JP5183717B2 - Electronic components - Google Patents

Electronic components Download PDF

Info

Publication number
JP5183717B2
JP5183717B2 JP2010249832A JP2010249832A JP5183717B2 JP 5183717 B2 JP5183717 B2 JP 5183717B2 JP 2010249832 A JP2010249832 A JP 2010249832A JP 2010249832 A JP2010249832 A JP 2010249832A JP 5183717 B2 JP5183717 B2 JP 5183717B2
Authority
JP
Japan
Prior art keywords
ceramic
ceramic member
recess
layer
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010249832A
Other languages
Japanese (ja)
Other versions
JP2011091411A (en
Inventor
孝博 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010249832A priority Critical patent/JP5183717B2/en
Publication of JP2011091411A publication Critical patent/JP2011091411A/en
Application granted granted Critical
Publication of JP5183717B2 publication Critical patent/JP5183717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明は電子部品に関する。   The present invention relates to an electronic component.

セラミック部材に形成される凹部は、特に電子部品用セラミック基板においては、分割用として、また、半導体チップ等の回路搭載用として用いるために形成されている。   The concave portion formed in the ceramic member is formed for use in dividing, and for mounting a circuit such as a semiconductor chip, particularly in a ceramic substrate for electronic components.

これらの凹部形成方法として一般的なものは、シート状のセラミックグリーンシートに金型に備えられた刃を押し当てて凹部を形成するものが主流であるが、その後に焼成を行うため焼結による製品の収縮バラツキが大きく寸法精度が劣るという問題があり、高寸法精度が要求される近年は、焼結後のセラミック部材をレーザー等の熱的加工による方法が多くなりつつある。   A general method for forming these recesses is to form a recess by pressing a blade provided in a mold on a sheet-like ceramic green sheet. Recently, there is a problem that the shrinkage of the product is large and the dimensional accuracy is inferior, and in recent years when high dimensional accuracy is required, there are an increasing number of methods for thermally processing a sintered ceramic member such as a laser.

そして、焼結後のセラミック部材へレーザー光を照射して凹部を形成する方法は、被加工物をレーザー光の熱エネルギーで溶融させて所望の形状に加工するものであり、レーザー加工の欠点として、溶融したセラミックが凹部の表層部に残留すること、また、凹部の周縁やレーザー装置の光学系に溶融物が飛着するといった問題が発生していた。   The method of forming a recess by irradiating a sintered ceramic member with laser light is to melt the workpiece with the thermal energy of the laser light and process it into a desired shape. There has been a problem that the melted ceramic remains on the surface layer portion of the recess, and that the molten material lands on the periphery of the recess and the optical system of the laser device.

そこで、上記のレーザー加工で形成された凹部への溶融層の残留を防止する方法として、(以下不図示)レーザー光照射と同時にアシストガス或いはアシストガスとは別のガスを被加工面に吹き付け、レーザー光により昇華したセラミックの蒸気を吸引することにより凹部表層部に溶融層を残留させない方法が開示されている(特許文献1)。   Therefore, as a method of preventing the molten layer from remaining in the recesses formed by the laser processing, the assist gas or a gas different from the assist gas is sprayed on the surface to be processed at the same time as the laser beam irradiation (hereinafter not shown), A method is disclosed in which a molten layer does not remain in the surface portion of the recess by sucking ceramic vapor sublimated by laser light (Patent Document 1).

上記の方法による先行技術は多数あるがいずれの方法も溶融層を満足に除去できるものではなかった。それが故に、以下に述べるように、レーザー光で加工した凹部に残留する溶融層を除去する方法について、さらに多数の先行技術が開示されている。   Although there are many prior arts by the above method, none of the methods can satisfactorily remove the molten layer. Therefore, as described below, a number of prior arts have been disclosed regarding a method of removing a molten layer remaining in a recess processed with a laser beam.

その方法のひとつとして、ケミカルエッチングによる方法もあり(以下不図示)、ここでは貫通孔を形成する事例であるが、アルミナ基板にレーザー光により貫通孔を形成後に燐酸液中に浸し貫通孔の溶融層をエッチング処理し内壁面を粗化することが開示されている(特許文献2)。   As one of the methods, there is a chemical etching method (not shown below). In this example, a through-hole is formed. However, the through-hole is formed in an alumina substrate with a laser beam and then immersed in a phosphoric acid solution to melt the through-hole. It is disclosed that the inner wall surface is roughened by etching the layer (Patent Document 2).

その他の方法として、サンドブラストにより溶融層を除去する方法もあり(以下不図示)、この場合も貫通孔を形成する事例であるが、レーザー光で加工された貫通孔に対し球状のガラスビーズを吹きつけることにより、セラミック基板の表面を荒らすことなく貫通孔の溶融層を除去できることが開示されている(特許文献3)。   As another method, there is a method of removing the molten layer by sandblasting (hereinafter not shown). In this case as well, a through hole is formed, but spherical glass beads are blown into the through hole processed with laser light. It is disclosed that the melted layer of the through hole can be removed without roughening the surface of the ceramic substrate (Patent Document 3).

また、加工メカニズムの異なる方法として、図16に示すように、セラミック部材101にCOレーザーにより発振されたレーザー光121を集光レンズ122を介して照射し照射面に600℃以下の温度をかけて熱応力により亀裂119を発生させて上記セラミック部材101を切断する方法が開示されている(特許文献4)。この方法は前述した方法とは異なり被加工物への熱的ダメージが少なく溶融層も発生しない。 Further, as a method having a different processing mechanism, as shown in FIG. 16, a ceramic member 101 is irradiated with a laser beam 121 oscillated by a CO 2 laser through a condenser lens 122, and a temperature of 600 ° C. or less is applied to the irradiated surface. A method of cutting the ceramic member 101 by generating a crack 119 due to thermal stress is disclosed (Patent Document 4). Unlike the method described above, this method causes little thermal damage to the workpiece and does not generate a molten layer.

凹部表面への溶融層の残留と同様に、レーザー加工の大きな問題点として、加工部位周辺への溶融物の飛着がある。溶融物の飛着は被加工物ならびにレーザー装置の光学系いずれに対して発生しても大きな問題となる。   As with the remaining of the molten layer on the concave surface, a major problem in laser processing is the landing of the melt around the processing site. Melting of the melt is a major problem regardless of whether the melt occurs on the workpiece or the optical system of the laser apparatus.

上記課題を解決する方法として、前述した特許文献1では、(以下不図示)被加工物にレーザー光を照射しながら、アシストガスとは異なったガスを被加工物の製品となる側から廃材となる側に吹きつけるとともに、吸引ノズルで被加工物であるセラミックの昇華した蒸気を吸引することにより被加工物の製品側に溶着物が付着することを防止している。   As a method for solving the above-described problem, in Patent Document 1 described above (not shown), while irradiating a workpiece with laser light, a gas different from the assist gas is used as a waste material from the side that becomes the product of the workpiece. The welded material is prevented from adhering to the product side of the workpiece by spraying the sublimated vapor of the ceramic as the workpiece with the suction nozzle.

しかし、上記の方法により溶着物を完全に防止することは出来ないだけでなく、レーザー光による加工は常に片側に廃材となる部分があると限るものでは無い。そのために、(以下不図示)レーザー光照射部以外を樹脂膜等の保護層でパターンニングし溶着物が被加工物に付着することを防止することも開示されている(特許文献5)。   However, not only can the welded material not be completely prevented by the above-described method, but the processing with laser light is not limited to the case where there is always a waste material on one side. For this reason, it is also disclosed that a part other than the laser light irradiation part (hereinafter not shown) is patterned with a protective layer such as a resin film to prevent the welded material from adhering to the workpiece (Patent Document 5).

特開平8−141764号公報Japanese Patent Application Laid-Open No. 8-141764 特開平1−112794号公報JP-A-1-112794 特開2004−22643号公報Japanese Patent Laid-Open No. 2004-22643 特開2000−323441号公報JP 2000-323441 A 特開平3−252384号公報JP-A-3-252384

しかしながら、特許文献1に記載されているレーザー加工部位にガスを吹きつけて被加工物の昇華した蒸気をノズルで吸引する方法は、切断加工や孔加工であっても完全に吸引することは難しく、さらに凹部形状であれば、凹部表層部への溶融層の残留をなくすことは出来なかった。このような方法で加工しても図17に示すように、セラミック部材101に分割用溝103として凹部102を形成した場合、凹部102の加工深さd2に対し、溶融層116の残留があるために実質上の凹部102は深さd1となり、従って、凹部102の深さが浅くなることにより、凹部102にそって分割するとセラミック部材101の分割不良となったり、或いは分割不良を避けるために凹部102を深く形成すると、分割工程前で割れたり、クラックが入るなどの課題が多発していた。   However, the method in which gas is blown to the laser processing site described in Patent Document 1 to suck the vapor sublimated from the workpiece with a nozzle is difficult to completely suck even in cutting or hole processing. Furthermore, if the shape of the recess is a recess, the molten layer cannot remain on the surface of the recess. As shown in FIG. 17, when the recess 102 is formed as the dividing groove 103 in the ceramic member 101, the molten layer 116 remains with respect to the processing depth d <b> 2 of the recess 102 as shown in FIG. 17. The substantially concave portion 102 has a depth d1. Therefore, if the depth of the concave portion 102 is shallow, dividing the ceramic member 101 along the concave portion 102 may result in poor division of the ceramic member 101 or in order to avoid poor division. When 102 is formed deeply, problems such as cracking or cracking before the dividing step occur frequently.

さらに、凹部102の溶融層116は、レーザー光によりセラミックが加熱され溶融後に冷却され固化したものであるために、冷却時の収縮により無数のマイクロクラック117が発生している。図18に示すように、セラミック部材101の主面に回路パターン106を形成し凹部102にそって分割後、上記回路パターン106と接続するように端面電極107を形成する電子部品105があるが、分割した凹部102の表面の溶融層116にマイクロクラック117があると、マイクロクラック117により溶融層116とセラミック部材101が剥がれやすく、よって端面電極107の密着強度が低下するという問題と、また、溶融層116の表層部が平滑面であるためにアンカー効果が低く、端面電極107と溶融層116を含むセラミック部材101との密着強度が低下するという課題があった。   Furthermore, since the melted layer 116 of the recess 102 is formed by heating the ceramic with laser light and then cooling and solidifying it, innumerable microcracks 117 are generated due to shrinkage during cooling. As shown in FIG. 18, there is an electronic component 105 that forms an end face electrode 107 so as to be connected to the circuit pattern 106 after forming the circuit pattern 106 on the main surface of the ceramic member 101 and dividing it along the recess 102. If there is a microcrack 117 in the melted layer 116 on the surface of the divided recess 102, the melted layer 116 and the ceramic member 101 are likely to be peeled off by the microcrack 117, thereby reducing the adhesion strength of the end face electrode 107, and melting. Since the surface layer portion of the layer 116 is a smooth surface, the anchor effect is low, and there is a problem that the adhesion strength between the end face electrode 107 and the ceramic member 101 including the molten layer 116 is lowered.

これらの課題を解決するために、溶融層116をケミカルエッチングにより除去する方法が特許文献2であるが、エッチング液にセラミック部材101そのものを浸すために粗化したくない部分はレジスト膜で保護する必要があり、レジスト膜でパターンニングしてもレジスト膜の境界付近ではエッチング液が粗化したくない部分まで入り込み面荒れが起こるという課題と、セラミック部材101に例えば格子状の繊細かつ多数の凹部102が形成されているものでは、実質この方法は採用できないという課題があった。   In order to solve these problems, Patent Document 2 discloses a method of removing the molten layer 116 by chemical etching. However, since the ceramic member 101 itself is immersed in an etching solution, it is necessary to protect a portion that is not to be roughened with a resist film. There is a problem that even if patterning is performed with a resist film, the etching solution does not roughen in the vicinity of the boundary of the resist film and the surface becomes rough, and the ceramic member 101 has, for example, a lattice-like delicate and numerous recesses 102. There is a problem that this method cannot be adopted in the formed one.

また、特許文献3のサンドブラストで強制的に溶融層116を除去する方法では、溶融層116を除去するだけでなく、アルミナ基板の表面も研削されてしまうため、基板表面
の平滑性が要求されるセラミック部材101には相応しい方法とは言えなかった。
Further, in the method of forcibly removing the molten layer 116 by sandblasting in Patent Document 3, not only the molten layer 116 is removed but also the surface of the alumina substrate is ground, so that the substrate surface must be smooth. The ceramic member 101 was not a suitable method.

