Other versions
JP5206936B2 (en
Inventor
Kazuya Noguchi
和也 野口
Masayuki Ikemoto
政幸 池本
Yoshinori Hasegawa
義徳 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2007304596A priority Critical patent/JP5206936B2/en
Publication of JP2009128230A publication Critical patent/JP2009128230A/en
Application granted granted Critical
Publication of JP5206936B2 publication Critical patent/JP5206936B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of quickly, accurately and inexpensively evaluating diameter inequality of a spherical object having a high production speed with the production speed, and to provide a sorting method and a sorter of the spherical object using its evaluating method. <P>SOLUTION: The method of evaluating spherical object diameter inequality includes: mounting the spherical object 1 on a small container 9; continuously photographing the outer shape of the spherical object 1 of a swing state with a camera 5 from a constant direction five to ten times; finding the maximum diameter of each image; next, finding the maximum value (diameter maximum value) of the maximum diameter through all images; and calculating diameter inequality from correlation of the diameter maximum value and the diameter inequality of the spherical object 1 obtained previously. In addition, the method sorts quality of the spherical object 1 in a standard value of the diameter inequality by using the diameter inequality obtained above. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は真球から僅かにゆがみのある球状体の直径の最大値と最小値の差である直径不同を評価する方法、直径不同の規格値に基づき球状体を選別する方法および選別装置に関する。特に非球面レンズや通信用レンズを成形するためのガラス素材として用いられる小径のガラス球状体(以下ガラス小球と呼ぶ)に好適な評価方法、選別方法および選別装置に関する。   The present invention relates to a method for evaluating a non-diameter, which is a difference between a maximum value and a minimum value of a diameter of a spherical body slightly distorted from a true sphere, a method for selecting a spherical body based on a standard value of non-diameter, and a sorting apparatus. In particular, the present invention relates to an evaluation method, a sorting method, and a sorting apparatus suitable for a small-diameter glass sphere (hereinafter referred to as a glass sphere) used as a glass material for molding an aspheric lens or a communication lens.

非球面レンズや通信用レンズを成形するガラス素材として用いられるガラス小球(直径2mm〜15mm程度)に要求される特性の1つに真球度がある。真球度を定量的に表わす方法として、直径の最大値と最小値の差である直径不同が用いられる。規格値を超える直径不同を持つガラス小球はレンズ成形のさいに不具合が生じるため不良品として排除する必要がある。ちなみに本発明に関わるガラス小球の直径不同の規格値は、例えば300μm程度である。   One of the characteristics required for glass spheres (diameters of about 2 mm to 15 mm) used as glass materials for molding aspherical lenses and communication lenses is sphericity. As a method for quantitatively expressing the sphericity, a non-diameter that is the difference between the maximum value and the minimum value of the diameter is used. Glass spheres with diameters exceeding the standard value have a problem in lens molding, and need to be excluded as defective products. Incidentally, the standard value of the same diameter of the glass spheres according to the present invention is, for example, about 300 μm.

従来、直径不同を求める方法としては、(1)測定光学顕微鏡下でガラス球の直径の最大値と最小値を測定してその差を算出する方法や、(2)ガラス球を傾斜板の上で転がしてその転がり具合から推定する方法があった。さらに進んだ方法としては、(3)画像処理装置を組み込んだ測定光学顕微鏡下でガラス球を回転させて測定し、直径不同を算出する方法が提案されている(例えば特許文献1)。
特開2000-292138号公報
Conventionally, there are two methods for determining the unequal diameter: (1) a method of measuring the maximum and minimum values of the diameter of a glass sphere under a measuring optical microscope and calculating the difference; There was a method of rolling and estimating from the rolling condition. As a further advanced method, there has been proposed (3) a method of calculating a difference in diameter by measuring by rotating a glass sphere under a measurement optical microscope incorporating an image processing device (for example, Patent Document 1).
JP 2000-292138 A

近年、連続生産されるガラス小球の生産速度は1分間当たり30個以上と高速化しており、かつ、生産と同一速度のオンラインによる全数検査が求められている。人手による単純なオフライン全数顕微鏡検査では迅速な検査は不可能であり製造コストも高くなる。また従来から直径不同の大小による傾斜板での転がり方の違いを利用した選別方法が知られているが、実際に試みたところ、直径不同が300μmを超えるガラス小球を不良品として完全に排除しようとすると、不良品側に直径不同が300μm以下の良品が50%程度混入してしまい実用にならない。   In recent years, the production speed of continuously produced glass spheres has been increased to 30 or more per minute, and a 100% online inspection of the same speed as production is required. A simple off-line 100% manual microscopic inspection is not possible to perform a rapid inspection and the manufacturing cost is high. In addition, a sorting method using a difference in rolling method on an inclined plate depending on the size of diameters is known, but when actually tried, glass spheres with diameters exceeding 300 μm are completely eliminated as defective products. If it tries to do so, about 50% of non-defective products having a diameter difference of 300 μm or less will be mixed into the defective product side, which is not practical.

特許文献1に紹介されている測定方法は、光学顕微鏡下でガラス球を入れた容器を10°刻みで360°回転させて36枚の画像を撮影して測定する方法であるが、計測の工数が多く時間を要し、迅速性に難がある。   The measuring method introduced in Patent Document 1 is a method of measuring and measuring 36 images by rotating a container containing glass balls under an optical microscope by 360 ° in 10 ° increments. However, it takes a lot of time and there is a difficulty in quickness.

本発明は上記各種従来技術の問題点に鑑みて成されたものであり、生産速度の速い球状体の直径不同を生産速度に合わせて迅速、正確かつ安価に評価する方法、その評価方法を用いた球状体の選別方法および選別装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and uses a method for evaluating the diameter disparity of a spherical body having a high production rate quickly, accurately and inexpensively according to the production rate, and its evaluation method. It is an object of the present invention to provide a sorting method and sorting apparatus for spherical bodies.

本願発明者は上記の目的を達成すべく鋭意検討した結果、連続生産されるガラス小球の直径不同をオンラインで生産速度に合わせて迅速かつ精度よく評価するため、ガラス小球を底の平坦な小容器に載せ、揺動している状態のガラス小球の外形を一定の方向からカメラで連続的に5回〜10回撮影し、まず画像毎の最大径を求め、次に全画像を通じて前記の最大径の最大値(直径最大値という)を求め、あらかじめ実験的に得られている当該寸法のガラス小球の直径最大値と直径不同との相関関係から直径不同を算出する方法を発明した。   As a result of intensive studies to achieve the above object, the inventor of the present application has determined that the glass spheres have a flat bottom in order to quickly and accurately evaluate the irregular diameter of the continuously produced glass spheres according to the production speed. The outer shape of the glass sphere placed on a small container and oscillating is photographed continuously 5 to 10 times with a camera from a certain direction. First, the maximum diameter for each image is obtained, and then the entire diameter is obtained through all images. Invented a method to calculate the unequal diameter from the correlation between the maximal diameter and the unequal diameter of glass spheres of that dimension that have been experimentally obtained in advance. .

すなわち本発明の球状体の直径不同の評価方法は、揺動している球状体の最大径を一定の方向から複数回測定し、前記複数の最大径の測定値の中の最大値を当該球状体の直径最大値とし、直径最大値と直径不同との既知の相関関係に基づいて当該球状体の直径不同を算出することを特徴とする。   That is, the method of evaluating the diameter of the spherical body of the present invention is to measure the maximum diameter of the swinging spherical body a plurality of times from a certain direction, and to determine the maximum value among the measured values of the plurality of maximum diameters. The maximum diameter value of the body is used, and the non-uniform diameter of the spherical body is calculated based on a known correlation between the maximum diameter value and the non-diameter diameter.

また揺動している状態のガラス小球の外形を一定の方向からカメラで連続的に5回〜10回撮影し、画像毎の最小径を求め、次に全画像を通じて前記の最小径の最小値(直径最小値という)を求め、そしてあらかじめ得られている当該寸法のガラス小球の直径最小値と直径不同との相関関係から直径不同を算出する方法を発明した。   In addition, the outer shape of the oscillating glass sphere is photographed continuously 5 to 10 times with a camera from a certain direction, the minimum diameter for each image is obtained, and then the minimum of the minimum diameter is obtained for all images. Invented a method of calculating a value difference (referred to as a diameter minimum value), and calculating the diameter disparity from the correlation between the diameter minimum value and the diameter disparity of a glass sphere of the size obtained in advance.

すなわち本発明の球状体の直径不同の評価方法は、揺動している球状体の最小径を一定の方向から複数回測定し、前記複数の最小径の測定値の中の最小値を当該球状体の直径最小値とし、直径最小値と直径不同との既知の相関関係に基づいて当該球状体の直径不同を算出することを特徴とする。   That is, in the method for evaluating the diameter of spherical bodies of the present invention, the minimum diameter of the swinging spherical body is measured a plurality of times from a certain direction, and the minimum value among the measured values of the plurality of minimum diameters is measured. The minimum diameter value of the body is used, and the non-uniform diameter of the spherical body is calculated based on the known correlation between the minimum diameter value and the non-diameter diameter.

また、本発明の球状体の直径不同の評価方法は、前記球状体の前記最大径または前記最小径の測定回数が5回〜10回であることを特徴とする。撮影回数が5回未満と少ないと測定精度が低くなり、撮影回数が10回を超えると測定時間が長くなる。本発明では測定精度と測定時間とのバランスを考えて撮影回数は5回〜10回が好適である。   In addition, the method for evaluating the diameter of a spherical body of the present invention is characterized in that the number of measurements of the maximum diameter or the minimum diameter of the spherical body is 5 to 10 times. If the number of times of photography is less than 5 times, the measurement accuracy is lowered, and if the number of times of photography exceeds 10 times, the measurement time becomes longer. In the present invention, the number of photographing is preferably 5 to 10 times in consideration of the balance between measurement accuracy and measurement time.

また、本発明の球状体の直径不同の評価方法は、前記球状体がガラス球状体であることを特徴とする。レンズ用のガラス球状体は高速に連続生産され、かつ、生産と同一速度の全数検査が求められており、本発明はこのようなガラス球状体の直径不同の評価に好適である。   Moreover, the evaluation method for the diameters of spherical bodies of the present invention is characterized in that the spherical body is a glass spherical body. Glass spheres for lenses are continuously produced at high speed, and 100% inspection is required at the same speed as production, and the present invention is suitable for evaluation of such glass spheres with different diameters.

さらにこのようにして得られた直径不同に基づき、上限を規定した規格値を超える直径不同を持つガラス小球を排除する選別方法と、その選別方法を用いる選別装置を発明した。   Furthermore, based on the diameter difference obtained in this way, a sorting method for eliminating glass spheres having a diameter difference exceeding the standard value defining the upper limit and a sorting apparatus using the sorting method were invented.

すなわち本発明の球状体の選別方法は、上記の直径不同の評価方法により得られた直径不同にもとづき、規格値を超える直径不同を有する球状体を排除することを特徴とする。   That is, the method for selecting a spherical body according to the present invention is characterized in that a spherical body having a diameter difference exceeding a standard value is excluded based on the diameter difference obtained by the above-described evaluation method for diameter difference.

また本発明の球状体の選別装置は、被選別体である球状体の平坦な支持面と、その周囲に規制壁とを有する受けカップと、
前記球状体を前記受けカップに供給する供給手段と、
前記受けカップ内の前記球状体の画像を撮影する撮影手段と、
撮影された前記画像を処理し、請求項1〜請求項4のいずれかに記載の直径不同の評価方法により球状体の直径不同を算出し、前記直径不同の規格値に基づき当該球状体の良否判定をおこない、前記良否判定結果を出力する画像処理装置と、
前記良否判定結果に応じて当該球状体を良品または不良品に振り分ける選別機構とを備えたことを特徴とする。
Further, the spherical body sorting apparatus of the present invention is a receiving cup having a flat support surface of a spherical body that is a body to be sorted, and a regulating wall around it,
Supply means for supplying the spherical body to the receiving cup;
Photographing means for photographing an image of the spherical body in the receiving cup;
The photographed image is processed, the diameter unequal diameter of the sphere is calculated by the unequal diameter evaluation method according to any one of claims 1 to 4, and the quality of the sphere is determined based on the standard value of the unequal diameter. An image processing apparatus that performs determination and outputs the pass / fail determination result;
And a sorting mechanism that sorts the spherical body into a non-defective product or a defective product according to the quality determination result.

