JP2004022574A - Thermoelectric conversion module and its manufacturing method - Google Patents

Thermoelectric conversion module and its manufacturing method Download PDF

Info

Publication number
JP2004022574A
JP2004022574A JP2002171293A JP2002171293A JP2004022574A JP 2004022574 A JP2004022574 A JP 2004022574A JP 2002171293 A JP2002171293 A JP 2002171293A JP 2002171293 A JP2002171293 A JP 2002171293A JP 2004022574 A JP2004022574 A JP 2004022574A
Authority
JP
Japan
Prior art keywords
thermoelectric element
conversion module
thermoelectric conversion
lead wire
type thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002171293A
Other languages
Japanese (ja)
Inventor
Hitoshi Tauchi
田内 比登志
Takahiro Kimura
木村 高廣
Seishi Moriyama
森山 誠士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2002171293A priority Critical patent/JP2004022574A/en
Publication of JP2004022574A publication Critical patent/JP2004022574A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To restrain generation of defect in a thermoelectric conversion module without requiring much skill. <P>SOLUTION: The thermoelectric conversion module is provided with a thermoelement connector 1 whereto a P-type thermoelement 1a and an N-type thermoelement 1b are electrically connected alternately in series, a substrate 2 which has an electrode 2b for electrically connecting the P-type thermoelement 1a and the N-type thermoelement 1b, a terminal electrode 4 which is provided to one end and the other end of the thermoelement connector 1, a pressure bonding member 5 which is electrically connected to the terminal electrode 4, and a lead 6 which is connected to the pressure bonding member 5 by deforming the member 5. The thermoelectric conversion module and its manufacturing method are provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は熱電変換モジュールおよびその製造方法に関する。
【0002】
【従来の技術】
図11は従来一般的に製造されている熱電変換モジュールの外観図である。熱電変換モジュールは、基板12、13に設けられた電極12a、13aと熱電素子11を半田材で接合し、P型熱電素子とN型熱電素子が交互に電気的に直列に接続された熱電素子接続体100を作製することによって製造される。熱電素子接続体100に設けられた端子電極には半田14によってリード線15が接続されている。このリード線の接続は、一般的に半田ゴテによる半田付けで行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、半田ゴテによる半田付けは作業者の熟練を要し、特にLD用のペルチェモジュールは非常に小型であるため、半田ゴテによる接続には非常に熟練が必要であり、製造工程で不良品が発生する確率が高い問題点があった。