また、上述した特許文献1〜3の方法は、被加工物であるセラミック部材101をレーザー光により溶融、昇華させるものであるため、図19に示すように、加工された凹部102の周縁のセラミック部材101や集光レンズ122にはセラミックの溶着物118が付くことは避けられなかった。このような光学系の溶着物118による汚損はレーザー加工能力の低下となり、セラミック部材101の表面への溶着物118の付着は回路パターン106の形成不良や回路パターン形成用のマスクの破損の要因となるという課題があった。   Moreover, since the method of patent documents 1-3 mentioned above melts and sublimates the ceramic member 101 which is a to-be-processed object with a laser beam, as shown in FIG. 19, the ceramic of the periphery of the processed recessed part 102 is shown. It has been unavoidable that a ceramic weld 118 is attached to the member 101 and the condenser lens 122. Such contamination by the welded material 118 of the optical system reduces the laser processing capability, and the adhesion of the welded material 118 to the surface of the ceramic member 101 is a cause of poor formation of the circuit pattern 106 or damage to the mask for forming the circuit pattern. There was a problem of becoming.

ここで、上記被加工物の表面に付着した溶着物118は、セラミック部材101の表面をバフ研磨等で除去するのが一般的であって、この溶着物118の除去工程はレーザー加工後の基本工程となっているのが現状である。しかし、バフ研磨等の物理的な処理で溶着物118を除去すると、被加工物のセラミック表面の粒子破壊が発生し、これを電子部品105に用い回路パターン106を形成した場合、そのパターンの密着強度が低下するという課題があった。   Here, the welded material 118 attached to the surface of the workpiece is generally removed by buffing or the like on the surface of the ceramic member 101. The process of removing the welded material 118 is a basic process after laser processing. The current situation is that it is a process. However, when the welded material 118 is removed by a physical process such as buffing, particle destruction occurs on the ceramic surface of the workpiece, and when this is used for the electronic component 105 to form the circuit pattern 106, the adhesion of the pattern is avoided. There was a problem that the strength decreased.

一方、特許文献4は、レーザー本来の高エネルギーの熱照射加工によるものではなく、セラミックが溶融しない低温度の熱照射の熱応力により亀裂119を走らせ切断加工するものである。しかしながら、この方法では、図20(a)(b)(c)のセラミック部材101に形成した凹部102の断面図に示すような、凹部102の略V字形状や略U字形状の分割用溝103や半導体チップ搭載用凹部104等の所望の形状や深さの加工は不可能であった。   On the other hand, Patent Document 4 is not based on the high-energy heat irradiation processing inherent to the laser, but is performed by running the crack 119 by a thermal stress of low-temperature heat irradiation at which the ceramic does not melt. However, in this method, as shown in the cross-sectional view of the recess 102 formed in the ceramic member 101 of FIGS. 20A, 20B, and 20C, a substantially V-shaped or U-shaped dividing groove of the recess 102 is provided. Processing of a desired shape and depth such as 103 and the semiconductor chip mounting recess 104 was impossible.

また、上述した従来の溶融層116の除去処理工程を有するレーザー加工では、非加工部に存在する主成分のセラミックと微量の種々の添加剤を溶融させ、それにより発生した溶融層116を除去しているため、レーザー加工後の凹部の表層部の組成は、凹部以外のセラミック部材が有する組成とほぼ同一であり、主成分のセラミック中に種々の添加剤が略均一に分散されているものであった。   Further, in the laser processing including the above-described conventional process for removing the molten layer 116, the main component ceramic and a small amount of various additives existing in the non-processed part are melted, and the generated molten layer 116 is removed. Therefore, the composition of the surface layer of the recess after laser processing is almost the same as the composition of the ceramic member other than the recess, and various additives are dispersed almost uniformly in the main component ceramic. there were.

しかしながら、セラミック部材の分割用凹部102に端面電極107を形成する電子部品105では、端面電極107を構成する導電材とセラミック部材101を構成する主成分のセラミックとの密着性が劣るため、近年求められる電子部品105の極小化に伴い、セラミック部材101と端面電極107の接触面積が小さくなり、前記密着性の問題が露呈してきた。   However, in the electronic component 105 in which the end face electrode 107 is formed in the ceramic member dividing recess 102, the adhesion between the conductive material constituting the end face electrode 107 and the main component ceramic constituting the ceramic member 101 is inferior in recent years. With the miniaturization of the electronic component 105 to be obtained, the contact area between the ceramic member 101 and the end face electrode 107 has been reduced, and the problem of adhesion has been exposed.

さらに、従来のレーザー加工は、図21(a)の平面図に示すように、より連続溝に近い分割用溝103を形成しても該分割用溝103の幅の広い部分D1と幅の狭い部分D2があり、この幅D1、D2の差は少なくとも10μm以上は免れなかった。これは、そのまま形状加工の寸法精度の低下となっているとともに、分割用溝103にそって分割した後、その側面が凹凸状になっているために、セラミック部材同士或いは治工具等と上記側面が接触にするとセラミック部材101のカケが発生しやすいという課題があった。そして、この分割用溝103は図21(b)の断面図に示すように、深さ方向にも上下の波状を呈し、例えば、最大深さd3を100μm以上に加工した場合、浅い部分d4との差d5は少なくとも20μm以上は免れず、分割不良の発生または割れ、クラックという課題は解決できなかった。   Furthermore, in the conventional laser processing, as shown in the plan view of FIG. 21A, even if the dividing groove 103 closer to the continuous groove is formed, the wide portion D1 of the dividing groove 103 and the narrow width are narrowed. There is a portion D2, and the difference between the widths D1 and D2 is inevitable at least 10 μm or more. This is a reduction in the dimensional accuracy of the shape processing as it is, and after dividing along the dividing groove 103, the side surfaces are uneven, so that the ceramic members or jigs and the like are connected to the side surfaces. There is a problem that chipping of the ceramic member 101 is liable to occur when contact is made. Then, as shown in the cross-sectional view of FIG. 21 (b), the dividing groove 103 also has an up and down wave shape in the depth direction. For example, when the maximum depth d3 is processed to 100 μm or more, a shallow portion d4 and The difference d5 is inevitable at least 20 μm or more, and the problem of occurrence of poor division or cracks or cracks could not be solved.

さらに、図22に半導体チップ搭載用凹部104を備えたセラミック部材101を図示したが、凹部102、104の底面104aが平坦でかつ、セラミック溶融層が実質的に存在しない凹部102を形成することはレーザー加工では不可能であり、このような凹部
102の製造方法はセラミックグリーンシートに貫通孔を形成したものと貫通孔のないものを貼り合わせ焼成する方法や焼結後の基板にサンドブラスト等で凹部を形成する方法が採用されていて、これらの方法はいずれもコスト高になるという課題があった。
Furthermore, although the ceramic member 101 including the semiconductor chip mounting recess 104 is illustrated in FIG. 22, it is possible to form the recess 102 in which the bottom surface 104 a of the recesses 102 and 104 is flat and the ceramic melt layer does not substantially exist. Such a method of manufacturing the recess 102 is impossible by laser processing. The method of manufacturing such a recess 102 is a method in which a ceramic green sheet is formed with a through-hole and a non-through-hole are bonded and fired. The method for forming the film is employed, and all of these methods have a problem of high cost.

本発明の電子部品は、Al 91〜99.6質量%、添加成分としてSiO ,MgO,CaOとを含有してなるセラミック基板の少なくとも一方の主面に導電体を形成し、前記セラミック基板の側面表層部にSiを前記側面表層部の表面の面積の50〜90%で存在させ該側面表層部にSiを含有する電極を形成するとともに、該電極と前記導電体とを導通したことを特徴とする。
Electronic component of the present invention, Al 2 O 3 from 91 to 99.6 wt%, SiO 2, MgO, forming a conductor on at least one major surface of the ceramic substrate comprising a CaO as the additive component, before Si is present in the side surface layer portion of the ceramic substrate at 50 to 90% of the surface area of the side surface layer portion, an electrode containing Si is formed on the side surface layer portion, and the electrode and the conductor are formed. It is characterized by conduction.

本発明の電子部品は、Al 91〜99.6質量%、添加成分としてSiO ,MgO,CaOとを含有してなるセラミック基板の少なくとも一方の主面に導電体を形成し、前記セラミック基板の側面表層部にSiを前記側面表層部の表面の面積の50〜90%で存在させ、該側面表層部にSiを含有する電極を形成するとともに、該電極と前記導電体とを導通したことから、側面表層部に厚膜ペーストにより電極を形成したときに、厚膜ペースト中のガラス質を構成する成分の一部が、セラミック基板の側面表層部の前記添加剤成分の一部が実質的に存在しない部分に移動し、一方で、セラミック基板を構成する前記添加剤成分の一部が前記ペーストに移動することにより、添加剤同士が相互拡散して電極との密着強度が向上でき、信頼性の高い電子部品が得られる。 Electronic component of the present invention, Al 2 O 3 from 91 to 99.6 wt%, SiO 2, MgO, forming a conductor on at least one major surface of the ceramic substrate comprising a CaO as the additive component, before Si is present in the side surface layer portion of the ceramic substrate at 50 to 90% of the surface area of the side surface layer portion, an electrode containing Si is formed on the side surface layer portion, and the electrode and the conductor are formed. When the electrode is formed with the thick film paste on the side surface layer portion because of conduction, a part of the component constituting the vitreous in the thick film paste is a part of the additive component of the side surface layer portion of the ceramic substrate. Move to a portion where the additive does not substantially exist, and on the other hand, a part of the additive component constituting the ceramic substrate moves to the paste, whereby the additives mutually diffuse and the adhesion strength with the electrode is improved. Can A highly reliable electronic component can be obtained.

(a)、(b)は本実施形態の電子部品の構成の一部であるセラミック部材の一例を示す斜視図である。(A), (b) is a perspective view which shows an example of the ceramic member which is a part of structure of the electronic component of this embodiment. 本実施形態の電子部品の一例を示す断面図である。It is sectional drawing which shows an example of the electronic component of this embodiment. (a)は本実施形態の電子部品の構成の一部であるセラミック部材の凹部表層部、(b)は非熱照射部のおのおのEPMA分析結果の図面代用写真である。(A) is a concave surface layer part of a ceramic member which is a part of the configuration of the electronic component of the present embodiment, and (b) is a drawing-substituting photograph of the EPMA analysis result of each non-thermal irradiation part. 本実施形態の電子部品の構成の一部であるセラミック部材を本実施形態の電子部品として用いた場合の断面図である。It is sectional drawing at the time of using the ceramic member which is a part of structure of the electronic component of this embodiment as an electronic component of this embodiment. (a)、(b)、(c)は凹部表層部の結晶粒子の模式図である。(A), (b), (c) is the schematic diagram of the crystal grain of a recessed part surface layer part. 本実施形態の電子部品の構成の一部であるセラミック部材の平面図である。It is a top view of the ceramic member which is a part of structure of the electronic component of this embodiment. 本実施形態の電子部品の構成の一部であるセラミック部材の一例を示す平面図である。It is a top view which shows an example of the ceramic member which is a part of structure of the electronic component of this embodiment. 本実施形態の電子部品の構成の一部であるセラミック部材の凹部分割破断面である。It is a recessed part division | segmentation fracture surface of the ceramic member which is a part of structure of the electronic component of this embodiment. 本実施形態の電子部品の部分断面図である。It is a fragmentary sectional view of the electronic component of this embodiment. 本実施形態の電子部品の構成の一部であるセラミック部材の製造方法の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing method of the ceramic member which is a part of structure of the electronic component of this embodiment. (a)、(b)は本実施形態の電子部品の構成の一部であるセラミック部材の凹部断面図である。(A), (b) is recessed part sectional drawing of the ceramic member which is a part of structure of the electronic component of this embodiment. (a)、(b)はパルス波形の模式図である。(A), (b) is a schematic diagram of a pulse waveform. (a)、はパルス信号のON−OFFの模式図、(b)はパルス波形の立ち上がりと温度の関係を示す模式図である。(A) is a schematic diagram of ON-OFF of a pulse signal, (b) is a schematic diagram which shows the relationship between the rise of a pulse waveform, and temperature. (a)はセラミック部材の斜視図、(b)は抗折荷重測定の断面図である。(A) is a perspective view of a ceramic member, (b) is sectional drawing of a bending load measurement. 凹部表層部に電極を形成した斜視図である。It is the perspective view which formed the electrode in the recessed part surface layer part. 従来のレーザー加工方法の一例を示す斜視図である。It is a perspective view which shows an example of the conventional laser processing method. 従来のセラミック部材の斜視図である。It is a perspective view of the conventional ceramic member. 従来のセラミック部材をもちいた電子部品の部分断面図である。It is a fragmentary sectional view of the electronic component which used the conventional ceramic member. 従来のレーザー加工の断面図である。It is sectional drawing of the conventional laser processing. (a)、(b)、(c)は凹部を有するセラミック部材の一例を示す断面図である。(A), (b), (c) is sectional drawing which shows an example of the ceramic member which has a recessed part. 従来のセラミック部材を示すものであり、(a)は平面図、(b)は断面図である。The conventional ceramic member is shown, (a) is a top view, (b) is sectional drawing. 従来のセラミック部材の斜視図を示す。The perspective view of the conventional ceramic member is shown.

以下、本実施形態の電子部品の構成の一部であるセラミック部材の実施形態について説明する。   Hereinafter, an embodiment of a ceramic member which is a part of the configuration of the electronic component of the present embodiment will be described.

図1は、本実施形態の電子部品の構成の一部であるセラミック部材1の一例を示す斜視図で、図1(a)は凹部2を分割用溝3として形成したもの、図1(b)は凹部2を半導体チップ搭載用凹部4として形成したものを示す。尚、上記凹部2は、セラミック部材1の両主面1a、1a’に備えても良い。   FIG. 1 is a perspective view showing an example of a ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment. FIG. 1A is a view in which a recess 2 is formed as a dividing groove 3, and FIG. ) Shows the concave portion 2 formed as the semiconductor chip mounting concave portion 4. The recess 2 may be provided on both main surfaces 1a and 1a 'of the ceramic member 1.

本実施形態の電子部品の構成の一部であるセラミック部材1は、少なくとも一方の主面に凹部2を備え、上記セラミック部材1は主成分と複数の焼結助剤となる添加剤からなり、上記凹部2を熱照射により形成し、該凹部2の表層部2aには図17に示すような溶融層116が実質的に存在しない。   The ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment includes a recess 2 on at least one main surface, and the ceramic member 1 includes a main component and an additive serving as a plurality of sintering aids. The concave portion 2 is formed by heat irradiation, and the molten layer 116 as shown in FIG. 17 does not substantially exist in the surface layer portion 2 a of the concave portion 2.

従来のレーザー加工の熱照射部には、主成分のセラミックならびに添加剤がレーザー光の高熱で溶融し凹部表層部を覆っていて、これを溶融層116としているが、このように、主成分をなすセラミックの溶融層116が凹部2の表層部2aに存在しないことから、上記凹部2を分割用溝3として用いると、溶融層116が存在しないことから分割性が良好であるとともに、凹部2の深さdを浅くできるため分割工程前で割れたりクラックが入るという問題を防止することができる。これは、溶融層116が存在するように加工すると、予め、溶融層116の厚みを考慮して深めに凹部2を形成しなければならなかったため、上述したように、分割工程前に割れが発生していた。   In the conventional laser-processed heat-irradiated part, the main component ceramic and additive are melted by the high heat of the laser beam to cover the concave surface layer part, and this is used as the molten layer 116. Since the formed molten layer 116 of the ceramic does not exist in the surface layer portion 2a of the concave portion 2, when the concave portion 2 is used as the dividing groove 3, since the molten layer 116 does not exist, the splitting property is good, and the concave portion 2 Since the depth d can be reduced, it is possible to prevent the problem of cracking or cracking before the dividing step. This is because if the melted layer 116 is processed, the concave portion 2 had to be deeply formed in consideration of the thickness of the melted layer 116 in advance, and as described above, cracks occurred before the dividing step. Was.

また、この凹部2を半導体チップ搭載用凹部4として用いると凹部2の底面4aに溶融層116が存在しないことから、図2に示すように、Ni等の薄膜金属層8を凹部2、4の表層部4aに蒸着しその上にAu等の金属層9をメッキし、さらにその上に半導体チップ10を搭載するが、凹部2、4の底面4aに溶融層116が存在しないことから、アンカー効果が強く、薄膜金属層8のセラミック部材1への密着強度が向上できる。   Further, when the recess 2 is used as the recess 4 for mounting a semiconductor chip, the molten layer 116 does not exist on the bottom surface 4a of the recess 2, so that a thin film metal layer 8 such as Ni is formed on the recesses 2 and 4 as shown in FIG. The metal layer 9 such as Au is deposited on the surface layer portion 4a, and the semiconductor chip 10 is mounted thereon. However, since the molten layer 116 does not exist on the bottom surface 4a of the recesses 2 and 4, the anchor effect And the adhesion strength of the thin film metal layer 8 to the ceramic member 1 can be improved.

一方で、本実施形態の電子部品の構成の一部であるセラミック部材1は、主成分と複数の添加剤からなり、少なくとも一方の主面に熱照射により形成された凹部2を備え、該凹部2の表層部2aには、上記主成分であるセラミック(アルミナ)より低い融点を有する成分(シリカ)を上記凹部2の表層部2aに偏在させている。図3(a)に、上記熱照射により加工されたセラミック部材1の凹部2の表層部2aのEPMA分析(Electron Probe Micro Analysis)の図面代用写真を示し、図3(b)には、非熱照射部のEPMA分析の図面代用写真を示している。ここでは一実施例として本実施形態の電子部品の構成の一部であるセラミック部材1の主成分をなすセラミックがアルミナ、また、添加剤としてカルシア、マグネシアとセラミックより融点の低い添加剤としてシリカを用いている。EPMA分析の方法は、いずれも分析部位を金にて蒸着後、分析エリアを縦横ともに67μmの領域とし、マッピング条件をK分光線、分光結晶TAPとしてSi元素の分布状況を分析した。ここで、図3(a)、(b)の写真の黒色部は上記方法においてSiが実質的に存在していない部分を表している。   On the other hand, the ceramic member 1 that is a part of the configuration of the electronic component of the present embodiment includes a concave portion 2 that is composed of a main component and a plurality of additives and is formed on at least one main surface by heat irradiation. In the surface layer portion 2a of 2, the component (silica) having a melting point lower than that of the ceramic (alumina) as the main component is unevenly distributed in the surface layer portion 2a of the recess 2. FIG. 3A shows a drawing-substituting photograph of EPMA analysis (Electron Probe Micro Analysis) of the surface layer portion 2a of the concave portion 2 of the ceramic member 1 processed by the heat irradiation, and FIG. The drawing substitute photograph of the EPMA analysis of the irradiation part is shown. Here, as an example, the ceramic that is the main component of the ceramic member 1 that is a part of the configuration of the electronic component of the present embodiment is alumina, and calcia, magnesia, and silica as an additive having a lower melting point than ceramic. Used. In each of the EPMA analysis methods, the analysis site was vapor-deposited with gold, the analysis area was set to 67 μm in both length and width, the mapping conditions were K spectral line, and the distribution state of Si element was analyzed with spectral crystal TAP. Here, the black portions in the photographs of FIGS. 3A and 3B represent portions where Si is not substantially present in the above method.

即ち、図3(b)に示すように、非熱照射部はアルミナより低い融点の添加剤であるシリカが全体に分散しているが、図3(a)に示すように、凹部2の表層部2aには上記シ
リカが偏在していることがわかる。
That is, as shown in FIG. 3B, silica, which is an additive having a melting point lower than that of alumina, is dispersed throughout the non-heat-irradiated portion, but as shown in FIG. It can be seen that the silica is unevenly distributed in the portion 2a.

このように、ガラス質を形成する添加剤の成分の一部を凹部2の表層部2aに一様に分散せずに偏在させたことから、上記凹部2に厚膜ペーストで端面電極などの導体を形成すると、ペースト中に含有する添加剤の一部がセラミック部材1のガラス質を形成する添加剤が実質的に存在しない部分に移動し、一方で、セラミック部材1を構成する主成分のセラミックより低い融点の添加剤(シリカ)が前記ペーストに移動することで相互拡散するため、セラミック部材1に対する導体の密着強度が向上するという効果がある。   As described above, a part of the component of the additive forming the glassy material is unevenly distributed in the surface layer portion 2a of the concave portion 2 without being uniformly distributed. Is formed, a part of the additive contained in the paste moves to a portion where the additive forming the vitreous of the ceramic member 1 is not substantially present, while the ceramic as a main component constituting the ceramic member 1 Since the additive (silica) having a lower melting point moves to the paste and diffuses, there is an effect that the adhesion strength of the conductor to the ceramic member 1 is improved.

また、本実施形態の電子部品の構成の一部であるセラミック部材1は、前記した凹部2の周縁に、図19に示すような溶着物118が実質的に存在しないことが好ましい。ここで、溶着物118とは、前述した主成分であるセラミックならびに添加剤がレーザー光等による高熱により溶融し、加工部位の周縁に付着したものである。これは、バフ研磨などによる溶着物118の除去工程を行う必要がなくなるとともに、前記除去工程によるセラミック部材1の表面の結晶粒子破壊により、粒子破壊面に回路パターンを形成した場合の密着強度不良や、また、溶着物118が残留することによる回路パターンの不良や印刷用マスクの破損といった問題の発生も低減できる。   Further, in the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment, it is preferable that the welded material 118 as shown in FIG. Here, the welded material 118 is a material in which the ceramics and additives as the main components described above are melted by high heat from a laser beam or the like and are adhered to the periphery of the processed part. This eliminates the need to perform the step of removing the welded material 118 by buffing or the like, and causes poor adhesion strength when a circuit pattern is formed on the particle fracture surface due to crystal particle destruction of the surface of the ceramic member 1 by the removal step. In addition, it is possible to reduce the occurrence of problems such as defective circuit patterns and breakage of the printing mask due to the deposit 118 remaining.

また、本実施形態の電子部品の構成の一部であるセラミック部材1は前記の主成分であるセラミックより融点の低い添加剤が前記凹部2の80%以下の表層部2aの面積に存在することが好ましい。これは、図4に示すように、セラミック部材1に形成した凹部2を分割し、該凹部2を含めた側面1bに端面電極7を形成し回路パターン6と接続するような小型電子部品において、側面1bと端面電極7との密着強度を高めることができる。例えば、通称0402ミリタイプの電子部品は長さが0.4mm、幅が0.2mm、厚みが0.1mmで、幅0.2mmの側面に端面電極7を形成するもので、凹部2の表層部2a
に溶融層116や、またマイクロクラック117が存在すると、端面電極7の密着強度を大幅に低下することになる。また、前述した方法により、溶融層116を除去したとしても、電極形成面積が小さいことから、その密着強度を満足できなかったが、前記したように、端面電極7を形成するペースト中に含まれる添加剤の一部とセラミック部材1中の添加剤とが互いに移動し合い相互拡散することにより、セラミックの融点より低い成分の添加剤が一様に分散しているセラミック部材1と端面電極7との密着強度より、セラミック部材1と端子電極7との密着強度が向上しやすくなる。そして、セラミックより低い融点の成分が凹部2の表層部2aに偏在することにより、偏在させていない場合と比較し、密着強度が向上するのが80%以下の凹部2の表層部2aの面積に主成分のセラミックより低い融点の成分が存在する条件下である。
Further, in the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment, an additive having a melting point lower than that of the ceramic as the main component is present in an area of the surface layer portion 2a of 80% or less of the concave portion 2. Is preferred. This is because, as shown in FIG. 4, in the small electronic component in which the concave portion 2 formed in the ceramic member 1 is divided and the end face electrode 7 is formed on the side surface 1 b including the concave portion 2 and connected to the circuit pattern 6. The adhesion strength between the side surface 1b and the end surface electrode 7 can be increased. For example, an electronic component of the so-called 0402 mm type has a length of 0.4 mm, a width of 0.2 mm, a thickness of 0.1 mm, and an end face electrode 7 formed on a side surface having a width of 0.2 mm. Part 2a
If the molten layer 116 and the microcracks 117 are present, the adhesion strength of the end face electrode 7 is greatly reduced. Further, even if the molten layer 116 is removed by the above-described method, the adhesion strength cannot be satisfied because the electrode formation area is small, but as described above, it is included in the paste for forming the end face electrode 7. A part of the additive and the additive in the ceramic member 1 move to each other and mutually diffuse, so that the additive of the component lower than the melting point of the ceramic is uniformly dispersed, and the end face electrode 7. Therefore, the adhesion strength between the ceramic member 1 and the terminal electrode 7 is easily improved. And, since the component having a melting point lower than that of the ceramic is unevenly distributed in the surface layer portion 2a of the concave portion 2, the adhesion strength is improved by 80% or less in the area of the surface layer portion 2a of the concave portion 2 as compared with the case of not unevenly distributing. This is a condition in which a component having a melting point lower than that of the main component ceramic is present.

ここで、上記した主成分であるセラミックより融点の低い添加剤が前記凹部2の表層部2aの80%を越える面積を占めて存在すると、上記導体の密着強度の向上が困難になり、また、上記値が50%未満となる場合は、主成分となるセラミックの溶融が一部に生じ、本実施形態の特長が損なわれることになる。主成分であるセラミックより融点の低い添加剤が凹部2の表層部2aの面積に存在する割合のより好ましい範囲は50%以上70%以下である。   Here, when an additive having a melting point lower than that of the ceramic as the main component occupies an area exceeding 80% of the surface layer portion 2a of the concave portion 2, it is difficult to improve the adhesion strength of the conductor, When the above value is less than 50%, the ceramic as the main component is partially melted, and the features of the present embodiment are impaired. A more preferable range of the ratio in which the additive having a lower melting point than the ceramic as the main component exists in the area of the surface layer portion 2a of the recess 2 is 50% or more and 70% or less.

また、凹部2の表層部2aは、図5(a)の模式図に示すように、実質的に主成分をなすセラミックスの結晶粒子13の粒界面からなることが好ましい。これは、図5(b)に従来のレーザー加工した凹部102の表層部102aの模式図を示すが、表層部102aは溶融したガラス質14と、レーザー加工直後にその溶融したガラス質14が固化するときの収縮によるマイクロクラック117で覆われている。この表層部102aに導体を形成すると厚膜、薄膜のいずれの導体形成においても、その密着強度は低下する。この問題を解決するために、物理的方法で溶融層116を除去すると、図5(c)に示すように、
溶融層116は存在しないが、その下部のセラミックスの結晶粒子13まで破壊されているので凹部102の表層部102aは粒内破壊面となる。
Further, as shown in the schematic diagram of FIG. 5A, the surface layer portion 2 a of the recess 2 is preferably made of a grain interface of ceramic crystal particles 13 that substantially form the main component. FIG. 5 (b) shows a schematic view of the surface layer portion 102a of the conventional laser processed recess 102. The surface layer portion 102a is a molten glassy material 14 and the molten glassy material 14 is solidified immediately after laser processing. It is covered with microcracks 117 due to shrinkage. When a conductor is formed on the surface layer portion 102a, the adhesion strength is reduced in both thick and thin conductor formation. When the molten layer 116 is removed by a physical method to solve this problem, as shown in FIG.
Although the molten layer 116 does not exist, even the ceramic crystal grains 13 under the molten layer 116 are broken, so that the surface layer portion 102a of the recess 102 becomes an intragranular fracture surface.

しかしながら、粒内破壊面に厚膜或いは薄膜により導体を形成した場合、粒子表面が平滑面であるために、アンカー効果が低く、導体の密着強度は低下する可能性がある。これに対して、本実施形態の電子部品の構成の一部であるセラミック部材1の凹部2の表層部2aは、セラミックスの結晶粒子13が粒界面であり、かつ、溶融層116が表面を覆っていないために、厚膜、薄膜いずれによる導体形成でもアンカー効果が大きく、従って、導体の高い密着強度を得ることができる。   However, when a conductor is formed on the intragranular fracture surface with a thick film or a thin film, the surface of the particle is a smooth surface, so the anchor effect is low and the adhesion strength of the conductor may be reduced. On the other hand, in the surface layer portion 2a of the concave portion 2 of the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment, the ceramic crystal particles 13 are the grain interfaces, and the molten layer 116 covers the surface. Therefore, the anchor effect is large even when the conductor is formed by either a thick film or a thin film, and therefore, a high adhesion strength of the conductor can be obtained.

また、図6に示すように、凹部2とセラミック部材1の主面1aとの境界線間距離Dのバラツキが4μm以下であることが好ましい。これは、従来、セラミック部材に深さ100μm以上の凹部を形成する場合、パワーのあるCOレーザーで加工せざるをえず、この場合、少なくとも、上記の境界線間距離Dのバラツキは50μm以上となるという問題があった。そして、この凹部を分割用溝とした場合、分割後の側面には少なくとも25μm以上の凹凸が有り、セラミック部材1の側面と治工具等が接触するとセラミック部材1にカケが発生しやすく、また、前記側面における導体形成が困難になり、十分な密着強度を得られない可能性がある。 Moreover, as shown in FIG. 6, it is preferable that the dispersion | variation in the distance D between the recessed lines 2 and the main surface 1a of the ceramic member 1 is 4 micrometers or less. Conventionally, when a concave portion having a depth of 100 μm or more is formed in a ceramic member, it must be processed by a powerful CO 2 laser. In this case, at least the variation in the distance D between the boundary lines is 50 μm or more. There was a problem of becoming. And when this recessed part is used as a dividing groove, there are at least 25 μm or more unevenness on the side surface after the division, and when the side surface of the ceramic member 1 and the jig or the like come into contact, the ceramic member 1 is likely to be chipped, It may be difficult to form a conductor on the side surface, and sufficient adhesion strength may not be obtained.

これに対して、境界線間距離Dのバラツキが4μm以下であると、上記凹部2を分割用溝3として用いても、分割後の側面の凹凸は2μm以下と低減でき、上記分割後の側面が治工具等と接触してもセラミック部材1のカケ発生を防止できるとともに、導体形成の印刷不良も抑制することができる。さらに、図7に示すような、繊細な格子状の分割用溝3を形成しても高い寸法精度を確保できる。   On the other hand, when the variation in the distance D between the boundary lines is 4 μm or less, the unevenness on the side surface after the division can be reduced to 2 μm or less even when the concave portion 2 is used as the dividing groove 3. Even if it comes in contact with a jig or the like, it is possible to prevent the ceramic member 1 from being chipped, and to suppress poor printing of conductor formation. Furthermore, high dimensional accuracy can be ensured even if the fine lattice-shaped dividing grooves 3 as shown in FIG. 7 are formed.

ここで、境界線間距離Dのバラツキはレーザー加工距離においては凹部2の長さが1mm以上であれば、レーザー光のドットが従来レーザーにおいても10ドット前後は含まれるために、長い加工距離で調べた場合と大差のないバラツキがわかるため、1mm以上の所定長さにおいての凹部2の対向する主面の境界線間距離Dの最大値D1と最小値D2を測定しその差を境界線間距離Dのバラツキとしている。その測定方法は、従来のレーザー加工品では工場顕微鏡でも良いが、本実施形態品の測定においては、バラツキが小さいために工場顕微鏡の測定誤差範囲内となることもあり、測定精度を上げるためにセラミック部材1の凹部2を含む主面側を表面分析用の金を蒸着し、SEM分析写真を撮り写真上で距離の測定を実施した。尚、図6(a)では略直線状の凹部2を示しているが、図6(b)のように、蛇行した凹部2を形成してもよい。   Here, the variation in the distance D between the boundary lines is that if the length of the concave portion 2 is 1 mm or more in the laser processing distance, the laser light dots are included in about 10 dots in the conventional laser. Since the variation is not greatly different from the case of the investigation, the maximum value D1 and the minimum value D2 of the distance D between the boundary lines of the opposing main surface of the recess 2 at a predetermined length of 1 mm or more are measured, and the difference is measured between the boundary lines. It is assumed that the distance D varies. The measurement method may be a factory microscope for conventional laser processed products, but the measurement of the product of this embodiment may be within the measurement error range of the factory microscope due to small variations, so as to increase the measurement accuracy. Gold for surface analysis was deposited on the main surface side including the concave portion 2 of the ceramic member 1, and an SEM analysis photograph was taken to measure the distance on the photograph. In addition, although the substantially linear recessed part 2 is shown in Fig.6 (a), you may form the meandering recessed part 2 like FIG.6 (b).

また、図8に示すように、前記凹部2の深さdのバラツキd5は8μm以下であることが好ましい。これは、従来ではセラミック部材に深さ100μm以上の凹部2を分割用の連続溝となるように形成しても、三角波形溝になり上記バラツキd5が少なくとも30μm以上になり、高精度な凹部2の形成が困難であるとともに、セラミック部材1の厚みtの20%以上の深さdを加工しないと分割不良が発生しやすかった。   Further, as shown in FIG. 8, the variation d5 in the depth d of the recess 2 is preferably 8 μm or less. Conventionally, even when the concave portion 2 having a depth of 100 μm or more is formed in the ceramic member so as to be a continuous groove for division, the concave portion 2 becomes a triangular wave groove and the variation d5 is at least 30 μm or more. Is difficult to form, and if the depth d of 20% or more of the thickness t of the ceramic member 1 is not processed, defective division is likely to occur.

これに対して、深さdのバラツキd5が8μm以下と小さいために、凹部2を分割用溝とした場合、セラミック部材1の厚みtの15%以上20%以下であれば分割性に支障がなく、また、必要以上に深さdを大きくしなくてもよいため、分割工程前での取り扱いや熱処理工程でクラックや割れの発生を防止できる。   On the other hand, since the variation d5 of the depth d is as small as 8 μm or less, when the recess 2 is used as a dividing groove, if the thickness t of the ceramic member 1 is 15% or more and 20% or less, there is a problem in the dividing property. In addition, since it is not necessary to increase the depth d more than necessary, it is possible to prevent the occurrence of cracks and cracks in the handling and heat treatment steps before the dividing step.

ここで、凹部2の深さdのバラツキd5とは、前記境界線間距離Dのバラツキと同様に、レーザー加工品であれば、長さ1mm以上について確認すると精度の高い値を得ることができる。その所定距離における凹部2の最大深さd3と最小深さd4の差を深さdのバ
ラツキd5とし、一般には、赤色探傷液を凹部2に塗布後、凹部2に沿って分割し工場顕微鏡で着色部分の深さを測定するが、本実施形態品では上記深さdのバラツキd5が小さいために工場顕微鏡による測定では測定誤差範囲内となることがある。したがって、凹部2に沿って分割後に、その分割した側面に表面分析用の金を蒸着してSEM分析写真を撮り、その写真から深さdのバラツキd5を求めた。
Here, the variation d5 of the depth d of the recess 2 is a laser processed product, as in the variation of the distance D between the boundary lines, and a highly accurate value can be obtained by confirming a length of 1 mm or more. . The difference between the maximum depth d3 and the minimum depth d4 of the concave portion 2 at the predetermined distance is the variation d5 of the depth d. Generally, after applying the red flaw detection liquid to the concave portion 2, it is divided along the concave portion 2 and is divided by a factory microscope. The depth of the colored portion is measured. In the product of the present embodiment, the variation d5 of the depth d is small, so measurement by a factory microscope may fall within the measurement error range. Therefore, after dividing along the recess 2, gold for surface analysis was deposited on the divided side surface to take a SEM analysis photograph, and the variation d5 of the depth d was obtained from the photograph.

また、本実施形態の電子部品の構成の一部であるセラミック部材1は、主成分にAl91〜99.6質量%のアルミナ、添加剤としてSiO、MgO、CaOとを含有していることが好ましい。ここで、Alの範囲は、電子部品用セラミック部材としての必要特性を確保でき、また、上記添加剤が粘結剤として望ましいものである。そして、本実施形態の電子部品の構成の一部であるセラミック部材1凹部2の表層部2aでは、主成分を成すアルミナは実質的に溶融していないため粒界結晶面を有し、また、アルミナより融点の低いシリカが表層部2aに均一に分散して存在しているのではなく、上記シリカが存在する領域と実質的に存在しない領域があり、表層部2aにシリカが偏って分布(偏在)している。従って、上記凹部2の表層部2aに、厚膜、薄膜等による導体を形成した場合、上述したセラミック部材1中の添加剤と導体中の添加剤との相互拡散作用とともに、上記粒界結晶面による高いアンカー効果により導体の密着強度を向上できる。 In addition, the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment contains Al 2 O 3 91 to 99.6% by mass of alumina as a main component and SiO 2 , MgO, and CaO as additives. It is preferable. Here, the range of Al 2 O 3 can secure the necessary characteristics as a ceramic member for electronic parts, and the above additives are desirable as a binder. And, in the surface layer portion 2a of the concave portion 2 of the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment, the alumina constituting the main component is not substantially melted, and thus has a grain boundary crystal plane, Silica having a melting point lower than that of alumina is not uniformly dispersed in the surface layer portion 2a, but there is a region where the silica is present and a region where the silica is not substantially present, and the silica is unevenly distributed in the surface layer portion 2a ( Is unevenly distributed). Therefore, when a conductor made of a thick film, a thin film, or the like is formed on the surface layer portion 2a of the recess 2, the grain boundary crystal plane is combined with the mutual diffusion action of the additive in the ceramic member 1 and the additive in the conductor. It is possible to improve the adhesion strength of the conductor due to the high anchor effect due to.

ここで、本実施形態の電子部品の構成の一部であるセラミック部材1の主成分をなすセラミックとして、上記アルミナ以外に窒化アルミニウム、窒化珪素、フェライト、アルミナジルコニア系のセラミックスを用いてもよい。   Here, in addition to the above alumina, aluminum nitride, silicon nitride, ferrite, or alumina zirconia-based ceramics may be used as the ceramic constituting the main component of the ceramic member 1 that is a part of the configuration of the electronic component of the present embodiment.

また、本実施形態の電子部品の構成の一部であるセラミック部材1は該セラミック部材1を板状体とし、前記凹部2がセラミック部材1を分割する溝としているので、1シートの板状体に精細な多数の分割用溝3を形成してもその寸法精度が高い。さらに、凹部2の深さdのバラツキも小さいために、深さdを浅く形成しても分割性が良好で、かつ、クラックや割れの発生を防止できる。   Further, the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment has the ceramic member 1 as a plate-like body, and the concave portion 2 serves as a groove for dividing the ceramic member 1. Even if a large number of fine dividing grooves 3 are formed, the dimensional accuracy is high. Furthermore, since the variation in the depth d of the recess 2 is small, even if the depth d is shallow, the splitting property is good and the generation of cracks and cracks can be prevented.

本実施形態の電子部品5は、前記セラミック部材1の凹部2を、分割する溝として形成したものを上記凹部2にそって分割したものを用いて、図4に示すように、セラミック部材1の主面aに回路パターン6が形成され、かつ、該回路パターン6と前記凹部2を接続するように導体が形成され、該凹部2に沿って前記セラミック部材1を分割した端面1bに電極7を形成している。上記電極7は、通常厚膜ペーストをセラミック部材にディップし、焼成することにより形成するが、凹部2の表層部2aに溶融層が存在せず、主成分のセラミックの結晶粒は粒界結晶面であり、また、上記セラミックより融点の低い成分の添加剤を偏在させていることから、厚膜ペーストのセラミック部材1への入り込みがよく、かつ、厚膜ペーストに含まれるガラス質を構成する添加剤の一部とセラミック部材1中の主成分のセラミックより低い融点の添加剤とが互いに移動することにより、高いアンカー効果と添加剤の相互拡散作用により導体の密着強度を向上できる。   As shown in FIG. 4, the electronic component 5 of the present embodiment is obtained by dividing the concave portion 2 of the ceramic member 1 formed as a groove to be divided along the concave portion 2. A circuit pattern 6 is formed on the main surface a, and a conductor is formed so as to connect the circuit pattern 6 and the recess 2, and the electrode 7 is provided on the end surface 1 b obtained by dividing the ceramic member 1 along the recess 2. Forming. The electrode 7 is usually formed by dipping a thick film paste on a ceramic member and firing it, but there is no molten layer in the surface layer portion 2a of the recess 2, and the crystal grains of the main component ceramic are grain boundary crystal planes. In addition, since the additive of the component having a melting point lower than that of the ceramic is unevenly distributed, the thick film paste can be easily penetrated into the ceramic member 1 and constitutes the vitreous contained in the thick film paste. When a part of the agent and an additive having a melting point lower than that of the ceramic as the main component in the ceramic member 1 move to each other, the adhesion strength of the conductor can be improved by the high anchor effect and the mutual diffusion action of the additive.

また、本実施形態の電子部品5は、前述した本実施形態の電子部品の構成の一部であるセラミック部材1を用いて、図2に示すように、該セラミック部材1の凹部2に少なくとも一層以上の薄膜金属層8を蒸着し、該薄膜金属層8上に少なくとも一層以上の金属メッキ層9を形成し、該金属メッキ層9上に半導体チップ10を搭載したことである。半導体チップ搭載用凹部4の底面4aに溶融層116がなく、主成分を成すセラミックの結晶粒子が粒界面であり、かつ、上記セラミックの融点より低い成分の添加剤を偏在させたことから、上記半導体チップ搭載用凹部4の底面4aに蒸着により薄膜金属層8を形成した場合、高いアンカー効果と添加剤の相互拡散作用により密着強度の高い薄膜金属層8を形成できる。従って、その上にメッキ等により金属層9を形成し、半導体チップ10を実装した場合、いずれも密着強度が高く信頼性の高い電子部品5が得られる。   Moreover, the electronic component 5 of this embodiment uses the ceramic member 1 which is a part of the structure of the electronic component of this embodiment described above, and as shown in FIG. The thin film metal layer 8 described above is deposited, at least one metal plating layer 9 is formed on the thin film metal layer 8, and the semiconductor chip 10 is mounted on the metal plating layer 9. Since there is no molten layer 116 on the bottom surface 4a of the recess 4 for mounting a semiconductor chip, the ceramic crystal particles constituting the main component are grain interfaces, and the additive having a component lower than the melting point of the ceramic is unevenly distributed. When the thin film metal layer 8 is formed on the bottom surface 4a of the semiconductor chip mounting recess 4 by vapor deposition, the thin film metal layer 8 having high adhesion strength can be formed by the high anchor effect and the mutual diffusion action of the additive. Accordingly, when the metal layer 9 is formed thereon by plating or the like and the semiconductor chip 10 is mounted, the electronic component 5 having high adhesion strength and high reliability can be obtained.

つぎに、図9に示すように、本実施形態の電子部品5は、主成分と複数の添加剤成分からなるセラミック基板16において、少なくとも一方の主面16aに導電体11を形成し、前記添加剤のうち主成分より低い融点を有する成分を前記セラミック基板16の側面表層部16bに偏在させ、該側面表層部16bを含む側面表層部16cに電極17を形成するとともに、該電極17と前記導電体11とを導通している。このように側面表層部16bに、前記添加剤成分の一部を偏在させたことから、その部分に厚膜ペーストにより電極17を形成した場合、厚膜ペースト中のガラス質を構成する成分の一部が、セラミック基板16の側面表層部16bの前記添加剤成分の一部が実質的に存在しない部分に移動し、一方で、セラミック基板16を構成する前記添加剤成分の一部が前記ペーストに移動することにより、添加剤同士が相互拡散して電極17との密着強度が向上でき、信頼性の高い電子部品5が得られる。   Next, as shown in FIG. 9, in the electronic component 5 of the present embodiment, the conductor 11 is formed on at least one main surface 16a in the ceramic substrate 16 composed of the main component and a plurality of additive components, and the addition A component having a melting point lower than that of the main component of the agent is unevenly distributed in the side surface layer portion 16b of the ceramic substrate 16, and the electrode 17 is formed on the side surface layer portion 16c including the side surface layer portion 16b. The body 11 is electrically connected. As described above, since a part of the additive component is unevenly distributed in the side surface layer portion 16b, when the electrode 17 is formed with the thick film paste in that portion, one of the components constituting the glassy material in the thick film paste. Part of the side surface layer portion 16b of the ceramic substrate 16 moves to a portion where a part of the additive component does not substantially exist, while a part of the additive component constituting the ceramic substrate 16 is transferred to the paste. By moving, the additives diffuse to each other, the adhesion strength with the electrode 17 can be improved, and the highly reliable electronic component 5 can be obtained.

つぎに、本実施形態の電子部品の構成の一部であるセラミック部材1の製造方法を説明する。   Below, the manufacturing method of the ceramic member 1 which is a part of structure of the electronic component of this embodiment is demonstrated.

図10に示すように、熱照射20によりセラミック部材1の少なくとも一方の主面1aに凹部2を形成するセラミック部材1の製造方法であって、該凹部2を形成する部位に前記セラミック部材1の主成分の融点未満で、かつ、前記添加剤のうち少なくとも1種の成分が有する融点より高い温度の熱照射20をすることで、前記凹部2を形成する製造方法である。   As shown in FIG. 10, a method of manufacturing a ceramic member 1 in which a recess 2 is formed on at least one main surface 1 a of the ceramic member 1 by heat irradiation 20, wherein the ceramic member 1 is formed in a portion where the recess 2 is formed. It is a manufacturing method which forms the said recessed part 2 by performing the heat irradiation 20 of temperature lower than melting | fusing point of a main component and higher than melting | fusing point which at least 1 type of component has.

より詳細に説明すると、上記主成分のセラミックがアルミナ、上記添加剤がシリカ、マグネシア、カルシアであるとき、アルミナの融点は約2050℃、シリカの融点は約1730℃、マグネシアの融点は約2800℃、カルシアの融点が約2570℃である。従来のレーザー加工では、約3500℃付近の熱照射により加工されるため、主成分のアルミナ、添加剤のシリカ、マグネシア、カルシアの全てが溶融し、また一部は昇華することにより、溶融物が周囲に飛散し溶着物を形成し、また、加工部位には溶融したものが冷却、固化し溶融層を形成するとともに、その溶融層には上記冷却によりマイクロクラックが生じる。   More specifically, when the main component ceramic is alumina and the additive is silica, magnesia or calcia, the melting point of alumina is about 2050 ° C., the melting point of silica is about 1730 ° C., and the melting point of magnesia is about 2800 ° C. , Calcia has a melting point of about 2570 ° C. In the conventional laser processing, since it is processed by heat irradiation at about 3500 ° C., all of the main component alumina, the additive silica, magnesia, and calcia melt, and partly sublimates, so that the melt is formed. The molten material is scattered around to form a welded material, and the melted material is cooled and solidified in the processed portion to form a molten layer, and microcracks are generated in the molten layer by the cooling.

しかしながら、本実施形態の電子部品の構成の一部であるセラミック部材の製造方法によれば、主成分であるセラミック(アルミナ)の融点未満で、上記添加剤のうち、アルミナの融点より低い融点を有するシリカの融点以上の熱照射20をセラミック部材1の加工部位に照射するために、アルミナの溶融が実質的に起こらないため、上記した溶融層や溶着物が形成されないので、マイクロクラックの発生を抑制することができるとともに、所望形状の凹部2が形成できる。   However, according to the method for manufacturing a ceramic member that is a part of the configuration of the electronic component of the present embodiment, the melting point of the additive is less than the melting point of the ceramic (alumina) and lower than the melting point of alumina. In order to irradiate the processed portion of the ceramic member 1 with the heat irradiation 20 that is equal to or higher than the melting point of silica, since the alumina does not substantially melt, the above-described molten layer or welded material is not formed, and therefore microcracks are generated. While being able to suppress, the recessed part 2 of a desired shape can be formed.

また、図11(a)は、本実施形態の方法で加工された凹部2の加工後の断面形状を示し、凹部2は変質層18で閉塞されている。この変質層18の発生メカニズムは、主成分のセラミックを溶融させず、ガラス質を構成する添加剤の一種以上の融点より高い温度の熱照射により、熱照射20がかかった部位のみ上記添加剤が移動し、また、一部は昇華することにより、固着力の弱い変質層18が形成されるのである。つまり、変質層18は主成分をなすセラミックとガラス質を構成する添加剤のうち、セラミックの融点より高い融点を有する添加剤成分の分布は熱照射前との変化はないが、セラミック部材1全体に一様に分布していた上記ガラス質を構成する添加剤成分のセラミックより融点の低い成分は、上記した熱照射により移動し、セラミック部材1中でその分布に偏りが生じた。そのため、溶融層116とは組成が異なり、また、熱照射前のセラミック部材1のマトリックスとも異なるために変質層と定義した。   FIG. 11A shows a cross-sectional shape after processing the recess 2 processed by the method of the present embodiment, and the recess 2 is closed by the altered layer 18. The generation mechanism of the deteriorated layer 18 is that the additive is only melted by heat irradiation at a temperature higher than the melting point of one or more of the additives constituting the vitreous without melting the main component ceramic. The deteriorated layer 18 having weak adhesion is formed by moving and partially sublimating. That is, the alteration layer 18 has a distribution of additive components having a melting point higher than the melting point of the ceramic among the ceramics constituting the main components and the vitreous additive, but the entire ceramic member 1 is not changed. The component having a lower melting point than the ceramic of the additive component constituting the glassy material, which was uniformly distributed, was moved by the heat irradiation described above, and the distribution was uneven in the ceramic member 1. Therefore, the composition is different from that of the molten layer 116 and is also defined as a deteriorated layer because it is different from the matrix of the ceramic member 1 before heat irradiation.

上記変質層18の部分は熱照射20が高速移動でかかることにより、加熱されなかった部分と明瞭な境界線が亀裂19により形成されているので、凹部2に変質層18が緩く詰まっている状態になっている。よって、変質層18は、超音波振動など物理的な方法により容易に除去することが可能で、図11(b)では、凹部2から変質層18を除去したものを示している。   Since the portion of the above-mentioned deteriorated layer 18 is exposed to the heat irradiation 20 at a high speed, the unheated portion and a clear boundary line are formed by the cracks 19, so that the deteriorated layer 18 is loosely clogged in the recess 2. It has become. Therefore, the altered layer 18 can be easily removed by a physical method such as ultrasonic vibration, and FIG. 11B shows a layer obtained by removing the altered layer 18 from the recess 2.

また、前記熱照射の移動速度sは、10m/分以上とすることが好ましい。これは、熱伝導性に劣るセラミックの特性を利用するもので、熱照射部位を高速移動することにより、熱照射部位とそれ以外の部位の熱応力差により亀裂19を発生させるもので、上記移動速度sが10m/分未満であると正確に亀裂が形成しにくい。尚、熱照射がレーザー光21による場合、一般的に加工開始はダミー部から入り製品部の加工に入っていくが、ダミー部の幅には大小があり、加工テーブルの移動速度sが所定速度となるために僅かな助走距離を要することから、その余裕をみた場合、上記移動速度のより好ましい値は13m/分以上である。ここで、移動速度sの上限値は、加工テーブルの能力(移動速度、精度)により制限されるのが実情であって、本実施形態の製造方法においては、100m/分においても所望の凹部2を形成できることが確認されている。   Further, the moving speed s of the heat irradiation is preferably 10 m / min or more. This utilizes the characteristics of ceramics that are inferior in thermal conductivity. By moving the heat irradiation part at high speed, a crack 19 is generated due to the difference in thermal stress between the heat irradiation part and the other part. If the speed s is less than 10 m / min, it is difficult to form a crack accurately. When the heat irradiation is performed by the laser beam 21, the processing start generally enters from the dummy part and proceeds to the processing of the product part, but the width of the dummy part is large and the processing table moving speed s is a predetermined speed. Therefore, when the allowance is taken into consideration, a more preferable value of the moving speed is 13 m / min or more. Here, the upper limit value of the moving speed s is actually limited by the capability (moving speed, accuracy) of the processing table, and in the manufacturing method of the present embodiment, the desired recess 2 is obtained even at 100 m / min. It has been confirmed that can be formed.

また、本実施形態の電子部品の構成の一部であるセラミック部材1の製造方法の熱照射20に用いる熱としてレーザー光21を用いることが好ましい。レーザー光21による熱照射20は寸法精度の高い熱照射20が可能であり、従って、所望の形状の凹部2が形成できる。   Moreover, it is preferable to use the laser beam 21 as the heat used for the heat irradiation 20 of the manufacturing method of the ceramic member 1 which is a part of the structure of the electronic component of this embodiment. The heat irradiation 20 by the laser beam 21 can be performed with high dimensional accuracy, and therefore the recess 2 having a desired shape can be formed.

また、前記レーザー光21をCOレーザーとすることが好ましい。これは、COレーザーによるレーザー光21で熱照射20することから、厚いセラミック部材1に対しても、安定した深さの加工が高速で加工できる。 The laser light 21 is preferably a CO 2 laser. This is because the heat irradiation 20 is performed with the laser beam 21 by the CO 2 laser, so that even a thick ceramic member 1 can be processed with a stable depth at a high speed.

次に、本実施形態の電子部品の構成の一部であるセラミック部材1の凹部をレーザー光で作製する製造方法を詳細に説明する。   Next, a manufacturing method in which the concave portion of the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment is produced with laser light will be described in detail.

一般にセラミック加工に用いられるパルス波形24を図12(a)に示す。セラミックの加工は高エネルギーを必要とするために、レーザー発振後、立ち上がりの早いパルス波形24が用いられてきた。具体的にはレーザー発振後、20〜60μsec.で最高温度域24aに達し、約3500℃前後の温度で、セラミックを溶融、昇華することにより所望の形状の加工をするものである。したがって、この際に、セラミックの溶融層や溶着物が発生するというレーザー加工特有の問題が発生したのである。これに対して、本実施形態の方法は、図12(b)に示すように、立ち上がりの遅いレーザー波形24を用いるもので、具体的にはレーザー発振後、最高温度24aに達するまでの時間を90〜200μsec.としている。   A pulse waveform 24 generally used for ceramic processing is shown in FIG. Since ceramic processing requires high energy, a pulse waveform 24 that rises quickly after laser oscillation has been used. Specifically, after laser oscillation, 20 to 60 μsec. Thus, a desired shape is processed by melting and sublimating the ceramic at a temperature of about 3500 ° C., reaching the maximum temperature range 24a. Therefore, at this time, a problem peculiar to laser processing that a ceramic melt layer and a welded product are generated has occurred. In contrast, the method of the present embodiment uses a laser waveform 24 that rises slowly as shown in FIG. 12B. Specifically, the time until the maximum temperature 24a is reached after laser oscillation is obtained. 90-200 μsec. It is said.

さらに、図13(a)のON−OFF信号図に示すように、ノーマルレーザーの発振信号25の1パルスを200μsec.としたときに比較し、本実施形態の製造方法は上記ノーマル信号25の1パルス間に、たとえばON信号26が2回の短パルスで合計発振時間が約60μsec.とノーマルレーザー発振信号25の30%程度と短く設定している。以上の立ち上がりの遅いパルス波形24を短いON信号26で発振させることにより、図13(b)の模式図に示すように、短いON信号26の中で立ち上がりの遅いパルス波形24を発振することにより、最高温度24aを制御した熱照射ができる。すなわち、主成分のセラミックの融点aより低く、添加剤の成分の一種以上の融点bより高い温度で加工するように設定が可能である。また、パルス周期を200μsec.以下とすることによりCW(Continuity Wave)連続発振に近似したパルス波形が得られ、これにより加工された凹部2は、図6、図8で前述したように、平面視したときの凹部2
の境界線間距離のバラツキDや深さdのバラツキを抑制した加工が可能となる。
Further, as shown in the ON-OFF signal diagram of FIG. 13A, one pulse of the oscillation signal 25 of the normal laser is set to 200 μsec. In comparison with the manufacturing method of this embodiment, the manufacturing method of the present embodiment has a total oscillation time of about 60 μsec. For one pulse of the normal signal 25, for example, the ON signal 26 is two short pulses. And about 30% of the normal laser oscillation signal 25. By oscillating the pulse waveform 24 having a slow rise as described above with a short ON signal 26, the pulse waveform 24 having a slow rise within the short ON signal 26 is oscillated as shown in the schematic diagram of FIG. Heat irradiation with the maximum temperature 24a controlled can be performed. That is, it can be set to process at a temperature lower than the melting point a of the main component ceramic and higher than one or more melting points b of the additive components. In addition, the pulse period is 200 μsec. A pulse waveform approximating CW (Continuity Wave) continuous oscillation is obtained by the following, and the recess 2 processed by this is the recess 2 when viewed in plan, as described above with reference to FIGS.
It is possible to perform processing while suppressing the variation D in the distance between the boundary lines and the variation in the depth d.

本実施形態の電子部品の構成の一部であるセラミック部材を以下の方法で作成した。   A ceramic member which is a part of the configuration of the electronic component of the present embodiment was created by the following method.

主成分のセラミックにAl96質量%のアルミナと、残部が添加剤及び不純物とからなり、上記添加剤としてSiOを2.0質量%、CaOを0.2質量%、MgOを1.0質量%添加してセラミックグリーンシートを成形し、上記セラミックグリーンシートを所定の形状に切断後、約1600℃の温度で焼成し、厚み0.635mmのセラミック焼結体を作製した。 The main component ceramic is composed of 96% by mass of Al 2 O 3 alumina, and the balance is an additive and impurities. The additive is 2.0% by mass of SiO 2 , 0.2% by mass of CaO and 1% of MgO. A ceramic green sheet was formed by adding 0.0 mass%, the ceramic green sheet was cut into a predetermined shape, and then fired at a temperature of about 1600 ° C. to produce a ceramic sintered body having a thickness of 0.635 mm.

次に、図14(a)に示すように、セラミック焼結体1’の主面1’aに、凹部2の加工幅Dが30μm、深さdが100μmの連続した分割用溝3を作製した。尚、凹部2は先端の曲率半径Rを5μmで形成した。   Next, as shown in FIG. 14 (a), a continuous dividing groove 3 having a processed width D of the recess 2 of 30 μm and a depth d of 100 μm is formed on the main surface 1′a of the ceramic sintered body 1 ′. did. The recess 2 was formed with a radius of curvature R at the tip of 5 μm.

熱照射の条件は、COレーザー発振により図12(b)に示すような立ち上がりの遅いパルス波形24を用い、図13に示すように、ON信号26の時間を30μsec.とし、パルス周期を100μsec.(周波数10KHz)、レーザー光21の移動速度s
を13m/分とした。試料数は5シートで試料番号1〜5である。ここで本実施形態の実施例である熱照射の温度はレーザー光21の照射面において約1850℃である。
Conditions of thermal irradiation, using a slowly rising pulse waveform 24 as shown in FIG. 12 (b) by a CO 2 laser oscillator, as shown in FIG. 13, 30 .mu.sec time ON signal 26. And the pulse period is 100 μsec. (Frequency 10 kHz), moving speed s of laser light 21
Was 13 m / min. The number of samples is 5 sheets and sample numbers 1-5. Here, the temperature of heat irradiation which is an example of the present embodiment is about 1850 ° C. on the irradiation surface of the laser light 21.

また、比較例として、セラミック焼結体1’は、上述した本実施形態と同じ部材を用い、凹部102の加工幅Dを90μm、深さdが100μm、先端曲率半径Rが5μmの分割用溝103を作製した。ここで深さdと先端曲率半径Rは、レーザー光21での加工深さを示し、加工後上記凹部2、102に堆積する溶融層116を含む加工深さdを指している。   In addition, as a comparative example, the ceramic sintered body 1 ′ uses the same member as that of the present embodiment described above, and the dividing groove having the processing width D of the recess 102 of 90 μm, the depth d of 100 μm, and the tip curvature radius R of 5 μm. 103 was produced. Here, the depth d and the radius of curvature R of the tip indicate the processing depth with the laser beam 21 and indicate the processing depth d including the molten layer 116 deposited in the concave portions 2 and 102 after processing.

この際の熱照射条件は、COレーザー発振により図12(a)に示すような立ち上がりの早いパルス波形24を用い、図13に示すように、ON信号26の時間を400μsec.とし、パルス周期を1050μsec.(周波数952Hz)、レーザー光21の
移動速度sを8m/分で凹部102を加工した。試料数は5シートで試料番号6〜10である。ここで比較例のレーザー光21の照射面における温度は約3400℃である。
Heat irradiation conditions at this time, with rising early pulse waveform 24 as shown in FIG. 12 (a) by a CO 2 laser oscillator, as shown in FIG. 13, 400 .mu.sec time ON signal 26. And the pulse period is 1050 μsec. The recess 102 was processed at a frequency of 952 Hz and a moving speed s of the laser light 21 of 8 m / min. The number of samples is 5 sheets and sample numbers 6-10. Here, the temperature on the irradiation surface of the laser beam 21 of the comparative example is about 3400 ° C.

上述した条件で加工された凹部2、102の長手方向の長さHが12mmの表層部2a、102aの溶融層116の有無を目視で確認した。つぎに、同じく、凹部2、102の長さHが12mmの距離における幅Dの最大値と最小値の差、つまり主面1a、101aと凹部2、102の境界線間距離のバラツキについてSEM分析(走査型電子顕微鏡分析)を実施しSEM写真より算出した。また、凹部2、102の深さdについても、上記凹部2、102に沿って分割後、その破断面を蒸着しSEM分析写真を撮り、凹部1,102の長さHが12mmにおいての、最大深さと最小深さの差を上記写真より算出し深さdのバラツキとした。   The presence or absence of the molten layer 116 of the surface layer portions 2a and 102a having a length H of 12 mm in the longitudinal direction of the recesses 2 and 102 processed under the above-described conditions was visually confirmed. Next, similarly, the SEM analysis is performed on the difference between the maximum value and the minimum value of the width D when the length H of the recesses 2 and 102 is 12 mm, that is, the variation in the distance between the boundary lines of the main surfaces 1a and 101a and the recesses 2 and 102. (Scanning electron microscope analysis) was performed and calculated from SEM photographs. In addition, the depth d of the recesses 2 and 102 is divided along the recesses 2 and 102, and then the fracture surface is vapor-deposited and an SEM analysis photograph is taken. When the length H of the recesses 1 and 102 is 12 mm, the maximum The difference between the depth and the minimum depth was calculated from the above photograph and used as the variation in depth d.

また、凹部2、102の抗折加重は、上記SEM分析の分割前のセラミック部材1、101において、図14(b)に示すように、凹部2、102を中心にスパンLを28mmとし、凹部2、102の裏面側から押圧加重Pをかけ、分割されたときの抗折加重を測定した。尚、試料の幅Hは12mmで押圧速度は5mm/分とした。以上の測定結果を表1に示す。   Further, the bending load of the concave portions 2 and 102 is set such that the span L is 28 mm around the concave portions 2 and 102 in the ceramic members 1 and 101 before the division of the SEM analysis as shown in FIG. A pressing load P was applied from the back side of Nos. 2 and 102, and the bending load when divided was measured. The width H of the sample was 12 mm and the pressing speed was 5 mm / min. The above measurement results are shown in Table 1.

表1から解るように、比較例である試料番号6〜10においては、凹部102の表層部102aには溶融層116が有り、また、表には記載していないが、凹部102の周縁には、溶着物118が付着していたため、レーザー加工後に溶融層116や溶着物118が冷やされて、表層部102aや凹部102の周縁にマイクロクラックが発生した。   As can be seen from Table 1, in sample numbers 6 to 10 which are comparative examples, the surface layer portion 102a of the recess 102 has a molten layer 116, and although not shown in the table, Since the welded material 118 was adhered, the molten layer 116 and the welded material 118 were cooled after the laser processing, and microcracks were generated at the periphery of the surface layer portion 102a and the recess 102.

これらに対し、本実施形態の電子部品の構成の一部であるセラミック部材1の実施例である試料番号1〜5は、凹部2の表層部2aには溶融層116は実質的に存在せず、また、表には記載してはいないが、凹部2の周縁には溶着物118の付着もなかったため、マイクロクラックが実質的に存在しない凹部2を形成することができた。   On the other hand, in sample numbers 1 to 5 which are examples of the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment, the molten layer 116 does not substantially exist in the surface layer portion 2a of the recess 2. In addition, although not shown in the table, the welded material 118 did not adhere to the periphery of the recess 2, so that the recess 2 substantially free of microcracks could be formed.

また、凹部2、102の幅Dのバラツキつまり境界線間距離のバラツキは、上記比較例の試料番号6〜10の平均値は52μm、また深さのバラツキは35μmと、いずれも大きな値であったのに対し、本実施形態の電子部品の構成の一部であるセラミック部材1の実施例である試料番号1〜5の境界線バラツキの平均値は2.4μm、深さのバラツキの平均値は5.8μmと良好であったため、凹部2で分割すると凹部2の表層部2aの表面の凹凸が少なく表面状態が良好で、かつ、深さのバラツキが小さいことから分割不具合によるバリ等の発生もなかった。   Further, the variation in the width D of the recesses 2 and 102, that is, the variation in the distance between the boundary lines, the average value of the sample numbers 6 to 10 in the comparative example was 52 μm, and the variation in the depth was 35 μm, both of which were large values. On the other hand, the average value of the boundary line variation of sample numbers 1 to 5, which is an example of the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment, is 2.4 μm, and the average value of the variation in depth. Was 5.8 μm, so when divided by the concave portion 2, the surface layer portion 2a of the concave portion 2 had few surface irregularities and the surface state was good, and the variation in depth was small. There was not.

さらに、凹部2、102の抗折加重は比較例の試料番号6〜10の平均値が6.4Nでかつ、そのバラツキも大きいが、本実施形態の電子部品の構成の一部であるセラミック部材1の実施例である試料番号1〜5の平均値は5.0Nと低い値で、かつバラツキも小さいので、凹部2における分割性が向上した。   Furthermore, the bending load of the concave portions 2 and 102 is 6.4N as the average value of the sample numbers 6 to 10 of the comparative example and the variation thereof is large, but the ceramic member which is a part of the configuration of the electronic component of the present embodiment Since the average value of Sample Nos. 1 to 5 as an example of Example 1 was a low value of 5.0 N and the variation was small, the splitting property in the concave portion 2 was improved.

これらから、本実施形態の電子部品の構成の一部であるセラミック部材1は、従来のレーザー加工の欠点とされていた、溶融層116や溶着物118の付着がなく、また、高精度な寸法位置精度の凹部2が形成できるとともに、その深さdも、従来のレーザー加工では得られないバラツキの少ないものが作製できるので、分割用溝3或いは半導体チップ搭載用凹部4として好適である。   From these, the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment has no adhesion of the melted layer 116 or the welded material 118, which has been a defect of the conventional laser processing, and has a high-accuracy dimension. Since the position-accurate recess 2 can be formed and the depth d thereof can be produced with less variation that cannot be obtained by conventional laser processing, it is suitable as the dividing groove 3 or the semiconductor chip mounting recess 4.

つぎに、上述したセラミック部材1を用いて、熱照射の移動速度sを変化させた試料を作成し、溶融層116、溶着物118の発生の確認をおこなった。   Next, using the ceramic member 1 described above, a sample in which the moving speed s of heat irradiation was changed was created, and the generation of the molten layer 116 and the welded material 118 was confirmed.

本実施形態の電子部品の構成の一部であるセラミック部材1の加工条件は、実施例1と同様に上記セラミック焼結体1’の主面1’aに、凹部2の加工幅Dが30μm、深さdが100μmの連続した分割用溝3を、COレーザー発振により図12(b)に示すな立ち上がりの遅いパルス波形24を用い、図13に示すように、ON信号26の時間を3
0μsec.とし、パルス周期を100μsec.(周波数10KHz)で照射し、レー
ザー光21の移動速度sを8、9、10、13、20m/分でおこない、それぞれ試料番号を11〜15とした。
The processing conditions of the ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment are the same as in Example 1, and the processing width D of the recess 2 is 30 μm on the main surface 1′a of the ceramic sintered body 1 ′. the split groove 3 depth d are continuous in 100 [mu] m, using a slowly rising pulse waveform 24 Do shown in FIG. 12 (b) by a CO 2 laser oscillator, as shown in FIG. 13, the time oN signal 26 3
0 μsec. And the pulse period is 100 μsec. Irradiation was performed at a frequency of 10 kHz, and the moving speed s of the laser beam 21 was 8, 9, 10, 13, 20 m / min, and the sample numbers were 11 to 15, respectively.

ここで、上記レーザー光21の照射面における温度は、試料番号11、12では約2100〜2200℃、一方で、試料番号13〜15では約1770〜1950℃である。   Here, the temperature on the irradiation surface of the laser beam 21 is about 2100 to 2200 ° C. for sample numbers 11 and 12, while it is about 1770 to 1950 ° C. for sample numbers 13 to 15.

そして、上記加工されたセラミック部材1の凹部2への溶融層116の有無ならびに、凹部2の周縁への溶着物118の付着の有無の確認を目視でおこなった。以上の結果を表2に示す。   Then, the presence / absence of the melted layer 116 in the recess 2 of the processed ceramic member 1 and the presence / absence of the adhesion of the welded material 118 to the peripheral edge of the recess 2 were visually confirmed. The results are shown in Table 2.

表2から解るように、レーザー光21の熱照射の移動速度sが8m/分の試料番号11は凹部2に溶融層116が存在し、また、凹部2の周縁には溶着物118が付着していた。上記移動速度sが9m/分の試料番号12は凹部2に溶融層116は存在ししていたが、凹部2の周縁には溶着物118の付着は無かった。上記移動速度sが10m/分以上の試料番号13〜15は凹部2への溶融層116の存在ならびに、凹部2の周縁への溶着物118の付着のいずれも皆無であった。   As can be seen from Table 2, in Sample No. 11 where the moving speed s of the laser beam 21 is 8 m / min, the melted layer 116 exists in the recess 2, and the welded material 118 adheres to the periphery of the recess 2. It was. Sample No. 12 having a moving speed s of 9 m / min had the melted layer 116 in the concave portion 2, but the welded material 118 did not adhere to the periphery of the concave portion 2. In Sample Nos. 13 to 15 having the moving speed s of 10 m / min or more, there was no existence of the melted layer 116 in the concave portion 2 and adhesion of the welded material 118 to the peripheral edge of the concave portion 2.

これより熱照射の移動速度sを遅くすると、前述したような立ち上がりが遅く、立ち上がりの途中でカットするパルス波形24で加工する方法であっても、主成分であるセラミックの溶融が始まり溶融層や溶着物が発生することが解る。したがって、好ましい熱照射の移動速度sは10m/分以上で誤差範囲を考慮すると13m/分以上とすることがより好ましい。   If the moving speed s of the heat irradiation is made slower than this, the rise is slow as described above, and even in the method of processing with the pulse waveform 24 that is cut in the middle of the rise, the main component ceramic starts to melt, It can be seen that a deposit is generated. Therefore, the preferable moving speed s of heat irradiation is 10 m / min or more, and more preferably 13 m / min or more in consideration of the error range.

実施例1で用いたものと同一のセラミック焼結体1’、101’を用いて、凹部2、102を次の条件により形成した。   Using the same ceramic sintered bodies 1 ′ and 101 ′ as those used in Example 1, the recesses 2 and 102 were formed under the following conditions.

本実施形態の電子部品の構成の一部であるセラミック部材1は、上記セラミック焼結体1’の主面1a’に、凹部2の加工幅Dが30μm、深さdが100μmの連続した分割用溝3をレーザー光21の移動速度sを13m/分で凹部2を作製した。   The ceramic member 1 which is a part of the configuration of the electronic component of the present embodiment is a continuous division in which the processing width D of the recess 2 is 30 μm and the depth d is 100 μm on the main surface 1a ′ of the ceramic sintered body 1 ′. The concave portion 2 was produced in the groove 3 at a moving speed s of the laser beam 21 of 13 m / min.

熱照射の条件は、COレーザー発振が図12(b)に示すような立ち上がりの遅いパルス波形24を用い、試料番号16は図13に示すように、ON信号26の時間を38μsec.とし、パルス周期を125μsec.(周波数8000Hz)、試料番号17は
上記ON信号26の時間を33μsec.とし、パルス周期を111μsec.(周波数9000Hz)、試料番号18は上記ON信号26の時間を30μsec.とし、パルス
周期を100μsec.(周波数10KHz)、試料番号19は上記ON信号26の時間
を25μsec.とし、パルス周期を87μsec.(周波数11.5KHz)、試料番
号20は上記ON信号26の時間を23μsec.とし、パルス周期を77μsec.(
周波数13KHz)で加工した。ここで、上記レーザー光21の照射面における温度は試
料番号16が約2030℃、一方で、試料番号17〜20は約1770℃〜1950℃である。
The conditions of the heat irradiation were such that the pulse waveform 24 with a slow rise of CO 2 laser oscillation as shown in FIG. 12B was used, and the sample number 16 was set to 38 μsec. And the pulse period is 125 μsec. (Frequency 8000 Hz) Sample No. 17 has a time of 33 μsec. And the pulse period is 111 μsec. (Frequency 9000 Hz) Sample No. 18 has a time of 30 μsec. And the pulse period is 100 μsec. (Frequency: 10 kHz) Sample No. 19 sets the time of the ON signal 26 to 25 μsec. And the pulse period is 87 μsec. (Frequency 11.5 kHz) Sample No. 20 has the above ON signal 26 time of 23 μsec. And the pulse period is 77 μsec. (
Processing was performed at a frequency of 13 kHz. Here, as for the temperature on the irradiation surface of the laser beam 21, the sample number 16 is about 2030 ° C, while the sample numbers 17 to 20 are about 1770 ° C to 1950 ° C.

また、比較例として、同一のセラミック焼結体1’を用いて、上記セラミック焼結体1’の主面に、凹部102の加工幅Dが90μm、深さdが100μmの分割用溝103をレーザー光21の移動速度sを8m/分で作製した。この時の熱照射条件は、COレーザー発振により図12(a)に示すような立ち上がりの早いパルス波形24を用い、ON信号26の時間を400μsec.とし、パルス周期を1050μsec.(周波数952Hz)、照射面における温度を約3400℃で加工したものを試料番号21とした。 Further, as a comparative example, using the same ceramic sintered body 1 ′, a dividing groove 103 having a processing width D of the recess 102 of 90 μm and a depth d of 100 μm is formed on the main surface of the ceramic sintered body 1 ′. The moving speed s of the laser beam 21 was 8 m / min. The heat irradiation conditions at this time were as follows: a pulse waveform 24 having a fast rise as shown in FIG. 12A by CO 2 laser oscillation, and the ON signal 26 time being 400 μsec. And the pulse period is 1050 μsec. Sample No. 21 was processed at a frequency of 952 Hz and the temperature on the irradiated surface was about 3400 ° C.

そして、各試料に形成された凹部2、102の表層部2a、102aについてEPMA分析をおこなうことにより、添加剤の分散状態とその割合を確認した。ここで凹部2、102の表層部2a、102aの面積に対し、95%以下の面積にシリカが存在する場合を偏在すると定義する。尚、熱照射等を加えないセラミック部材1の表面及び断面に存在するシリカの面積の割合は、ある任意に定められた面積中の97〜99%程度である。   Then, EPMA analysis was performed on the surface layer portions 2a and 102a of the recesses 2 and 102 formed in each sample, thereby confirming the dispersion state and the ratio of the additive. Here, the case where silica is present in an area of 95% or less with respect to the area of the surface layer portions 2a and 102a of the recesses 2 and 102 is defined as uneven distribution. In addition, the ratio of the area of the silica which exists in the surface and cross section of the ceramic member 1 which does not add heat irradiation etc. is about 97 to 99% in a certain arbitrarily defined area.

つぎに、上記凹部2、102の幅12mmに亘る、主面1a、101aとの境界線間距離のバラツキと深さのバラツキを実施例1と同様の方法で測定した。   Next, the variation in the distance between the boundary lines with the main surfaces 1a and 101a and the variation in the depth over the width 12 mm of the recesses 2 and 102 were measured in the same manner as in Example 1.

つぎに、上記凹部2、102に沿って分割後、図15に示すように、分割した凹部2、102の表層部2a、102aに電極17をテスト用に形成した。電極17のペーストは市販されている銅電極ペーストを用い膜厚が50μmとなるように塗布し、窒素還元炉にて850℃で焼成した。尚、上記ペーストには添加剤としてシリカが含まれているものである。   Next, after dividing along the concave portions 2 and 102, as shown in FIG. 15, electrodes 17 were formed on the surface layer portions 2a and 102a of the divided concave portions 2 and 102 for testing. The paste of the electrode 17 was applied using a commercially available copper electrode paste so as to have a film thickness of 50 μm, and baked at 850 ° C. in a nitrogen reduction furnace. The paste contains silica as an additive.

そして、直径1mmのアルミニウム円柱を上記電極17の表面に樹脂接着剤で接着し、電極17の面に対し、垂直方向に引っ張ることにより電極17とセラミック部材1、101の剥離強度の測定を行った。尚、引っ張り速度は1mm/分とした。以上の結果を表3に示す。   Then, an aluminum cylinder having a diameter of 1 mm was adhered to the surface of the electrode 17 with a resin adhesive, and the peel strength between the electrode 17 and the ceramic members 1 and 101 was measured by pulling in a direction perpendicular to the surface of the electrode 17. . The pulling speed was 1 mm / min. The above results are shown in Table 3.

表3から解るように、比較例である試料番号21の凹部102の表層部102aには、シリカが一様に分散をしており、また、その分散は表層部102aの面積の99%に相当するものであり、また、試料番号16は、上記シリカの分布の割合は90%であり、偏在の程度が小さかった。これにより、試料番号21では、上記シリカと電極17中のシリカとの相互拡散の作用が小さかったため、セラミック部材1に対する電極の剥離強度が低くなり、セラミック部材1と電極17との密着強度が著しく低下した。   As can be seen from Table 3, silica is uniformly dispersed in the surface layer portion 102a of the concave portion 102 of the sample number 21, which is a comparative example, and the dispersion corresponds to 99% of the area of the surface layer portion 102a. In Sample No. 16, the silica distribution ratio was 90%, and the degree of uneven distribution was small. Thereby, in sample number 21, since the action of mutual diffusion between the silica and the silica in the electrode 17 was small, the peel strength of the electrode with respect to the ceramic member 1 was lowered, and the adhesion strength between the ceramic member 1 and the electrode 17 was remarkably high. Declined.

これに対して、本実施形態の電子部品の構成の一部であるセラミック部材1の実施例で
ある試料番号17〜20は、いずれも上記シリカは表層部102aで偏在し、その分布の割合は表層部102aの面積において50〜80%を占めていた。これにより、上記シリカと電極17中のシリカとが相互拡散することによって、セラミック部材1と電極17との密着強度が向上したため、電極17の剥離強度が増大した。
On the other hand, as for the sample numbers 17-20 which are the examples of the ceramic member 1 which is a part of the structure of the electronic component of this embodiment, the said silica is unevenly distributed by the surface layer part 102a, and the ratio of the distribution is It occupied 50 to 80% in the area of the surface layer part 102a. Thereby, since the adhesion strength between the ceramic member 1 and the electrode 17 was improved by the mutual diffusion of the silica and the silica in the electrode 17, the peel strength of the electrode 17 was increased.

一方で、試料番号16は、境界線間距離のバラツキが4.3μm、深さバラツキが8.4μmと各バラツキが大きかったため、電極形成時に印刷不良が生じ、電極の剥離強度が若干増大した。   On the other hand, Sample No. 16 had a large variation in the distance between the boundary lines of 4.3 μm and the depth variation of 8.4 μm, so that printing failure occurred at the time of electrode formation, and the peel strength of the electrode slightly increased.

しかしながら、試料番号17〜20の境界線間距離のバラツキは4.0μm以下、また深さバラツキは8.0μm以下であったため、上述したような電極形成時の印刷不良を抑制でき、電極の密着強度がさらに改善された値となった。   However, the variation in the distance between the boundary lines of sample numbers 17 to 20 was 4.0 μm or less, and the depth variation was 8.0 μm or less. The strength was further improved.

また、上記凹部2、102に電極形成し、その剥離強度のテスト結果は、比較例の試料番号21が30MPa、また、試料番号16が39MPaに対し、本実施形態の電子部品の構成の一部であるセラミック部材1の実施例である試料番号17〜20は45〜54MPaであり、凹部の表層部にシリカの偏在があると、たとえば、上記凹部を分割後に端面電極を形成すると、電極の密着強度を向上できることがわかる。また、実施例中にはないが、本実施形態の電子部品の構成の一部であるセラミック部材の凹部を半導体チップ搭載用凹部として用いると、凹部の表層部に溶融層が無く、その周縁に溶着物も付着していないので、下地層として薄膜金属層を蒸着した場合、高いアンカー効果がえられるとともに、周縁の繊細な回路パターンが溶着物により断線する虞も無い。   Also, electrodes were formed in the recesses 2 and 102, and the test results of the peel strength showed that the sample number 21 of the comparative example was 30 MPa and the sample number 16 was 39 MPa, and part of the configuration of the electronic component of this embodiment Sample numbers 17 to 20 which are examples of the ceramic member 1 are 45 to 54 MPa, and if the surface layer portion of the concave portion is unevenly distributed, for example, if the end face electrode is formed after dividing the concave portion, the electrode adhesion It can be seen that the strength can be improved. Further, although not in the examples, when the concave portion of the ceramic member, which is a part of the configuration of the electronic component of the present embodiment, is used as the concave portion for mounting the semiconductor chip, there is no molten layer in the surface layer portion of the concave portion, and the periphery thereof Since the welded material is not attached, when a thin metal layer is deposited as the base layer, a high anchor effect can be obtained, and there is no possibility that the delicate circuit pattern on the periphery is disconnected by the welded material.

1、101:セラミック部材
2、102:凹部
2a、102a:表層部
3、103:分割用溝
4、104:半導体チップ搭載用凹部
5、105:電子部品
6、106:回路パターン
7、107:端面電極
8:薄膜金属層
9:金属層
10:半導体チップ
11:導電体
13:結晶粒子
14:ガラス質
15:添加剤
16:セラミック基板
17:電極
18:変質層
19:亀裂
20:熱照射
21:レーザー光
22:集光レンズ
23:加工テーブル
24:パルス波形
25:ノーマルレーザーの発振信号
26:ON信号
116:溶融層
117:マイクロクラック
118:溶着物
119:亀裂
DESCRIPTION OF SYMBOLS 1,101: Ceramic member 2,102: Concave part 2a, 102a: Surface layer part 3,103: Dividing groove | channel 4,104: Concave part for mounting a semiconductor chip 5,105: Electronic component 6,106: Circuit pattern 7,107: End surface Electrode 8: Thin film metal layer 9: Metal layer 10: Semiconductor chip 11: Conductor 13: Crystal particle 14: Glassy 15: Additive 16: Ceramic substrate 17: Electrode 18: Altered layer 19: Crack 20: Thermal irradiation 21: Laser beam 22: Condensing lens 23: Processing table 24: Pulse waveform 25: Normal laser oscillation signal 26: ON signal 116: Molten layer 117: Micro crack 118: Welded material 119: Crack

Claims (1)

Al 91〜99.6質量%、添加成分としてSiO ,MgO,CaOとを含有してなるセラミック基板の少なくとも一方の主面に導電体を形成し、前記セラミック基板の側面表層部にSiを前記側面表層部の表面の面積の50〜90%で存在させ、該側面表層部にSiを含有する電極を形成するとともに、該電極と前記導電体とを導通したことを特徴とする電子部品。 Al 2 O 3 91~99.6 wt%, SiO 2, MgO, forming a conductor on at least one major surface of the ceramic substrate comprising a CaO, side surface portion of the front Symbol ceramic substrate as an additive component Si is present in 50 to 90% of the surface area of the side surface layer portion, an electrode containing Si is formed on the side surface layer portion, and the electrode and the conductor are electrically connected. Electronic components.
JP2010249832A 2010-11-08 2010-11-08 Electronic components Active JP5183717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249832A JP5183717B2 (en) 2010-11-08 2010-11-08 Electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249832A JP5183717B2 (en) 2010-11-08 2010-11-08 Electronic components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004220726A Division JP4744110B2 (en) 2004-07-28 2004-07-28 Ceramic member, method for manufacturing the same, and electronic component using the same

Publications (2)

Publication Number Publication Date
JP2011091411A JP2011091411A (en) 2011-05-06
JP5183717B2 true JP5183717B2 (en) 2013-04-17

Family

ID=44109319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249832A Active JP5183717B2 (en) 2010-11-08 2010-11-08 Electronic components

Country Status (1)

Country Link
JP (1) JP5183717B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841558B2 (en) * 2011-08-02 2014-09-23 Medtronic Inc. Hermetic feedthrough
US8670829B2 (en) 2011-08-02 2014-03-11 Medtronic, Inc. Insulator for a feedthrough
US9627833B2 (en) 2011-08-02 2017-04-18 Medtronic, Inc. Electrical leads for a feedthrough
US9724524B2 (en) 2011-08-02 2017-08-08 Medtronic, Inc. Interconnection of conductor to feedthrough

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239586A (en) * 1988-07-29 1990-02-08 Toshiba Corp Ceramic circuit board
JP3398914B2 (en) * 2000-08-28 2003-04-21 イビデン株式会社 Wiring board

Also Published As

Publication number Publication date
JP2011091411A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5725130B2 (en) Ceramic substrate
JP5189988B2 (en) Ceramic member and substrate for electronic parts
JP2007531640A (en) Method for forming a scribe line on a passive electronic device substrate
JP5183717B2 (en) Electronic components
EP3544940B1 (en) Ceramic-metal substrate with low amorphous phase
JP2009252971A (en) Metal-ceramics bonding substrate, manufacturing method therefor, and metal-ceramics bonding body
JP4744110B2 (en) Ceramic member, method for manufacturing the same, and electronic component using the same
JP7426971B2 (en) Silicon nitride ceramic assembly substrate
JP4140593B2 (en) Metallized substrate
JP2004296619A (en) Circuit board, manufacturing method and power module using the same
JP2009272647A (en) Method for manufacturing of circuit board
US6297469B1 (en) Process for producing a metal-ceramic substrate
JP2006321702A (en) Ceramic member and method of manufacturing the same and electronic component using the ceramic member
JP3574730B2 (en) Ceramic substrates and chip resistors for electronic components
KR100611290B1 (en) Ceramics substrate and method for manufacturing the same
Kita et al. Laser processing of materials for MCM-C applications
JP2005303149A (en) Ceramic substrate, method for manufacturing the same, and electronic component using the same
JP2003046206A (en) Ceramic substrate having dividing groove and its dividing method
CN116917076A (en) Method for processing a cermet substrate and cermet substrate
Fu et al. Characterization of glassy phase at the surface of alumina ceramics substrate and its effect on laser cutting
JP2692336B2 (en) Ceramics processing method
JPH04288202A (en) Manufacture of ceramic substrate
JP3572777B2 (en) Manufacturing method of electronic parts
JP2003338404A (en) Ceramic substrate having dividing grooves and manufacturing method thereof
CN115050721A (en) Semiconductor device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3