連続生産される球状体の直径不同の評価および直径不同の規格値に基づく選別作業を、生産速度に合わせてオンラインで迅速に精度よくできるようになったので生産量の増加が可能になり、また選別作業の自動化により選別費用を低減できた。   It is now possible to increase the production volume because it is possible to quickly and accurately perform on-line evaluation of diameters of spherical bodies that are continuously produced and sorting operations based on standard values of diameters that are the same as the production speed. Sorting costs could be reduced by automating sorting operations.

ガラス成形装置に供給されるゴブと呼ばれる軟化状態のガラス塊の質量を高度に管理することや、成形後のガラス小球を高度に質量選別すること等により、ガラス小球の質量が精度良くそろっている場合、すなわちガラス小球の体積が十分狭い範囲内に管理されている場合には、真球からのゆがみが大きいほど直径最大値が大きくなる(または直径最小値が小さくなる)と考えられる。本発明のポイントは、あらかじめ実験的に得られたガラス小球の直径不同と直径最大値(または直径最小値)とのこのような相関関係を利用して、直径最大値(または直径最小値)を測定することにより直径不同を算出することにある。   By controlling the mass of the softened glass mass called gob that is supplied to the glass forming equipment, and by selecting the mass of the glass spheres after molding, the mass of the glass spheres can be accurately adjusted. In other words, when the volume of the glass sphere is controlled within a sufficiently narrow range, it is considered that the maximum diameter increases (or the minimum diameter decreases) as the distortion from the true sphere increases. . The point of the present invention is that the maximum diameter (or minimum diameter) is obtained by utilizing such a correlation between the diameter undulation and the maximum diameter (or minimum diameter) of glass spheres obtained experimentally in advance. It is to calculate the diameter disparity by measuring.

一例として図1に70個のガラス小球の直径最大値および直径最小値と直径不同を光学測定顕微鏡下で正確に測定し、直径不同を横軸に、直径最大値と直径最小値を縦軸にプロットしたグラフを示す。図1に示すように直径不同と直径最大値および直径最小値には相関関係が見られる。この相関関係を利用することにより、ガラス小球自体の直径不同を測定しなくてもガラス小球の直径最大値(または直径最小値)の測定値から確度の高い直径不同が推定できる。直径不同の測定は直径最大値または直径最小値の測定に比べて非常に時間がかかるため、この方法の発明による測定時間の節約効果は非常に大きい。   As an example, the maximum diameter value and the minimum diameter value and the non-uniform diameter of 70 glass globules are accurately measured under an optical measuring microscope in FIG. 1. The non-diameter is plotted on the horizontal axis, and the maximum and minimum diameter values are plotted on the vertical axis. Shows the plotted graph. As shown in FIG. 1, there is a correlation between different diameters, maximum diameter values, and minimum diameter values. By utilizing this correlation, it is possible to estimate a highly accurate diameter difference from the measured value of the maximum diameter value (or minimum diameter value) of the glass sphere without measuring the diameter difference of the glass sphere itself. Since the measurement with the same diameter takes much time compared with the measurement of the maximum diameter value or the minimum diameter value, the measurement time saving effect by the invention of this method is very large.

図1の場合、ガラス小球が直径不同の無い真球であれば直径は6.45mmとなる。実際のガラス小球は80μm〜380μm程度の直径不同があるので、直径最大値は6.47mm〜6.66mm、直径最小値は6.27mm〜6.41mmの範囲にばらつく。ばらつき方はランダムでなく、図示のように直線状の相関関係が見られる。直径不同の規格値の300μmは直径最大値では6.60mm、直径最小値では6.30mmに対応するので、直径最大値ならば6.60mm、直径最小値ならば6.30mmで選別すれば直径不同を300μmで選別したことと同等になる。実際のガラス小球の選別作業では、相関の誤差を考慮し、選別後の良品中に不良品が混入しないように直径不同の算出値に50μm程度のマージンをつけて選別することが好ましい。   In the case of FIG. 1, if the glass sphere is a true sphere with no diameter difference, the diameter is 6.45 mm. Since the actual glass spheres have a diameter difference of about 80 μm to 380 μm, the maximum diameter varies from 6.47 mm to 6.66 mm, and the minimum diameter varies from 6.27 mm to 6.41 mm. The variation is not random, and a linear correlation is seen as shown. The standard value of 300 μm with the same diameter corresponds to 6.60 mm for the maximum diameter value and 6.30 mm for the minimum diameter value. Therefore, if the maximum diameter is 6.60 mm and the minimum diameter is 6.30 mm, the diameter is selected. This is equivalent to sorting the difference between 300 μm. In the actual sorting operation of the glass spheres, it is preferable to consider the correlation error and sort the calculated values having the same diameter with a margin of about 50 μm so that the defective products are not mixed in the non-defective products after the sorting.

図1のような直径不同と直径最大値および直径最小値との相関関係は、ガラス小球の材料、目標の大きさ、製造ラインなどが決まれば決まるため、必要な相関関係はあらかじめ調査して得ておくことができる。後述する本願発明者の開発した直径最大値および直径最小値の測定方法は簡易で迅速なので、容易に自動化でき、ガラス小球の連続生産と速度(インデックスとも称す)を合わせてオンラインで自動測定・自動選別作業ができる。   As shown in Fig. 1, the correlation between the unequal diameter and the maximum diameter and minimum diameter is determined if the glass sphere material, target size, production line, etc. are determined. You can get it. The method of measuring the maximum diameter and minimum diameter developed by the present inventor, which will be described later, is simple and quick, so it can be easily automated, and it can be automatically measured online by combining continuous production of glass spheres and speed (also referred to as an index). Automatic sorting work is possible.

