JP2004020648A - Color filter, method for manufacturing the same, and liquid crystal display device - Google Patents
Color filter, method for manufacturing the same, and liquid crystal display device Download PDFInfo
- Publication number
- JP2004020648A JP2004020648A JP2002171935A JP2002171935A JP2004020648A JP 2004020648 A JP2004020648 A JP 2004020648A JP 2002171935 A JP2002171935 A JP 2002171935A JP 2002171935 A JP2002171935 A JP 2002171935A JP 2004020648 A JP2004020648 A JP 2004020648A
- Authority
- JP
- Japan
- Prior art keywords
- colored
- color filter
- liquid crystal
- display device
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Materials For Photolithography (AREA)
- Optical Filters (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、透過型表示と反射型表示との両方の表示を実現する液晶表示装置、ならびにそれに用いるカラーフィルタおよびその製造方法に関する。
【0002】
【従来の技術】
液晶表示装置は、薄型で低消費電力であるという特徴を活かして、ワードプロセッサおよびパーソナルコンピュータなどのオフィスオートメーション(officeautomation;略称:OA)機器、電子手帳および携帯電話機などの携帯情報端末機器、液晶モニタを備えたカメラ一体型ビデオテープレコーダ(video tape recorder;略称:VTR)、ならびにパーソナルテレビなどに幅広く用いられている。
【0003】
液晶表示装置は、陰極線管(cathode−ray tube;略称:CRT)表示装置、エレクトロルミネッセンス(electro luminescence;略称:EL)表示装置およびプラズマディスプレイパネル(pla sma display panel;略称:PDP)などの表示装置と異なり、自ら発光しないので、光源を必要とする。液晶表示装置の光源には、バックライトと呼ばれる蛍光管を備えた装置が用いられ、このバックライトを、液晶表示装置を形成する一対の基板のうちの一方の基板の背後に設置し、バックライトからの光、すなわちバックライト光の透過と遮断を液晶パネルで切替えることによって表示を行う透過型液晶表示装置が多用されている。しかしながら、透過型液晶表示装置を携帯情報端末機器などに用いた場合には以下のような問題がある。透過型液晶表示装置に設けられるバックライトの消費電力は、装置の全消費電力の半分以上を占める程大きいので、必然的に透過型液晶表示装置の消費電力は大きくなる。このように消費電力の大きい透過型液晶表示装置を、戸外で常時携帯して使用される機会が多く、大半がバッテリで駆動される携帯情報端末機器などに用いると、バッテリの電力消耗が激しいので、長時間使用することができない。また、透過型液晶表示装置では常にバックライト光を使用するので、周囲が非常に明るい場合には、周囲の光に比べて表示光が相対的に暗くなり視認性が低下する。また表示光を明るくするためにバックライト光を強くすると、液晶表示装置の消費電力が増大する。
【0004】
したがって、携帯情報端末機器などには、消費電力を抑えるために、バックライトに代えて反射膜を設置し、反射膜によって周囲の光を反射させて得られる反射光を光源とし、この反射光の透過と遮断を液晶パネルで切替えることによって表示を行う反射型液晶表示装置が用いられている。反射型液晶表示装置の表示モードとしては、透過型液晶表示装置で広く用いられているツイステッドネマティック(twisted nematic;略称:TN)モードおよびスーパーツイステッドネマティック(super twisted nematic;略称:STN)モードなどの偏光板を利用する表示モード、ならびに明るい表示が可能な偏光板を用いない表示モード、たとえば特開平4−75022号公報および特開平9−133930号公報に開示の相転移型ゲストホストモードなどが開発されている。しかしながら、反射型液晶表示装置は、周囲の光の反射光を利用するので、周囲が暗い場合には、光量が不足し視認性が極端に低下するという問題がある。
【0005】
以上のように、透過型液晶表示装置および反射型液晶表示装置を携帯情報端末機器に用いた場合にはそれぞれ問題がある。この問題を解決するための手段として、特開平11−101992号公報に開示の液晶表示装置のように、透過型表示と反射型表示との両方の表示を実現する液晶表示装置の開発および商品化が盛んに進められている。以下、このように透過型表示と反射型表示との両方の表示を実現する液晶表示装置を「半透過型液晶表示装置」とも称する。
【0006】
液晶表示装置のカラー表示を実現するために、透過型液晶表示装置および反射型液晶表示装置では、液晶表示装置を形成する一対の基板のうちの一方の基板にカラーフィルタを形成する方法が用いられる。半透過型液晶表示装置においても、透過型液晶表示装置および反射型液晶表示装置と同様に、カラー表示を実現するためにカラーフィルタが使用される。
【0007】
透過型液晶表示装置と反射型液晶表示装置とでは表示に用いる光源の種類および光の通過経路が異なるので、透過型液晶表示装置と反射型液晶表示装置とには、それぞれ異なる特性を有するカラーフィルタが用いられる。したがって、半透過型液晶表示装置に透過型液晶表示装置用のカラーフィルタまたは反射型液晶表示装置用のカラーフィルタを使用すると、以下のような問題が生じる。
【0008】
透過型液晶表示装置では、バックライト光が液晶層を介してカラーフィルタを通過することによってカラー表示が可能となる。すなわち、光がカラーフィルタを通過する回数は1回である。したがって、カラーフィルタが光を吸収することによる光透過量の減少の影響は小さく、カラーフィルタを濃い濃度で形成することができるので、透過型液晶表示装置用のカラーフィルタは色再現範囲を広くするために濃い濃度で形成される。この透過型液晶表示装置用のカラーフィルタを半透過型液晶表示装置に使用した場合、透過型表示領域における透過率は視感度補正後で約32%になるのに対して、反射型表示領域における透過率は約11%になり、色再現範囲は極端に広がるけれども、非常に暗い表示特性になる。
【0009】
一方、反射型液晶表示装置では、周囲光が一旦カラーフィルタを通過し、液晶層を介して対向基板に設けられる反射膜に達し、反射膜によって反射された光が液晶層を介して再度カラーフィルタを通過することによって、カラー表示が可能となる。すなわち、光がカラーフィルタを通過する回数は2回である。したがって、カラーフィルタが光を吸収することによる光透過量の減少の影響は大きいので、反射型液晶表示装置用のカラーフィルタは明るさを確保するために薄い濃度で形成される。この反射型液晶表示装置用のカラーフィルタを半透過型液晶表示装置に使用すると、透過型表示領域における光透過量が極端に多くなるので、色の識別が困難になり、色再現範囲が極端に狭くなる。
【0010】
このような問題を解決するための技術として、特開平8−286178号公報に開示の技術を挙げることができる。この公報に開示の技術では、各画素部に設けるカラーフィルタに、着色された部分と着色されていない部分とを形成することによって、カラーフィルタを有する液晶表示装置における透過率を向上させることに成功している。
【0011】
また、半透過型液晶表示装置用のカラーフィルタが開発されている。たとえば、透過型表示に使用される領域と反射型表示に使用される領域とに、それぞれに適した色特性を有する有色レジストパターンが配置されたカラーフィルタ55が開発されている。図18は、カラーフィルタ55を備える半透過型液晶表示装置5の構成を簡略化して示す底面図であり、図19は、図18に示す半透過型液晶表示装置5の切断面線B−Bにおける断面構成を示す断面図である。なお、図18において、透明絶縁性基板51、ブラックマトリクスパターン52、透明電極膜56および液晶層70は、図が錯綜して理解が困難になるので記載を省略する。
【0012】
半透過型液晶表示装置5は、カラーフィルタ基板50、対向基板60およびカラーフィルタ基板50と対向基板60との間に挟持される液晶層70を含む。カラーフィルタ基板50には、透明絶縁性基板51上に、ブラックマトリクスパターン52、透過型表示領域90に対応する透過型表示用有色レジストパターン53および反射型表示領域91に対応する反射型表示用有色レジストパターン54を含むカラーフィルタ55と透明電極膜56とが形成される。対向基板60には、透明絶縁性基板61上に、ソース電極配線62、ゲート電極配線63、透過型表示領域90に対応する透過型表示用透明電極64、反射型表示領域91に対応する反射型表示用反射電極65および図示しないTFT素子部が形成される。
【0013】
透過型表示用有色レジストパターン53は、赤色(Red;略称:R)に着色された赤色レジストパターン53Rと緑色(Green;略称:G)に着色された緑色レジストパターン53Gと青色(Blue;略称:B)に着色された青色レジストパターン53Bとを含み、バックライトからの光に対して色再現範囲が広くなるように濃い濃度で形成される。反射型表示用有色レジストパターン54は、赤色に着色された赤色レジストパターン54Rと緑色に着色された緑色レジストパターン54Gと青色に着色された青色レジストパターン54Bとを含み、光の透過率が高くなるように薄い濃度で形成される。これによって、色再現範囲が広く明るいカラー表示を実現している。
【0014】
また特開2000−29012号公報に開示の技術では、反射型表示領域に対応するカラーフィルタに、着色された部分と着色されていない部分とを形成することによって、明るいカラー表示を実現している。
【0015】
また別の技術として、反射型表示に使用されるべく予め定められる領域に対応する位置に透明なレジストパターンを形成した後スピンコータなどによって有色レジストを塗布することによって、透明なレジストパターン上に有色レジスト層を薄く形成し、透明なレジストパターンが形成された部分と形成されていない部分との段差を利用して反射型表示に使用される領域の有色レジスト層の厚みを、透過型表示に使用される領域の有色レジスト層の厚みよりも薄く形成したカラーフィルタ83も開発されている。図20は、カラーフィルタ83を備える半透過型液晶表示装置8の構成を簡略化して示す底面図であり、図21は、図20に示す半透過型液晶表示装置8の切断面線C−Cにおける断面構成を示す断面図である。なお、図20において、透明絶縁性基板51、ブラックマトリクスパターン52、透明電極膜56および液晶層70は、図が錯綜して理解が困難になるので記載を省略する。また半透過型液晶表示装置8は、図18および図19に示す半透過型液晶表示装置5と類似するので、対応する部分については同一の参照符号を付して説明を省略する。
【0016】
半透過型液晶表示装置8は、カラーフィルタ基板80、対向基板60およびカラーフィルタ基板80と対向基板60との間に挟持される液晶層70を含む。カラーフィルタ基板80には、透明絶縁性基板51上に、ブラックマトリクスパターン52、透明レジストパターン81および有色レジストパターン82を含むカラーフィルタ83と透明電極膜56とが形成される。有色レジストパターン82は、赤色に着色された赤色レジストパターン82Rと緑色に着色された緑色レジストパターン82Gと青色に着色された青色レジストパターン82Bとを含む。
【0017】