【0004】
本発明は上記課題を解決したもので、高度な熟練がなくとも不良品の発生が抑えられる熱電変換モジュールおよびその製造方法を提供する。
【0005】
【課題を解決するための手段】
上記技術的課題を解決するために、本発明の請求項1において講じた技術的手段(以下、第1の技術的手段と称する。)は、P型熱電素子とN型熱電素子が交互に電気的に直列に接続された熱電素子接続体と、前記P型熱電素子と前記N型熱電素子を電気的に接続するための電極が備えられた基板と、前記熱電素子接続体の一方端と他方端に設けられた端子電極と、該端子電極に電気的に接続された圧着部材と、該圧着部材を変形することによって該圧着部材に接続されたリード線が設けられていることを特徴とする熱電変換モジュールである。
【0006】
上記第1の技術的手段による効果は、以下のようである。
【0007】
すなわち、圧着部材を使用することによってリード線を接続しているので、高度な熟練がなくとも不良品の発生を抑えることができる。
【0008】
上記技術的課題を解決するために、本発明の請求項2において講じた技術的手段(以下、第2の技術的手段と称する。)は、基板に備えられた電極によってP型熱電素子とN型熱電素子が交互に電気的に直列に接続された熱電素子接続体を備えた熱電変換モジュールの製造方法において、前記熱電素子接続体の一方端と他方端に設けられた端子電極に圧着部材を接続する接続工程と、前記圧着部材を変形することによってリード線を前記圧着部材に接続する圧着工程が設けられていることを特徴とする熱電変換モジュールの製造方法である。
【0009】
上記第2の技術的手段による効果は、以下のようである。
【0010】
すなわち、圧着部材を変形することによってリード線を接続するので、高度な熟練がなくとも不良品の発生を抑えることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施例について、図面に基づいて説明する。
【0012】
(実施例1)
図1は実施例1の熱電変換モジュールの外観図である。熱電変換モジュールは、熱電素子接続体1、基板2、3、圧着部材5、リード線6などから構成されている。熱電素子接続体1は基板2と基板3に挟持され、基板2、3に設けられた電極によりP型熱電素子1aとN型熱電素子1bが交互に電気的に直列に接続されている。
【0013】
図2は実施例1の基板2の外観図である。基板2は、8.0mm×12.0mm×高さ0.3mmのアルミナ平板(絶縁体平板)2aの一方の表面上に、メッキにより電極2bおよび端子電極4が設けられている。基板3には端子電極が設けられていないが、8.0mm×11.0mm×高さ0.3mmのアルミナ平板上に基板2と同様に電極が設けられている。端子電極4の一方側には熱電素子接続体1の端に位置するP型熱電素子1aまたはN型熱電素子1bが接続されている。端子電極4の他方側には圧着部材5が半田により接合されている。図3は圧着部材5の外観図である。圧着部材5は、内径0.5mm、肉厚0.1mm、長さ3mmの銅製の円筒形状であり、表面にはニッケルメッキが施されている。使用したP型熱電素子1a、N型熱電素子1bは、それぞれ24個であり、その大きさは、いずれも電極に接合する面が一辺0.6mmの正方形で、高さが1.0mmである。
【0014】
図4〜7は実施例1の製造方法を説明する説明側面図である。図4のように、基板3のアルミナ平板(絶縁体平板)3a上に設けられた電極3b上にスクリーン印刷にてクリーム半田を印刷し半田部7を形成した。P型熱電素子1aまたはN型熱電素子1bの一方端を電極3bに当接した状態で半田部7が溶融するように加熱して、P型熱電素子1aまたはN型熱電素子1bと電極3bを接合した。
【0015】
続いて、図5のように、基板2のアルミナ平板(絶縁体平板)2a上に設けられた電極2bおよび端子電極4の上にスクリーン印刷にてクリーム半田を印刷し半田部8を形成した。半田部8の融点は半田部7の融点より低い。基板3に接合されたP型熱電素子1aまたはN型熱電素子1bの他方端を電極2bに当接し、かつ圧着部材5を端子電極4に当接して、半田部8が溶融するが半田部7が溶融しないように加熱して、P型熱電素子1aまたはN型熱電素子1bと電極2bを接合した。
【0016】
こうして、図6のように、電極2bおよぶ電極3bによりP型熱電素子1aとN型熱電素子は交互に電気的に直列に接続され、熱電素子接続体1が形成される。同時に熱電素子接続体1の一方端と他方端に設けられた端子電極4に圧着部材5が接合される。
【0017】
次に、リード線6の先端を2mmだけ圧着部材5の内側に挿入し、圧着部材5を上方からプレスして押しつぶし、リード線6を圧着部材5に圧着接合した(図7)。リード線6は、径0.3mm、長さ50mmの 表面ニッケルメッキした軟銅線である。その後、リード線6を直角に折り曲げ、2つのリード線6を同じ方向に取り出した。
【0018】
以上の製造方法で22個の熱電変換モジュールを製造し、組み付け不良数、リード線引張不良数を評価した。組み付け不良は、圧着部材5と端子電極4の接合状態(半田流れ)を目視で観察し接合状態が悪いか、またはリード線6を軽く引っ張って圧着部材5からはずれるものを不良と判定した。リード線引張不良は、基板2の電極面に対し垂直方向に5mm/minの速度でリード線6を引っ張ったときにリード線6が剥離する強度が5Nより小さいものを不良と判定した。
【0019】
(実施例2)
図8は実施例2の熱電変換モジュールの外観図である。実施例2は、端子電極の形状と圧着部材の方向が異なる以外、実施例1と同じであり、同じ部位には同じ符号を用い、説明は省略する。実施例1の端子電極4はL字形であるのに対し、実施例2の端子電極41はI字形である。実施例1では圧着部材5は軸方向がリード線6の取り出し方向に直交しているのに対し、実施例2では圧着部材5の軸方向がリード線6の取り出し方向に一致している。基板2、3および熱電素子の大きさは実施例1と同じであるが、使用したP型熱電素子1a、N型熱電素子1bは、それぞれ23個である。
【0020】
実施例1では基板面を有効に使うことができ、熱電変換モジュールを小型化できるメリットがある。実施例2ではリード線6の折り曲げが不要で、リード線6の耐久性に優れているメリットがある。実施例2の熱電変換モジュールも実施例1と同様にして22個製造し、実施例1と同じ評価を行った。
【0021】
(比較例)
図10は比較例の熱電変換モジュールの外観図である。比較例は、リード線を半田で端子電極に接合した以外は、実施例1と同じであり、同じ部位には同じ符号を用い、説明は省略する。比較例は、従来技術と同様に半田部10にてリード線6を端子電極4に接合している。基板2、3、熱電素子の大きさおよび個数は実施例1と同じである。
【0022】
比較例の熱電変換モジュールは、圧着部材5を使用していない状態で、図4〜6に示した実施例1と同様に基板2と基板3で挟持された熱電素子接続体1を製造し、その後、半田材(Sn/Sb半田)を使用して半田ゴテでリード線6を端子電極4に接合し、リード線6を熱電変換モジュールの外方に直角に折り曲げて製造した。比較例の熱電変換モジュールも実施例1と同様にして22個製造し、実施例1と同様に組み付け不良数、リード線引張不良数を評価した。リード線引張不良は実施例1と同じ方法で評価した。組み付け不良数は、リード線6と端子電極4の接合状態(半田流れ)を目視で観察し接合状態が悪いものを不良と判定した。
【0023】
(評価結果)
表1に評価結果を示す。従来と同様の比較例では2個の組み付け不良、6個のリード線引張不良が発生したが、実施例1、2では全く不良が発生しなかった。
【0024】
【表1】

Figure 2004022574
実施例1、2では圧着部材を使用することによってリード線を接続しているので、リード線接続の品質が安定し、高度な熟練がなくとも不良品の発生を大幅に低減できたものである。
【0025】
なお、実施例1、2では圧着部材として円筒形状の部材を使用したが、特に限定されず、例えば、図9に示す板状部材を断面コの字状に折り曲げた部材9など、それ自身を変形させることによりリード線を接続できる部材なら何でもよい。
【0026】
【発明の効果】
以上のように、本発明は、P型熱電素子とN型熱電素子が交互に電気的に直列に接続された熱電素子接続体と、前記P型熱電素子と前記N型熱電素子を電気的に接続するための電極が備えられた基板と、前記熱電素子接続体の一方端と他方端に設けられた端子電極と、該端子電極に電気的に接続された圧着部材と、該圧着部材を変形することによって該圧着部材に接続されたリード線が設けられていることを特徴とする熱電変換モジュールおよびその製造方法であるので、高度な熟練がなくとも不良品の発生を抑えられる。
【図面の簡単な説明】
【図1】実施例1の熱電変換モジュールの外観図
【図2】実施例1の基板の外観図
【図3】圧着部材の外観図
【図4】実施例1の製造方法を説明する説明側面図
【図5】実施例1の製造方法を説明する説明側面図
【図6】実施例1の製造方法を説明する説明側面図
【図7】実施例1の製造方法を説明する説明側面図
【図8】実施例2の熱電変換モジュールの外観図
【図9】圧着部材の変形例の外観図
【図10】比較例の熱電変換モジュールの外観図
【図11】従来一般的に製造されている熱電変換モジュールの外観図
【符号の説明】
1…熱電素子接続体
1a…P型熱電素子
1b…N型熱電素子
2、3…基板
2b…電極
4…端子電極
5、9…圧着部材
6…リード線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric conversion module and a method for manufacturing the same.
[0002]
[Prior art]
FIG. 11 is an external view of a thermoelectric conversion module generally manufactured conventionally. The thermoelectric conversion module is a thermoelectric element in which electrodes 12a and 13a provided on substrates 12 and 13 and a thermoelectric element 11 are joined by a solder material, and a P-type thermoelectric element and an N-type thermoelectric element are alternately electrically connected in series. It is manufactured by manufacturing the connection body 100. A lead wire 15 is connected to a terminal electrode provided on the thermoelectric element connector 100 by a solder 14. The connection of the lead wires is generally performed by soldering with a soldering iron.
[0003]
[Problems to be solved by the invention]
However, soldering with a soldering iron requires the skill of an operator, and particularly the Peltier module for LD is very small, so connection with a soldering iron requires very skill, and defective products may occur during the manufacturing process. There is a problem that the probability of occurrence is high.
[0004]
The present invention has solved the above-mentioned problems, and provides a thermoelectric conversion module capable of suppressing occurrence of defective products without a high level of skill and a method for manufacturing the same.
[0005]
[Means for Solving the Problems]
In order to solve the above technical problem, the technical means (hereinafter referred to as first technical means) taken in claim 1 of the present invention is that a P-type thermoelectric element and an N-type thermoelectric element are alternately electrically operated. A thermoelectric element connector connected in series, a substrate provided with electrodes for electrically connecting the P-type thermoelectric element and the N-type thermoelectric element, and one end and the other end of the thermoelectric element connector A terminal electrode provided at an end, a crimp member electrically connected to the terminal electrode, and a lead wire connected to the crimp member by deforming the crimp member are provided. It is a thermoelectric conversion module.
[0006]
The effects of the first technical means are as follows.
[0007]
That is, since the lead wires are connected by using the crimping member, the occurrence of defective products can be suppressed without a high level of skill.
[0008]
In order to solve the above technical problem, the technical means (hereinafter referred to as the second technical means) taken in claim 2 of the present invention is based on an electrode provided on a substrate and an N-type thermoelectric element. In a method of manufacturing a thermoelectric conversion module including thermoelectric element connectors, in which thermoelectric elements are alternately electrically connected in series, a crimp member is attached to a terminal electrode provided at one end and the other end of the thermoelectric element connector. A method for manufacturing a thermoelectric conversion module, comprising: a connecting step of connecting; and a crimping step of connecting a lead wire to the crimping member by deforming the crimping member.
[0009]
The effects of the second technical means are as follows.
[0010]
That is, since the lead wires are connected by deforming the crimping member, the occurrence of defective products can be suppressed without a high level of skill.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
(Example 1)
FIG. 1 is an external view of the thermoelectric conversion module according to the first embodiment. The thermoelectric conversion module includes a thermoelectric element connector 1, substrates 2, 3, a crimping member 5, a lead wire 6, and the like. The thermoelectric element connector 1 is sandwiched between a substrate 2 and a substrate 3, and P-type thermoelectric elements 1 a and N-type thermoelectric elements 1 b are alternately and electrically connected in series by electrodes provided on the substrates 2 and 3.
[0013]
FIG. 2 is an external view of the substrate 2 according to the first embodiment. The substrate 2 has an electrode 2b and a terminal electrode 4 provided on one surface of an alumina flat plate (insulator flat plate) 2a having a size of 8.0 mm × 12.0 mm × height 0.3 mm by plating. Although no terminal electrode is provided on the substrate 3, an electrode is provided on a flat alumina plate having a size of 8.0 mm × 11.0 mm × 0.3 mm in height, similarly to the substrate 2. A P-type thermoelectric element 1a or an N-type thermoelectric element 1b located at an end of the thermoelectric element connector 1 is connected to one side of the terminal electrode 4. A crimping member 5 is joined to the other side of the terminal electrode 4 by soldering. FIG. 3 is an external view of the crimping member 5. The crimping member 5 has a copper cylindrical shape with an inner diameter of 0.5 mm, a wall thickness of 0.1 mm, and a length of 3 mm, and has a surface plated with nickel. The number of the used P-type thermoelectric elements 1a and N-type thermoelectric elements 1b is 24, and their size is a square whose side to be connected to the electrode is 0.6 mm on a side and 1.0 mm in height. .
[0014]
4 to 7 are explanatory side views illustrating the manufacturing method of the first embodiment. As shown in FIG. 4, cream solder was printed by screen printing on the electrodes 3 b provided on the alumina flat plate (insulator flat plate) 3 a of the substrate 3 to form the solder portions 7. The P-type thermoelectric element 1a or the N-type thermoelectric element 1b is heated so that the solder portion 7 is melted in a state where one end of the P-type thermoelectric element 1a or the N-type thermoelectric element 1b is in contact with the electrode 3b. Joined.
[0015]
Subsequently, as shown in FIG. 5, cream solder was printed by screen printing on the electrodes 2 b and the terminal electrodes 4 provided on the alumina flat plate (insulator flat plate) 2 a of the substrate 2 to form a solder portion 8. The melting point of the solder part 8 is lower than the melting point of the solder part 7. The other end of the P-type thermoelectric element 1a or the N-type thermoelectric element 1b joined to the substrate 3 abuts on the electrode 2b, and the crimping member 5 abuts on the terminal electrode 4. Was heated so as not to melt, and the P-type thermoelectric element 1a or N-type thermoelectric element 1b and the electrode 2b were joined.
[0016]
Thus, as shown in FIG. 6, the P-type thermoelectric element 1a and the N-type thermoelectric element are alternately and electrically connected in series by the electrode 2b and the electrode 3b, and the thermoelectric element connector 1 is formed. At the same time, the crimping member 5 is joined to the terminal electrodes 4 provided at one end and the other end of the thermoelectric element connector 1.
[0017]
Next, the tip of the lead wire 6 was inserted into the crimping member 5 by 2 mm, the crimping member 5 was pressed from above and crushed, and the lead wire 6 was crimped to the crimping member 5 (FIG. 7). The lead wire 6 has a diameter of 0.3 mm and a length of 50 mm.   Annealed copper wire with nickel plating on the surface. Thereafter, the lead wire 6 was bent at a right angle, and the two lead wires 6 were taken out in the same direction.
[0018]
22 thermoelectric conversion modules were manufactured by the above manufacturing method, and the number of assembly failures and the number of lead wire tensile failures were evaluated. As for the assembly failure, the bonding state (solder flow) between the crimping member 5 and the terminal electrode 4 was visually observed, and it was determined that the bonding state was bad or that the lead wire 6 was lightly pulled and came off from the crimping member 5 as defective. The poor lead wire tensile strength was determined to be poor if the strength at which the lead wire 6 peeled when the lead wire 6 was pulled at a speed of 5 mm / min in the direction perpendicular to the electrode surface of the substrate 2 was smaller than 5N.
[0019]
(Example 2)
FIG. 8 is an external view of the thermoelectric conversion module according to the second embodiment. The second embodiment is the same as the first embodiment, except that the shape of the terminal electrode and the direction of the crimping member are different. The terminal electrode 4 of the first embodiment is L-shaped, while the terminal electrode 41 of the second embodiment is I-shaped. In the first embodiment, the axial direction of the crimping member 5 is orthogonal to the direction in which the lead wire 6 is taken out, whereas in the second embodiment, the axial direction of the crimping member 5 matches the direction in which the lead wire 6 is taken out. The sizes of the substrates 2, 3 and the thermoelectric elements are the same as in the first embodiment, but the number of the used P-type thermoelectric elements 1a and the number of the N-type thermoelectric elements 1b are 23.
[0020]
The first embodiment has an advantage that the substrate surface can be used effectively and the thermoelectric conversion module can be downsized. In the second embodiment, the lead wire 6 does not need to be bent, and has an advantage that the durability of the lead wire 6 is excellent. Twenty-two thermoelectric conversion modules of Example 2 were manufactured in the same manner as in Example 1, and the same evaluation as in Example 1 was performed.
[0021]
(Comparative example)
FIG. 10 is an external view of a thermoelectric conversion module of a comparative example. The comparative example is the same as Example 1 except that the lead wire was joined to the terminal electrode with solder. The same reference numerals are used for the same portions, and the description is omitted. In the comparative example, the lead wire 6 is joined to the terminal electrode 4 at the solder portion 10 as in the conventional technique. The size and number of the substrates 2 and 3 and the thermoelectric elements are the same as in the first embodiment.
[0022]
The thermoelectric conversion module of the comparative example manufactures the thermoelectric element connector 1 sandwiched between the substrate 2 and the substrate 3 in the same manner as in Example 1 shown in FIGS. Thereafter, the lead wire 6 was joined to the terminal electrode 4 with a soldering iron using a solder material (Sn / Sb solder), and the lead wire 6 was bent outward at right angles to the thermoelectric conversion module. Twenty-two thermoelectric conversion modules of the comparative example were manufactured in the same manner as in Example 1, and the number of assembly failures and the number of lead wire tensile failures were evaluated in the same manner as in Example 1. Poor lead wire tension was evaluated in the same manner as in Example 1. The number of defective assembly was determined by visually observing the bonding state (solder flow) between the lead wire 6 and the terminal electrode 4 and determining that the bonding state was poor if the bonding state was poor.
[0023]
(Evaluation results)
Table 1 shows the evaluation results. In the comparative example similar to the conventional example, two assembly failures and six lead wire tensile failures occurred, but in Examples 1 and 2, no failure occurred.
[0024]
[Table 1]
Figure 2004022574
In the first and second embodiments, since the lead wires are connected by using a crimping member, the quality of the lead wire connection is stabilized, and the occurrence of defective products can be greatly reduced without a high level of skill. .
[0025]
In the first and second embodiments, the cylindrical member is used as the pressure-bonding member. However, the member is not particularly limited. For example, the member 9 such as a member 9 obtained by bending a plate-shaped member shown in FIG. Any member can be used as long as it can connect the lead wire by being deformed.
[0026]
【The invention's effect】
As described above, the present invention provides a thermoelectric element connector in which a P-type thermoelectric element and an N-type thermoelectric element are alternately electrically connected in series, and electrically connects the P-type thermoelectric element and the N-type thermoelectric element. A substrate provided with electrodes for connection, terminal electrodes provided at one end and the other end of the thermoelectric element connector, a crimp member electrically connected to the terminal electrode, and a deformation of the crimp member Accordingly, the thermoelectric conversion module is characterized in that the lead wire connected to the crimping member is provided and the method for manufacturing the same. Therefore, the occurrence of defective products can be suppressed without a high level of skill.
[Brief description of the drawings]
FIG. 1 is an external view of a thermoelectric conversion module according to a first embodiment. FIG. 2 is an external view of a substrate according to the first embodiment. FIG. 3 is an external view of a crimping member. FIG. 5 is an explanatory side view for explaining the manufacturing method of Example 1. FIG. 6 is an explanatory side view for explaining the manufacturing method of Example 1. FIG. 7 is an explanatory side view for explaining the manufacturing method of Example 1. FIG. 8 is an external view of a thermoelectric conversion module according to a second embodiment. FIG. 9 is an external view of a modified example of a crimping member. FIG. 10 is an external view of a thermoelectric conversion module of a comparative example. External view of thermoelectric conversion module [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Thermoelectric element connector 1a ... P-type thermoelectric element 1b ... N-type thermoelectric element 2, 3 ... Substrate 2b ... Electrode 4 ... Terminal electrode 5, 9 ... Crimp member 6 ... Lead wire

Claims (2)

P型熱電素子とN型熱電素子が交互に電気的に直列に接続された熱電素子接続体と、前記P型熱電素子と前記N型熱電素子を電気的に接続するための電極が備えられた基板と、前記熱電素子接続体の一方端と他方端に設けられた端子電極と、該端子電極に電気的に接続された圧着部材と、該圧着部材を変形することによって該圧着部材に接続されたリード線が設けられていることを特徴とする熱電変換モジュール。A thermoelectric element connector in which a P-type thermoelectric element and an N-type thermoelectric element were alternately electrically connected in series, and an electrode for electrically connecting the P-type thermoelectric element and the N-type thermoelectric element were provided. A substrate, a terminal electrode provided at one end and the other end of the thermoelectric element connector, a crimp member electrically connected to the terminal electrode, and a crimp member connected to the crimp member by deforming the crimp member. A thermoelectric conversion module, wherein a lead wire is provided. 基板に備えられた電極によってP型熱電素子とN型熱電素子が交互に電気的に直列に接続された熱電素子接続体を備えた熱電変換モジュールの製造方法において、前記熱電素子接続体の一方端と他方端に設けられた端子電極に圧着部材を接続する接続工程と、前記圧着部材を変形することによってリード線を前記圧着部材に接続する圧着工程が設けられていることを特徴とする熱電変換モジュールの製造方法。In a method for manufacturing a thermoelectric conversion module including a thermoelectric element connector in which a P-type thermoelectric element and an N-type thermoelectric element are alternately electrically connected in series by electrodes provided on a substrate, one end of the thermoelectric element connector is provided. And a connecting step of connecting a crimping member to a terminal electrode provided at the other end, and a crimping step of connecting a lead wire to the crimping member by deforming the crimping member. Module manufacturing method.
JP2002171293A 2002-06-12 2002-06-12 Thermoelectric conversion module and its manufacturing method Pending JP2004022574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171293A JP2004022574A (en) 2002-06-12 2002-06-12 Thermoelectric conversion module and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171293A JP2004022574A (en) 2002-06-12 2002-06-12 Thermoelectric conversion module and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004022574A true JP2004022574A (en) 2004-01-22

Family

ID=31171195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171293A Pending JP2004022574A (en) 2002-06-12 2002-06-12 Thermoelectric conversion module and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004022574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049285A2 (en) * 2004-11-02 2006-05-11 Showa Denko K.K. Thermoelectric conversion module, thermoelectric power generating apparatus and method using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049285A2 (en) * 2004-11-02 2006-05-11 Showa Denko K.K. Thermoelectric conversion module, thermoelectric power generating apparatus and method using same
WO2006049285A3 (en) * 2004-11-02 2007-02-15 Showa Denko Kk Thermoelectric conversion module, thermoelectric power generating apparatus and method using same

Similar Documents

Publication Publication Date Title
JP3862870B2 (en) Electrical components with solderless terminal fittings
JP4909704B2 (en) Electrostatic chuck device
JP4580445B2 (en) Terminal and coil device using the same
US4920642A (en) Method for connecting wires to an electrical connector
JP2000331538A (en) Anisotropic conductive film and manufacture thereof
JP4431756B2 (en) Resin-sealed semiconductor device
US20100186997A1 (en) Crimped solder on a flexible circuit board
JP2007335260A (en) Connection structure between connection terminal of substrate, and covered conductor wire
JPH097647A (en) Wire connecting method
WO2001018553A1 (en) Conductive contact
JP2004022574A (en) Thermoelectric conversion module and its manufacturing method
TW201126842A (en) Socket connector having contact terminal tail with split solder ball retained thereon and method fabricating the same
US20110086558A1 (en) Electrical contact with improved material and method manufacturing the same
JP7111785B2 (en) Female contact manufacturing method
US9774112B2 (en) Press-fit terminal, semiconductor device, power conversion apparatus and method of manufacturing press-fit terminal
KR101698431B1 (en) Semiconductor power module pakage and methods of fabricating the same
CN110350339B (en) Conductive terminal, manufacturing method thereof and electric connector
JP3325755B2 (en) Semiconductor device, method of mounting the same, and method of inspecting the mounted portion
JP7111784B2 (en) Female contact manufacturing method
US20120009827A1 (en) Electrical Component
JP6381439B2 (en) Cable connection structure
CN111201621A (en) Thermoelectric module
US20220158399A1 (en) Joining structure and joining method of terminal and cable
JPH0982447A (en) Electric wire connecting method
JP2004076882A (en) Alloy wire fastening method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202