次に本願発明者が開発した、連続生産しているガラス小球の直径最大値の測定方法及び測定装置および直径不同に関する選別装置について説明する。図2にガラス小球の直径最大値測定装置及びそれに直結するガラス小球選別装置の構成例を示す。ガラス小球1は供給シュート2からターンテーブル3の受けカップ9に供給され、ターンテーブル3が90°回転することにより、撮影場所(カメラ5の直下)まで送られる。ターンテーブル3は撮影位置でいったん停止するが、受けカップ9内のガラス小球1は短時間には静止しないので揺動を続ける。受けカップ9はガラス小球1の透過画像を撮影しやすいように半透明の材料で作られており、撮影位置の下方(受けカップ9の下側)に照明(図示しない)が備えられている。また受けカップ9の内底面にはガラス小球1が自由に揺動できるように平坦な支持面と、その周囲にはガラス小球1がカメラ5の撮影範囲5aからはみ出さないように規制壁9aとが設けられている。撮影場所において揺動しているガラス小球1をカメラ5で垂直方向から連続的に5回〜10回撮影し、得られた5枚〜10枚の画像から画像処理装置6により直径最大値を求める。なおカメラ5からの撮影方向は測定精度を上げるため垂直方向が好ましいが、機構上の制約などにより垂直位置にカメラ5が設置し難い場合は垂直方向には限定されず斜め方向から撮影してもよい。   Next, a method and apparatus for measuring the maximum diameter of glass spheres produced continuously by the inventors of the present application, a measuring apparatus, and a sorting apparatus for different diameters will be described. FIG. 2 shows a configuration example of a glass sphere diameter maximum value measuring device and a glass sphere sorting device directly connected thereto. The glass sphere 1 is supplied from the supply chute 2 to the receiving cup 9 of the turntable 3, and is sent to the photographing location (directly under the camera 5) by rotating the turntable 3 by 90 °. The turntable 3 temporarily stops at the photographing position, but the glass ball 1 in the receiving cup 9 does not stop for a short time and continues to swing. The receiving cup 9 is made of a translucent material so that a transmission image of the glass sphere 1 can be easily taken, and illumination (not shown) is provided below the shooting position (below the receiving cup 9). . Further, a flat support surface is provided on the inner bottom surface of the receiving cup 9 so that the glass sphere 1 can freely swing, and a restriction wall is provided around the glass cup so that the glass sphere 1 does not protrude from the photographing range 5 a of the camera 5. 9a. The glass sphere 1 oscillating at the photographing location is photographed continuously 5 to 10 times from the vertical direction with the camera 5, and the maximum diameter value is obtained by the image processing device 6 from the obtained 5 to 10 images. Ask. Note that the shooting direction from the camera 5 is preferably the vertical direction in order to increase the measurement accuracy. However, if it is difficult to install the camera 5 in the vertical position due to mechanical limitations, the shooting direction is not limited to the vertical direction, and shooting may be performed from an oblique direction. Good.

次に図1のようなあらかじめ得られている直径不同と直径最大値との相関関係をもとに、測定された直径最大値から直径不同を算出し、直径不同の規格値と照合し良否判定をおこなう。カメラ5による撮影の終了したガラス小球1はターンテーブル3が取り出し位置まで回転して取り出しシュート4に移送され、選別機構7に供給され、良否判定結果6aに応じて良品11と不良品12に選別される。なお直径最小値を用いて選別する場合は、上記の説明中の「直径最大値」を「直径最小値」と読み替える。   Next, based on the correlation between the diameter difference and the maximum diameter value obtained in advance as shown in FIG. 1, the diameter difference is calculated from the measured maximum diameter value, and compared with the standard value for the diameter difference, the quality is determined. To do. The glass sphere 1 that has been photographed by the camera 5 is rotated to the take-out position by the turntable 3 and transferred to the take-out chute 4 to be supplied to the sorting mechanism 7. Selected. When selecting using the minimum diameter value, the “maximum diameter value” in the above description is read as “minimum diameter value”.

カメラ5によるガラス小球1の撮影画像から直径最大値を測定する原理を図3に示す。図3(a)はガラス小球1が静止している場合である。このときは一度の撮影で最大径D(直径最大値に等しい)が得られるが、実際の測定ではガラス小球1は短時間で静止しないので、一度の撮影で最大径Dの画像を撮影できることは極めて希である。実際は図3(b)のように撮影中もガラス小球1はランダムに揺動を続けている。そこで複数回の画像を撮影し、各画像について最大径を求める。撮影回数が少ないと測定精度が低くなり、撮影回数が多いと測定時間が長くなる。撮影回数はそのバランスを考えて5回〜10回が適当である。一つの画像について一つの最大径が求まるので、撮影回数と同数の最大径が求まる。次に全ての最大径を比べてその中の最大のものを直径最大値と算出する。ガラス小球1は揺動しているから真の直径最大値は正確に測定できないが、さまざまの方向(カメラ5からの撮影方向は一定だがガラス小球1がランダムに方向を変える)から測定した複数の最大径の中には真の直径最大値に非常に近いものがあると考え、最大径の中の最大の値を直径最大値と考える。この直径最大値は真の直径最大値よりもおそらく僅かに小さいであろうが、ガラス小球1の選別に用いる上では十分な精度があることを確認できている。換言すれば、積極的にガラス小球1を揺動させて揺動状態のガラス小球1を複数回撮影することで、最大径Dの画像に非常に近い画像を短時間で撮影することができる。 FIG. 3 shows the principle of measuring the maximum diameter value from the captured image of the glass sphere 1 by the camera 5. FIG. 3A shows the case where the glass sphere 1 is stationary. At this time, the maximum diameter D 0 (equal to the maximum diameter value) can be obtained by one shooting. However, since the glass sphere 1 does not stand still in a short time in actual measurement, an image having the maximum diameter D 0 can be obtained by one shooting. It is extremely rare to be able to shoot. Actually, as shown in FIG. 3 (b), the glass sphere 1 continues to swing randomly during photographing. Therefore, a plurality of images are taken and the maximum diameter is obtained for each image. If the number of photographing is small, the measurement accuracy is low, and if the number of photographing is large, the measurement time is long. The number of times of photographing is appropriately 5 to 10 times considering the balance. Since one maximum diameter is obtained for one image, the same maximum diameter as the number of photographing is obtained. Next, all the maximum diameters are compared, and the maximum of them is calculated as the maximum diameter value. Since the glass sphere 1 is oscillating, the true maximum diameter cannot be measured accurately, but it was measured from various directions (the shooting direction from the camera 5 is constant, but the glass sphere 1 changes direction randomly). It is considered that some of the maximum diameters are very close to the true maximum diameter, and the maximum value among the maximum diameters is considered as the maximum diameter value. This maximum diameter value is probably slightly smaller than the true maximum diameter value, but it has been confirmed that there is sufficient accuracy for use in sorting the glass spheres 1. In other words, an image very close to the image having the maximum diameter D 0 can be captured in a short time by actively swinging the glass sphere 1 and photographing the oscillating glass sphere 1 a plurality of times. Can do.