カラーフィルタ83には、反射型表示領域91の有色レジストパターン82と透明絶縁性基板51との間に透明レジストパターン81が形成されているので、反射型表示領域91の有色レジストパターン82の厚みt1を、透過型表示領域90の有色レジストパターン82の厚みt2よりも薄くすることができる。これによって、反射型表示領域91における透過率を向上させることに成功している。
【0018】
【発明が解決しようとする課題】
しかしながら、特開平8−286178号公報に開示の技術では、透過型液晶表示装置または反射型液晶表示装置におけるカラーフィルタの構成が示されているだけであり、このカラーフィルタの構成をそのまま半透過型液晶表示装置に適用しても良好なカラー表示を実現することはできない。
【0019】
また、図18および図19に示すカラーフィルタ55の構成では、透過型表示用有色レジストパターン53と反射型表示用有色レジストパターン54との位置合せ精度や各パターンの仕上がり精度などが悪いと、透過型表示用有色レジストパターン53と反射型表示用有色レジストパターン54との重なり、または透過型表示用有色レジストパターン53と反射型表示用有色レジストパターン54との間の隙間が発生することがある。透過型表示用有色レジストパターン53と反射型表示用有色レジストパターン54との重なりが生じると、液晶パネルのセルギャップが均一にならず表示不良が発生する恐れがある。また透過型表示用有色レジストパターン53と反射型表示用有色レジストパターン54との間に隙間が形成されると、バックライト光または反射膜によって反射された反射光の一部がこの隙間を通過しカラーフィルタを通過しないので、色再現範囲が大幅に狭くなる恐れがある。
【0020】
このような透過型表示用有色レジストパターン53と反射型表示用有色レジストパターン54との重なりおよび透過型表示用有色レジストパターン53と反射型表示用有色レジストパターン54との隙間を光が通過することを防止するために、透過型表示用有色レジストパターン53と反射型表示用有色レジストパターン54との境界部分にブラックマトリクスパターンを形成することが考えられる。ブラックマトリクスパターンの形成によって、セルギャップが均一になり、色再現範囲も広くなるけれども、画素開口率が大幅に低下するという問題がある。
【0021】
また透過型液晶表示装置用カラーフィルタおよび反射型液晶表示装置用カラーフィルタでは、R、GおよびBの各色のパターンを各1回のフォトリソグラフィプロセスによって形成するけれども、図18および図19に示すカラーフィルタ55では、R、GおよびBの各色のパターンを各2回のフォトリソグラフィプロセスによって形成するので、原価上昇および歩留の低下が懸念される。
【0022】
また、特開2000−29012号公報に開示の技術では、反射型表示領域に対応するカラーフィルタに、着色された部分と着色されていない部分とを形成するので、反射膜によって反射された反射光の一部は、カラーフィルタの着色されていない部分を通過し、着色された部分を通過しない。したがって、着色されていない部分を通過した光が表示光に含まれるので、色再現範囲が狭くなる。
【0023】
また、図20および図21に示すカラーフィルタ83では、反射型表示領域91の有色レジストパターン82は、透明レジストパターン81を形成した後、有色レジストを塗布することによって、透過型表示領域90の有色レジストパターン82と同時に形成される。このとき、有色レジストパターン82は、透過型表示領域90の有色レジストパターン82が所望の厚みになるように、透過型表示領域90の有色レジストパターン82の厚みを基準にして形成される。すなわち、反射型表示領域91の透明レジストパターン81上に形成される有色レジストパターン82の厚みt1は、下層の透明レジストパターン81の厚みと透過型表示領域90に形成される有色レジストパターン82の厚みt2によって副次的に決まるので、反射型表示領域91の有色レジストパターン82の厚みt1の精度は、透過型表示領域90の有色レジストパターン82の厚みt2の精度よりも悪くなる。したがって、反射型表示領域91の有色レジストパターン82の厚みt1のばらつきは、透過型表示領域90の有色レジストパターン82の厚みt2のばらつきよりも大きくなるので、反射型表示領域91では色再現範囲および光透過量が大きくばらつき、色特性のばらつきが大きくなる。
【0024】
また反射型表示領域91における透過率をさらに向上させ、より明るい表示を得るために、反射型表示領域91の有色レジストパターン82の厚みt1を、透過型表示領域90の有色レジストパターン82の厚みt2に比べてさらに薄くすることが考えられる。この場合、透過型表示領域90の有色レジストパターン82の厚みt2は変更せずに、反射型表示領域91の有色レジストパターン82の厚みt1のみを薄くするために、下層の透明レジストパターン81の厚みを厚くする必要がある。しかしながら、透明レジストパターン81を厚く形成し、その上にスピンコータなどによって有色レジストを塗布すると、放射状のむらが発生するので、有色レジストパターン82を基板上に均一に形成することはできない。したがって、カラーフィルタ83の構成では、反射型表示領域91の有色レジストパターン82の厚みt1を、透過型表示領域90の有色レジストパターン82の厚みt2に比べて一層薄くすること、特にt1をt2の0.5倍より小さくする(t1<0.5t2)ことは困難である。
【0025】
本発明の目的は、透過型表示と反射型表示との両方の表示を実現する液晶表示装置に使用されるカラーフィルタのR、GおよびBの各色のレジストパターンを各1回で形成することができ、透過型表示領域および反射型表示領域における色特性のばらつきの小さいカラーフィルタおよびその製造方法、ならびに前記カラーフィルタを備える液晶表示装置を提供することである。
【0026】
【課題を解決するための手段】
本発明は、基板上に形成され、透過型表示に使用される領域と反射型表示に使用される領域とを有するカラーフィルタであって、前記反射型表示に使用される領域の有色層の厚みd1は、前記透過型表示に使用される領域の有色層の厚みd2よりも薄い(d1<d2)ことを特徴とするカラーフィルタである。
【0027】
本発明に従えば、カラーフィルタは、基板上に形成され、透過型表示に使用される領域と反射型表示に使用される領域とを有し、前記反射型表示に使用される領域の有色層の厚みd1は、前記透過型表示に使用される領域の有色層の厚みd2よりも薄い(d1<d2)。このことによって、前記反射型表示に使用される領域における透過率を向上させ、前記透過型表示に使用される領域における透過率よりも高くすることができるので、透過型表示と反射型表示との両方の表示を実現する液晶表示装置に使用した場合、反射型表示領域における色特性を、透過型表示領域における色特性に近づけることができ、色再現範囲が広く明るい表示を実現することのできるカラーフィルタを得ることができる。
【0028】
また本発明は、前記反射型表示に使用される領域の有色層は、前記基板に接して形成されることを特徴とする。
【0029】
本発明に従えば、前記反射型表示に使用される領域の有色層は、前記基板に接して形成される。すなわち、前記反射型表示に使用される領域の有色層は、他の層を介することなく前記透過型表示に使用される領域の有色層と同時に前記基板上に形成された後、厚みを調整されるので、前記反射型表示に使用される領域の有色層の厚みd1は、他の層の厚みおよび前記透過型表示に使用される領域の有色層の厚みd2の影響を受けない。したがって、前記厚みd1のばらつきを小さくすることができるので、透過型表示と反射型表示との両方の表示を実現する液晶表示装置に使用した場合の透過型表示領域および反射型表示領域における色特性のばらつきを小さくすることができる。
【0030】
また本発明は、前記厚みd1は、前記厚みd2の0.5倍以下である(d1≦0.5d2)ことを特徴とする。
【0031】
本発明に従えば、前記厚みd1は、前記厚みd2の0.5倍以下である(d1≦0.5d2)。このことによって、前記反射型表示に使用される領域における透過率をさらに向上させることができるので、より明るい表示を実現することができる。
【0032】
また本発明は、前記カラーフィルタを備えることを特徴とする液晶表示装置である。
【0033】
本発明に従えば、液晶表示装置は、前記カラーフィルタを備える。このことによって、透過型表示と反射型表示との両方において、色再現範囲が広く明るい表示の可能な液晶表示装置を実現することができる。
【0034】
また本発明は、透過型表示に使用される領域と反射型表示に使用される領域とを有するカラーフィルタの製造方法であって、基板上に、感光性を有する有色層を形成する工程と、前記感光性を有する有色層に対して、前記透過型表示に使用される領域となるべく予め定められる位置に硬化部が形成され、前記反射型表示に使用される領域となるべく予め定められる位置に硬化部と未硬化部とが形成されるように、露光を施す工程と、前記硬化部以外の前記感光性を有する有色層を除去する工程とを含むことを特徴とするカラーフィルタの製造方法である。
【0035】
本発明に従えば、透過型表示に使用される領域と反射型表示に使用される領域とを有するカラーフィルタは、基板上に、感光性を有する有色層を形成する工程と、前記有色層に対して、前記透過型表示に使用される領域となるべく予め定められる位置に硬化部が形成され、前記反射型表示に使用される領域となるべく予め定められる位置に硬化部と未硬化部とが形成されるように、露光を施す工程と、前記硬化部以外の前記有色層を除去する工程とを経て製造される。前述の露光を施す工程において露光量を変化させることによって、前記反射型表示に使用される領域の前記有色層の厚みd1を変えることができるので、容易に前記反射型表示に使用される領域における光学特性を広い範囲で変更することができる。すなわち、1回のフォトリソグラフィプロセスによって、前記反射型表示に使用される領域に、前記透過型表示に使用される領域の前記有色層の厚みd2よりも薄い厚みd1(d1<d2)の前記有色層を形成し、前記反射型表示に使用される領域における透過率を向上させ、前記透過型表示に使用される領域における透過率よりも高くすることができることができる。このことによって、透過型表示と反射型表示との両方の表示を実現する液晶表示装置に使用した場合、反射型表示領域における色特性を、透過型表示領域における色特性に近づけることができ、色再現範囲が広く明るい表示を実現することのできるカラーフィルタを得ることができる。また、前記反射型表示に使用される領域の前記有色層は、他の層を介することなく前記透過型表示に使用される領域の前記有色層と同時に前記基板上に形成された後、厚みを調整されるので、前記反射型表示に使用される領域の前記有色層の厚みd1は、他の層の厚みおよび前記透過型表示に使用される領域の前記有色層の厚みd2の影響を受けない。したがって、前記厚みd1のばらつきを小さくすることができるので、透過型表示と反射型表示との両方の表示を実現する液晶表示装置に使用した場合の透過型表示領域および反射型表示領域における色特性のばらつきを小さくすることができる。
【0036】
また本発明は、前記感光性を有する有色層は、光が照射された部分が硬化する感光性を有し、前記感光性を有する有色層に対して、前記透過型表示に使用される領域となるべく予め定められる位置に硬化部が形成され、前記反射型表示に使用される領域となるべく予め定められる位置に硬化部と未硬化部とが形成されるように、露光を施す工程は、前記透過型表示に使用される領域となるべく予め定められる位置の前記感光性を有する有色層に対して、前記基板に接しない表面側から光を照射する工程と、前記反射型表示に使用される領域となるべく予め定められる位置および前記透過型表示に使用される領域となるべく予め定められる位置の前記感光性を有する有色層に対して、前記基板に接する表面側から光を照射する工程とを含むことを特徴とする。
【0037】
本発明に従えば、感光性を有する有色層は、光が照射された部分が硬化する感光性を有し、前記有色層に対して、前記透過型表示に使用される領域となるべく予め定められる位置に硬化部が形成され、前記反射型表示に使用される領域となるべく予め定められる位置に硬化部と未硬化部とが形成されるように、露光を施す工程は、前記透過型表示に使用される領域となるべく予め定められる位置の前記有色層に対して、前記基板に接しない表面側から光を照射する工程と、前記反射型表示に使用される領域となるべく予め定められる位置および前記透過型表示に使用される領域となるべく予め定められる位置の前記有色層に対して、前記基板に接する表面側から光を照射する工程とを含む。このことによって、前記反射型表示に使用される領域となるべく予め定められる位置および前記透過型表示に使用される領域となるべく予め定められる位置の前記有色層に対し、前記基板に接する表面側から照射する光の照射量によって、前記反射型表示に使用される領域の前記有色層の厚みd1を決定することができるので、前記厚みd1のばらつきを極めて小さくすることができ、均一な色特性を得ることができる。
【0038】
また本発明は、前記基板上に、感光性を有する有色層を形成する工程は、支持体上に、前記感光性を有する有色層を形成する工程と、支持体上に形成された前記感光性を有する有色層を前記基板上に貼着する工程とを含むことを特徴とする。
【0039】
本発明に従えば、支持体上に、感光性を有する有色層を形成し、支持体上に形成された前記有色層を前記基板上に貼着することによって、前記基板上に、前記有色層が形成される。このようにして、前記有色層を前記基板上に均一に、高歩留で形成することができ、色特性のばらつきを小さくすることができる。また、前記基板上に形成される前記有色層は、表面上に支持体を有し、前記支持体が前記有色層の保護層として機能するので、前記有色層を傷つけることなく、前記基板を裏返して光を照射することができる。したがって、透過型液晶表示装置用のカラーフィルタまたは反射型液晶表示装置用のカラーフィルタの製造設備において、前記基板の一方の表面側から光を照射できるように露光装置を設けるだけで、前記有色層に対して前記基板の両表面側から光を照射することができる。
【0040】
また本発明は、前記基板上に、感光性を有する有色層を形成する工程は、有色感光性材料を前記基板上に塗布する工程であることを特徴とする。
【0041】
本発明に従えば、前記基板上に、感光性を有する有色層を形成する工程は、有色感光性材料を前記基板上に塗布する工程である。このことによって、製造工程数を増加させることなく、前記基板上に感光性を有する有色層を均一に形成することができ、色特性のばらつきを小さくすることができるので、生産性がよい。
【0042】
【発明の実施の形態】
図1は、本発明の第1の実施の形態であるカラーフィルタ14を備える半透過型液晶表示装置1の構成を簡略化して示す底面図であり、図2は、図1に示す半透過型液晶表示装置1の切断面線A−Aにおける断面構成を示す断面図である。なお、図1において、透明絶縁性基板11、ブラックマトリクスパターン12、透明電極膜15および液晶層30は、図が錯綜して理解が困難になるので記載を省略する。
【0043】
半透過型液晶表示装置1は、カラーフィルタ基板10、対向基板20、およびカラーフィルタ基板10と対向基板20との間に挟持される液晶層30を含む。カラーフィルタ基板10には、ガラスなどからなる透明絶縁性基板11上に、ブラックマトリクスパターン12が所定のパターンに形成され、ブラックマトリクスパターン12に囲まれて、赤色(R)に着色された赤色レジストパターン13R、緑色(G)に着色された緑色レジストパターン13Gおよび青色(B)に着色された青色レジストパターン13Bが所定のパターンに形成され、ブラックマトリクスパターン12と赤色レジストパターン13Rと緑色レジストパターン13Gと青色レジストパターン13Bとを含むカラーフィルタ14上に透明電極膜15が形成される。赤色レジストパターン13R、緑色レジストパターン13Gおよび青色レジストパターン13Bは、有色層である有色レジスト層13で形成される。対向基板20には、ガラスなどからなる透明絶縁性基板21上に、ソース電極配線22、ゲート電極配線23、透過型表示領域40に対応する透過型表示用透明電極24、反射型表示領域41に対応する反射型表示用反射電極25および図示しないTFT素子部が形成される。
【0044】
半透過型液晶表示装置1は、透過型表示と反射型表示との両方の表示を実現する液晶表示装置である。半透過型液晶表示装置1では、赤色、緑色および青色の3色の有色レジストパターン、すなわち赤色レジストパターン13R、緑色レジストパターン13Gおよび青色レジストパターン13Bを透明絶縁性基板11上に並べて配置したカラーフィルタ14を使用し、液晶層30に印加する電圧を制御することによって各色の有色レジストパターンを透過する光量を調整し、透過した光を混色することによって様々な色を表示する加法混色法を用いてカラー表示を実現する。
【0045】
図2に示すように、カラーフィルタ14の有色レジスト層13は、対向基板20の透過型表示用透明電極24および反射型表示用反射電極25それぞれに対応し、反射型表示に使用される領域すなわち反射型表示領域41に対応する位置の有色レジスト層13の厚みd1は、透過型表示に使用される領域すなわち透過型表示領域40に対応する位置の有色レジスト層13の厚みd2よりも薄く(d1<d2)なっている。このことによって、カラーフィルタ14の反射型表示領域41に対応する位置における透過率を向上させ、透過型表示領域40に対応する位置における透過率よりも高くすることができるので、半透過型液晶表示装置1の反射型表示領域41における色特性を、透過型表示領域40における色特性に近づけることができる。したがって、半透過型液晶表示装置1では、透過型表示と反射型表示との両方において、色再現範囲が広く明るい表示が可能である。
【0046】
前記厚みd1は、前記厚みd2の0.5倍以下である(d1≦0.5d2)ことが好ましい。このことによって、カラーフィルタ14の反射型表示領域41に対応する位置における透過率をさらに向上させることができるので、より明るい表示を実現することができる。
【0047】
図1および図2に示す半透過型液晶表示装置1に備わるカラーフィルタ14の製造方法を説明する。図3〜図7は、カラーフィルタ14の製造における各工程の状態を模式的に示す断面図である。なお、本実施形態では赤色レジストパターン13R、緑色レジストパターン13Gおよび青色レジストパターン13Bの順に形成するものとする。
【0048】
図3は、透明絶縁性基板11上に、ブラックマトリクスパターン12および有色レジスト層13を形成した状態を示す図である。
【0049】
まず、ガラスなどからなる透明絶縁性基板11上に、スパッタ法などによってブラックマトリクスパターン12となる金属膜を形成し、フォトリソグラフィプロセスおよびエッチング処理によって、所定のパターンのブラックマトリクスパターン12を形成する。
【0050】
ブラックマトリクスパターン12が形成された透明絶縁性基板11上に、スピンコータなどを用いて有色感光性材料である赤色の有色レジストを均一な厚みになるように塗布し、感光性を有する有色層である有色レジスト層13を形成する。有色レジスト層13は、光が照射された部分が硬化する感光性を有する材料で形成される。
【0051】
形成された有色レジスト層13に対して、以下のように露光を施す。
図4は、透過型表示領域40に対応する位置の有色レジスト層13に対して、透明絶縁性基板11に接しない表面側から光を照射した状態を示す図である。所定のパターンに形成されたフォトマスク17を用いて、透過型表示に使用される領域となるべく予め定められる位置すなわち透過型表示領域40に対応する位置の有色レジスト層13に対して、透明絶縁性基板11に接しない表面側、すなわち参照符42の方向から光を照射し、透過型表示領域40に対応する位置に硬化部16aを形成する。
【0052】
図5は、反射型表示領域41に対応する位置および透過型表示領域40に対応する位置の有色レジスト層13に対して、透明絶縁性基板11に接する表面側から光を照射した状態を示す図である。透明絶縁性基板11に接しない表面側からの露光処理後、所定のパターンに形成されたフォトマスク18を用いて、反射型表示に使用される領域となるべく予め定められる位置すなわち反射型表示領域41に対応する位置および透過型表示領域40に対応する位置の有色レジスト層13に対して、透明絶縁性基板11に接する表面側、すなわち参照符43の方向から光を照射し、反射型表示領域41に対応する位置に硬化部16cと未硬化部16bとを形成する。図5に示す工程において、図4に示す工程で使用する露光装置と同じ露光装置を使用して露光を施す場合、透明絶縁性基板11を裏返して露光装置内の保持台である露光ステージに保持する必要があるので、有色レジスト層13が直接露光ステージに接し、有色レジスト層13に傷が発生する。したがって、図5に示す工程では、図4に示す工程で使用する露光装置と異なり、透明絶縁性基板11を裏返すことなく透明絶縁性基板11が接するように保持した状態で、有色レジスト層13に対して透明絶縁性基板11に接する表面側から光を照射できる露光装置が必要である。
【0053】
以上のように露光を施すことによって、透過型表示領域40に対応する位置に硬化部16aが形成され、反射型表示領域41に対応する位置に硬化部16cと未硬化部16bとが形成される。
【0054】
図6は、赤色レジストパターン13Rを形成した状態を示す図である。透明絶縁性基板11に接する表面側からの露光処理が施された透明絶縁性基板11に対して現像処理を施すことによって、前述の図5に示す硬化部16aおよび硬化部16c以外の不要な有色レジスト層13を除去する。これによって、反射型表示領域41に対応する位置の有色レジスト層13の厚みd1が、透過型表示領域40に対応する位置の有色レジスト層13の厚みd2よりも薄い(d1<d2)赤色レジストパターン13Rが形成される。
【0055】
図7は、カラーフィルタ14を形成した状態を示す図である。赤色レジストパターン13Rと同様にして、緑色レジストパターン13Gおよび青色レジストパターン13Bを順に形成し、カラーフィルタ14を得る。
【0056】
以上のように、本実施形態によるカラーフィルタ14の製造方法では、前述の図4および図5に示す露光工程において露光量を変化させることによって、反射型表示領域41に対応する位置の有色レジスト層13の厚みd1を変えることができるので、容易に反射型表示領域41に対応する位置における光学特性を広い範囲で変更することができる。すなわち、図3に示すように有色レジスト層13を形成し、図4および図5に示すように露光を施すという1回のフォトリソグラフィプロセスによって、反射型表示領域41に対応する位置に、透過型表示領域40に対応する位置の有色レジスト層13の厚みd2よりも薄い厚みd1(d1<d2)の有色レジスト層13を形成し、カラーフィルタ14の反射型表示領域41に対応する位置における透過率を向上させ、透過型表示領域40に対応する位置における透過率よりも高くすることができる。このことによって、透過型表示と反射型表示との両方の表示を実現する半透過型液晶表示装置1に使用した場合、反射型表示領域41における色特性を、透過型表示領域40における色特性に近づけることができ、色再現範囲が広く明るい表示を実現することのできるカラーフィルタ14を得ることができる。
【0057】
また、反射型表示領域41に対応する位置の有色レジスト層13は、透明絶縁性基板11に接して形成される。すなわち、反射型表示領域41に対応する位置の有色レジスト層13は、他の層を介することなく透過型表示領域40に対応する位置の有色レジスト層13と同時に透明絶縁性基板11上に形成された後、厚みを調整されるので、前記厚みd1は、他の層の厚みおよび前記厚みd2の影響を受けない。したがって、前記厚みd1のばらつきを小さくすることができるので、半透過型液晶表示装置1に使用した場合の透過型表示領域40および反射型表示領域41における色特性のばらつきを小さくすることができる。
【0058】
また、前述の図5に示す工程において、反射型表示領域41に対応する位置および透過型表示領域40に対応する位置の有色レジスト層13に対し、透明絶縁性基板11に接する表面側から照射する光の照射量によって、前記厚みd1を決定することができるので、前記厚みd1のばらつきを極めて小さくすることができ、均一な色特性を得ることができる。また前記厚みd1を、容易に前記厚みd2の0.5倍以下(d1≦0.5d2)にすることができる。
【0059】
また、前述の図3に示すように、有色レジスト層13は、有色感光性材料である有色レジストを透明絶縁性基板11上に塗布することによって形成される。したがって、製造工程数を増加させることなく、透明絶縁性基板11上に有色レジスト層13を均一に形成することができ、色特性のばらつきを小さくすることができるので、生産性がよい。
【0060】
図8は、本発明の第2の実施の形態であるカラーフィルタ140を備える半透過型液晶表示装置2の構成を簡略化して示す概略断面図である。本実施の形態の半透過型液晶表示装置2は、実施の第1形態の半透過型液晶表示装置1と類似し、対応する部分については同一の参照符号を付して説明を省略する。
【0061】
注目すべきは、カラーフィルタ140の赤色レジストパターン130R、緑色レジストパターン130Gおよび青色レジストパターン130Bが、透明絶縁性基板11上に貼着されてなる有色レジスト層130で形成されていることである。
【0062】
図8に示す半透過型液晶表示装置2に備わるカラーフィルタ140の製造方法を説明する。図9〜図11、図13、図14および図16は、カラーフィルタ140の製造における各工程の状態を模式的に示す断面図である。本実施の形態のカラーフィルタ140の製造方法は、実施の第1形態のカラーフィルタ14の製造方法と類似するので、同様の工程については説明を省略し、異なる工程について以下に説明する。
【0063】
本実施の形態では、実施の第1形態における有色感光性材料である有色レジストを透明絶縁性基板11上に塗布する工程と、図5に示す参照符43の方向から露光を施す工程とに代えて、支持体フィルム131上に、有色レジスト層130を形成する工程と、支持体フィルム131上に形成された有色レジスト層130を透明絶縁性基板11上に貼着する工程と、図11に示す参照符44の方向から露光を施す工程とを行う。
【0064】
図9は、透明絶縁性基板11上に、ブラックマトリクスパターン12を形成した後、有色有機フィルム132を貼着した状態を示す図である。
【0065】
まず、支持体である支持体フィルム131上に、有色感光性材料、たとえば有色有機レジストを塗布し乾燥させることによって、感光性を有する有色層である有色レジスト層130を形成する。これによって、支持体フィルム131上に有色レジスト層130が形成された有色有機フィルム132を得る。有色レジスト層130は、光が照射された部分が硬化する感光性を有する材料で形成される。支持体フィルム131には、後述する有色レジスト層130に対する露光工程において露光に使用される光を透過させる性質を有するものが用いられる。たとえば、後述する有色レジスト層130に対する露光工程において365nm近傍の紫外線を使用する場合には、支持体フィルム131に365nm近傍の紫外線を透過させる性質を有するものを用いた有色有機フィルム132、具体的には富士写真フィルム株式会社製のトランサーフィルム(商品名)などを用いる。また支持体フィルム131の厚みは、透明絶縁性基板11の厚みよりも薄くなっている。
【0066】
得られた有色有機フィルム132を、実施の第1形態と同様にして所定のパターンのブラックマトリクスパターン12が形成された透明絶縁性基板11上に貼着する。すなわち、支持体フィルム131上に形成された有色レジスト層130を透明絶縁性基板11上に貼着することによって、透明絶縁性基板11上に有色レジスト層130を形成する。このようにして、有色レジスト層130を透明絶縁性基板11上に均一に、高歩留で形成することができ、半透過型液晶表示装置1に使用した場合の色特性のばらつきを小さくすることができる。
【0067】
形成された有色レジスト層130に対して、以下のように露光を施す。
図10は、透過型表示領域40に対応する位置の有色レジスト層130に対して、透明絶縁性基板11に接しない表面側から光を照射した状態を示す図である。実施の第1形態と同様にして、所定のパターンに形成されたフォトマスク17を用いて、透過型表示領域40に対応する位置の有色レジスト層130に対して、透明絶縁性基板11に接しない表面側、すなわち参照符42の方向から光を照射し、透過型表示領域40に対応する位置に硬化部160aを形成する。支持体フィルム131は、前述のように露光に使用される光を透過させる性質を有するので、支持体フィルム131を透過させて有色レジスト層130を露光することができる。
【0068】
図11は、反射型表示領域41に対応する位置および透過型表示領域40に対応する位置の有色レジスト層130に対して、透明絶縁性基板11に接する表面側から光を照射した状態を示す図である。透明絶縁性基板11に接しない表面側からの露光処理が施された透明絶縁性基板11を裏返し、所定のパターンに形成されたフォトマスク19を用いて、反射型表示領域41に対応する位置および透過型表示領域40に対応する位置の有色レジスト層130に対して、透明絶縁性基板11に接する表面側、すなわち参照符44の方向から光を照射し、反射型表示領域41に対応する位置に硬化部160cと未硬化部160bとを形成する。このとき、透明絶縁性基板11上に形成される有色レジスト層130は、表面上に支持体フィルム131を有し、支持体フィルム131が有色レジスト層130の保護層として機能するので、有色レジスト層130を傷つけることなく、透明絶縁性基板11を裏返して光を照射することができる。すなわち、透明絶縁性基板11を裏返して露光装置内の露光ステージに保持しても有色レジスト層130に傷などは発生しないので、図11に示す工程では、図10に示す工程で使用する露光装置と同じ露光装置を使用して露光を施すことができる。したがって、本実施形態では、透過型液晶表示装置用のカラーフィルタまたは反射型液晶表示装置用のカラーフィルタの製造設備において、透明絶縁性基板11の一方の表面側から光を照射できるように露光装置を設けるだけで、有色レジスト層130に対して透明絶縁性基板11の両表面側から光を照射することができる。
【0069】
以上のように露光を施すことによって、実施の第1形態と同様に、透過型表示領域40に対応する位置に硬化部160aが形成され、反射型表示領域41に対応する位置に硬化部160cと未硬化部160bとが形成される。
【0070】
なお、図10および図11に示す露光工程では、露光に使用する露光装置の焦点位置がずれると、パターン精度が低下する。この焦点位置のずれは、図10に示す露光工程では、投影レンズを有する逐次式露光装置(別称:ステップアンドリピート式露光装置)を用いる場合には焦点位置を補正する機構によって、またプロキシミティギャップ方式露光装置を用いる場合には露光ステージの高さを調整する機構によって最小限に抑えることができる。
【0071】
これに対して、図11に示す露光工程では、支持体フィルム131の厚みよりも厚い厚みを有する透明絶縁性基板11を介して有色レジスト層130を露光するので、図10に示す露光工程よりも焦点位置がずれやすく、前述の焦点位置を補正する機構または露光ステージの高さを調整する機構などを用いても、焦点位置のずれを抑制することは難しい。したがって、この場合には、露光に用いるフォトマスク19の設計値を補正することによって、焦点位置のずれによるパターン精度への影響を抑える。
【0072】
図12は、露光量とフォトマスクの設計値に対する線幅シフト量との関係を示す図であり、図12において、横軸は露光量(mJ/cm2)を示し、縦軸はフォトマスクの設計値に対する線幅シフト量(μm)を示す。ここで、フォトマスクの設計値に対する線幅シフト量とは、露光によって得られるパターンの線幅のフォトマスクの設計値からのずれのことである。図12(a)は、有色レジスト層130が赤色(R)のレジストで形成された場合を示す図であり、図12(b)は、緑色(G)のレジストで形成された場合を示す図であり、図12(c)は、青色(B)のレジストで形成された場合を示す図である。図12では、有色レジスト層130に対して、透明絶縁性基板11に接しない表面側から露光を施した場合100R、100Gおよび100Bと、透明絶縁性基板11に接する表面側から露光を施した場合101R、101Gおよび101Bとを示す。また図12では、有色レジスト層130に対して、透明絶縁性基板11に接しない表面側から施す露光を表面露光と表記し、透明絶縁性基板11に接する表面側から施す露光を裏面露光と表記する。なお、露光に際し、露光装置にはプロキシミティギャップ方式露光装置を使用し、露光ステージの高さを補正する機構は使用しなかった。
【0073】
図12に示すように、赤色、緑色および青色のいずれの有色レジスト層130の場合も、透明絶縁性基板11に接しない表面側から露光を施した場合100R、100Gおよび100Bの線幅シフト量よりも、透明絶縁性基板11に接する表面側から露光を施した場合101R、101Gおよび101Bの線幅シフト量の方が大きくなっているけれども、透明絶縁性基板11に接する表面側から露光を施した場合101R、101Gおよび101Bの線幅シフト量は、露光量の増加に伴って増加し、透明絶縁性基板11に接する表面側から露光を施した場合101R、101Gおよび101Bの露光量と線幅シフト量との関係は安定している。したがって、露光量と線幅シフト量との関係を考慮してフォトマスクの設計値を補正することによって、透明絶縁性基板11に接する表面側からの露光においても所望の線幅を確保し、高いパターン精度を得ることができる。
【0074】
なお、前述の実施の第1形態における図5に示す露光工程においても、本実施形態と同様に、露光に使用するフォトマスク18の設計値を補正することによって、焦点位置のずれによるパターン精度への影響を抑えることができる。
【0075】
図13は、有色レジスト層130から支持体フィルム131を剥離する様子を示す図である。透明絶縁性基板11に接する表面側からの露光処理後、有色レジスト層130から支持体フィルム131を剥離する。支持体フィルム131の剥離方法としては、粘着テープなどを使用して剥離する方法が多用されている。
【0076】
図14は、赤色レジストパターン130Rを形成した状態を示す図である。支持体フィルム131が剥離された透明絶縁性基板11に対して、実施の第1形態と同様にして現像処理を施すことによって、前述の図13に示す硬化部160aおよび硬化部160c以外の不要な有色レジスト層130を除去する。これによって、実施の第1形態と同様に、反射型表示領域41に対応する位置の有色レジスト層130の厚みd1が、透過型表示領域40に対応する位置の有色レジスト層130の厚みd2よりも薄い(d1<d2)赤色レジストパターン130Rが形成される。
【0077】
図15は、露光量と露光によって得られるパターンの厚みとの関係を示す図であり、図15において、横軸は露光量(mJ/cm2)を示し、縦軸は厚み(μm)を示す。図15(a)は、有色レジスト層130が赤色(R)のレジストで形成された場合を示す図であり、図15(b)は、緑色(G)のレジストで形成された場合を示す図であり、図15(c)は、青色(B)のレジストで形成された場合を示す図である。図15では、有色レジスト層130に対して、透明絶縁性基板11に接しない表面側から露光を施した場合102R、102Gおよび102Bと、透明絶縁性基板11に接する表面側から露光を施した場合103R、103Gおよび103Bとを示す。また図15では、図12と同様に、有色レジスト層130に対して、透明絶縁性基板11に接しない表面側から施す露光を表面露光と表記し、透明絶縁性基板11に接する表面側から施す露光を裏面露光と表記する。
【0078】
図15に示すように、赤色、緑色および青色のいずれの有色レジスト層130の場合も、透明絶縁性基板11に接する表面側から露光を施した場合103R、103Gおよび103Bに得られるパターンの厚みは露光量の増加に伴って増加し、露光量と透明絶縁性基板11に接する表面側から露光を施した場合103R、103Gおよび103Bに得られるパターンの厚みとの関係は安定している。また透明絶縁性基板11に接する表面側から露光を施した場合103R、103Gおよび103Bに得られるパターンの厚みは、透明絶縁性基板11に接しない表面側から露光を施した場合102R、102Gおよび102Bに得られるパターンの厚みを1としたときの0.5以下になっている。したがって、前述の図11に示す工程において、反射型表示領域41に対応する位置および透過型表示領域40に対応する位置の有色レジスト層130に対し、透明絶縁性基板11に接する表面側から照射する光の照射量によって、反射型表示領域41に対応する位置の有色レジスト層130の厚みd1を決定することができる。また前記厚みd1を、容易に透過型表示領域40に対応する位置の有色レジスト層130の厚みd2の0.5倍以下(d1≦0.5d2)にすることができる。
【0079】
図16は、カラーフィルタ140を形成した状態を示す図である。赤色レジストパターン130Rと同様にして、緑色レジストパターン130Gおよび青色レジストパターン130Bを順に形成する。
【0080】
以上の工程以外は、実施の第1形態と同様にして、カラーフィルタ140を得る。
【0081】
以上のように、本実施形態によるカラーフィルタ140の製造方法では、実施の第1形態と同様に、前述の図10および図11に示す露光工程において露光量を変化させることによって、反射型表示領域41に対応する位置の有色レジスト層130の厚みd1を変えることができるので、容易に反射型表示領域41に対応する位置における光学特性を広い範囲で変更することができる。したがって、透過型表示と反射型表示との両方の表示を実現する半透過型液晶表示装置2に使用した場合、反射型表示領域41における色特性を、透過型表示領域40における色特性に近づけることができ、色再現範囲が広く明るい表示を実現することのできるカラーフィルタ140を得ることができる。
【0082】
また、実施の第1形態と同様に、反射型表示領域41に対応する位置の有色レジスト層130は、他の層を介することなく透過型表示領域40に対応する位置の有色レジスト層130と同時に透明絶縁性基板11上に形成された後、厚みを調整されるので、前記厚みd1のばらつきを小さくすることができ、半透過型液晶表示装置2に使用した場合の透過型表示領域40および反射型表示領域41における色特性のばらつきを小さくすることができる。
【0083】
また、実施の第1形態と同様に、前述の図11に示す工程において照射する光の照射量によって、前記厚みd1を決定することができるので、前記厚みd1のばらつきを極めて小さくすることができ、均一な色特性を得ることができる。また前記厚みd1を、容易に前記厚みd2の0.5倍以下(d1≦0.5d2)にすることができる。
【0084】
図17は、カラーフィルタ140を備える半透過型液晶表示装置2の反射型表示領域41における光学特性104および透過型表示領域40における光学特性105、ならびに一般的な反射型液晶表示装置における光学特性106を示す図である。図17において、横軸は色再現範囲(%)を示し、縦軸は白表示時の透過率(%)を示す。また図17において、反射型表示領域41における光学特性104は、反射型表示領域41に対応する位置の有色レジスト層130の厚みd1を変化させ白表示時の透過率を変化させたときの反射型表示領域41における色再現範囲の変化を示す。
【0085】
図17に示すように、カラーフィルタ140を備える半透過型液晶表示装置2では、反射型表示領域41における光学特性104を、透過型表示領域40における光学特性105に近づけ、色再現範囲が広く明るい表示を実現することができる。また、反射型表示領域41における光学特性104を、一般的な反射型液晶表示装置の光学特性106に近づけ、より明るい表示を実現することもできる。
【0086】
以上に述べたように、本発明の第1および第2の実施の形態では、赤色、緑色および青色の各色の有色レジストパターンは、赤色レジストパターン、緑色レジストパターンおよび青色レジストパターンの順に形成されるけれども、これに限定されることなく、どのような順序で形成してもよい。また有色レジストパターンの色は、赤色、緑色および青色の3色であるけれども、これに限定されることなく、他の色の有色レジストパターンを形成し、それらの有色レジストパターンを透過する光を混色することによってカラー表示を実現してもよい。
【0087】
また、ブラックマトリクスパターン12は、金属膜によって形成されるけれども、これに限定されることなく、遮光性および感光性を有する樹脂、たとえばブラックマトリクス用有色レジストを用いて形成してもよい。この場合には、透明絶縁性基板11上に、スピンコータなどによってブラックマトリクス用有色レジストなどを塗布する、または表面上にブラックマトリクス用有色レジストなどが塗布された有色有機フィルムを貼着することによって有色レジスト層を形成し、フォトリソグラフィプロセスによって、所定のパターンのブラックマトリクスパターン12を形成する。
【0088】
また、有色レジスト層13,130は、光が照射された部分が硬化する感光性を有する材料で形成されるけれども、これに限定されることなく、光が照射された部分が現像剤に対して可溶な状態に変化する感光性を有する材料で形成してもよい。この場合には、前述の露光工程において用いるフォトマスクのパターンを変更する。
【0089】
【発明の効果】
以上のように本発明によれば、反射型表示に使用される領域における透過率を向上させ、透過型表示に使用される領域における透過率よりも高くすることができるので、透過型表示と反射型表示との両方の表示を実現する液晶表示装置に使用した場合、反射型表示領域における色特性を、透過型表示領域における色特性に近づけることができ、色再現範囲が広く明るい表示を実現することのできるカラーフィルタを得ることができる。
【0090】
また本発明によれば、反射型表示に使用される領域の有色層の厚みのばらつきを小さくすることができるので、透過型表示と反射型表示との両方の表示を実現する液晶表示装置に使用した場合の透過型表示領域および反射型表示領域における色特性のばらつきを小さくすることができる。
【0091】
また本発明によれば、反射型表示に使用される領域における透過率をさらに向上させることができるので、より明るい表示を実現することができる。
【0092】
また本発明によれば、透過型表示と反射型表示との両方において、色再現範囲が広く明るい表示の可能な液晶表示装置を実現することができる。
【0093】
また本発明によれば、反射型表示に使用される領域に、透過型表示に使用される領域の有色層の厚みよりも薄い厚みの有色層を形成し、反射型表示に使用される領域における透過率を向上させ、透過型表示に使用される領域における透過率よりも高くすることができるので、透過型表示と反射型表示との両方の表示を実現する液晶表示装置に使用した場合、反射型表示領域における色特性を、透過型表示領域における色特性に近づけることができ、色再現範囲が広く明るい表示を実現することのできるカラーフィルタを得ることができる。
【0094】
また本発明によれば、反射型表示に使用される領域となるべく予め定められる位置および透過型表示に使用される領域となるべく予め定められる位置の有色層に対し、基板に接する表面側から照射する光の照射量によって、反射型表示に使用される領域の有色層の厚みを決定することができるので、反射型表示に使用される領域の有色層の厚みのばらつきを極めて小さくすることができ、均一な色特性を得ることができる。
【0095】
また本発明によれば、感光性を有する有色層を基板上に均一に、高歩留で形成することができ、色特性のばらつきを小さくすることができるとともに、透過型液晶表示装置用のカラーフィルタまたは反射型液晶表示装置用のカラーフィルタの製造設備において、基板の一方の表面側から光を照射できるように露光装置を設けるだけで、有色層に対して基板の両表面側から光を照射することができる。
【0096】
また本発明によれば、製造工程数を増加させることなく、基板上に感光性を有する有色層を均一に形成することができ、色特性のばらつきを小さくすることができるので、生産性がよい。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態であるカラーフィルタ14を備える半透過型液晶表示装置1の構成を簡略化して示す底面図である。
【図2】図1に示す半透過型液晶表示装置1の切断面線A−Aにおける断面構成を示す断面図である。
【図3】透明絶縁性基板11上に、ブラックマトリクスパターン12および有色レジスト層13を形成した状態を示す図である。
【図4】透過型表示領域40に対応する位置の有色レジスト層13に対して、透明絶縁性基板11に接しない表面側から光を照射した状態を示す図である。
【図5】反射型表示領域41に対応する位置および透過型表示領域40に対応する位置の有色レジスト層13に対して、透明絶縁性基板11に接する表面側から光を照射した状態を示す図である。
【図6】赤色レジストパターン13Rを形成した状態を示す図である。
【図7】カラーフィルタ14を形成した状態を示す図である。
【図8】本発明の第2の実施の形態であるカラーフィルタ140を備える半透過型液晶表示装置2の構成を簡略化して示す概略断面図である。
【図9】透明絶縁性基板11上に、ブラックマトリクスパターン12を形成した後、有色有機フィルム132を貼着した状態を示す図である。
【図10】透過型表示領域40に対応する位置の有色レジスト層130に対して、透明絶縁性基板11に接しない表面側から光を照射した状態を示す図である。
【図11】反射型表示領域41に対応する位置および透過型表示領域40に対応する位置の有色レジスト層130に対して、透明絶縁性基板11に接する表面側から光を照射した状態を示す図である。
【図12】露光量とフォトマスクの設計値に対する線幅シフト量との関係を示す図である。
【図13】有色レジスト層130から支持体フィルム131を剥離する様子を示す図である。
【図14】赤色レジストパターン130Rを形成した状態を示す図である。
【図15】露光量と露光によって得られるパターンの厚みとの関係を示す図である。
【図16】カラーフィルタ140を形成した状態を示す図である。
【図17】カラーフィルタ140を備える半透過型液晶表示装置2の反射型表示領域41における光学特性104および透過型表示領域40における光学特性105、ならびに一般的な反射型液晶表示装置における光学特性106を示す図である。
【図18】カラーフィルタ55を備える半透過型液晶表示装置5の構成を簡略化して示す底面図である。
【図19】図18に示す半透過型液晶表示装置5の切断面線B−Bにおける断面構成を示す断面図である。
【図20】カラーフィルタ83を備える半透過型液晶表示装置8の構成を簡略化して示す底面図である。
【図21】図20に示す半透過型液晶表示装置8の切断面線C−Cにおける断面構成を示す断面図である。
【符号の説明】
1 半透過型液晶表示装置
2 半透過型液晶表示装置
10 カラーフィルタ基板
11,21 透明絶縁性基板
12 ブラックマトリクスパターン
13,130 有色レジスト層
13R,130R 赤色レジストパターン
13G,130G 緑色レジストパターン
13B,130B 青色レジストパターン
14,140 カラーフィルタ
15 透明電極膜
16a,16c,160a,160c 硬化部
16b,160b 未硬化部
17,18,19 フォトマスク
20 対向基板
22 ソース電極配線
23 ゲート電極配線
24 透過型表示用透明電極
25 反射型表示用反射電極
30 液晶層
40 透過型表示領域
41 反射型表示領域
131 支持体フィルム
132 有色有機フィルム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device that realizes both a transmissive display and a reflective display, a color filter used therefor, and a method of manufacturing the same.
[0002]
[Prior art]
The liquid crystal display device is characterized by its thinness and low power consumption, such as office automation (OA) devices such as word processors and personal computers, portable information terminal devices such as electronic notebooks and mobile phones, and liquid crystal monitors. It is widely used for a camera-integrated video tape recorder (abbreviation: VTR) and a personal television.
[0003]
2. Description of the Related Art A liquid crystal display device is a display device such as a cathode-ray tube (CRT) display device, an electroluminescence (electroluminescence) display device, and a plasma display panel (PDP). In contrast to this, it does not emit light by itself, so a light source is required. As a light source of the liquid crystal display device, a device provided with a fluorescent tube called a backlight is used. This backlight is installed behind one of a pair of substrates forming the liquid crystal display device, and the backlight is provided. 2. Description of the Related Art A transmissive liquid crystal display device that performs display by switching transmission and blocking of light from the camera, that is, backlight light, by a liquid crystal panel is often used. However, when the transmission type liquid crystal display device is used for a portable information terminal device or the like, there are the following problems. The power consumption of the backlight provided in the transmissive liquid crystal display device is so large that it accounts for more than half of the total power consumption of the device, so that the power consumption of the transmissive liquid crystal display device inevitably increases. Such a transmissive liquid crystal display device, which consumes a large amount of power, is frequently used outdoors at all times, and when used in a portable information terminal device that is mostly driven by a battery, the power consumption of the battery is severe. , Can not be used for a long time. Further, since the transmissive liquid crystal display device always uses the backlight light, when the surroundings are very bright, the display light is relatively darker than the surrounding light, and the visibility is reduced. Further, if the backlight light is increased to make the display light brighter, the power consumption of the liquid crystal display device increases.
[0004]
Therefore, in order to reduce power consumption, portable information terminal devices and the like are provided with a reflective film instead of a backlight, and the reflected light obtained by reflecting ambient light with the reflective film is used as a light source. 2. Description of the Related Art A reflection type liquid crystal display device which performs display by switching between transmission and cutoff by a liquid crystal panel is used. As a display mode of the reflection type liquid crystal display device, polarization such as a twisted nematic (abbreviation: TN) mode and a super twisted nematic (abbreviation: STN) mode widely used in a transmission type liquid crystal display device. A display mode using a plate and a display mode not using a polarizing plate capable of bright display, for example, a phase transition type guest-host mode disclosed in JP-A-4-75022 and JP-A-9-133930 have been developed. ing. However, since the reflection type liquid crystal display device uses the reflected light of the surrounding light, when the surroundings are dark, there is a problem that the amount of light is insufficient and the visibility is extremely reduced.
[0005]
As described above, there are problems when the transmission type liquid crystal display device and the reflection type liquid crystal display device are used for portable information terminal equipment. As means for solving this problem, development and commercialization of a liquid crystal display device that realizes both transmission type display and reflection type display, such as a liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. H11-101992, have been proposed. Is being actively promoted. Hereinafter, such a liquid crystal display device that realizes both the transmissive display and the reflective display is also referred to as a “semi-transmissive liquid crystal display device”.
[0006]
In order to realize color display of a liquid crystal display device, a method of forming a color filter on one of a pair of substrates forming a liquid crystal display device is used in a transmission type liquid crystal display device and a reflection type liquid crystal display device. . In the transflective liquid crystal display device, a color filter is used to realize color display, similarly to the transmissive liquid crystal display device and the reflective liquid crystal display device.
[0007]
The transmission type liquid crystal display device and the reflection type liquid crystal display device use different types of light sources and light passing paths for display, so that the transmission type liquid crystal display device and the reflection type liquid crystal display device have different color filters, respectively. Is used. Therefore, when a color filter for a transmissive liquid crystal display device or a color filter for a reflective liquid crystal display device is used in a transflective liquid crystal display device, the following problems occur.
[0008]
In a transmissive liquid crystal display device, color display is possible by passing backlight light through a color filter through a liquid crystal layer. That is, the number of times light passes through the color filter is one. Therefore, the influence of the decrease in the amount of light transmission due to the absorption of light by the color filter is small, and the color filter can be formed with a high density. Therefore, the color filter for the transmission type liquid crystal display device has a wide color reproduction range. Therefore, it is formed at a high concentration. When the color filter for the transmissive liquid crystal display device is used in the transflective liquid crystal display device, the transmissivity in the transmissive display region becomes approximately 32% after the visibility correction, whereas the transmissivity in the reflective display region becomes about 32%. The transmittance is about 11%, and the color reproduction range is extremely wide, but the display characteristics are very dark.
[0009]
On the other hand, in a reflective liquid crystal display device, ambient light once passes through a color filter, reaches a reflection film provided on an opposite substrate via a liquid crystal layer, and light reflected by the reflection film is again transmitted through the color filter through the liquid crystal layer. , Color display becomes possible. That is, the number of times light passes through the color filter is two times. Therefore, since the color filter absorbs light to greatly reduce the amount of transmitted light, the color filter for the reflection type liquid crystal display device is formed with a low density to ensure brightness. When this color filter for a reflective liquid crystal display device is used in a transflective liquid crystal display device, the amount of light transmitted in the transmissive display region becomes extremely large, so that it becomes difficult to discriminate colors and the color reproduction range becomes extremely large. Narrows.
[0010]
As a technique for solving such a problem, there is a technique disclosed in Japanese Patent Application Laid-Open No. 8-286178. According to the technique disclosed in this publication, a color filter provided in each pixel portion is formed with a colored portion and an uncolored portion, thereby successfully improving the transmittance of a liquid crystal display device having a color filter. are doing.
[0011]
In addition, color filters for transflective liquid crystal display devices have been developed. For example, a
[0012]
The transflective liquid
[0013]
The transmissive display colored resist
[0014]
In the technology disclosed in Japanese Patent Application Laid-Open No. 2000-29012, bright color display is realized by forming a colored portion and an uncolored portion on a color filter corresponding to a reflective display region. .
[0015]
Another technique is to form a transparent resist pattern at a position corresponding to a predetermined area to be used for reflective display, and then apply a colored resist by a spin coater or the like, so that a colored resist is formed on the transparent resist pattern. The thickness of the colored resist layer in the area used for reflective display is determined by using the step between the part where the transparent resist pattern is formed and the part where the transparent resist pattern is not formed. Also, a
[0016]
The transflective liquid
[0017]
In the
[0018]
[Problems to be solved by the invention]
However, the technique disclosed in Japanese Patent Application Laid-Open No. 8-286178 only shows the configuration of a color filter in a transmission type liquid crystal display device or a reflection type liquid crystal display device. Even when applied to a liquid crystal display device, good color display cannot be realized.
[0019]
Also, in the configuration of the
[0020]
Light may pass through the overlap between the transmission-type colored resist
[0021]
Also, in the color filter for the transmission type liquid crystal display device and the color filter for the reflection type liquid crystal display device, patterns of each color of R, G and B are formed by a single photolithography process. In the
[0022]
In the technique disclosed in Japanese Patent Application Laid-Open No. 2000-29012, a colored portion and an uncolored portion are formed in a color filter corresponding to a reflective display area, so that reflected light reflected by a reflective film is formed. Are passed through the uncolored portion of the color filter and do not pass through the colored portion. Therefore, the light that has passed through the uncolored portion is included in the display light, and the color reproduction range is narrowed.
[0023]
In the
[0024]
In order to further improve the transmittance in the
[0025]
An object of the present invention is to form a resist pattern of each color of R, G and B of a color filter used in a liquid crystal display device for realizing both transmission type display and reflection type display once each. An object of the present invention is to provide a color filter having a small variation in color characteristics in a transmissive display area and a reflective display area, a method of manufacturing the same, and a liquid crystal display device including the color filter.
[0026]
[Means for Solving the Problems]
The present invention is a color filter formed on a substrate and having a region used for a transmissive display and a region used for a reflective display, wherein a thickness of a colored layer in the region used for the reflective display is provided. d1 is a color filter characterized in that it is thinner (d1 <d2) than the thickness d2 of the colored layer in the area used for the transmissive display.
[0027]
According to the present invention, the color filter is formed on the substrate, has a region used for transmissive display and a region used for reflective display, and has a colored layer in the region used for the reflective display. Is smaller than the thickness d2 of the colored layer in the area used for the transmissive display (d1 <d2). With this, the transmittance in the area used for the reflective display can be improved and higher than the transmittance in the area used for the transmissive display. When used in a liquid crystal display device that realizes both displays, the color characteristics in the reflective display area can be made closer to the color characteristics in the transmissive display area, and a color with a wide color reproduction range and a bright display can be realized. A filter can be obtained.
[0028]
Further, in the invention, it is preferable that a colored layer in a region used for the reflective display is formed in contact with the substrate.
[0029]
According to the invention, the colored layer in the area used for the reflective display is formed in contact with the substrate. That is, after the colored layer in the region used for the reflective display is formed on the substrate at the same time as the colored layer in the region used for the transmissive display without the interposition of another layer, the thickness is adjusted. Therefore, the thickness d1 of the colored layer in the area used for the reflective display is not affected by the thickness of other layers and the thickness d2 of the colored layer in the area used for the transmissive display. Therefore, since the variation in the thickness d1 can be reduced, the color characteristics in the transmissive display area and the reflective display area when used in a liquid crystal display device that realizes both transmissive display and reflective display are provided. Can be reduced.
[0030]
In the present invention, the thickness d1 is not more than 0.5 times the thickness d2 (d1 ≦ 0.5d2).
[0031]
According to the present invention, the thickness d1 is equal to or less than 0.5 times the thickness d2 (d1 ≦ 0.5d2). Thus, the transmittance in the area used for the reflection type display can be further improved, so that a brighter display can be realized.
[0032]
According to another aspect of the present invention, there is provided a liquid crystal display device including the color filter.
[0033]
According to the invention, a liquid crystal display device includes the color filter. This makes it possible to realize a liquid crystal display device capable of performing a bright display with a wide color reproduction range in both the transmissive display and the reflective display.
[0034]
Further, the present invention is a method of manufacturing a color filter having a region used for transmission type display and a region used for reflection type display, a step of forming a photosensitive colored layer on a substrate, For the colored layer having photosensitivity, a cured portion is formed at a predetermined position to be an area used for the transmissive display, and cured at a predetermined position to be an area used for the reflective display. A method for producing a color filter, comprising the steps of: exposing to light so that a portion and an uncured portion are formed; and removing a colored layer having photosensitivity other than the cured portion. .
[0035]
According to the present invention, a color filter having a region used for a transmissive display and a region used for a reflective display is formed on a substrate by forming a photosensitive colored layer; and On the other hand, a cured portion is formed at a predetermined position to be an area used for the transmissive display, and a cured portion and an uncured portion are formed at a predetermined position to be an area used for the reflective display. As described above, it is manufactured through a step of performing exposure and a step of removing the colored layer other than the cured portion. The thickness d1 of the colored layer in the area used for the reflective display can be changed by changing the exposure amount in the step of performing the above-described exposure, so that the thickness d1 in the area used for the reflective display can be easily changed. Optical characteristics can be changed in a wide range. In other words, by one photolithography process, the colored region having a thickness d1 (d1 <d2) smaller than the thickness d2 of the colored layer in the region used for the transmissive display is formed in the region used for the reflective display. A layer can be formed to improve the transmittance in a region used for the reflective display, and to increase the transmittance in a region used for the reflective display. Thus, when used in a liquid crystal display device that realizes both a transmissive display and a reflective display, the color characteristics in the reflective display region can be made closer to the color characteristics in the transmissive display region, A color filter that can realize a bright display with a wide reproduction range can be obtained. The colored layer in the region used for the reflective display is formed on the substrate at the same time as the colored layer in the region used for the transmissive display without the interposition of another layer, and then has a thickness. Since the thickness is adjusted, the thickness d1 of the colored layer in the area used for the reflective display is not affected by the thickness d2 of the colored layer in the area used for the transmissive display and the thickness of another layer. . Therefore, since the variation in the thickness d1 can be reduced, the color characteristics in the transmissive display area and the reflective display area when used in a liquid crystal display device that realizes both transmissive display and reflective display are provided. Can be reduced.
[0036]
Further, according to the present invention, the colored layer having photosensitivity has a photosensitivity in which a portion irradiated with light is cured, and the colored layer having photosensitivity, a region used for the transmission type display. The step of exposing is performed such that a cured portion is formed at a predetermined position as much as possible, and a cured portion and an uncured portion are formed at predetermined positions to be a region used for the reflective display. A step of irradiating light from the surface side not in contact with the substrate to the colored layer having photosensitivity at a predetermined position to be an area used for pattern display, and an area used for the reflection type display Irradiating light to the colored layer having photosensitivity at a predetermined position as much as possible and a predetermined position as a region to be used for the transmissive display from the surface side in contact with the substrate. And it features.
[0037]
According to the present invention, the colored layer having photosensitivity has a photosensitivity in which a portion irradiated with light is cured, and is predetermined with respect to the colored layer so as to be an area used for the transmissive display. The step of performing exposure is performed so that a cured portion is formed at a position and a cured portion and an uncured portion are formed at predetermined positions so as to be a region used for the reflective display. Irradiating the colored layer at a predetermined position to be an area to be irradiated with light from a surface side not in contact with the substrate; and a predetermined position and the transmission to be an area used for the reflective display. Irradiating light from the surface side in contact with the substrate to the colored layer at a predetermined position to be a region used for pattern display. Thus, the colored layer at a position predetermined to be an area used for the reflective display and a position predetermined to be an area used for the transmissive display is irradiated from the surface side in contact with the substrate. The thickness d1 of the colored layer in the area used for the reflective display can be determined by the amount of light to be applied, so that the variation in the thickness d1 can be made extremely small and uniform color characteristics can be obtained. be able to.
[0038]
Further, in the present invention, the step of forming a photosensitive colored layer on the substrate includes the step of forming the photosensitive colored layer on a support, and the step of forming the photosensitive layer formed on the support. Adhering a colored layer having the following formula on the substrate.
[0039]
According to the present invention, a colored layer having photosensitivity is formed on a support, and the colored layer formed on the support is attached to the substrate, so that the colored layer is formed on the substrate. Is formed. In this way, the colored layer can be uniformly formed on the substrate at a high yield, and variation in color characteristics can be reduced. Further, the colored layer formed on the substrate has a support on the surface, and the support functions as a protective layer of the colored layer, so that the substrate is turned upside down without damaging the colored layer. Can be irradiated with light. Therefore, in a facility for manufacturing a color filter for a transmission type liquid crystal display device or a color filter for a reflection type liquid crystal display device, only providing an exposure device so that light can be irradiated from one surface side of the substrate, the color layer Can be irradiated from both surface sides of the substrate.
[0040]
Further, the invention is characterized in that the step of forming a photosensitive colored layer on the substrate is a step of applying a colored photosensitive material on the substrate.
[0041]
According to the present invention, the step of forming a colored layer having photosensitivity on the substrate is a step of applying a colored photosensitive material on the substrate. Thus, a colored layer having photosensitivity can be uniformly formed on the substrate without increasing the number of manufacturing steps, and variations in color characteristics can be reduced, thereby improving productivity.
[0042]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a simplified bottom view showing a configuration of a transflective liquid
[0043]
The transflective liquid
[0044]
The transflective liquid
[0045]
As shown in FIG. 2, the colored resist
[0046]
The thickness d1 is preferably equal to or less than 0.5 times the thickness d2 (d1 ≦ 0.5d2). Thus, the transmittance at the position corresponding to the
[0047]
A method for manufacturing the
[0048]
FIG. 3 is a diagram showing a state where a
[0049]
First, a metal film to be a
[0050]
On the transparent insulating
[0051]
The formed colored resist
FIG. 4 is a diagram showing a state in which light is applied to the colored resist
[0052]
FIG. 5 is a diagram showing a state in which light is applied to the colored resist
[0053]
By performing the exposure as described above, the cured
[0054]
FIG. 6 is a diagram showing a state where the red resist
[0055]
FIG. 7 is a diagram illustrating a state in which the
[0056]
As described above, in the method of manufacturing the
[0057]
The colored resist
[0058]
In the step shown in FIG. 5 described above, the colored resist
[0059]
Further, as shown in FIG. 3 described above, the colored resist
[0060]
FIG. 8 is a schematic cross-sectional view showing a simplified configuration of a transflective liquid
[0061]
It should be noted that the red resist
[0062]
A method of manufacturing the
[0063]
In the present embodiment, instead of the step of applying a colored resist, which is the colored photosensitive material in the first embodiment, on the transparent insulating
[0064]
FIG. 9 is a diagram showing a state in which a
[0065]
First, a colored photosensitive material, for example, a colored organic resist is applied on a
[0066]
The obtained colored
[0067]
The formed colored resist
FIG. 10 is a diagram showing a state in which light is applied to the colored resist
[0068]
FIG. 11 is a diagram showing a state in which light is applied to the colored resist
[0069]
By performing the exposure as described above, the cured
[0070]
In the exposure process shown in FIGS. 10 and 11, if the focus position of the exposure device used for exposure is shifted, the pattern accuracy is reduced. In the exposure step shown in FIG. 10, this shift of the focal position is caused by a mechanism for correcting the focal position when a sequential exposure apparatus having a projection lens (also called a step-and-repeat exposure apparatus) is used. When a system-type exposure apparatus is used, it can be minimized by a mechanism for adjusting the height of the exposure stage.
[0071]
On the other hand, in the exposure step shown in FIG. 11, since the colored resist
[0072]
FIG. 12 is a diagram showing the relationship between the exposure amount and the line width shift amount with respect to the design value of the photomask. In FIG. 12, the horizontal axis represents the exposure amount (mJ / cm). 2 ), And the vertical axis indicates the line width shift amount (μm) with respect to the design value of the photomask. Here, the line width shift amount with respect to the design value of the photomask is a deviation of the line width of the pattern obtained by exposure from the design value of the photomask. FIG. 12A is a diagram illustrating a case where the colored resist
[0073]
As shown in FIG. 12, in the case of any of the red, green, and blue colored resist
[0074]
In the exposure step shown in FIG. 5 in the first embodiment described above, similarly to the present embodiment, by correcting the design value of the
[0075]
FIG. 13 is a diagram showing a state in which the
[0076]
FIG. 14 is a diagram illustrating a state where the red resist
[0077]
FIG. 15 is a diagram showing the relationship between the exposure amount and the thickness of the pattern obtained by exposure. In FIG. 15, the horizontal axis represents the exposure amount (mJ / cm). 2 ), And the vertical axis indicates the thickness (μm). FIG. 15A is a diagram illustrating a case where the colored resist
[0078]
As shown in FIG. 15, in the case of any of the red, green, and blue colored resist
[0079]
FIG. 16 is a diagram illustrating a state where the
[0080]
Except for the above steps, the
[0081]
As described above, in the method of manufacturing the
[0082]
Further, as in the first embodiment, the colored resist
[0083]
Further, similarly to the first embodiment, since the thickness d1 can be determined by the irradiation amount of the light applied in the step shown in FIG. 11 described above, the variation in the thickness d1 can be extremely reduced. And uniform color characteristics can be obtained. Further, the thickness d1 can be easily reduced to 0.5 times or less (d1 ≦ 0.5d2) of the thickness d2.
[0084]
FIG. 17 shows an optical characteristic 104 in the
[0085]
As shown in FIG. 17, in the transflective liquid
[0086]
As described above, in the first and second embodiments of the present invention, the red, green and blue colored resist patterns are formed in the order of a red resist pattern, a green resist pattern and a blue resist pattern. However, without being limited to this, they may be formed in any order. The colors of the colored resist patterns are three colors of red, green and blue, but are not limited thereto, and a colored resist pattern of another color is formed, and light transmitted through those colored resist patterns is mixed. By doing so, a color display may be realized.
[0087]
Further, although the
[0088]
Further, the colored resist
[0089]
【The invention's effect】
As described above, according to the present invention, the transmittance in the area used for the reflective display can be improved and can be higher than the transmittance in the area used for the transmissive display. When used in a liquid crystal display device that realizes both type display and color display, the color characteristics in the reflective display region can be close to the color characteristics in the transmissive display region, realizing a bright display with a wide color reproduction range. And a color filter that can be used.
[0090]
Further, according to the present invention, since the variation in the thickness of the colored layer in the region used for the reflective display can be reduced, the present invention is used for a liquid crystal display device which realizes both the transmissive display and the reflective display. In this case, it is possible to reduce variation in color characteristics in the transmission display area and the reflection display area.
[0091]
Further, according to the present invention, the transmittance in the region used for the reflective display can be further improved, so that a brighter display can be realized.
[0092]
Further, according to the present invention, it is possible to realize a liquid crystal display device capable of performing bright display with a wide color reproduction range in both the transmissive display and the reflective display.
[0093]
According to the invention, a colored layer having a thickness smaller than that of the colored layer in the area used for the transmissive display is formed in the area used for the reflective display, and in the area used for the reflective display. Since the transmittance can be improved to be higher than the transmittance in the area used for the transmissive display, when used in a liquid crystal display device that realizes both the transmissive display and the reflective display, the reflection can be improved. The color characteristics in the pattern display region can be made close to the color characteristics in the transmissive display region, and a color filter that can realize a bright display with a wide color reproduction range can be obtained.
[0094]
Further, according to the present invention, the colored layer at a position predetermined to be a region used for reflective display and a position predetermined to be a region used for transmissive display is irradiated from the surface side in contact with the substrate. Since the thickness of the colored layer in the region used for the reflective display can be determined by the amount of light irradiation, the variation in the thickness of the colored layer in the region used for the reflective display can be extremely reduced, Uniform color characteristics can be obtained.
[0095]
Further, according to the present invention, a colored layer having photosensitivity can be uniformly formed on a substrate at a high yield, a variation in color characteristics can be reduced, and a color for a transmission type liquid crystal display device can be reduced. In a facility for manufacturing filters or color filters for reflective liquid crystal display devices, simply providing an exposure device so that light can be irradiated from one surface side of the substrate, and irradiating the colored layer with light from both surface sides of the substrate can do.
[0096]
Further, according to the present invention, a colored layer having photosensitivity can be uniformly formed on a substrate without increasing the number of manufacturing steps, and variation in color characteristics can be reduced, so that productivity is high. .
[Brief description of the drawings]
FIG. 1 is a simplified bottom view showing a configuration of a transflective liquid
FIG. 2 is a cross-sectional view showing a cross-sectional configuration of the transflective liquid
FIG. 3 is a diagram showing a state in which a
FIG. 4 is a view showing a state in which light is applied to the colored resist
FIG. 5 is a diagram showing a state in which light is applied to the colored resist
FIG. 6 is a diagram showing a state where a red resist
FIG. 7 is a diagram showing a state in which a
FIG. 8 is a schematic cross-sectional view showing a simplified configuration of a transflective liquid
FIG. 9 is a view showing a state in which a
FIG. 10 is a diagram showing a state in which light is applied to the colored resist
FIG. 11 is a diagram showing a state in which light is applied to the colored resist
FIG. 12 is a diagram illustrating a relationship between an exposure amount and a line width shift amount with respect to a design value of a photomask.
FIG. 13 is a diagram showing a state in which a
FIG. 14 is a diagram showing a state where a red resist
FIG. 15 is a diagram showing a relationship between an exposure amount and a thickness of a pattern obtained by exposure.
FIG. 16 is a diagram showing a state in which a
17 shows an optical characteristic 104 in the
18 is a simplified bottom view showing the configuration of a transflective liquid
19 is a cross-sectional view showing a cross-sectional configuration taken along line BB of the transflective liquid
20 is a simplified bottom view showing a configuration of a transflective liquid
21 is a cross-sectional view illustrating a cross-sectional configuration taken along a line CC of the transflective liquid
[Explanation of symbols]
1 Transflective liquid crystal display
2 Transflective liquid crystal display
10. Color filter substrate
11,21 Transparent insulating substrate
12 Black matrix pattern
13,130 colored resist layer
13R, 130R Red resist pattern
13G, 130G green resist pattern
13B, 130B Blue resist pattern
14,140 color filter
15 Transparent electrode film
16a, 16c, 160a, 160c Hardened part
16b, 160b Uncured part
17,18,19 Photomask
20 Counter substrate
22 Source electrode wiring
23 Gate electrode wiring
24 Transparent type display transparent electrode
25 Reflective electrode for reflective display
30 liquid crystal layer
40 Transmissive display area
41 Reflective display area
131 Support film
132 Colored organic film
Claims (8)
前記反射型表示に使用される領域の有色層の厚みd1は、前記透過型表示に使用される領域の有色層の厚みd2よりも薄い(d1<d2)ことを特徴とするカラーフィルタ。A color filter formed on a substrate and having a region used for transmissive display and a region used for reflective display,
A color filter, wherein a thickness d1 of a colored layer in a region used for the reflective display is smaller than a thickness d2 of a colored layer in a region used for the transmissive display (d1 <d2).
基板上に、感光性を有する有色層を形成する工程と、
前記感光性を有する有色層に対して、前記透過型表示に使用される領域となるべく予め定められる位置に硬化部が形成され、前記反射型表示に使用される領域となるべく予め定められる位置に硬化部と未硬化部とが形成されるように、露光を施す工程と、
前記硬化部以外の前記感光性を有する有色層を除去する工程とを含むことを特徴とするカラーフィルタの製造方法。A method for manufacturing a color filter having a region used for a transmissive display and a region used for a reflective display,
Forming a colored layer having photosensitivity on the substrate,
For the colored layer having photosensitivity, a cured portion is formed at a predetermined position to be an area used for the transmissive display, and cured at a predetermined position to be an area used for the reflective display. Exposing, so that a part and an uncured part are formed,
Removing the colored layer having photosensitivity other than the cured portion.
前記感光性を有する有色層に対して、前記透過型表示に使用される領域となるべく予め定められる位置に硬化部が形成され、前記反射型表示に使用される領域となるべく予め定められる位置に硬化部と未硬化部とが形成されるように、露光を施す工程は、
前記透過型表示に使用される領域となるべく予め定められる位置の前記感光性を有する有色層に対して、前記基板に接しない表面側から光を照射する工程と、
前記反射型表示に使用される領域となるべく予め定められる位置および前記透過型表示に使用される領域となるべく予め定められる位置の前記感光性を有する有色層に対して、前記基板に接する表面側から光を照射する工程とを含むことを特徴とする請求項5記載のカラーフィルタの製造方法。The colored layer having photosensitivity has photosensitivity in which a portion irradiated with light is cured,
For the colored layer having photosensitivity, a cured portion is formed at a predetermined position to be an area used for the transmissive display, and cured at a predetermined position to be an area used for the reflective display. The step of exposing so that a part and an uncured part are formed,
A step of irradiating light from the surface side not in contact with the substrate, for the colored layer having photosensitivity at a predetermined position to be an area used for the transmissive display,
For the colored layer having photosensitivity at a predetermined position to be an area used for the reflective display and a predetermined position to be an area used for the transmissive display, from the surface side in contact with the substrate 6. A method for manufacturing a color filter according to claim 5, comprising a step of irradiating light.
支持体上に、前記感光性を有する有色層を形成する工程と、
支持体上に形成された前記感光性を有する有色層を前記基板上に貼着する工程とを含むことを特徴とする請求項5または6記載のカラーフィルタの製造方法。Forming a colored layer having photosensitivity on the substrate,
Forming a colored layer having photosensitivity on a support,
7. A method for producing a color filter according to claim 5, further comprising: adhering the colored layer having photosensitivity formed on a support onto the substrate.
有色感光性材料を前記基板上に塗布する工程であることを特徴とする請求項5または6記載のカラーフィルタの製造方法。Forming a colored layer having photosensitivity on the substrate,
7. The method for producing a color filter according to claim 5, wherein the step is a step of applying a colored photosensitive material on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171935A JP4177035B2 (en) | 2002-06-12 | 2002-06-12 | Color filter, method for manufacturing the same, and liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171935A JP4177035B2 (en) | 2002-06-12 | 2002-06-12 | Color filter, method for manufacturing the same, and liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004020648A true JP2004020648A (en) | 2004-01-22 |
JP4177035B2 JP4177035B2 (en) | 2008-11-05 |
Family
ID=31171665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002171935A Expired - Fee Related JP4177035B2 (en) | 2002-06-12 | 2002-06-12 | Color filter, method for manufacturing the same, and liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4177035B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7903206B2 (en) | 2004-06-23 | 2011-03-08 | Sharp Kabushiki Kaisha | Liquid crystal display device and producing method thereof with reflection and transmission display and a color filter having a color reproduction range |
-
2002
- 2002-06-12 JP JP2002171935A patent/JP4177035B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7903206B2 (en) | 2004-06-23 | 2011-03-08 | Sharp Kabushiki Kaisha | Liquid crystal display device and producing method thereof with reflection and transmission display and a color filter having a color reproduction range |
Also Published As
Publication number | Publication date |
---|---|
JP4177035B2 (en) | 2008-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3590737B2 (en) | Liquid crystal display device | |
US7760306B2 (en) | Liquid crystal device and manufacturing method therefor, and electronic apparatus | |
JP2006085130A (en) | Liquid crystal display and method for manufacturing the same | |
US7088404B2 (en) | Substrate for electro-optical device having particular concave portions and convex portions and flat section on the surface of a base layer | |
JP2000171794A (en) | Manufacture of liquid crystal display device | |
US7667797B2 (en) | Liquid crystal display device and method of fabricating the same | |
JP2004226829A (en) | Liquid crystal display, its manufacturing method, and electronic device | |
JP4765962B2 (en) | Manufacturing method of liquid crystal device | |
JP4177035B2 (en) | Color filter, method for manufacturing the same, and liquid crystal display device | |
JP3569200B2 (en) | Liquid crystal display device and method of manufacturing the same | |
JP5655426B2 (en) | Color filter manufacturing method and color filter | |
JP2000171793A (en) | Manufacture of liquid crystal display device | |
JP2000162615A (en) | Production of liquid crystal device, exposure mask and aligner | |
US7224505B2 (en) | Manufacturing method of electro-optical apparatus substrate, manufacturing method of electro-optical apparatus, electro-optical apparatus substrate, electro-optical apparatus, and electronic instrument | |
JP2006072175A (en) | Liquid crystal display, manufacturing method thereof and electronic device | |
JP4106420B2 (en) | Transflective liquid crystal display device | |
JP5281810B2 (en) | Liquid crystal device | |
JP2003302517A (en) | Color filter substrate, method for manufacturing the same, electro-optic panel and electronic equipment | |
JP3800189B2 (en) | Transflective substrate, manufacturing method thereof, electro-optical device, and electronic apparatus | |
JP4965388B2 (en) | Manufacturing method of transflective liquid crystal display device | |
JP2006162685A (en) | Manufacturing method of liquid crystal display | |
JP2004004301A (en) | Liquid crystal display element and projection type picture display device equipped with the same | |
KR20070079613A (en) | Liquid display panel and manufacturing method thereof | |
JP2008020932A (en) | Liquid crystal display | |
JP2009294434A (en) | Photomask, method for manufacturing color filter, color filter and liquid crystal display apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070717 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080821 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |