JP2004021116A - 光学素子冷却装置、光学装置、および、プロジェクタ - Google Patents

光学素子冷却装置、光学装置、および、プロジェクタ Download PDF

Info

Publication number
JP2004021116A
JP2004021116A JP2002178973A JP2002178973A JP2004021116A JP 2004021116 A JP2004021116 A JP 2004021116A JP 2002178973 A JP2002178973 A JP 2002178973A JP 2002178973 A JP2002178973 A JP 2002178973A JP 2004021116 A JP2004021116 A JP 2004021116A
Authority
JP
Japan
Prior art keywords
optical element
cooling
cooling fluid
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002178973A
Other languages
English (en)
Other versions
JP2004021116A5 (ja
Inventor
Motoyuki Fujimori
藤森 基行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002178973A priority Critical patent/JP2004021116A/ja
Publication of JP2004021116A publication Critical patent/JP2004021116A/ja
Publication of JP2004021116A5 publication Critical patent/JP2004021116A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】光学素子の冷却効率を良好にすることができる光学素子冷却装置、光学装置、および、プロジェクタを提供する。
【解決手段】光学素子冷却装置443は、内部に冷却流体を封入し、この冷却流体と射出側偏光板を接触させることで、射出側偏光板を冷却する。この光学素子冷却装置443は、内部に冷却流体が封入されるとともに、射出側偏光板を保持する光学素子保持体447と、この光学素子保持体447に封入された冷却流体を対流させる流体循環部材としてのパイプ448とを備えて構成されている。このうち、パイプ448は、光学素子保持体447の左右両側に配置され、光学素子保持体447の左右端縁に沿って延出し、互いに平行になるように配置されている。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、光学素子を冷却流体により冷却する光学素子冷却装置、光学装置、および、プロジェクタに関する。
【0002】
【背景技術】
光源ランプから射出された光束を、三色の色光R,G,Bに分離するダイクロイックミラーと、分離された光束を各色光毎に、画像情報に応じて変調する3枚の液晶パネルと、各液晶パネルで変調された光束を、合成するクロスダイクロイックプリズムとを備えた三板式のプロジェクタが知られている。
【0003】
このうち、液晶パネルは、マトリクス状に形成された画素電極およびこの画素電極に電圧を印加するTFT等の電極を有する駆動基板と、この駆動基板に形成された画素電極に対応した電極が形成された対向基板と、これら駆動基板および対向基板の間に封入される液晶層とを備えて構成されている。
また、この液晶パネルの光束入射側および光束射出側には所定の偏光軸を有する光束を透過させる偏光板が配置される。
【0004】
ここで、光源ランプからの光束が液晶パネルを透過する際には、液晶層による光吸収とともに、TFT等の電極への光遮断や画素電極の外縁部からの光漏洩を防ぐための遮光膜による光吸収によって、液晶パネルに熱が発生しやすい。また、この液晶パネルを透過した後、所定の偏光軸を有していない光束は、液晶パネルの光束射出側に配置された偏光板によって吸収され、偏光板に熱が発生しやすい。
【0005】
このため、このような光学素子を内部に有するプロジェクタは、光学素子の温度上昇を緩和するために、以下に示すような冷却装置を備えている。
すなわち、特開平3−144608号公報に記載された冷却装置は、矩形枠状の放熱器の内部に冷却液を充填する冷却室を形成している。そして、液晶パネルの画像形成領域に対応し、冷却室を閉塞する2枚の板のうち、一方に偏光フィルタを用いている。または、冷却室内に偏光フィルタを載置固定している。このような構成により、光源ランプから射出された光束によって偏光フィルタで発生した熱を冷却液により、直接、冷却している。
また、特開平4−31847号公報に記載された冷却装置は、液晶パネルと、光束入射側偏光フィルタおよび光束射出側偏光フィルタを上記冷却室内に配置する。そして、光源ランプから射出された光束によって液晶パネル、各偏光フィルタで発生した熱を冷却液により、直接、冷却している。
【0006】
【発明が解決しようとする課題】
しかしながら、上記のような冷却装置では、冷却室内に封入された冷却液の容量が少ない。このため、発熱した光学素子と冷却液との熱交換能力が低い。
また、上記のような冷却装置では、冷却室内に封入された冷却液の対流速度が遅い。このため、冷却液が発熱した光学素子により温められやすく、光学素子と冷却液との温度差が小さくなる。
【0007】
さらに、上記のような冷却装置では、冷却装置が小さい、すなわち、冷却室が小さいために、冷却室内に封入された冷却液の対流の制御をすることが困難である。
以上のことにより、冷却液により光学素子を効率的に冷却することができない、という問題がある。
【0008】
本発明の目的は、このような点に鑑みて、光学素子の冷却効率を良好にすることができる光学素子冷却装置、光学装置、および、プロジェクタを提供することにある。
【0009】
【課題を解決するための手段】
本発明の光学素子冷却装置は、光学素子を冷却流体により冷却する光学素子冷却装置であって、前記光学素子を保持する保持面を有し、内部に前記冷却流体が封入される冷却室が形成された光学素子保持体と、この光学素子保持体の冷却室と連通接続され、前記冷却流体を前記冷却室外部に案内し、再度、前記冷却室内部に導く複数の流体循環部材とを備え、少なくとも一対の流体循環部材は、前記光学素子保持体の端縁に沿って延出し、互いに平行に配置されていることを特徴とするものである。
【0010】
このような本発明によれば、光学素子冷却装置は、流体循環部材を備えていることにより、光学素子保持体の冷却室内だけでなく、流体循環部材にも冷却流体を封入し、冷却流体の容量を大きくすることができ、光学素子と冷却流体との熱交換能力を向上させることができる。
また、少なくとも一対の流体循環部材が、光学素子保持体の端縁に沿って延出し、互いに平行に配置されていることにより、流体循環部材が、所定の方向に冷却流体を導くことができるので、冷却室内に封入された冷却流体の対流の制御を容易に行え、かつ、冷却流体の対流速度を速めることができる。
【0011】
したがって、光学素子により冷却流体が温められて光学素子と冷却流体との温度差が小さくなることがなく、冷却流体により光学素子を効率的に冷却することができ、本発明の目的を達成できる。
【0012】
本発明の光学素子冷却装置では、前記一対の流体循環部材は、前記光学素子保持体を挟んで対向配置されていることが好ましい。前記光学素子保持体は、略直方体状に形成され、前記空洞部材は、前記光学素子保持体の左右端縁に沿って形成されていることが好ましい。
このような構成では、一対の流体循環部材が、光学素子保持体を挟んで対向配置されることにより、光学素子冷却装置を設置した際に、一対の流体循環部材の配置位置が、光学素子保持体の上下方向に位置すれば、一対の流体循環部材は、冷却流体の対流方向に配置されることになり、冷却室内の冷却流体の対流制御を容易に行うことができる。
【0013】
本発明の光学素子冷却装置では、前記光学素子保持体の保持面と直交し、かつ互いに対向する光学素子保持体の端面には、それぞれ、前記冷却室に貫通する孔が形成され、前記流体循環部材は、各孔間を連結する管状部材から構成されていることが好ましい。
このような構成では、光学素子保持体の保持面と直交し、かつ互いに対向する光学素子保持体の端面には、それぞれ、冷却室に貫通する孔が形成され、流体部材が、各孔間を連結する管状部材から構成されていることにより、光学素子保持体内の冷却流体を管状部材により冷却室外部に導き、再度、光学素子保持体内に導くことができ、冷却流体の対流制御を容易に行うことができる。
【0014】
なお、光学素子保持体の端面に形成する孔は、少なくとも1つ形成されていればよい。このような構成では、光学素子冷却装置を設計するにあたり、光学素子保持体の対向する端面に形成する孔の数を自由に設定することで、用途や要求性能等に応じて光学素子冷却装置の最適化を図ることができる。
【0015】
本発明の光学素子冷却装置では、前記光学素子保持体の端縁には、放熱用の冷却フィンが形成されていることが好ましい。
このような構成では、光学素子保持体の端縁に冷却フィンが形成されていることにより、この冷却フィンで光学素子保持体の放熱冷却ができるとともに、通常の空冷ファンを併用すれば、光学素子保持体の冷却効率を向上することができる。
【0016】
本発明の光学素子冷却装置では、前記冷却フィンには、前記光学素子保持体の端縁に沿って貫通する孔が形成され、前記流体循環部材は、この孔に挿通されていることが好ましい。
このような構成では、冷却フィンには孔が形成され、流体循環部材は、この孔に挿通されていることにより、光学素子と熱交換を行った冷却流体が内部を通過する際に温められた流体循環部材を、この冷却フィンにより放熱し、冷却することができる。したがって、流体循環部材に導かれる冷却流体の熱を放熱することができ、冷却流体の対流速度を増加させることができる。
【0017】
本発明の光学素子冷却装置では、前記冷却フィンには、フィン表面に突設され、前記光学素子保持体の端縁に沿って延びる凸条部が形成されていることが好ましい。
このような構成では、冷却フィンには、凸条部が形成されていることにより、冷却フィンと外部空気との接触面積を増加し、冷却フィンによる光学素子保持体の冷却効率をさらに向上させることができる。
【0018】
本発明の光学素子冷却装置では、前記光学素子保持体および前記流体循環部材は、アルミニウム、チタン等の金属製部材から構成されていることが好ましい。
光学素子保持体および空洞部材は、冷却流体との長期間の接触により化学反応が生じやすい。この化学反応により反応生成物質が生じ、冷却流体の着色等により光学素子の光学特性を劣化させてしまう。
【0019】
ここでは、光学素子保持体および流体循環部材が、耐蝕性を有するアルミニウム、チタン等の金属部材から構成されていることにより、冷却流体との長期間の接触においても、化学反応を生じることを防止することができる。
【0020】
本発明の光学素子冷却装置は、光学素子を冷却流体により冷却する光学素子冷却装置であって、前記光学素子を保持する保持面を有し、内部に前記冷却流体が封入される冷却室が形成された光学素子保持体と、この光学素子保持体の冷却室と連通接続され、前記冷却流体を前記冷却室外部に案内し、再度、前記冷却室内部に導く複数の流体循環部材とを備え、少なくとも一対の流体循環部材は、前記光学素子保持体の端縁に沿って延出し、互いに平行に配置され、前記流体循環部材と前記光学素子保持体との間には、前記冷却流体を強制的に循環させる冷却流体移送手段が介在していることを特徴とするものである。
【0021】
このような本発明によれば、光学素子冷却装置は、光学素子保持体と、流体循環部材とを備え、少なくとも一対の流体循環部材は、光学素子保持体の端縁に沿って延出し、互いに平行に配置されていることにより、請求項1と同様の作用効果を奏する。
さらに、光学素子冷却装置は、流体循環部材と光学素子保持体との間に冷却流体移送手段が介在し、光学素子保持体内の冷却流体を強制的に循環させることにより、光学素子と冷却流体との間で常に大きい温度差を確保し、冷却流体と光学素子との熱交換効率を向上させることができ、本発明の目的を達成することができる。
【0022】
本発明の光学素子冷却装置は、光学素子を冷却流体により冷却する光学素子冷却装置であって、前記光学素子を保持する保持面を有し、内部に前記冷却流体が封入される冷却室が形成された光学素子保持体と、この光学素子保持体の冷却室と連通接続され、前記冷却流体を前記冷却室外部に案内し、再度、前記冷却室内部に導く複数の流体循環部材と、前記光学素子保持体と一体的に構成され、前記冷却流体を強制的に循環させる冷却流体移送手段とを備え、少なくとも一対の流体循環部材は、前記光学素子保持体の端縁に沿って延出し、互いに平行に配置されていることを特徴とするものである。
【0023】
このような本発明によれば、光学素子冷却装置は、光学素子保持体と、流体循環部材とを備え、少なくとも一対の流体循環部材は、光学素子保持体の端縁に沿って延出し、互いに平行に配置されていることにより、請求項1と同様の作用効果を奏する。
また、光学素子保持体と一体的に構成され、冷却流体を強制的に循環させる冷却流体移送手段を備えていることにより、光学素子と冷却流体との間で常に大きい温度差を確保し、冷却流体と光学素子との熱交換効率を向上させることができ、本発明の目的を達成することができる。
さらに、冷却流体移送手段は、光学素子保持体と一体的に構成されていることにより、光学素子冷却装置の小型化を図ることができる。
【0024】
本発明の光学素子冷却装置では、前記冷却流体移送手段は、圧電素子により体積変化して前記冷却流体を圧送するポンプ室と、このポンプ室の前記流体循環部材との接続孔に形成される弁機構とを備えていることが好ましい。
このような構成では、冷却流体移送手段は、ポンプ室と、弁機構とを備えていることにより、簡易な構造により、冷却流体を強制的に循環させることができる。また、冷却流体の圧送は、圧電素子により行うことにより、冷却流体移送手段の小型化を図ることができる。
【0025】
本発明の光学素子冷却装置では、前記光学素子保持体は、複数設けられ、前記冷却流体移送手段のポンプ室は、これら光学素子保持体の各冷却室から冷却流体を吸入し、再度、前記流体循環部材を介して前記各冷却室に導入していることが好ましい。
このような構成では、光学素子保持体は、複数設けられ、冷却流体移送手段のポンプ室は、これら光学素子保持体の各冷却室から冷却流体を吸入し、再度、流体循環部材を介して各冷却室に導入していることにより、冷却流体移送手段のポンプ室内では、各光学素子保持体からの冷却流体が混合される。すなわち、冷却流体を各光学素子保持体で共有し、各光学素子保持体にて冷却する光学素子を同一の冷却流体で冷却することができ、各光学素子の温度を均一に冷却することができる。
【0026】
本発明の光学素子冷却装置では、前記冷却流体移送手段には、前記ポンプ室が複数設けられ、これらのポンプ室は、前記複数の光学素子保持体の冷却室に対して冷却流体の吸入および排出を行うことが好ましい。
このような構成では、冷却流体移送手段には、ポンプ室が複数設けられ、これらのポンプ室は、複数の光学素子保持体の冷却室に対して冷却流体の吸入および排出を行うことにより、各光学素子保持体の冷却室に対して冷却流体の対流速度を増加させることができる。
【0027】
本発明の光学素子冷却装置では、前記冷却流体移送手段には、前記ポンプ室内と外部空気との間で熱交換を行う放熱板が設けられていることが好ましい。
このような構成では、冷却流体移送手段には、放熱板が設けられていることにより、光学素子と熱交換を行った冷却流体により温められた冷却流体移送手段を、この放熱板により放熱し、冷却することができる。また、冷却流体移送手段自体の動作により、温められた冷却流体移送手段を、この放熱板により放熱し、冷却することができる。
【0028】
本発明の光学装置は、複数の色光を各色光毎に画像情報に応じて変調する複数の光変調装置と、この光変調装置で変調された各色光を合成する色合成光学装置とが一体的に設けられた光学装置であって、請求項1から請求項13のいずれかに記載の光学素子冷却装置と、前記光変調装置の光射出側に配置され、フィルム状の偏光素子およびこの偏光素子が貼り付けられる基板を備えた偏光板とを備え、前記光学素子冷却装置は、前記色合成光学装置および前記光変調装置の間に介装され、前記光学素子冷却装置の冷却室には、冷却対象となる光学素子の光束透過領域に応じて光入射側および光射出側にそれぞれ開口が形成され、これらの開口の少なくともいずれか一方は、前記偏光板の基板により封止されていることを特徴とするものである。
【0029】
このような本発明によれば、光学装置は、請求項1から請求項13のいずれかに記載の光学素子冷却装置と、偏光板とを備え、光学素子冷却装置の冷却室に形成された開口の光入射側および光射出側の少なくともいずれか一方は、偏光板の基板により封止されていることにより、光源から射出された光束によって偏光板に発生する熱を光学素子冷却装置の冷却室に充填された冷却流体の対流による熱交換を利用して放熱することができる。
また、偏光板に発生する熱を光学素子冷却装置内の冷却流体により放熱することにより、偏光板の温度分布は均一化され、局所的な過熱を回避し、スクリーンに投写される画像を鮮明に表示することができる。
【0030】
本発明の光学装置では、前記光変調装置は、一対の基板間に電気光学物質が密閉封入された変調素子本体を備え、前記冷却室の光入射側または光射出側は、前記光変調装置の基板により封止されていることが好ましい。
このような構成では、光学素子冷却装置の冷却室の光入射側または光射出側は、光変調装置の基板により封止されていることにより、偏光板のみならず、光変調装置に発生した熱も光学素子冷却装置内の冷却流体の対流による熱交換を利用して放熱することができる。
また、光変調装置に発生する熱を光学素子冷却装置内の冷却流体により放熱することにより、光変調装置の温度分布は均一化され、局所的な過熱を回避し、スクリーンに投写される画像を鮮明に表示することができる。
【0031】
本発明の光学装置は、複数の色光を各色光毎に画像情報に応じて変調する複数の光変調装置と、この光変調装置で変調された各色光を合成する色合成光学装置とが一体的に設けられた光学装置であって、請求項8から請求項13のいずれかに記載の光学素子冷却装置と、この光学素子冷却装置の冷却流体移送手段に冷却空気を送風する冷却ファンとを備えていることを特徴とするものである。
【0032】
このような本発明によれば、光学素子を効率的に冷却することができる請求項8から請求項13のいずれかに記載の光学素子冷却装置を備えていることにより、光学装置を構成する光学素子の冷却効率を向上させることができる。
また、光学装置は、冷却ファンを備え、この冷却ファンは、冷却流体移送手段に冷却空気を送風することにより、温められた冷却流体移送手段の冷却効率を向上させることができる。
【0033】
本発明のプロジェクタは、光源から射出された光束を色光毎に画像情報に応じて変調する複数の光変調装置と、各光変調装置で変調された光束を合成する色合成光学装置とを備え、投写画像を形成するプロジェクタであって、請求項14から請求項16のいずれかに記載の光学装置を備えていることを特徴とするものである。
この発明によれば、上述した光学装置の作用・効果と略同様な作用・効果を奏するプロジェクタを享受できる。
また上述した光学装置を用いれば、プロジェクタ内部の光学素子を確実に冷却できてプロジェクタの寿命を長くすることができるようになる。
【0034】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
[第1実施形態]
〔1.プロジェクタの主な構成〕
図1は、本発明に係るプロジェクタ1の内部構造を模式的に示す平面図である。
プロジェクタ1は、全体略直方体形状の外装ケース2と、光源から射出された光束を光学的に処理して画像情報に対応した光学像を形成する光学ユニット4と、プロジェクタ1内に滞留する熱を冷却する冷却ユニット5と、電源ケーブルを通して供給された電力を前記光学ユニット4および該光学ユニット4を制御するドライバボード等に供給する電源ユニット3とを備えて構成されている。
【0035】
外装ケース2は、それぞれ金属または樹脂製とされ、プロジェクタ1の天面、前面、および側面をそれぞれ構成するアッパーケースと、プロジェクタ1の底面、側面、および背面をそれぞれ構成するロアーケースとを備えて構成されている。
【0036】
図1に示すように、外装ケース2の前面には、切欠部2Aが形成されている。外装ケース2内部に配置された光学ユニット4の一部は、この切欠部2Aから外部に露出している。そして、この切欠部2Aを通して光学ユニット4で形成された光学像が射出されスクリーン上に画像が表示される。
また、外装ケース2の前面において、切欠部2Aの両側には、プロジェクタ1内部で温められた空気を排出するための排気口2B,2Cが形成されている。
さらに、外装ケース2の底面において、前記光学ユニット4の下方に位置する部分には、前記冷却ユニット5によって外部から冷却空気を吸引するための図示しない吸気口が形成されている。
【0037】
図2は、光学ユニット4を模式的に示す平面図である。
光学ユニット4は、平面略L字形状を有し、光源ランプ411から射出された光束を光学的に処理して、画像情報に対応した光学像を形成するユニットであり、インテグレータ照明光学系41、色分離光学系42、リレー光学系43、光学装置44、および投写光学系としての投写レンズ46を備えている。これら光学部品41〜44,46は、光学部品用筐体としてのライトガイド4A内に載置固定される。
【0038】
電源ユニット3は、図1に示すように、外装ケース2内における光学ユニット4の図1中右側に配置されている。この電源ユニット3は、図示しない電源ケーブルを通して電力が供給され、供給された電力を制御基板(図示省略)や、内部に組み込まれたランプ駆動回路(バラスト)等に供給している。
ここで、制御基板は、プロジェクタ1全体を制御するものであり、光学ユニット4の上方に配置される。特に、後述する光変調装置441の各液晶パネル441R,441G,441Bを制御し、画像情報に応じた光学像を投写する。このため、この制御基板は、画像情報を取り込んで制御および演算処理等を行う。
また、ランプ駆動回路(バラスト)は、供給された電力を光学ユニット4の光源ランプ411に供給する。
【0039】
電源ユニット3および光学ユニット4は、アルミニウムまたはマグネシウム等の金属製のシールド板によって覆われている。これにより、電源ユニット3や制御基板等から外部への電磁ノイズの漏れを防止している。
【0040】
冷却ユニット5は、プロジェクタ1の内部に形成される冷却流路に冷却空気を送り込み、プロジェクタ1内で発生する熱を冷却するものであり、軸流吸気ファン51と、ブロワ52と、軸流排気ファン53とを備えて構成されている。
軸流吸気ファン51は、光学ユニット4の光学装置44の下方に位置し、外装ケース2の底面に形成された吸気口から冷却空気を吸引する。
ブロワ52は、光学ユニット4の光源装置413の下方に位置し、光学ユニット4内の冷却空気を引き寄せ、この引き寄せる過程で光源装置413を冷却する。そして、光学ユニット4の下方に位置するダクト52Aを介して排気口2Bから温められた空気を排出する。
軸流排気ファン53は、電源ユニット3の近傍に配置され、外装ケース2の前面に形成された排気口2Cからプロジェクタ1内部および電源ユニット3によって温められた空気をプロジェクタ1外部に排出する。
【0041】
〔2.光学系の詳細な構成〕
図2において、インテグレータ照明光学系41は、光学装置44を構成する3枚の液晶パネル441(赤、緑、青の色光毎にそれぞれ液晶パネル441R,441G,441Bと示す)の画像形成領域をほぼ均一に照明するための光学系であり、光源装置413と、第1レンズアレイ418と、第2レンズアレイ414と、偏光変換素子415と、重畳レンズ416とを備えている。
【0042】
これらのうち、光源装置413は、放射状の光線を射出する光源ランプ411と、この光源ランプ411から射出された放射光を反射する楕円面鏡412と、光源ランプ411から射出され楕円面鏡412により反射された光を平行光とする平行化凹レンズ413Aとを備える。なお、平行化凹レンズ413Aの平面部分には、図示しないUVフィルタが設けられている。また、光源ランプ411としては、ハロゲンランプやメタルハライドランプ、高圧水銀ランプが多用される。さらに、楕円面鏡412および平行化凹レンズ413Aの代わりに、放物面鏡を用いてもよい。
【0043】
また、第1レンズアレイ418、第2レンズアレイ414、および偏光変換素子415は、一体的に組み合わされて筐体内に設置固定される。
第1レンズアレイ418は、光軸方向から見てほぼ矩形状の輪郭を有する小レンズがマトリクス状に配列された構成を有している。各小レンズは、光源ランプ411から射出される光束を、複数の部分光束に分割している。各小レンズの輪郭形状は、液晶パネル441の画像形成領域の形状とほぼ相似形をなすように設定されている。たとえば、液晶パネル441の画像形成領域のアスペクト比(横と縦の寸法の比率)が4:3であるならば、各小レンズのアスペクト比も4:3に設定する。
【0044】
第2レンズアレイ414は、第1レンズアレイ418と略同様な構成を有しており、小レンズがマトリクス状に配列された構成を有している。この第2レンズアレイ414は、重畳レンズ416とともに、第1レンズアレイ418の各小レンズの像を液晶パネル441上に結像させる機能を有している。
【0045】
偏光変換素子415は、第2レンズアレイ414と重畳レンズ416との間に配置されるとともに、第2レンズアレイ414と一体でユニット化されている。このような偏光変換素子415は、第2レンズアレイ414からの光を1種類の偏光光に変換するものであり、これにより、光学装置44での光の利用効率が高められている。
【0046】
具体的に、偏光変換素子415によって1種類の偏光光に変換された各部分光は、重畳レンズ416によって最終的に光学装置44の液晶パネル441R,441G,441B上にほぼ重畳される。偏光光を変調するタイプの液晶パネル441を用いた本実施形態のプロジェクタ1(光学装置44)では、1種類の偏光光しか利用できないため、他種類のランダムな偏光光を発する光源ランプ411からの光のほぼ半分が利用されない。
そこで、偏光変換素子415を用いることにより、光源ランプ411からの射出光をほぼ1種類の偏光光に変換し、光学装置44での光の利用効率を高めている。なお、このような偏光変換素子415は、たとえば特開平8−304739号公報に紹介されている。
【0047】
色分離光学系42は、2枚のダイクロイックミラー421,422と、反射ミラー423,424とを備え、ダイクロイックミラー421、422によりインテグレータ照明光学系41から射出された複数の部分光束を赤、緑、青の3色の色光に分離する機能を有している。
【0048】
リレー光学系43は、入射側レンズ431、リレーレンズ433、および反射ミラー432、434を備え、色分離光学系42で分離された色光、赤色光を液晶パネル441Rまで導く機能を有している。
【0049】
この際、色分離光学系42のダイクロイックミラー421では、インテグレータ照明光学系41から射出された光束の青色光成分が透過するとともに、赤色光成分と緑色光成分とが反射する。ダイクロイックミラー421によって透過した青色光は、反射ミラー423で反射し、フィールドレンズ417を通って青色用の液晶パネル441Bに達する。このフィールドレンズ417は、第2レンズアレイ414から射出された各部分光束をその中心軸(主光線)に対して平行な光束に変換する。他の液晶パネル441G、441Rの光入射側に設けられたフィールドレンズ417も同様である。
【0050】
ダイクロイックミラー421を透過した赤色光と緑色光のうちで、緑色光はダイクロイックミラー422によって反射し、フィールドレンズ417を通って緑色用の液晶パネル441Gに達する。一方、赤色光はダイクロイックミラー422を透過してリレー光学系43を通り、さらにフィールドレンズ417を通って赤色光用の液晶パネル441Rに達する。なお、赤色光にリレー光学系43が用いられているのは、赤色光の光路の長さが他の色光の光路長さよりも長いため、光の発散等による光の利用効率の低下を防止するためである。すなわち、入射側レンズ431に入射した部分光束をそのまま、フィールドレンズ417に伝えるためである。
【0051】
光学装置44は、詳しくは後述するが、光源装置413から射出される光束を画像情報に応じて変調する3枚の光変調装置441と、光変調装置441の光束射出側に配置される射出側偏光板442Bと、ここでは図示しないが、この射出側偏光板442Bを冷却する光学素子冷却装置443と、色合成光学装置としてのクロスダイクロイックプリズム45とを備えている。
【0052】
光変調装置441は、色分離光学系42で分離された各色光を画像情報に応じて変調する液晶パネル441R,441G,441Bと、ここでは図示しないが、この液晶パネル441R,441G,441Bを保持するパネル保持体444とを備えている。
この液晶パネル441R,441G,441Bは、例えば、ポリシリコンTFTをスイッチング素子として用いたものであり、色分離光学系42で分離された各色光は、これら3枚の液晶パネル441R,441G,441Bとこれらの光束入射側にある入射側偏光板442Aおよび光束射出側にある射出側偏光板442Bとによって、画像情報に応じて変調されて光学像を形成する。
【0053】
射出側偏光板442Bは、光変調装置441で変調された光束のうち、所定の偏光軸を有する光束のみを透過し、その他の偏光軸を有する光束を吸収する。なお、この射出側偏光板442Bの詳細については後述する。
光学素子冷却装置443は、具体的には後述するが、射出側偏光板442Bと接触し、内部に冷却流体が封入される冷却室を有する。そして、この冷却流体と射出側偏光板442Bとの間で熱交換が行われ、射出側偏光板442Bに発生する熱が冷却する。
【0054】
クロスダイクロイックプリズム45は、3枚の液晶パネル441R,441G,441Bから射出された各色光毎に変調された画像を合成してカラー画像を形成するものである。なお、クロスダイクロイックプリズム45には、赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが、4つの直角プリズムの界面に沿って略X字状に形成され、これらの誘電体多層膜によって3つの色光が合成される。そして、プリズム45で合成されたカラー画像は、投写レンズ46から射出され、スクリーン上に拡大投写される。
【0055】
以上説明した各光学系41〜45は、図1に示すように、合成樹脂製の筐体としてのライトガイド4A内に収容されている。
このライトガイド4Aは、前述の各光学部品416,417,422〜424,431〜434を上方からスライド式に嵌め込む溝部がそれぞれ設けられた下ライトガイドと、下ライトガイドの上部の開口側を閉塞する蓋状の上ライトガイドとで構成されている。
また、図2に示すように、平面略L字状のライトガイド4Aの一端側には、光源装置413が収容され、他端側には、ヘッド部49を介して投写レンズ46が固定されている。
【0056】
〔3.光学装置の構造〕
図3は、第1実施形態における光学装置44を上方から見た概観斜視図である。図4は、第1実施形態における光学装置44の分解斜視図である。
光学装置44の構造について、図3および図4を参照して説明する。なお、図3および図4において、3つの液晶パネル441(441R,441G,441B)のうち、代表して液晶パネル441Gのみを図示し、他の液晶パネル441R,441Bの図示を省略する。
【0057】
光学装置44は、クロスダイクロイックプリズム45と、このクロスダイクロイックプリズム45に固定される台座445と、クロスダイクロイックプリズム45の光束入射端面に固定される固定板446と、台座445側面に固定される光学素子冷却装置443と、この光学素子冷却装置443を介して固定板446に保持される光変調装置441と、光変調装置441と光学素子冷却装置443との間に介装される補助板449とを備え、これらが一体的に形成される。
【0058】
このような構成では、液晶パネル441R,441G,441Bが、光源ランプ411から射出された光束を画像情報に応じて変調する。また、射出側偏光板442Bが、これらの液晶パネル441R,441G,441Bにて変調された光束のうち所定の偏光軸を有する光束を透過させる。そして、クロスダイクロイックプリズム45が、各射出側偏光板442Bを透過した各色光を合成して、光学像を形成する。
【0059】
台座445は、クロスダイクロイックプリズム45の上下面に固定されており、外周形状はクロスダイクロイックプリズム45と略同一である。この台座445は、上部台座445Aおよび下部台座445Bを備えて構成されている。
【0060】
上部台座445Aおよび下部台座445Bにおいて、光束入射側の側面には、この側面の両端縁に位置し、光束入射方向に突出した突出部445A1,445B1が形成されている。この突出部445A1,445B1において、光束入射側の端面には、光学素子冷却装置443を保持固定するための孔445A2,445B2が形成されている。
【0061】
ここで、光学素子冷却装置443を固定する際には、この突出部445A1,445B1に光学素子冷却装置443の光束射出側端面を当接し、光学素子冷却装置443の後述する孔と突出部445A1,445B1に形成された孔445A2,445B2とにねじを螺合することにより、光学素子冷却装置443が台座445に固定される。
【0062】
また、光学素子冷却装置443を台座445の突出部445A1,445B1に接着固定する場合には、この突出部445A1,445B1にて形成される光学素子冷却装置443と台座445との間の隙間にドライバ等の工具を差し込むことができる。これにより、光学素子冷却装置443に何らかの不具合が生じた場合に、接着固定された光学素子冷却装置443と台座445との隙間にドライバ等の工具を差し込み、光学素子冷却装置443を台座445から引き剥がすことができる。
【0063】
また、具体的な図示は省略するが、下部台座445Bの下面において、この下面の四隅部分および中央部分には、一体化された光学装置44をライトガイドに固定するための孔が設けられ、ねじ等により固定される。
さらに、上部台座445Aの中央部分には略円形状にくりぬかれた凹部445A3が形成されている。この凹部445A3には、凹部445A3の円形の直径方向に沿って、複数のルーバ状のフィン445A4が形成されており、外気との接触面積が増加し、放熱しやすくなっている。
【0064】
固定板446は、クロスダイクロイックプリズム45の光束入射端面に固定され、光変調装置441を保持固定する。この固定板446は、全体略矩形状に形成されており、矩形板状体446Aと、この矩形板状体446Aから光束入射側に突出した突出部446Bとを備えて構成されている。
【0065】
矩形板状体446Aは、突出部446Bとは反対側の端面がクロスダイクロイックプリズム45の光束入射端面に接着固定される。また、この矩形板状体446Aの略中央部分には、クロスダイクロイックプリズム45に光束を入射させるための開口部446A1が形成されている。
【0066】
突出部446Bは、矩形板状体446Aの四隅部分に位置し、光変調装置441を保持固定する。この突出部446Bは、矩形板状体446Aの左右辺縁から光束入射側に延出した延出部446B1と、この延出部446B1の先端部分において、台座445の突出部445A1,445B1から離間する方向に折曲して形成された当接面446B2とを備えている。
【0067】
この当接面446B2は、台座445の突出部445A1,445B1よりも光束入射側に突出している。このため、光学素子冷却装置443を台座445の突出部445A1,445B1に固定した状態で、光変調装置441をこの光学素子冷却装置443を介して当接面446B2に接着固定することができる。
【0068】
ここで、台座445および固定板446は、熱伝導率の高いアルミニウムで形成されている。なお、これら部材はアルミニウムに限らず、マグネシウム合金、または、チタン等の熱伝導率の高い金属部材で構成してもよい。
【0069】
図5は、光学素子冷却装置443の内部構造を示す断面図である。
光学素子冷却装置443は、内部に冷却流体を封入し、この冷却流体と光学素子を接触させることで、光学素子を冷却する。この光学素子冷却装置443は、内部に冷却流体が封入されるとともに、光学素子を保持する光学素子保持体447と、この光学素子保持体447に封入された冷却流体を対流させる流体循環部材としてのパイプ448(図3、図4)とを備えて構成されている。
【0070】
光学素子保持体447は、液晶パネル441R,441G,441Bの画像形成領域に対応して開口部447Aを有する略矩形枠状に形成されている。この光学素子保持体447は、冷却流体が充填される冷却室447B4を有する冷却流体充填部447Bと、開口部447A周縁に配置される弾性部材447C(図5)と、冷却流体充填部447Bの光束入射側および光束射出側からねじにより固定される支持板447Dとを備えて構成されている。
【0071】
ここで、冷却流体充填部447Bには、図5に示すように、光束入射側および光束射出側に、弾性部材447Cと当接するように光束入射側基板447Eおよび光束射出側基板447Fが配置される。そして、支持板447Dが、これら光束入射側基板447Eおよび光束射出側基板447Fを外側から冷却流体充填部447Bに押圧固定することで冷却流体を封止している。なお、ここでは、冷却流体として、透明性の非揮発性液体であるエチレングリコールを採用している。
【0072】
冷却流体充填部447Bは、その上端部に冷却流体を注入するための注入孔447B1と冷却流体内に混入した残留空気を排除するための空気抜孔447B2とを備えている。これら注入孔447B1および空気抜孔447B2は、照明光軸に対して非対称に形成されている。
また、この冷却流体充填部447Bの上下端面には、冷却室447B4に貫通し、パイプ448を接続するための孔447B3が左右両側に形成されている。
【0073】
さらに、この冷却流体充填部447Bの左右端面には、左右辺縁の長さを有し、端部から突出してフィン447Gが形成されている。
フィン447Gは、図5に示すように、冷却流体から伝達された熱を外気との熱交換により放熱する。このフィン447Gは、外気との熱交換を行う外気接触面447G1と、光学素子保持体447の左右端縁に沿って貫通した貫通孔447G2とを備えている。
【0074】
外気接触面447G1は、この外気接触面447G1から突出し、光学素子保持体447の左右端縁に沿って延びる凸条部447G3が形成されている。この凸条部447G3により、外気接触面447G1の表面積を増加させ、外気との熱交換を積極的に実施できるようになっている。
貫通孔447G2は、パイプ448が挿通され、冷却流体からパイプ448に伝達された熱を受ける部分である。この貫通孔447G2にて受けた熱は、フィン447Gの全体に伝達され、外気接触面447G1にて放熱される。
【0075】
なお、このフィン447Gの基端部分において、上下端部には、切り欠き部447G4(図4)が形成されている。この切り欠き部447G4に、固定板446の突出部446Bが位置し、フィン447Gとこの突出部446Bとが位置的に干渉しないような構成となっている。
【0076】
弾性部材447Cは、冷却流体充填部447Bと基板447E,447Fとの間に介在し、内部に充填される冷却流体の液漏れ等を防止する。この弾性部材447Cは、弾性を有するシリコンゴムで形成され、両面あるいは片面に表層の架橋密度を上げる表面処理が施されている。例えば、弾性部材447CとしてサーコンGR−dシリーズ(冨士高分子工業の商標)を採用することができる。ここで、端面に表面処理が施されていることにより、光学素子冷却装置443を組み立てる際に、弾性部材447Cの冷却流体充填部447Bへの設置を容易にすることができる。
【0077】
支持板447Dは、基板447E,447Fを押圧固定する。この支持板447Dは、開口部447Aを有する略矩形枠状の枠体で構成され、冷却流体充填部447Bの外周縁に当接する。この支持板447Dを冷却流体充填部447Bに固定する際には、具体的な図示は省略するが、冷却流体充填部447Bに形成された孔と支持板447Dに形成された孔とをねじ等により螺合することで実施される。
【0078】
光束入射側基板447Eおよび光束射出側基板447Fは、射出側偏光板442Bで構成されている。この射出側偏光板442Bは、所定の偏光軸を有し、この偏光軸が互いに平行となるように、第1射出側偏光板442Cおよび第2射出側偏光板442Dとを備えて構成されている。この第1射出側偏光板442Cが光束入射側基板447Eに相当し、第2射出側偏光板442Dが光束射出側基板447Fに相当する。
【0079】
第1射出側偏光板442Cおよび第2射出側偏光板442Dは、サファイアガラスまたは水晶製の基板442C1,442D1と、偏光軸が所定方向とされた状態で、この基板442C1,442D1のそれぞれ光束入射側および光束射出側の表面に貼付される偏光素子としての偏光膜442C2,442D2とを備えている。
基板442C1,442D1は、サファイアガラス製の矩形の板材である。このため、基板442C1,442D1は、その熱伝導率が約40W/(m・K)と高いうえに、その硬度も非常に高く、傷が付きにくく透明度が高いものである。
【0080】
偏光膜442C2,442D2は、矩形状のフィルムであり、ポリビニルアルコール(PVA)にヨウ素を吸着・分散させてフィルム状とした後に、このフィルム状のものを一定方向に延伸し、その後、延伸されたフィルムの両面にアセテートセルロース系のフィルムを接着剤で積層することにより構成されたものである。
ここで、第1射出側偏光板442Cおよび第2射出側偏光板442Dが冷却流体充填部447Bに、対向配置された場合には、偏光膜442C2,442D2の偏光軸が互いに平行となっている。また、この射出側偏光板442Bの画像形成領域に対応する部分が冷却流体と接触することになる。
【0081】
パイプ448は、アルミニウムから構成された金属部材であり、冷却流体充填部447Bの上下端部に形成された孔447B3と接続する。具体的に、このパイプ448は、略コ字状に形成され、この略コ字状の自由端をさらに上下方向に折曲し、冷却流体充填部447Bの上下端部に形成された孔447B3と接続している。また、このパイプ448は、左右両側に配置され、光学素子保持体447の左右端縁に沿って延出し、互いに平行になるように配置されている。
さらに、このパイプ448の中央部分は、光学素子保持体447の左右端縁に沿って形成されたフィン447Gの貫通孔447G2に挿通されている。
このような構成により、パイプ448は、冷却流体充填部447B内の冷却流体の冷却流路となり、冷却流体の自然対流を誘導している。
【0082】
ここで、光学素子保持体447およびパイプ448は、耐蝕性を有するアルミニウムで形成されている。なお、これら部材は、アルミニウムに限らず、チタン等の耐蝕性を有する金属部材で構成してもよい。さらに、冷却流体に耐蝕性を向上させるために、冷却流体充填部447Bおよびパイプ448の冷却流体と接触する部分に、クロメート処理(アロジン)を施してもよい。
【0083】
上述した光学素子冷却装置443を台座445の側面に固定する際には、光学素子冷却装置443の表裏面を貫通するように形成された孔443A、すなわち、冷却流体充填部447Bおよび支持板447Dに形成された孔443Aと、台座445の突出部445A1,445B1の孔445A2,445B2とにねじを螺合することにより実施される。
【0084】
光変調装置441は、光源ランプ411からの光束を画像情報に応じて変調する液晶パネル441R,441G,441Bと、この液晶パネル441R,441G,441を保持するパネル保持体444とを備えて構成されている。
パネル保持体444は、各液晶パネル441R,441G,441Bを収納保持するための収納体444Aと、具体的な図示は省略するが、収納された各液晶パネル441R,441G,441Bの光束射出側から押圧固定する支持板とを備えて構成される。
【0085】
収納体444Aは、略矩形枠状の板材であり、四隅に位置し、光変調装置441を固定板446の当接面446B2に固定するための固定部444A1を備えている。この固定部444A1は、収納体444Aから光束射出側に突出して形成され、表裏を貫通するように孔444A2が形成されている。この孔444A2には、紫外線を透過する合成樹脂(アクリル材等)から構成される4つのピンスペーサ444Bが挿通されて固定板446の当接面446B2に接合される。また、この収納体444Aの左右端面略中央部分には、具体的な図示は省略するが、支持板と係合するためのフック係合部が形成されている。
【0086】
支持板は、略矩形枠状の板材であり、収納体のフック係合部に対応して左右端部にはフックが形成されている。
ここで、収納体444Aおよび支持板の略中央部には、開口部444A3が形成され、この開口部444A3は、各液晶パネル441R,441G,441Bからの有効光を透過できる。
【0087】
補助板449は、光変調装置441および光学素子冷却装置443との間に介装され、光変調装置441および光学素子冷却装置443に発生する熱の放熱を補助する。この補助板449は、略矩形枠状の板材であり、略中央部分には、開口部449Aが形成されている。
また、この補助板449の四隅部分には、孔449Bが形成され、具体的な図示は省略するが、補助板449は、この孔449Bと、光学素子冷却装置443に形成された孔とをねじで螺合することにより固定される。
【0088】
さらに、この補助板449の左右辺縁には、フィン449Cが形成され、このフィン449Cは、補助板449に伝達された熱を外気との熱交換により放熱している。
ここで、この補助板449は、熱伝導性を有するアルミニウムで形成されている。なお、この補助板449は、アルミニウムに限らず、マグネシウム合金、または、チタン等の熱伝導性を有する金属部材で構成してもよい。
【0089】
また、具体的な図示は省略するが、クロスダイクロイックプリズム45に入射する偏光光束の向きを考慮して、クロスダイクロイックプリズム45の光束入射端面のうち、G色光の光束入射端面には、位相差板が貼り付けられている。
【0090】
〔4.冷却構造〕
本実施形態のプロジェクタ1では、液晶パネル441R,441G,441Bを主に冷却するパネル冷却系Aと、光源装置413を主に冷却する光源冷却系Bと、電源ユニット3を主に冷却する電源冷却系Cと、射出側偏光板442Bを主に冷却する射出側偏光板冷却系Dとを備えている。
【0091】
図1において、パネル冷却系Aでは、光学装置44の下方に配置された軸流吸気ファン51が用いられている。軸流吸気ファン51によって外装ケース2下面の吸気口から吸引された冷却空気は、光学装置44の下方まで導かれる。
ここで、ライトガイド4Aの底面には、外装ケース2の底面に形成された吸気口(図示省略)位置に対応し、かつ、光学装置44の光変調装置441および光学素子冷却装置443の下方に対応した位置には、開口部4Bが形成されている。このため、外装ケース2の底面に形成された吸気口から吸引された冷却空気をライトガイド4A内に取り込むことができるようになっている。
【0092】
このような構成により、軸流吸気ファン51で吸引した冷却空気は、開口部4Bからライトガイド4A内に入り込む。そして、この冷却空気は、クロスダイクロイックプリズム45と光学素子冷却装置443との間、光学素子冷却装置443と補助板449との間、補助板449と光変調装置441との間、および、光変調装置441の光束入射側を下方から上方へと通過する。この通過の際に、光変調装置441の液晶パネル441R,441G,441B、入射側偏光板442Aおよび射出側偏光板442Bが冷却される。また、これら液晶パネル441R,441G,441Bおよび射出側偏光板442Bから光学素子冷却装置443および補助板449に伝達された熱も、この冷却空気により冷却される。ここで、光学素子冷却装置443のフィン447Gおよび補助板449のフィン449Cによりさらに効率的に、冷却が行われるようになっている。
【0093】
なお、ライトガイド4Aの下面には、図1に示すように、平面略矩形板状の整流板478が設けられ、整流板478に設けられた一対の立上片478A(合計14枚)が開口部4Bから上方側に突出するようになっている。ただし、図1では、立上片478Aを二点鎖線で示してある。これらの立上片478Aにより、液晶パネル441R,441G,441Bおよび入射側偏光板442A、442Bを冷却するための冷却空気の流れが、下方から上方へ整えられる。
【0094】
パネル冷却系Aの冷却空気は、このようにして液晶パネル441R,441G,441Bおよび入射側偏光板442A、442Bを下方から上方に向けて冷却した後、ブロワ52側に引き寄せられ、前面側の排気口2Bから排気される。
ここで、パネル冷却系Aによる冷却空気は、液晶パネル441R,441G,441Bを冷却する役割のみならず、液晶パネル441R,441G,441Bの表面に吹きつけられることで、パネル表面に付着した塵等を吹き飛ばす役割をも有している。このパネル冷却系Aにより、液晶パネル441R,441G,441Bの表面を常に清浄することができるから、プロジェクタ1において、安定した画質の光学画像をスクリーン等に投写できるようになる。
【0095】
図1において、光源冷却系Bでは、光学ユニット4の下面に設けられたブロワ52が用いられている。軸流吸気ファン51によって外部から吸引され、ライトガイド4A内に入り込んだ冷却空気は、液晶パネル441R,441G,441Bおよび偏光板442A、442Bを冷却した後に、ブロワ52によって引き寄せられる。そして、一体化された第1レンズアレイ、第2レンズアレイ414および偏光変換素子415間を通ってこれらを冷却する。この後、光源装置413内に入り込んで光源ランプ411を冷却し、ライトガイド4Aから出て、ダクト52Aを介して排気口2Bから排気される。
【0096】
また、電源冷却系Cでは、電源ユニット3の近傍に設けられた軸流排気ファン53が用いられている。電源ユニット3による熱によって温められた空気は軸流排気ファン53に吸引され、前面側の排気口2Cから排出される。また、同様に、プロジェクタ1内部の空気も排気口2Cから排出されることで、プロジェクタ1内部には、熱が滞留しないようになっている。
【0097】
また、射出側偏光板冷却系Dでは、上述したように光学素子冷却装置443が用いられている。
射出側偏光板442Bを構成する第1射出側偏光板442Cおよび第2射出側偏光板442Dは、冷却流体充填部447Bを封止するように構成されており、冷却流体充填部447Bの冷却室447B4に充填される冷却流体と直接、接触している。
【0098】
ここで、光源ランプ411から射出された光束により射出側偏光板442Bの偏光膜442C2,442D2に発生した熱は、パネル冷却系Aにより空冷されると同時に、基板442C1,442D2に伝達される。そして、この基板442C1,442D2に伝達された熱は、図5に示すように、冷却流体と熱交換が行われ、冷却流体に熱が伝達される。
【0099】
この後、熱により温められた冷却流体は、密度の低下により上昇し、図6に示すように、冷却流体充填部447Bの上端部に接続されたパイプ448内に入り込み、パイプ448により誘導され、冷却流体充填部447Bの下端部から、再度、冷却流体充填部447B内に導入される。このように、冷却流体に自然対流が発生し、冷却流体充填部447Bおよびパイプ448に循環経路が形成される。
【0100】
ここで、冷却流体がパイプ448内を通過する際に、パイプ448が冷却流体充填部447Bのフィン447Gの貫通孔447G2と接続していることで、パイプ448内の冷却流体がフィン447Gにより放熱され、冷却流体の対流速度を増加させている。
【0101】
〔5.第1実施形態の効果〕
上述のような第1実施形態によれば、次のような効果がある。
(1)光学素子冷却装置443は、パイプ448を備えていることにより、冷却流体充填部447Bだけでなく、パイプ448内にも冷却流体を充填することで、冷却流体の全容量が大きくなり、発熱した射出側偏光板442Bとこの冷却流体との熱交換能力を向上させることができる。
【0102】
(2)パイプ448は、光学素子保持体447の左右両側に配置され、射出側偏光板442Bに照射される光束の光軸と直交する面内、かつ、互いに平行になるように構成されていることにより、パイプ448は、冷却流体の対流方向に配置されることになり、冷却流体をパイプ448内を通過させ、上方から下方へと導くことができる。すなわち、冷却流体充填部447Bに封入された冷却流体の対流の制御を容易に行うことができ、さらに、冷却流体の対流速度を増加させることができる。
したがって、発熱した射出側偏光板442Bと冷却流体との温度差が小さくなることがなく、冷却流体により射出側偏光板442Bを効率的に冷却することができる。
【0103】
(3)冷却流体充填部447Bおよびパイプ448は、耐蝕性を有するアルミニウムで構成されていることにより、長期間、冷却流体と接触した場合でも化学反応を生じることを防止することができる。すなわち、化学反応による反応生成物質による冷却流体の着色等を回避し、光学素子冷却装置443を通過する光束の光学特性を変更することを防止することができる。
【0104】
(4)冷却流体充填部447Bは、左右両端縁にフィン447Gを備え、このフィン447Gの貫通孔447G2にパイプ448が接続されることにより、温められた冷却流体の熱をパイプ448およびフィン447Gを介して放熱することができる。したがって、パイプ448に導かれる冷却流体の熱を冷却し、冷却流体の対流速度を増加させることができる。
【0105】
(5)冷却流体充填部447Bのフィン447Gは、外気接触面447G1を備え、この外気接触面447G1には、凸条部447G3が形成されていることにより、フィン447Gの放熱特性をさらに向上させることができる。
(6)射出側偏光板442Bの画像形成領域に対応する部分が冷却流体と直接接触していることにより、射出側偏光板442Bにおける温度分布は均一化され、局所的な過熱を回避し、長時間の使用による射出側偏光板442Bの劣化を防止することができ、スクリーンに投写される画像を鮮明に表示することができる。
【0106】
(7)射出側偏光板442Bが、第1射出側偏光板442Cと第2射出側偏光板442Dとの2つで構成されていることにより、射出側偏光板442Bに発生する熱を2つの偏光板442C,442Dに分散することができ、射出側偏光板442Bの熱による劣化を防止することができる。
また、射出側偏光板442Bの放熱性改善により、ファン等の冷却装置の増強によるエネルギー消費や騒音の増大を抑制することができるとともに、さらに、ファン等の冷却装置を小型化することができる。
【0107】
(8)第1射出側偏光板442Cおよび第2射出側偏光板442Dの基板442C1,442D1は、サファイア製であることにより、光源ランプ411から射出された光束の照射による偏光膜442C2,442D2で発生した熱を熱伝導性良好な基板442C1,442D1に放熱することができ、偏光膜442C2,442D2の高温化を回避し、偏光膜442C2,442D2の機能的信頼性を確保することができる。
【0108】
(9)光学素子保持体447および台座445が、熱伝導性良好なアルミニウムで構成されていることにより、光源ランプ411からの光の照射による液晶パネル441R,441G,441B、または、射出側偏光板442Bの熱を、これら光学素子保持体447および台座445に逃がすことで、液晶パネル441R,441G,441B、または、射出側偏光板442Bの放熱性をさらに改善し、温度上昇による動作不良を防止することができる。
【0109】
[第2実施形態]
次に、本発明の第2実施形態を説明する。
以下の説明では、前記第1実施形態と同様の構造および同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
第1実施形態では、光学素子冷却装置443における冷却流体の対流は、冷却流体充填部447Bおよびパイプ448との間において自然対流により実施されていた。
これに対して第2実施形態では、光学素子冷却装置543は、冷却流体移送手段としてのダイヤフラムポンプ541を備え、光学素子冷却装置543における冷却流体の対流が、冷却流体充填部447Bおよびパイプ548との間において強制的に循環する点が相違する。
【0110】
図7は、第2実施形態における光学装置54を上方から見た概観斜視図である。なお、図7では、光学装置54の要部を説明するために、補助板449および光変調装置441を省略している。また、クロスダイクロイックプリズム45のR,G,Bの3つの光束入射端面に配置される光学素子冷却装置543の光学素子保持体447のうち、代表してG色光側の光学素子保持体447のみを図示し、R,B色光側の光学素子保持体447の図示を省略する。
光学素子冷却装置543は、光学素子保持体447と、冷却流体を強制的に循環させるダイヤフラムポンプ541と、これら光学素子保持体447とダイヤフラムポンプ541とを接続するパイプ548と、ダイヤフラムポンプ541の熱を放熱する放熱板542とを備えて構成される。またダイヤフラムポンプ541の上方には、このダイヤフラムポンプ541に冷却空気を送風する軸流ファン55が配置されている。
【0111】
ダイヤフラムポンプ541は、ダイヤフラムを変形させることによりポンプ室の容積を増減させ、ポンプ室と外部との間で、液体の吸入および排出を行う。このダイヤフラムポンプ541は、略直方体状に形成され、上部台座445Aの上面にねじ等により固定されている。
【0112】
図8は、ダイヤフラムポンプ541の構造を模式的に示す断面図である。
具体的に、このダイヤフラムポンプ541は、変形自在に構成されたダイヤフラム541Aと、このダイヤフラム541A上に装着された圧電素子541Bと、冷却流体を流入および流出するポンプ室541Cとを備えて構成されている。
【0113】
ダイヤフラム541Aは、ポリプロピレンまたはポリカーボネイト等で構成され、圧電素子541Bの変形と連動して変形する。この変形により、ポンプ室541C内の容積が増減し、ポンプ室541C内に冷却流体が流入および流出される。
圧電素子541Bは、図示しない制御基板と電気的に接続し、この制御基板から適当な周波数で電圧が加えられ、この電圧に応じて変形する。すなわち、この制御基板が圧電素子541Bの制御を行い、圧電素子541Bを装着したダイヤフラム541Aの変形を制御している。
このように圧電素子541Bによりダイヤフラム541Aを変形させることで、ダイヤフラムポンプ541を小型化している。
【0114】
ポンプ室541Cには、図7、図8に示すように、各光束入射端面において、この左右両側に位置する2つの排出口541Dと、各光束入射端面において、略中央部分に位置する吸入口541Eとが形成されている。また、このポンプ室541Cは、ダイヤフラム541Aと同様に、ポリプロピレンまたはポリカーボネイト等で構成されている。
【0115】
図9は、流入弁および流出弁の構造を示す図である。
図9に示すように、吸入口541Eには、ダイヤフラム541Aの変形によって容積を増加させた際に、冷却流体を流入させる流入弁541C1が配置されている。また、排出口541Dには、ダイヤフラム541Aの変形によって容積を減少させた際に、冷却流体を流出させる流出弁541C2が配置されている。
これら流入弁541C1および流出弁541C2は、シリコーンゴムから構成されている。
【0116】
流入弁541C1は、図9に示すように、断面略L字状に形成され、ポンプ室541Cの内壁に設置される。この流入弁541C1は、ポンプ室541Cの内壁と略平行な端面Hの一部、すなわち、流入弁541C1の角隅部分のみがポンプ室541Cの内壁と固定されている。このため、ポンプ室541Cの内壁と固定されていない流入弁541C1の端面Hは、内壁から近接隔離することができるように構成されている。
【0117】
ここで、ポンプ室541C内が減圧された場合、すなわち、図8中鎖線で示すように、ダイヤフラム541Aが圧電素子541B側に変形した場合には、ポンプ室541Cの内壁と固定されていない流入弁541C1の端面Hは、内壁から離間し(図9中鎖線で示す)、吸入口541Eから冷却流体がポンプ室541C内に吸入される。
また、反対に、ポンプ室541C内が加圧された場合、すなわち、ダイヤフラム541Aが変形してから定常位置に戻る場合には、ポンプ室541Cの内壁と固定されていない流入弁541C1の平面Hは、内壁に密着し(図9中実線で示す)、吸入口541Eから冷却流体がポンプ室541C内に流入しない。
【0118】
流出弁541C2は、流入弁541C1と同様な構造を採用している。この流出弁541C2は、流入弁541C1と異なり、ポンプ室541Cの外壁に設置される。このため、流入弁541C1とは逆に、ポンプ室541Cの排出口541Dから冷却流体が排出される。
【0119】
上述したダイヤフラムポンプ541は、1つのポンプ室541C、および、1つのダイヤフラム541Aを備え、光学装置54のR,G,Bの各光束入射側に配置された3つの光学素子冷却装置443に冷却流体を排出および吸入している。なお、このような構成に限らず、3つダイヤフラムポンプ541で光学装置54のR,G,Bの各光束入射側に配置された3つの光学素子冷却装置443の各々に冷却流体を排出および吸入してもよい。
また、2つのダイヤフラムポンプ541を用いて、例えば、光学装置54のR色光位置に対応する光学素子冷却装置443と、G,B色光位置に対応する光学素子冷却装置443とに冷却流体を排出および吸入してもよい。
【0120】
パイプ548は、可撓性部材から構成され、ダイヤフラムポンプ541の排出口541Dと冷却流体充填部447Bの下端部の孔447B3とを接続する2つの排出パイプ548Aと、冷却流体充填部447Bの上端部の孔447B3とダイヤフラムポンプ541の吸入口541Eとを接続する吸入パイプ548Bとを備えて構成されている。
【0121】
排出パイプ548Aは、略コ字状に形成され、このコ字状の自由端の一方を折曲してダイヤフラムポンプ541の排出口541Dに接続し、他方の自由端を上方に折曲して冷却流体充填部447Bの下端部の孔447B3に接続している。また、この排出パイプ548Aは、左右両側に配置され、射出側偏光板442Bに照射される光束の光軸と直交する面内、かつ、互いに平行になるように構成されている。
【0122】
さらに、この排出パイプ548Aの略中央部分は、光学素子保持体447の左右端縁に沿って形成されたフィン447Gの貫通孔447G2に挿通されている。
このような構成により、排出パイプ548Aは、ダイヤフラムポンプ541からの冷却流体の排出経路となり、強制的に冷却流体がダイヤフラムポンプ541から排出され、冷却流体充填部447B内に導入されるようになっている。
【0123】
吸入パイプ548Bは、略T字状に形成され、3つの自由端のうち2つが冷却流体充填部447Bの上端部の孔447B3と接続し、残りの自由端がダイヤフラムポンプ541の吸入口541Eと接続している。このような構成により、ダイヤフラムポンプ541は、冷却流体充填部447Bの2つの孔447B3から冷却流体を吸入し、これら吸入した冷却流体を合流させて吸入口541Eから冷却流体をポンプ室541C内に取り込んでいる。
【0124】
上述したパイプ548の構成では、冷却流体は、冷却流体充填部447Bから吸入パイプ548B、吸入パイプ548Bからダイヤフラムポンプ541、ダイヤフラムポンプ541から排出パイプ548A、そして、排出パイプ548Aから冷却流体充填部447Bへと流れ、このような冷却流路が確立されている。
【0125】
放熱板542は、ダイヤフラムポンプ541の上面に固定され、冷却流体またはダイヤフラム541Aの駆動により温められたダイヤフラムポンプ541を外気との熱交換により冷却する。この放熱板542は、熱交換効率を向上させるためにフィン542Aを備えている。
フィン542Aは、ダイヤフラムポンプ541から垂直に立ち上がるように形成された筒状部材が、放熱板542の一面に形成されている。このような構成により、外気との接触面積を大きくしている。
【0126】
次に、第2実施形態のプロジェクタ1における冷却構造を説明する。
図10は、射出側偏光板冷却系Dおよびポンプ冷却系Eの冷却流路を説明する図である。
第2実施形態における冷却構造は、第1実施形態で説明した、パネル冷却系A、光源冷却系B、電源冷却系C、射出側偏光板冷却系Dの他に、ダイヤフラムポンプ541を主に冷却するポンプ冷却系Eを備えている。
射出側偏光板冷却系Dでは、光学素子冷却装置443とダイヤフラムポンプ541とが用いられている。
【0127】
射出側偏光板442Bの偏光膜442C2,442D2で発生した熱は、第1実施形態と同様に、冷却流体充填部447Bの冷却流体と熱交換が行われ、冷却流体に熱が伝達される。
図示しない制御基板から適当な周波数で電圧がダイヤフラムポンプ541の圧電素子541Bに加えられ、ダイヤフラムポンプ541が駆動する。この際、冷却流体充填部447Bの温められた冷却流体は、冷却流体充填部447Bの上端部の孔447B3から吸入パイプ548Bを介してダイヤフラムポンプ541のポンプ室541Cに吸入される。
ここで、冷却流体からポンプ室541Cに熱が伝達され、さらにダイヤフラムポンプ541の上面に固定された放熱板542に伝達される。
【0128】
また、ダイヤフラムポンプ541の駆動により、ポンプ室541C内の冷却流体が排出口541Dから排出パイプ548Aを介して冷却流体充填部447Bに再度戻される。ここで、排出パイプ548Aは冷却流体充填部447Bのフィン447Gを通ることにより、このフィン447Gの外気接触面447G1とパネル冷却系Aの冷却空気との熱交換で、排出パイプ548A内を流れる冷却流体の熱が冷却される。
【0129】
以上のように、ダイヤフラムポンプ541により、冷却流体充填部447B→吸入パイプ548B→ポンプ室541C→排出パイプ548A→冷却流体充填部447Bという冷却流体の循環を繰り返すことで、射出側偏光板442Bが冷却される。
【0130】
ポンプ冷却系Eでは、軸流ファン55と放熱板542とが用いられている。
軸流ファン55は、外装ケース2(図1)の上面に形成された図示しない孔からプロジェクタ1外部の冷却空気を吸入し、ダイヤフラムポンプ541の上面に固定された放熱板542のフィン542Aに送風する。この送風された冷却空気により、射出側偏光板冷却系Dにより放熱板542に伝達された熱がフィン542Aから放熱される。
ポンプ冷却系Eの冷却空気は、このようにしてダイヤフラムポンプ541を冷却した後、具体的な図示は省略するが、ブロワ52側に引き寄せられ、前面側の排気口2Bから排気される。
【0131】
上述した第2実施形態によれば、前記(1)、(2)、(4)〜(9)と略同様の効果の他、次のような効果がある。
(10)光学素子冷却装置543は、ダイヤフラムポンプ541を備え、冷却流体充填部447B内の冷却流体をパイプ548を介して強制的に循環させていることにより、冷却流体の対流速度をさらに増加させることができる。
したがって、発熱した射出側偏光板442Bと冷却流体との温度差が小さくなることがなく、冷却流体により射出側偏光板442Bをさらに効率的に冷却することができる。
【0132】
(11)冷却流体は、冷却流体充填部447Bおよびパイプ548の他にダイヤフラムポンプ541のポンプ室541C内にも充填されることにより、冷却流体の全容量を増加させることができ、発熱した射出側偏光板442Bとこの冷却流体との熱交換能力をさらに向上させることができる。
(12)ダイヤフラムポンプ541は、各光学素子保持体447に冷却流体を排出および吸入していることにより、ポンプ室541C内では、各光学素子保持体447からの冷却流体が混合される。すなわち、冷却流体を各光学素子保持体447で共有し、各R,G,Bの射出側偏光板442Bを同一の冷却流体で冷却することができ、各射出側偏光板442Bの温度を均一に冷却することができる。
【0133】
(13)ダイヤフラムポンプ541の上面に放熱板542が固定され、この放熱板542が、フィン542Aを備えていることにより、冷却流体、または、ダイヤフラム541Aの駆動により温められたダイヤフラムポンプ541を、この放熱板542により放熱し、冷却することができる。
(14)また、この放熱板542の上方に軸流ファン55が設置されていることにより、軸流ファン55で吸引した冷却空気を放熱板542のフィン542Aに送風することで、ダイヤフラムポンプ541の熱をさらに効率的に冷却することができる。
【0134】
[第3実施形態]
次に、本発明の第3実施形態を説明する。
以下の説明では、前記第2実施形態と同様の構造および同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
第2実施形態における光学装置54では、光学素子冷却装置543は、ダイヤフラムポンプ541を備え、このダイヤフラムポンプ541は、上部台座445Aの上面に設置され、光学素子保持体447内の冷却流体を強制的に対流させていた。
これに対して、第3実施形態における光学装置64では、光学素子冷却装置643は、冷却流体移送手段としてのダイヤフラムポンプ641を備え、光学素子保持体447とダイヤフラムポンプ641とが一体的に構成されている点が相違する。
【0135】
図11は、第3実施形態における光学装置64を上方から見た概観斜視図である。なお、図11では、光学装置64の要部を説明するために、補助板449および光変調装置441を省略している。また、クロスダイクロイックプリズム45のR,G,Bの3つの光束入射端面に配置される光学素子冷却装置643のうち、代表してG色光側の光学素子冷却装置643のみを図示し、R,B色光側の光学素子冷却装置643の図示を省略する。
【0136】
具体的に、光学素子冷却装置643は、光学素子保持体447と、ダイヤフラムポンプ641と、この光学素子保持体447とダイヤフラムポンプ641とを接続する空洞部材としてのパイプ648とを備えて構成されている。
ダイヤフラムポンプ641は、冷却流体充填部447Bの上端部の略中央部分に固定されている。このダイヤフラムポンプ641の内部構造については、第2実施形態のダイヤフラムポンプ541と略同一であり、説明を省略する。
【0137】
ダイヤフラムポンプ641は、略直方体状に形成され、左右端部に排出口641Dおよび吸入口641Eがそれぞれ形成されている。また、具体的な図示は省略しているが、R,B各色光側の光学素子冷却装置643においても、ダイヤフラムポンプ641をそれぞれ備え、すなわち、3つのダイヤフラムポンプ641でそれぞれの光学素子冷却装置643内の冷却流体の強制対流を行っている。
【0138】
パイプ648は、可撓性部材から構成され、ダイヤフラムポンプ641の排出口641Dと冷却流体充填部447Bの下端部の孔447B3とを接続する2つの排出パイプ648Aと、冷却流体充填部447Bの上端部の孔447B3とダイヤフラムポンプ641の吸入口641Eとを接続する2つの吸入パイプ648Bとを備えて構成されている。
【0139】
排出パイプ648Aは、略コ字状に形成され、このコ字状の自由端の一方を折曲してダイヤフラムポンプ641の排出口641Dに接続し、他方の自由端を上方に折曲して冷却流体充填部447Bの下端部の孔447B3に接続している。また、この排出パイプ648Aは、左右両側に配置され、射出側偏光板442Bに照射される光束の光軸と直交する面内、かつ、互いに平行になるように構成されている。
【0140】
さらに、この排出パイプ648Aの略中央部分は、光学素子保持体447の左右端縁に沿って形成されたフィン447Gの貫通孔447G2に挿通されている。
このような構成により、排出パイプ648Aは、ダイヤフラムポンプ641からの冷却流体の排出経路となり、強制的に冷却流体がダイヤフラムポンプ641から排出され、冷却流体充填部447B内に導入されるようになっている。
【0141】
吸入パイプ548Bは、略L字状に形成され、一方の端部を冷却流体充填部447Bの上端部の孔447B3と接続し、他方の端部をダイヤフラムポンプ541の吸入口541Eと接続している。
【0142】
上述したパイプ648の構成では、冷却流体は、冷却流体充填部447Bから吸入パイプ648B、吸入パイプ648Bからダイヤフラムポンプ641、ダイヤフラムポンプ641から排出パイプ648A、そして、排出パイプ648Aから冷却流体充填部447Bへと流れ、このような冷却流路が確立されている。
【0143】
次に、第3実施形態のプロジェクタ1における冷却構造を説明する。
図12は、射出側偏光板冷却系Dによる冷却構造を説明する図である。
射出側偏光板冷却系Dでは、光学素子冷却装置643が用いられている。射出側偏光板442Bの偏光膜442C2,442D2で発生した熱は、第1実施形態と同様に、冷却流体充填部447Bの冷却流体と熱交換が行われ、冷却流体に熱が伝達される。
ダイヤフラムポンプ641は、第2実施形態と同様に、図示しない制御基板から適当な周波数で電圧が圧電素子に加えられ、ダイヤフラムが変形して駆動する。この際、冷却流体充填部447Bの温められた冷却流体は、冷却流体充填部447Bの上端部の孔447B3から吸入パイプ648Bを介してダイヤフラムポンプ641のポンプ室に吸入される。
【0144】
さらに、ダイヤフラムポンプ641の駆動により、ポンプ室内の冷却流体が排出口641Dから排出パイプ648Aを介して冷却流体充填部447Bに再度戻される。ここで、排出パイプ648Aは冷却流体充填部447Bのフィン447Gを通ることにより、このフィン447Gの外気接触面447G1とパネル冷却系Aの冷却空気との熱交換で、排出パイプ648A内を流れる冷却流体の熱が冷却される。
【0145】
以上のように、ダイヤフラムポンプ641により、冷却流体充填部447B→吸入パイプ648B→ポンプ室→排出パイプ648A→冷却流体充填部447Bという冷却流体の循環を繰り返すことで、射出側偏光板442Bが冷却される。
【0146】
上述した第3実施形態によれば、前記(1)、(2)、(4)〜(11)と略同様の効果の他、次のような効果がある。
(15)光学素子冷却装置643は、ダイヤフラムポンプ641を備え、このダイヤフラムポンプ641は、冷却流体充填部447Bと一体化していることにより、光学装置64の小型化を図ることができる。
(16)また、ダイヤフラムポンプ641は、冷却流体充填部447Bと一体化していることにより、光学装置64の製造を容易に行うことができる。
(17)放熱板542および軸流ファン55等の部材を省略し、コスト削減を測ることができる。
【0147】
〔6.実施形態の変形〕
なお、本発明は、前記各実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
前記各実施形態では、光学素子保持体447が、射出側偏光板442Bを保持固定する構成を説明したが、これに限らない。例えば、図3に示すように、射出側偏光板442Bおよび液晶パネル441R,441G,441Bを保持固定する構成を採用してもよい。
【0148】
具体的に、図13に示すように液晶パネル441R,441G,441Bは、ガラスなどからなる駆動基板441Cと対向基板441Dとが、シール材(図示省略)を介して所定間隔を空けて張り合わされ、両基板間に液晶が注入された構成となっている。また、この対向基板441Dには、サファイアまたは水晶または石英ガラスで構成される防塵ガラス441Aが貼り付けられている。
【0149】
このような液晶パネル441R,441G,441Bが、冷却流体充填部447Bの光束入射側に配置され、光束射出側には、射出側偏光板442Bが配置される。この時、液晶パネル441R,441G,441Bの駆動基板441Cが冷却流体充填部447B側に設置される。
このような構成では、光源ランプ411からの光束の照射により温められた液晶パネル441R,441G,441Bおよび射出側偏光板442Bの双方を冷却流体充填部447B内の冷却流体により冷却することができるという利点がある。
【0150】
前記第2実施形態では、ダイヤフラムポンプ541は、ポンプ室541C内に冷却流体を収納するとともに、ダイヤフラム541Aの変形により、光学素子保持体447内にポンプ室541C内の冷却流体を循環させていたが、これに限らない。例えば、図14に示すように、ダイヤフラムポンプ541を2つの機能に分け、主に冷却流体を循環させるダイヤフラムポンプ本体545と、主に冷却流体を収納する冷却流体収納部544とを備えて構成してもよい。
【0151】
具体的には、排出パイプ548Aの上方部分を2つに分割し、その間にダイヤフラムポンプ本体545を配置する。このように、冷却流体を主に循環するダイヤフラムポンプ本体545を左右に2つ配置することにより、冷却流体の対流速度を増加させることができ、光学素子保持体447に保持固定される光学素子の冷却効率を向上させることができるという利点がある。
また、ダイヤフラムポンプ541が、冷却流体を収納する冷却流体収納部544を備えていることにより、ポンプ冷却系Eによるダイヤフラムポンプ541の冷却効率をさらに向上させることができるという利点がある。
【0152】
前記第3実施形態では、冷却流体充填部447Bにおいて、上端部の左右両側には、孔447B3が形成され、冷却流体充填部447Bの上端部に固定されたダイヤフラムポンプ641が、この2つの孔447B3から冷却流体を吸入する構成を説明したが、これに限らない。冷却流体充填部447Bの上端部に、少なくとも1つの孔が形成され、この孔からダイヤフラムポンプが冷却流体を吸入するような構成であればよい。
【0153】
例えば、図15に示す光学装置64では、冷却流体充填部447Bの上端部の略中央部分に孔447B3を形成している。また、ダイヤフラムポンプ641は、上下端部にそれぞれ、排出口641Dおよび吸入口641Eが形成されている。そして、この孔447B3とダイヤフラムポンプ641の吸入口641Eと吸入パイプ648Bで接続し、さらに、ダイヤフラムポンプ641の排出口641Dと冷却流体充填部447Bの下端部の孔447B3とを排出パイプ648Aで接続する。
このような構成では、ダイヤフラムポンプ641は、上下端部にそれぞれ、排出口641Dおよび吸入口641Eが形成されていることにより、ダイヤフラムポンプ641の排出および吸入構造を簡素化することができるという利点がある。
【0154】
前記第2実施形態および前記第3実施形態では、ダイヤフラムポンプ541,641の流入弁541C1および流出弁541C2は、断面略L字状に形成され、シリコーンゴムから構成されていることを説明したが、これに限らない。例えば、円板状に形成されてもよく、ボール弁等を採用してもよい。
【0155】
前記各実施形態では、支持板447Dと冷却流体充填部447Bとの固定をねじにより行っていたが、これに限らず、熱伝達可能に固定されればよく、熱伝導性良好な熱硬化性接着剤あるいは紫外線硬化性接着剤を使用してもよい。
前記各実施形態では、冷却流体充填部447Bに熱を効率的に放熱するために、フィンが設けられていたが、フィンの形状は任意であり、前記実施形態での形状に限定されない。
【0156】
さらに、前記各実施形態では、3つの光変調装置を用いたプロジェクタの例のみを挙げたが、本発明は、1つの光変調装置のみを用いたプロジェクタ、2つの光変調装置を用いたプロジェクタ、あるいは、4つ以上の光変調装置を用いたプロジェクタにも適用可能である。
【0157】
また、前記各実施形態では、光変調装置として液晶パネルを用いていたが、マイクロミラーを用いたデバイスなど、液晶以外の光変調装置を用いてもよい。この場合は、入出射側の偏光板は省略できる。
さらに、前記実施形態では、光入射面と光射出面とが異なる透過型の光変調装置を用いていたが、光入射面と光射出面とが同一となる反射型の光変調装置を用いてもよい。
【0158】
さらにまた、前各記実施形態では、スクリーンを観察する方向から投写を行なうフロントタイプのプロジェクタの例のみを挙げたが、本発明は、スクリーンを観察する方向とは反対側から投写を行なうリアタイプのプロジェクタにも適用可能である。
【0159】
【発明の効果】
本発明によれば、光学素子の冷却効率を良好にでき、光学素子の劣化を防止し、この光学素子を備えた光学装置およびプロジェクタの寿命を長くすることができるという効果がある。
【図面の簡単な説明】
【図1】前記各実施形態に係るプロジェクタの内部構造を模式的に示す平面図である。
【図2】前記各実施形態における光学ユニットを模式的に示す平面図である。
【図3】第1実施形態における光学装置を上方から見た外観斜視図である。
【図4】第1実施形態における光学装置の分解斜視図である。
【図5】第1実施形態における光学素子冷却装置の内部構造を示す断面図である。
【図6】第1実施形態における射出側偏光板冷却系の冷却構造を説明する図である。
【図7】第2実施形態における光学装置を上方から見た概観斜視図である。
【図8】第2実施形態におけるダイヤフラムポンプの構造を模式的に示す断面図である。
【図9】第2実施形態における流入弁および流出弁の構造を示す図である。
【図10】第2実施形態における射出側偏光板冷却系およびポンプ冷却系の冷却流路を説明する図である。
【図11】第3実施形態における光学装置を上方から見た概観斜視図である。
【図12】第3実施形態における射出側偏光板冷却系の冷却構造を説明する図である。
【図13】変形例を説明する図である。
【図14】変形例を説明する図である。
【図15】変形例を説明する図である。
【符号の説明】
1 プロジェクタ
44,54,64 光学装置
45 クロスダイクロイックプリズム(色合成光学装置)
55 冷却ファン
441 光変調装置
442B 射出側偏光板
442C1,442D1 基板
442C2,442D2 偏光膜(偏光素子)
443,543,643 光学素子冷却装置
447 光学素子保持体
447B3 孔
447B4 冷却室
447G フィン(冷却フィン)
447G1 外気接触面(フィン表面)
447G2 貫通孔(孔)
447G3 凸条部
448,548,648 パイプ(流体循環部材)
541,641 ダイヤフラムポンプ(冷却流体移送手段)
541B 圧電素子
541C ポンプ室
541C1 流入弁(弁機構)
541C2 流出弁(弁機構)
541D 排出口(接続孔)
541E 吸入口(接続孔)
542 放熱板

Claims (17)

  1. 光学素子を冷却流体により冷却する光学素子冷却装置であって、
    前記光学素子を保持する保持面を有し、内部に前記冷却流体が封入される冷却室が形成された光学素子保持体と、
    この光学素子保持体の冷却室と連通接続され、前記冷却流体を前記冷却室外部に案内し、再度、前記冷却室内部に導く複数の流体循環部材とを備え、
    少なくとも一対の流体循環部材は、前記光学素子保持体の端縁に沿って延出し、互いに平行に配置されていることを特徴とする光学素子冷却装置。
  2. 請求項1に記載の光学素子冷却装置において、
    前記一対の流体循環部材は、前記光学素子保持体を挟んで対向配置されていることを特徴とする光学素子冷却装置。
  3. 請求項1または請求項2に記載の光学素子冷却装置において、
    前記光学素子保持体の保持面と直交し、かつ互いに対向する光学素子保持体の端面には、それぞれ、前記冷却室に貫通する孔が形成され、
    前記流体循環部材は、各孔間を連結する管状部材から構成されていることを特徴とする光学素子冷却装置。
  4. 請求項1から請求項3のいずれかに記載の光学素子冷却装置において、
    前記光学素子保持体の端縁には、放熱用の冷却フィンが形成されていることを特徴とする光学素子冷却装置。
  5. 請求項4に記載の光学素子冷却装置において、
    前記冷却フィンには、前記光学素子保持体の端縁に沿って貫通する孔が形成され、
    前記流体循環部材は、この孔に挿通されていることを特徴とする光学素子冷却装置。
  6. 請求項4または請求項5に記載の光学素子冷却装置において、
    前記冷却フィンには、フィン表面に突設され、前記光学素子保持体の端縁に沿って延びる凸条部が形成されていることを特徴とする光学素子冷却装置。
  7. 請求項1から請求項6のいずれかに記載の光学素子冷却装置において、
    前記光学素子保持体および前記流体循環部材は、アルミニウム、チタン等の金属製部材から構成されていることを特徴とする光学素子冷却装置。
  8. 光学素子を冷却流体により冷却する光学素子冷却装置であって、
    前記光学素子を保持する保持面を有し、内部に前記冷却流体が封入される冷却室が形成された光学素子保持体と、
    この光学素子保持体の冷却室と連通接続され、前記冷却流体を前記冷却室外部に案内し、再度、前記冷却室内部に導く複数の流体循環部材とを備え、
    少なくとも一対の流体循環部材は、前記光学素子保持体の端縁に沿って延出し、互いに平行に配置され、
    前記流体循環部材と前記光学素子保持体との間には、前記冷却流体を強制的に循環させる冷却流体移送手段が介在していることを特徴とする光学素子冷却装置。
  9. 光学素子を冷却流体により冷却する光学素子冷却装置であって、
    前記光学素子を保持する保持面を有し、内部に前記冷却流体が封入される冷却室が形成された光学素子保持体と、
    この光学素子保持体の冷却室と連通接続され、前記冷却流体を前記冷却室外部に案内し、再度、前記冷却室内部に導く複数の流体循環部材と、
    前記光学素子保持体と一体的に構成され、前記冷却流体を強制的に循環させる冷却流体移送手段とを備え、
    少なくとも一対の流体循環部材は、前記光学素子保持体の端縁に沿って延出し、互いに平行に配置されていることを特徴とする光学素子冷却装置。
  10. 請求項8または請求項9のいずれかに記載の光学素子冷却装置において、
    前記冷却流体移送手段は、圧電素子により体積変化して前記冷却流体を圧送するポンプ室と、このポンプ室の前記流体循環部材との接続孔に形成される弁機構とを備えていることを特徴とする光学素子冷却装置。
  11. 請求項10に記載の光学素子冷却装置において、
    前記光学素子保持体は、複数設けられ、
    前記冷却流体移送手段のポンプ室は、これら光学素子保持体の各冷却室から冷却流体を吸入し、再度、前記流体循環部材を介して前記各冷却室に導入していることを特徴とする光学素子冷却装置。
  12. 請求項10に記載の光学素子冷却装置において、
    前記冷却流体移送手段には、前記ポンプ室が複数設けられ、
    これらのポンプ室は、前記複数の光学素子保持体の冷却室に対して冷却流体の吸入および排出を行うことを特徴とする光学素子冷却装置。
  13. 請求項10から請求項12のいずれかに記載の光学素子冷却装置において、
    前記冷却流体移送手段には、前記ポンプ室内と外部空気との間で熱交換を行う放熱板が設けられていることを特徴とする光学素子冷却装置。
  14. 複数の色光を各色光毎に画像情報に応じて変調する複数の光変調装置と、この光変調装置で変調された各色光を合成する色合成光学装置とが一体的に設けられた光学装置であって、
    請求項1から請求項13のいずれかに記載の光学素子冷却装置と、
    前記光変調装置の光射出側に配置され、フィルム状の偏光素子およびこの偏光素子が貼り付けられる基板を備えた偏光板とを備え、
    前記光学素子冷却装置は、前記色合成光学装置および前記光変調装置の間に介装され、
    前記光学素子冷却装置の冷却室には、冷却対象となる光学素子の光束透過領域に応じて光入射側および光射出側にそれぞれ開口が形成され、
    これらの開口の少なくともいずれか一方は、前記偏光板の基板により封止されていることを特徴とする光学装置。
  15. 請求項14に記載の光学装置において、
    前記光変調装置は、一対の基板間に電気光学物質が密閉封入された変調素子本体を備え、
    前記開口の光入射側または光射出側は、前記光変調装置の基板により封止されていることを特徴とする光学装置。
  16. 複数の色光を各色光毎に画像情報に応じて変調する複数の光変調装置と、この光変調装置で変調された各色光を合成する色合成光学装置とが一体的に設けられた光学装置であって、
    請求項8から請求項13のいずれかに記載の光学素子冷却装置と、
    この光学素子冷却装置の冷却流体移送手段に冷却空気を送風する冷却ファンとを備えていることを特徴とする光学装置。
  17. 光源から射出された光束を色光毎に画像情報に応じて変調する複数の光変調装置と、各光変調装置で変調された光束を合成する色合成光学装置とを備え、投射画像を形成するプロジェクタであって、
    請求項14から請求項16のいずれかに記載の光学装置を備えたプロジェクタ。
JP2002178973A 2002-06-19 2002-06-19 光学素子冷却装置、光学装置、および、プロジェクタ Withdrawn JP2004021116A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178973A JP2004021116A (ja) 2002-06-19 2002-06-19 光学素子冷却装置、光学装置、および、プロジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178973A JP2004021116A (ja) 2002-06-19 2002-06-19 光学素子冷却装置、光学装置、および、プロジェクタ

Publications (2)

Publication Number Publication Date
JP2004021116A true JP2004021116A (ja) 2004-01-22
JP2004021116A5 JP2004021116A5 (ja) 2005-10-20

Family

ID=31176541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178973A Withdrawn JP2004021116A (ja) 2002-06-19 2002-06-19 光学素子冷却装置、光学装置、および、プロジェクタ

Country Status (1)

Country Link
JP (1) JP2004021116A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275296A (ja) * 2004-03-26 2005-10-06 Seiko Epson Corp 光変調素子保持体、光学装置、およびプロジェクタ
JP2005274706A (ja) * 2004-03-23 2005-10-06 Seiko Epson Corp 光学装置、およびプロジェクタ
JP2007240646A (ja) * 2006-03-06 2007-09-20 Seiko Epson Corp プロジェクタ
CN100448599C (zh) * 2005-03-01 2009-01-07 精工爱普生株式会社 冷却单元、其制造方法、光学装置以及投影机
CN101369093B (zh) * 2007-08-07 2010-06-09 佳能株式会社 图像投影装置
JP2019174722A (ja) * 2018-03-29 2019-10-10 セイコーエプソン株式会社 プロジェクター

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274706A (ja) * 2004-03-23 2005-10-06 Seiko Epson Corp 光学装置、およびプロジェクタ
JP2005275296A (ja) * 2004-03-26 2005-10-06 Seiko Epson Corp 光変調素子保持体、光学装置、およびプロジェクタ
CN100448599C (zh) * 2005-03-01 2009-01-07 精工爱普生株式会社 冷却单元、其制造方法、光学装置以及投影机
JP2007240646A (ja) * 2006-03-06 2007-09-20 Seiko Epson Corp プロジェクタ
CN101369093B (zh) * 2007-08-07 2010-06-09 佳能株式会社 图像投影装置
JP2019174722A (ja) * 2018-03-29 2019-10-10 セイコーエプソン株式会社 プロジェクター

Similar Documents

Publication Publication Date Title
US7216988B2 (en) Optical device and projector
TWI257522B (en) Optical device and projector
US7556383B2 (en) Projection display apparatus using liquid cooling and air cooling
US7815315B2 (en) Cooling device and projector
KR100691056B1 (ko) 광학장치 및 리어 프로젝터
US7175283B2 (en) Optical device, optical device manufacturing method, and projector
JP2004070116A (ja) 光学装置、光学ユニット、および、プロジェクタ
KR20060044779A (ko) 광변조 소자 유지체, 광학 장치 및 프로젝터
JPWO2005064397A1 (ja) 光学装置、およびプロジェクタ
JP2002006282A (ja) 液晶表示装置
JP4151584B2 (ja) 光学装置、およびプロジェクタ
JP2007041414A (ja) 電子機器
JP2004021116A (ja) 光学素子冷却装置、光学装置、および、プロジェクタ
JP2007041412A (ja) 光学素子保持体、光学装置、およびプロジェクタ
JP2016200657A (ja) プロジェクター
JP2003195254A (ja) 光学装置、およびこれを備えたプロジェクタ
JP2004126255A (ja) 液晶表示装置
JP2005189800A (ja) 投射表示装置
JP2007025384A (ja) 光変調装置、光学装置、およびプロジェクタ
JP2003195253A (ja) 光学装置、およびこれを備えたプロジェクタ
JP3669365B2 (ja) 光学装置、および、この光学装置を備えるプロジェクタ
JP2007041413A (ja) 光変調素子保持体、光学装置、およびプロジェクタ
JP2004085943A (ja) 光学装置、この光学装置を備えた光学ユニットおよびプロジェクタ
JP2005114997A (ja) 光学装置、およびリアプロジェクタ
JP2005208632A (ja) 光変調素子保持体、光学装置、およびプロジェクタ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071206