上で述べた直径最大値の求め方を図3(b)に即して説明すると、1枚目の画像では最大径D、2枚目の画像では最大径D、3枚目の画像では最大径D、…というようにそれぞれの画像に対してそれぞれの最大径が得られる。各最大径D、D、D、…は撮影時のガラス小球1の方向が異なるため少しずつ異なるので、それらを比較してその中で最も大きいものを求める。例えば2枚目の画像の最大径Dが最も大きかったら最大径Dを直径最大値とする。次に図1の縦軸に値Dをあてはめ、相関直線により対応する直径不同の値を求め、規格値(例えば300μm)と比較して良否判定をおこなう。 The method for obtaining the maximum diameter described above will be described with reference to FIG. 3B. The maximum diameter D 1 in the first image, the maximum diameter D 2 in the second image, and the third image Then, each maximum diameter is obtained for each image, such as maximum diameter D 3 . Each of the maximum diameters D 1 , D 2 , D 3 ,... Is slightly different because the direction of the glass sphere 1 at the time of photographing is different, so that the largest one is obtained by comparing them. For example, the maximum diameter D 2 of the second image to the maximum diameter D 2 and the diameter maximum Tara greatest. Then fit the value D 2 on the vertical axis of FIG. 1, we obtain the value of the corresponding diameter unequal by a correlation straight line, performs quality determination by comparing the standard value (e.g., 300 [mu] m).

次に図4を参照してカメラ5bによる撮影画像からガラス小球1の直径最小値を測定する原理を説明する。直径最小値の測定のときは背面照明14の前に置いたガラス小球1を水平方向から撮影する。図4(a)はガラス小球1が静止している場合である。このときは一度の撮影で最小径d(直径最小値に等しい)が得られるが、実際にはガラス小球1は短時間では静止しないからこのようなことは極めて稀である。実際は図4(b)のように撮影中もガラス小球1はランダムに揺動を続けている。そこで複数回の画像を撮影し、各画像について最小径を求める。撮影回数は5回〜10回が適当である。一つの画像について一つの最小径が求まるので、撮影回数と同数の最小径が求まる。次に全ての最小径を比べてその中の最小のものを直径最小値と考える。つまりガラス小球1は揺動しているから真の直径最小値は正確に測定できないが、最小径の中の最小の値は真の直径最小値に非常に近いと考える。この直径最小値は真の直径最小値よりも僅かに大きいと考えられるが、ガラス小球1の選別に用いる上では十分な精度があることを確認できている。なおカメラ5bからの撮影方向は測定精度を上げるため水平方向が好ましいが、機構上の制約などにより水平位置にカメラ5bが設置し難い場合は水平方向には限定されず斜め方向から撮影してもよい。 Next, the principle of measuring the minimum diameter value of the glass sphere 1 from the image taken by the camera 5b will be described with reference to FIG. When measuring the minimum diameter, the glass sphere 1 placed in front of the backlight 14 is photographed from the horizontal direction. FIG. 4A shows a case where the glass sphere 1 is stationary. At this time, the minimum diameter d 0 (equal to the minimum diameter value) can be obtained by one shooting, but in reality this is extremely rare because the glass sphere 1 does not stand still in a short time. Actually, as shown in FIG. 4B, the glass sphere 1 continues to swing randomly during the photographing. Therefore, a plurality of images are taken and the minimum diameter is obtained for each image. An appropriate number of times of photographing is 5 to 10 times. Since one minimum diameter is obtained for one image, the same minimum diameter as the number of photographing is obtained. Next, all the minimum diameters are compared, and the smallest one is considered as the minimum diameter value. That is, since the glass sphere 1 is oscillating, the true minimum value cannot be measured accurately, but the minimum value among the minimum diameters is considered to be very close to the true minimum value. Although this minimum diameter value is considered to be slightly larger than the true minimum diameter value, it has been confirmed that there is sufficient accuracy for use in the selection of the glass spheres 1. Note that the shooting direction from the camera 5b is preferably the horizontal direction in order to increase the measurement accuracy. However, if it is difficult to install the camera 5b at the horizontal position due to mechanical limitations, the shooting direction is not limited to the horizontal direction, and shooting may be performed from an oblique direction. Good.

上で述べた直径最小値の求め方を図4(b)に即して説明すると、1枚目の画像では最小径d、2枚目の画像では最小径d、3枚目の画像では最小径d、…というようにそれぞれの画像に対してそれぞれの最小径が得られる。各最小径d、d、d、…は撮影時のガラス小球1の方向が異なるため少しずつ異なるので、それらを比較してその中で最も小さいものを求める。例えば2枚目の画像の最小径dが最も小さかったら最小径dを直径最小値とする。次に図1の縦軸に値dをあてはめ、相関直線により対応する直径不同の値を求め、規格値(例えば300μm)と比較して良否判定をおこなう。 The method for obtaining the minimum diameter described above will be described with reference to FIG. 4B. The minimum diameter d 1 in the first image, the minimum diameter d 2 in the second image, and the third image Then, each minimum diameter is obtained for each image, such as minimum diameter d 3 . Each of the minimum diameters d 1 , d 2 , d 3 ,... Is slightly different because the direction of the glass sphere 1 at the time of shooting is different, so that the smallest one is obtained by comparing them. For example the minimum diameter d 2 of the second image to the minimum diameter d 2 and the diameter minimum Tara smallest. Then fit the value d 2 on the vertical axis of FIG. 1, we obtain the value of the corresponding diameter unequal by a correlation straight line, performs quality determination by comparing the standard value (e.g., 300 [mu] m).

図5はガラス小球1のn枚目の画像から最大径Dを求める方法の説明図である。ガラス小球1をカメラ5で撮影すると、カメラ5の撮影範囲5a内に、下方からの背面照明により背景が明るくガラス小球1部分が暗いガラス小球1の透過画像(影絵)1aが得られる。ガラス小球1の透過画像1aはガラス小球1の外周で明度が大きく変化するので直径を明瞭に求めることができる。直径の測定ライン13を一周させて直径の最も大きい値を求め、その値をこの画像の最大径Dとする。なお画像からガラス小球1の最小径を求める場合も同様の操作でおこなうことができるのでその説明は省略する。 FIG. 5 is an explanatory diagram of a method for obtaining the maximum diameter D n from the nth image of the glass sphere 1. When the glass sphere 1 is photographed with the camera 5, a transparent image (shadow) 1a of the glass sphere 1 with a bright background and a dark glass sphere 1 portion is obtained in the photographing range 5a of the camera 5 by back lighting from below. . Since the brightness of the transmission image 1a of the glass sphere 1 changes greatly on the outer periphery of the glass sphere 1, the diameter can be obtained clearly. The diameter measurement line 13 is turned around to obtain the largest value of the diameter, and this value is set as the maximum diameter D n of this image. In addition, since it can carry out by the same operation also when calculating | requiring the minimum diameter of the glass sphere 1 from an image, the description is abbreviate | omitted.

図6を参照してガラス小球の直径不同の評価と選別の流れを説明する。
(1)ガラス小球1が測定位置(カメラ5の撮影範囲5a)にあることを確認する。
(2)ガラス小球1を撮影し、当該画像についての最大径(または最小径)を図5の方法で求める。
(3)ガラス小球1の撮影を設定回数(通常5回〜10回)おこなう。
(4)各回の最大径D、D、D,…(または最小径d、d、d、…)を比較し、その中で最大のものを直径最大値とする(または最小のものを直径最小値とする)。
(5)図1のような直径最大値(または直径最小値)と直径不同の相関グラフを用いて直径不同を算出する。
(6)直径不同が規格値以下であれば当該ガラス小球1を良品11に、規格値を超えれば不良品12に判定する。
With reference to FIG. 6, the flow of evaluation and selection of glass spheres with different diameters will be described.
(1) Confirm that the glass ball 1 is at the measurement position (the shooting range 5a of the camera 5).
(2) The glass sphere 1 is photographed, and the maximum diameter (or minimum diameter) for the image is obtained by the method shown in FIG.
(3) The glass sphere 1 is photographed a set number of times (usually 5 to 10 times).
(4) The maximum diameters D 1 , D 2 , D 3 ,... (Or the minimum diameters d 1 , d 2 , d 3 ,...) Of each time are compared, and the largest one is set as the maximum diameter value (or The smallest is the minimum diameter).
(5) The non-diameter is calculated using a correlation graph between the maximum diameter (or minimum diameter) and the non-diameter as shown in FIG.
(6) If the difference in diameter is less than or equal to the standard value, the glass ball 1 is determined as a non-defective product 11, and if it exceeds the standard value, it is determined as a defective product 12.

次にガラス小球の直径不同選別の実施例と比較例について表1を参照して説明する。実施例1は直径目標値が8.45mmのガラス小球を本発明の選別方法を用いて30個/分の速度(インデックス)で選別した結果で、選別不良品への良品の混入率は15%であった(良品とは直径不同が300μm以下のものであるが、図1のような相関の誤差を考慮し、選別後の良品中に不良品が混入しないように直径不同の算出値に対して50μmのマージンをつけて、直径不同の算出値が250μm以下のものを良品として選別した。以下同様)。実施例2は直径目標値が6.45mmのガラス小球を本発明の選別方法を用いて33個/分の速度で選別した結果で、選別不良品への良品の混入率は15%であった。実施例3は直径目標値が6.30mmのガラス小球を本発明の選別方法を用いて33個/分の速度で選別した結果で、選別不良品への良品の混入率は15%であった。   Next, examples and comparative examples of non-diameter selection of glass spheres will be described with reference to Table 1. Example 1 is a result of sorting glass spheres having a target diameter of 8.45 mm at a rate (index) of 30 pieces / minute using the sorting method of the present invention. (The non-defective product has a diameter difference of 300 μm or less. However, in consideration of the correlation error as shown in FIG. 1, the calculated value of the same diameter is used so that defective products are not mixed in the non-defective product after sorting. On the other hand, a non-defective product having a calculated diameter of 250 μm or less was selected as a non-defective product with a 50 μm margin. Example 2 is a result of sorting glass spheres having a target diameter of 6.45 mm at a rate of 33 pieces / minute using the sorting method of the present invention, and the mixing ratio of non-defective products to poorly sorted products was 15%. It was. Example 3 is a result of sorting glass spheres having a target diameter of 6.30 mm at a rate of 33 pieces / minute using the sorting method of the present invention, and the mixing ratio of non-defective products to poorly sorted products was 15%. It was.

これに対して比較例は、直径目標値が6.30mmのガラス小球を従来の傾斜板選別方法を用いて30個/分の速度で選別した結果で、選別不良品中への良品の混入率は50%であった。比較例の傾斜板選別方法は良品混入率がこのように過大でガラス小球の生産歩留まりが悪くなるので実用に耐えなかった。   On the other hand, the comparative example is a result of sorting glass spheres with a target diameter of 6.30 mm at a rate of 30 pieces / minute using a conventional inclined plate sorting method, and mixing non-defective products into poorly sorted products. The rate was 50%. The tilted plate selection method of the comparative example was not practical because the yield of non-defective products was excessive and the production yield of small glass balls deteriorated.

Figure 2009128230
Figure 2009128230

本発明は、上記実施例のガラス小球以外にも、体積管理された樹脂、セラミックス、その他の球状体にも適用可能である。   The present invention can be applied to volume-controlled resins, ceramics, and other spherical bodies in addition to the glass globules of the above embodiments.

ガラス小球の直径不同と直径最大値、直径最小値の関係を示すグラフ。The graph which shows the relationship between the diameter difference of a glass small sphere, the diameter maximum value, and the diameter minimum value. ガラス小球の直径最大値の測定装置および直径不同選別装置の構成図。The block diagram of the measuring device of the diameter maximum value of a glass small ball, and a non-diameter sorter. ガラス小球の撮影画像から直径最大値を測定する原理図。The principle figure which measures a diameter maximum value from the picked-up image of a glass ball. ガラス小球の撮影画像から直径最小値を測定する原理図。The principle figure which measures the diameter minimum value from the picked-up image of a glass ball. ガラス小球の画像から最大径を求める方法の説明図。Explanatory drawing of the method of calculating | requiring the maximum diameter from the image of a glass sphere. ガラス小球の直径不同の算出と選別の流れを示すフローチャート。The flowchart which shows the flow of calculation and selection of the same diameter of a glass sphere.

符号の説明Explanation of symbols

1 ガラス小球(球状体)
1a ガラス小球の透過画像
2 供給シュート
3 ターンテーブル
4 取り出しシュート
5 カメラ
5a カメラの撮影範囲
5b カメラ
6 画像処理装置
6a 良否判定結果
7 選別機構
9 受けカップ
9a 受けカップの規制壁
11 良品ガラス小球
12 不良品ガラス小球
13 直径の測定ライン
14 背面照明
1 Glass sphere (spherical body)
DESCRIPTION OF SYMBOLS 1a Transparent image of glass sphere 2 Supply chute 3 Turntable 4 Takeout chute 5 Camera 5a Camera photographing range 5b Camera 6 Image processing device 6a Pass / fail judgment result 7 Sorting mechanism 9 Receiving cup 9a Receiving cup regulating wall 11 Non-defective glass sphere 12 Defective glass sphere 13 Diameter measurement line 14 Back light

Claims (6)

揺動している球状体の最大径を一定の方向から複数回測定し、前記複数の最大径の測定値の中の最大値を当該球状体の直径最大値とし、直径最大値と直径不同との既知の相関関係に基づいて当該球状体の直径不同を算出することを特徴とする球状体の直径不同の評価方法。   The maximum diameter of the swinging sphere is measured a plurality of times from a certain direction, and the maximum value among the measured values of the plurality of maximum diameters is the maximum diameter of the sphere, A method for evaluating the non-uniform diameter of a spherical body, wherein the non-uniform diameter of the spherical body is calculated based on the known correlation. 揺動している球状体の最小径を一定の方向から複数回測定し、前記複数の最小径の測定値の中の最小値を当該球状体の直径最小値とし、直径最小値と直径不同との既知の相関関係に基づいて当該球状体の直径不同を算出することを特徴とする球状体の直径不同の評価方法。   The minimum diameter of the swinging sphere is measured a plurality of times from a certain direction, and the minimum value among the measurement values of the plurality of minimum diameters is the minimum diameter of the sphere, A method for evaluating the non-uniform diameter of a spherical body, wherein the non-uniform diameter of the spherical body is calculated based on the known correlation. 前記球状体の前記最大径または前記最小径の測定回数が5回〜10回であることを特徴とする請求項1または請求項2に記載の球状体の直径不同の評価方法。   The method for evaluating the spherical bodies with different diameters according to claim 1 or 2, wherein the number of measurements of the maximum diameter or the minimum diameter of the spherical bodies is 5 to 10 times. 前記球状体がガラス球状体であることを特徴とする請求項1から請求項3のいずれかに記載の球状体の直径不同の評価方法。   The said spherical body is a glass spherical body, The evaluation method with the same diameter of the spherical body in any one of Claims 1-3 characterized by the above-mentioned. 請求項1から請求項4のいずれかに記載の直径不同の評価方法により得られた直径不同にもとづき、規格値を超える直径不同を有する球状体を排除することを特徴とする球状体の選別方法。   5. A method for selecting a spherical body, characterized in that a spherical body having a diameter difference exceeding a standard value is excluded based on the diameter difference obtained by the non-diameter evaluation method according to claim 1. . 被選別体である球状体を支持する平坦な支持面と、その周囲に規制壁とを有する受けカップと、
前記球状体を前記受けカップに供給する供給手段と、
前記受けカップ内の前記球状体の画像を撮影する撮影手段と、
撮影された前記画像を処理し、請求項1〜請求項4のいずれかに記載の直径不同の評価方法により前記球状体の直径不同を算出し、前記直径不同の規格値に基づき当該球状体の良否判定をおこない、前記良否判定結果を出力する画像処理装置と、
前記良否判定結果に応じて当該球状体を良品または不良品に振り分ける選別機構とを備えたことを特徴とする球状体の選別装置。
A receiving cup having a flat support surface for supporting a spherical body to be selected, and a regulating wall around it,
Supply means for supplying the spherical body to the receiving cup;
Photographing means for photographing an image of the spherical body in the receiving cup;
The photographed image is processed, the diameter non-uniformity of the spherical body is calculated by the non-diameter evaluation method according to any one of claims 1 to 4, and the spherical body of the spherical body is calculated based on a standard value of the non-diameter. An image processing apparatus that performs pass / fail determination and outputs the pass / fail determination result;
A spherical body sorting apparatus comprising: a sorting mechanism that sorts the spherical body into a non-defective product or a defective product according to the quality determination result.
JP2007304596A 2007-11-26 2007-11-26 Evaluation method, sorting method, and sorting device for diameters of spherical bodies Expired - Fee Related JP5206936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304596A JP5206936B2 (en) 2007-11-26 2007-11-26 Evaluation method, sorting method, and sorting device for diameters of spherical bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304596A JP5206936B2 (en) 2007-11-26 2007-11-26 Evaluation method, sorting method, and sorting device for diameters of spherical bodies

Publications (2)

Publication Number Publication Date
JP2009128230A true JP2009128230A (en) 2009-06-11
JP5206936B2 JP5206936B2 (en) 2013-06-12

Family

ID=40819303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304596A Expired - Fee Related JP5206936B2 (en) 2007-11-26 2007-11-26 Evaluation method, sorting method, and sorting device for diameters of spherical bodies

Country Status (1)

Country Link
JP (1) JP5206936B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099722A (en) * 2009-11-05 2011-05-19 Nippon Electric Glass Co Ltd Method for manufacturing glass article
CN113049455A (en) * 2019-12-26 2021-06-29 中核北方核燃料元件有限公司 Cladding fuel particle and nuclear core traceability diameter auxiliary measuring device
US11327028B2 (en) * 2018-09-10 2022-05-10 Sinoma Advanced Nitride Ceramics Co., Ltd. Ceramic ball automatic sorting system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240844A (en) * 1986-04-11 1987-10-21 Koyo Seiko Co Ltd Spherical surface inspecting device
JPH0242309A (en) * 1988-08-03 1990-02-13 Toshiba Corp Device for measuring diameter of sphere
JPH09157381A (en) * 1995-12-11 1997-06-17 Idemitsu Petrochem Co Ltd Production of polycarbonate
JPH1147698A (en) * 1997-08-06 1999-02-23 Nippon Seiko Kk Sphere size measuring method
JP2000292138A (en) * 1999-04-06 2000-10-20 Nok Corp Sphericity measuring apparatus and sphericity measuring method
JP2002188990A (en) * 2000-12-20 2002-07-05 Bridgestone Corp Method and instrument for analyzing particle shape
JP2003039021A (en) * 2001-05-22 2003-02-12 Hitachi Metals Ltd Method for classifying microsphere and microsphere classifying device
JP2003093976A (en) * 2001-03-13 2003-04-02 Hitachi Metals Ltd Device and method for detecting abnormal sphere
JP2003098156A (en) * 2001-09-27 2003-04-03 Tohoku Techno Arch Co Ltd Nondestructive inspection system of ball
JP2004022643A (en) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd Method for manufacturing substrate
JP2006525921A (en) * 2003-05-14 2006-11-16 シャイア ラボラトリーズ,インコーポレイテッド Fluidization of particles for encapsulation in oral dose pharmaceutical products

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240844A (en) * 1986-04-11 1987-10-21 Koyo Seiko Co Ltd Spherical surface inspecting device
JPH0242309A (en) * 1988-08-03 1990-02-13 Toshiba Corp Device for measuring diameter of sphere
JPH09157381A (en) * 1995-12-11 1997-06-17 Idemitsu Petrochem Co Ltd Production of polycarbonate
JPH1147698A (en) * 1997-08-06 1999-02-23 Nippon Seiko Kk Sphere size measuring method
JP2000292138A (en) * 1999-04-06 2000-10-20 Nok Corp Sphericity measuring apparatus and sphericity measuring method
JP2002188990A (en) * 2000-12-20 2002-07-05 Bridgestone Corp Method and instrument for analyzing particle shape
JP2003093976A (en) * 2001-03-13 2003-04-02 Hitachi Metals Ltd Device and method for detecting abnormal sphere
JP2003039021A (en) * 2001-05-22 2003-02-12 Hitachi Metals Ltd Method for classifying microsphere and microsphere classifying device
JP2003098156A (en) * 2001-09-27 2003-04-03 Tohoku Techno Arch Co Ltd Nondestructive inspection system of ball
JP2004022643A (en) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd Method for manufacturing substrate
JP2006525921A (en) * 2003-05-14 2006-11-16 シャイア ラボラトリーズ,インコーポレイテッド Fluidization of particles for encapsulation in oral dose pharmaceutical products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099722A (en) * 2009-11-05 2011-05-19 Nippon Electric Glass Co Ltd Method for manufacturing glass article
US11327028B2 (en) * 2018-09-10 2022-05-10 Sinoma Advanced Nitride Ceramics Co., Ltd. Ceramic ball automatic sorting system and method
CN113049455A (en) * 2019-12-26 2021-06-29 中核北方核燃料元件有限公司 Cladding fuel particle and nuclear core traceability diameter auxiliary measuring device

Also Published As

Publication number Publication date
JP5206936B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
US8896844B2 (en) High-speed, 3-D method and system for optically measuring a geometric dimension of manufactured parts
Kharaz et al. Accurate measurement of particle impact parameters
JP7339643B2 (en) Systems and methods for testing the refractive power and thickness of ophthalmic lenses immersed in solutions
US8416403B2 (en) Method and system for high-speed, high-resolution 3-D imaging of manufactured parts of various sizes
US20040151360A1 (en) Method and apparatus for measuring particles by image analysis
CN108375585A (en) A kind of multiangle visual defect detection platform and detection method
US20140063509A1 (en) High-speed method and system for optically measuring a geometric dimension of manufactured parts
CN108332689A (en) A kind of optical measuring system and method for detection surface roughness and surface damage
CN101467087A (en) Method and apparatus for auto-focussing infinity corrected microscopes
CN105531581A (en) Method and device for testing an inspection system for detecting surface defects
JP5206936B2 (en) Evaluation method, sorting method, and sorting device for diameters of spherical bodies
CN109827974B (en) Resin optical filter film crack detection device and detection method
JP2015007617A (en) Sphere rotating mechanism, and sphere surface inspection device
CN109724533A (en) A kind of ceramic pellet surface size, defect full-automatic detection apparatus and method
CN107064173A (en) The detection means and detection method of large-scale planar optical elements beauty defects
US20020174707A1 (en) Work center position determining method and apparatus
CN112485261B (en) Device and method for detecting tiny bubbles in spectacle lenses
CN212300252U (en) Image measuring instrument capable of automatically adjusting position of sample to be measured
CN112378797A (en) Full-automatic indentation measuring device and method
JP2010271044A (en) Method for measuring diameter difference of spherical body, and method and device for sorting
WO2022142162A1 (en) Method for measuring gloss uniformity of arc-shaped surface
CN114689281A (en) Method for detecting pupil drift of optical module
CN111469047B (en) Test device for online detection of contact characteristics of polishing pad and use method thereof
CN209623633U (en) A kind of diameter measuring device of high reflective cylindrical body
JP2007163315A (en) Method of measuring shape and position of defect in transparent material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees