JP2004020256A - 差動電圧測定装置、半導体試験装置 - Google Patents
差動電圧測定装置、半導体試験装置 Download PDFInfo
- Publication number
- JP2004020256A JP2004020256A JP2002172556A JP2002172556A JP2004020256A JP 2004020256 A JP2004020256 A JP 2004020256A JP 2002172556 A JP2002172556 A JP 2002172556A JP 2002172556 A JP2002172556 A JP 2002172556A JP 2004020256 A JP2004020256 A JP 2004020256A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- resistor
- operational amplifier
- current
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/30—Marginal testing, e.g. by varying supply voltage
- G01R31/3004—Current or voltage test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/10—Measuring sum, difference or ratio
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Tests Of Electronic Circuits (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
【解決手段】所定の一定電圧を負荷装置へ印加する印加電圧源を具備し、印加電圧源の出力端と負荷装置との間に所定の抵抗を直接に挿入して、負荷装置に流れる電流量を電圧に変換する電流電圧変換手段を具備し、同相電圧と検出電圧とを時系列に切り替えて受けて、所定の低電圧に電圧シフトし、シフトした電圧を各々受けて量子化変換した低電圧測定データを各々出力する電流測定手段を具備する差動電圧測定装置。
【選択図】 図3
Description
【発明の属する技術分野】
この発明は、被試験デバイス(DUT)へ比較的高い試験電圧を印加して、その時の負荷電流量を所定の測定分解能で量子化変換できる電流測定部を備える半導体試験装置に関する。特に、DUTへ印加する高い試験電圧に依存されること無く、所定の測定分解能で量子化変換できる電流測定部を有する電圧印加電流測定(VSIM)、を備える半導体試験装置に関する。
【0002】
【従来の技術】
半導体試験装置で被試験デバイス(DUT)の直流電圧や直流電流を高精度に測定する場合、演算増幅器、周辺の抵抗、AD変換器等において、各々高精度の部品が要求される。
シリコン基板にこれら回路を実装する場合、高精度の測定を実現する為に、シリコン基板の製造プロセスが複雑になったり、レーザートリミングが必要となったり、チップサイズが大きくなったりする難点がある。
【0003】
図1はDUTに対して所望の電圧を印加し、その時の電流を測定する電圧印加電流測定(VSIM)を示す1チャンネルの要部回路構成である。これは、テストヘッドのピンエレクトロニクスを介してDUTのICピンに割り込んでICピンへ流れる電流量を測定するものである。
公知のように、高電圧用のVSIMでは例えば±40V程度迄の電圧をDUTへ印加し、電流測定レンジを切り替えてピコアンペア/マイクロアンペア/ミリアンペアの広いダイナミックレンジの電流量を測定する。低電圧用のVSIMでは±10V程度迄の電圧をDUTへ印加し、電流測定レンジを切り替えてマイクロアンペア/ミリアンペアの電流量を測定する。尚、これらVSIMは半導体試験装置には所定複数台備えている。ここで、半導体試験装置及び電圧印加電流測定(VSIM)は公知であり技術的に良く知られている為、本願に係る要部を除き、その他の信号や構成要素、及びその詳細説明については省略する。
【0004】
VSIMの簡明な要部構成要素は図1(a)に示すように、DA変換器10と、演算増幅器A1と、電流検出抵抗手段RMと、電流測定部100とを備える。DA変換器10は、DUTのICピンへ印加すべき正負の設定電圧10sを発生するものである。例えば±40V以上の任意の電圧を発生する。
【0005】
演算増幅器A1は、上記設定電圧10sを受けて、電流検出抵抗手段RMを介してDUTのICピンへ試験電圧VSとして供給するための誤差低減および電力拡大用の演算増幅器である。
【0006】
電流検出抵抗手段RMは、DUTのICピンへ接続される線路に直列に挿入して備えて、当該線路に流れる電流量を数百ミリボルト程度の電位差Vxに変換されるような抵抗値が使用される。この両端に発生する一方の同相電圧Vaと他方の検出電圧Vbを電流測定部100へ供給する。ここで、電流検出抵抗手段RMは測定範囲やその他の理由で、単一の抵抗のみで電流検出抵抗手段RMが構成される場合と、図1(c)に示すように、複数個の抵抗と切り替えリレーで構成される電流測定レンジ機能を備えている場合とがある。
【0007】
電流測定部100は、上記電流検出抵抗手段RMの両端の同相電圧Vaと、検出電圧Vbを受けて、量子化変換して両者の電位差Vxの測定データとして取得し、これからDUTのICピンへ流れる電流量を特定するものである。
図1(b)は第1の内部原理回路図である。この構成要素は演算増幅器A2、A3と、抵抗R1,R2、R3、R4と、切替スイッチSW1と、AD変換器20とを備える例である。
【0008】
演算増幅器A3と抵抗R1,R2、R3、R4との構成は、2信号を受けて両者の電位差Vxに対応する差分信号Vcに変換して出力する一般的な差動増幅構成である。演算増幅器A2は単なる電圧バッファである。ここで、高精度の測定を行う場合には、抵抗R1、R2の分圧比と、抵抗R3、R4の分圧比とが厳密に一致している必要性がある。
切替スイッチSW1は、演算増幅器A2、A3のオフセット電圧等を特定するときに、回路アース側に接続を切り替えて、基準の0Vを測定するときの切り替えリレーである。
【0009】
AD変換器20は、演算増幅器A3からの差分信号Vcを受けて量子化変換した測定データを出力する。
【0010】
ここで、同相電圧と分圧抵抗に伴う誤差要因について数式を示して評価する。ここでαは目的の抵抗値に対する誤差割合とし、nはゲイン(増幅度)とする。
各抵抗の誤差要因としては、R1=R(1+α)、R2=n*R(1−α)、R3=R(1−α)、R4=n*R(1+α)と見なせる。
演算増幅器A2の誤差要因として、オフセット=Aoとし、演算増幅器A3の誤差要因として、オフセット=Boと仮定する。
出力される差分信号Vcは、Vc=Va*(R4/(R3+R4))*((R1+R2)/R1)−Vb*(R2/R1)−Ao*(R2/R1)+Bo*((R1+R2)/R1)の式である。
ここで、Vb=Va+Vxを代入すると、
Vc=Va*[(R4/(R3+R4))*((R1+R2)/R1)−(R2/R1)]−Vx*(R2/R1)−Ao*(R2/R1)+Bo*(R2/R1+1)となる。
同相電圧誤差n1は、n1=[(R4/(R3+R4))*((R1+R2)/R1)−(R2/R1)]の式である。
ゲイン誤差n2は、n2=(R2/R1)の式である。
オフセット誤差n3は、n3=Ao*(R2/R1)+Bo*((R1+R2)/R1)の式である。
上記式に基づいて、同相電圧誤差n1を計算すると、
n1={n(1+α)/[(1−α)+n((1+α)]}*{[(1+α)+n((1−α)]/(1+α)}−[n(1−α)/(1+α)]
ここで、1−α=A、1+α=Bに置き換えると
ここで、α<<1であり、α*α、2αnは1に対して十分に小さいので0で近似できるからして、
n1’=−4α/(1+n+2αn)≒4α/(1+n)の同相電圧誤差を生じることになる。例えば、同相電圧Va=10V、抵抗誤差α=0.1%、ゲインn=1の数値を代入したときの同相電圧誤差は、10V*(4*0.1%)/2=20mV、の値となる。この誤差値は大きな測定誤差要因となってしまう難点がある。
【0011】
一方で、抵抗には電圧係数と呼ばれる抵抗素子の特異な非線形特性がある。この特異な非線形特性は、図10の印加電圧により理想抵抗に対して非線形の偏差を生じる説明図に示すように、抵抗に印加する電圧によって抵抗値が変化してくる。
例えば、ニッケルクロム系の薄膜等を使用した高精度の抵抗では電圧係数は小さいが、モノリシックIC内に形成されるポリシリコン系の抵抗では1Vで0.1〜0.5%の変化する場合もある。
従って、上記回路ではVa−Vbの電位差Vxだけではなく、同相電圧Vaによって分圧用の抵抗R1〜R4が複雑に変わるので、ニッケルクロム系等の特性の良い抵抗が必要となる難点がある。逆に、抵抗に印加される電圧が測定値となる差分信号Vcに比例する場合には、抵抗素子の特異な非線形特性をキャリブレーション等によって補正することが可能である。
【0012】
図2(b)は電流測定部102の第2の内部原理回路図であり、特開平11−174113号( ICテスタの電圧印加電流測定回路)の複数チャンネルのDUTのICピンの電流を測定する電流測定部の要部原理構成である。ここで、図2(a)は1チャンネルのICピンの電流を測定する場合の要部原理構成例である。これは両端の同相電圧Vaと検出電圧Vbの個々に対して、直接的にAD変換してデータメモリ46へ各々格納した後、ソフト処理により電位差Vxを算出する手法である。これによれば、上記分圧用の抵抗R1〜R4を使用しないので、上記同相電圧誤差の問題は解消されている。
しかしながら、逆に、AD変換器45に対して高入力電圧範囲で且つ高分解能なAD変換器が必要となる難点がある。例えば、電位差Vxが1Vmaxのときに±0.1%(±1000)の分解能で測定する場合としたとき、試験電圧VSが1Vの場合には11ビット分解能(±1000)で足りる。しかし、試験電圧VSが10Vの場合には15ビット分解能(±10000)が必要となり、試験電圧VSが100Vの場合には18ビット分解能(±100000)の高入力電圧範囲のAD変換器が必要となってくる難点がある。高入力電圧範囲で且つ高分解能に対応可能なAD変換器は高価な難点がある。
【0013】
【発明が解決しようとする課題】
上述説明したように従来技術の電流測定部においては、図2に示すように、電流検出抵抗手段RMの両端の同相電圧Vaと、検出電圧Vbを直接的にAD変換器で量子化変換する構成である為に、高入力電圧範囲で且つ高分解能なAD変換器が必要となる難点がある。高入力電圧範囲に対応可能なAD変換器は高価である。半導体試験装置はこのAD変換器を複数の数十チャンネル備える必要があるからして、試験装置が高価となる難点がある。
そこで、本発明が解決しようとする課題は、比較的高い試験電圧をDUTへ印加する場合でも、その時の負荷電流量を低い電圧範囲に変換した後、前記低い電圧範囲を所定の測定分解能で量子化変換する電流測定部を備える半導体試験装置を提供することである。
また、比較的高い試験電圧をDUTへ印加する場合でも、その時の負荷電流量を低い電圧範囲に変換した後、前記低い電圧範囲を所定の測定分解能で量子化変換できる電流測定部を有する電圧印加電流測定(VSIM)、を備える半導体試験装置を提供することである。
また、電流測定部をモノリシックIC化するときに、IC上に形成する抵抗のばらつきが存在していても、測定精度に与える影響を最小限にすることが可能な回路構成の電流測定部を備える半導体試験装置を提供することである。
また、電流測定部をモノリシックIC化するときに、IC上に形成する抵抗素子の特異な非線形特性が存在していても、線形補正処理をすることで測定精度に与える影響を最小限にすることが可能な回路構成の電流測定部を備える半導体試験装置を提供することである。
【0014】
【課題を解決するための手段】
第1の解決手段を示す。ここで第9図と第1図(a)は、本発明に係る解決手段を示している。
上記課題を解決するために、所定の一定電圧を負荷装置(例えばDUT)へ印加する印加電圧源(例えばDA変換器10と演算増幅器A1)を具備し、
印加電圧源の出力端と負荷装置との間に所定の抵抗を直接に挿入して、負荷装置に流れる電流量を電圧に変換する電流電圧変換手段(例えば電流検出抵抗手段RM)を具備し、
印加電圧源の出力端の電圧を同相電圧Vaと呼称し、電流電圧変換手段を介して負荷装置へ印加する電圧を検出電圧Vbと呼称し、前記両電圧間の差を電位差Vxと呼称したとき、
同相電圧Vaと検出電圧Vbとを時系列に切り替えて受けて、0V付近の所定の低電圧に電圧シフトし、シフトした電圧を各々受けて量子化変換した低電圧測定データを各々出力する電流測定手段(例えば電流測定部200)を具備し、
得られた低電圧測定データの両者間における電圧の差値を電位差Vxとして求め、求めた電位差Vxと上記電流電圧変換手段の抵抗値とを乗算した結果値を負荷装置へ流れる電流量とする算出手段を具備し、
以上を具備して、上記電流測定手段において低分解能のAD変換器60が適用可能とすることを特徴とする差動電圧測定装置である。
【0015】
次に、第2の解決手段を示す。ここで第9図と第1図(a)は、本発明に係る解決手段を示している。
上記課題を解決するために、被試験デバイスのテスタピンに割り込んで、DUTのICピンへ所定の直流電圧を印加し、その時に流れる電流を測定する電圧印加電流測定(VSIM)の機能を備える半導体試験装置において、
所定の一定電圧をDUTへ印加する印加電圧源(例えばDA変換器10と演算増幅器A1)を具備し、
印加電圧源の出力端とDUTのICピンとの間に所定の抵抗を直接に挿入して、DUTに流れる電流量を電圧に変換する電流電圧変換手段(例えば電流検出抵抗手段RM)を具備し、
印加電圧源の出力端の電圧を同相電圧Vaと呼称し、電流電圧変換手段を介してDUTへ印加する電圧を検出電圧Vbと呼称し、前記両電圧間の差を電位差Vxと呼称したとき、
同相電圧Vaと検出電圧Vbとを時系列に切り替えて受けて、0V付近の所定の低電圧に電圧シフトし、シフトした電圧を各々受けて量子化変換した低電圧測定データを各々出力する電流測定手段(例えば電流測定部200)を具備し、
得られた低電圧測定データの両者間における電圧の差値を電位差Vxとして求め、求めた電位差Vxと上記電流電圧変換手段の抵抗値とを乗算した結果値をDUTへ流れる電流量とする算出手段を具備し、
以上を具備して、上記電流測定手段において低分解能のAD変換器60が適用可能とすることを特徴とする半導体試験装置がある。
【0016】
次に、第3の解決手段を示す。ここで第1図(a)は、本発明に係る解決手段を示している。
上述印加電圧源の一態様は、第1のDA変換器10と第1の演算増幅器A1とを備え、
第1のDA変換器10は外部から設定される設定データに基づいて所定の基準電圧(設定電圧10s)を発生するものであり、
第1の演算増幅器A1は電力用の演算増幅器であり、基準電圧を正入力端(非反転入力端)に受け、DUTへ供給する試験電圧VSを負入力端(反転入力端)に受け、当該第1の演算増幅器A1の出力端から上記電流電圧変換手段を介してDUTへ試験電圧VSとして供給するものであり、
第1の演算増幅器A1の出力端に接続される電流電圧変換手段の両端から同相電圧Vaと検出電圧Vbとして第1の上記電流測定手段(例えば電流測定部200)へ供給する、ことを特徴とする上述半導体試験装置がある。
【0017】
次に、第4の解決手段を示す。ここで第5図は、本発明に係る解決手段を示している。
上述印加電圧源の一態様としては、更に、第1のDA変換器10が発生する基準電圧を第2の上記電流測定手段へ供給する、ことを特徴とする上述半導体試験装置がある。
【0018】
次に、第5の解決手段を示す。ここで第7図は、本発明に係る解決手段を示している。
上述印加電圧源の一態様は、第1のDA変換器10と反転増幅バッファ手段80とを備え、
第1のDA変換器10は外部から設定される設定データに基づいて所定の基準電圧(設定電圧10s)を発生するものであり、
反転増幅バッファ手段80は電力用の反転型演算増幅器であり、基準電圧を受け、DUTへ供給する試験電圧VSを受けて所望ゲインで反転増幅し、当該反転増幅バッファ手段80の出力端から上記電流電圧変換手段を介してDUTへ試験電圧VSとして供給するものであり、
第1の演算増幅器A1の出力端に接続される電流電圧変換手段の両端から同相電圧Vaと検出電圧Vbとして第3の上記電流測定手段へ供給し、且つ、第1のDA変換器10が発生する基準電圧を第3の上記電流測定手段(電流測定部200b)へ供給する、ことを特徴とする上述半導体試験装置がある。
【0019】
次に、第6の解決手段を示す。ここで第3図(a、b)と第5図(b、c)と第7図(b、c)は、本発明に係る解決手段を示している。
上述第1乃至第3の上記電流測定手段の一態様は、オフセット電圧付与手段とAD変換器60とデータ格納手段とを備え、
上記オフセット電圧付与手段(例えばオフセット電圧付与回路300)は概略既知の正電圧若しくは負電圧の同相電圧Vaと検出電圧Vbとを時系列に切り替えて受けて、所定の低電圧範囲に収まるように電圧シフトした同相電圧Vaに対応する第1の低電圧信号と、検出電圧Vbに対応する第2の低電圧信号を出力するものであり、
上記AD変換器60は低電圧に電圧シフトした第1の低電圧信号と第2の低電圧信号とを時系列に受けて、各々を量子化変換した第1の測定データと第2の測定データを出力するものであり、
上記データ格納手段(例えばデータメモリ46)は第1の測定データと第2の測定データを少なくとも1組格納可能なメモリ若しくはレジスタである、ことを特徴とする上述半導体試験装置がある。
【0020】
次に、第7の解決手段を示す。ここで第3図(a)と第5図(b)と第7図(b)は、本発明に係る解決手段を示している。
第1の上記電流測定手段の一態様としては、当該電流測定手段へ入力する1系統の同相電圧Vaと検出電圧Vbとを受けて、何れかに切り替えて上記オフセット電圧付与手段へ供給する第1の入力信号切替手段(例えば切替スイッチSW1)を備える、ことを特徴とする上述半導体試験装置がある。
【0021】
次に、第8の解決手段を示す。ここで第3図(b)は、本発明に係る解決手段を示している。
第2の上記電流測定手段の一態様としては、複数チャンネルから同相電圧Vaと検出電圧Vbとの組の複数群の入力信号を受けて、前記複数群の中の何れかの1つに切り替えて上記オフセット電圧付与手段へ供給する第2の入力信号切替手段(例えば切替スイッチSW1と切替スイッチSW2)を備える、ことを特徴とする上述半導体試験装置がある。
【0022】
次に、第9の解決手段を示す。ここで第5図(c)と第7図(c)は、本発明に係る解決手段を示している。
第3の上記電流測定手段の一態様としては、複数チャンネルから同相電圧Vaと検出電圧Vbとの組の複数群の入力信号を受けて、前記複数群の中の何れかの1つに切り替えて上記オフセット電圧付与手段へ供給し、且つ、複数チャンネルの上記第1のDA変換器10からの上記設定電圧10sを受けて、前記で選択された同相電圧Va若しくは検出電圧Vbに対応するチャンネルの上記設定電圧10sに切り替えて上記オフセット電圧付与手段へ供給する第3の入力信号切替手段(例えば切替スイッチSW1と切替スイッチSW2と切替スイッチSW3)を備える、ことを特徴とする上述半導体試験装置がある。
【0023】
次に、第10の解決手段を示す。ここで第4図(a)と第3図は、本発明に係る解決手段を示している。
上述オフセット電圧付与手段(オフセット電圧付与回路300)の一態様は、第2のDA変換器30と第2の演算増幅器A6と第1抵抗R1と第2抵抗R2と第3抵抗R3とを備え、
第2のDA変換器30は外部から設定されるオフセット設定データに基づいて、概略既知の正電圧若しくは負電圧の同相電圧Va若しくは検出電圧Vbを所定の低電圧に電圧シフトする逆極性のオフセット電圧(相殺電圧Vd)を発生するものであり、
第2の演算増幅器A6と第1抵抗R1と第2抵抗R2とは所定増幅度の反転増幅器を構成するものであり、
第1抵抗R1は同相電圧Va若しくは検出電圧Vbを受ける入力端と第2の演算増幅器A6の負入力端との間に接続され、
第2抵抗R2は第2の演算増幅器A6の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第3抵抗R3は第2のDA変換器30の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第2の演算増幅器A6の正入力端は回路アースに接続されて、入力される同相電圧Va及び検出電圧Vbの両者を同一条件で低電圧に電圧シフトして出力する、ことを特徴とする上述半導体試験装置がある。
【0024】
次に、第11の解決手段を示す。ここで第4図(b)と第3図は、本発明に係る解決手段を示している。
上述オフセット電圧付与手段(オフセット電圧付与回路300b)の一態様は、第2のDA変換器30と第2の演算増幅器A6と第1抵抗R1と第2抵抗R2と第3抵抗R3と第4抵抗R4とを備え、
第2のDA変換器30は外部から設定されるオフセット設定データに基づいて、概略既知の正電圧若しくは負電圧の同相電圧Va若しくは検出電圧Vbを所定の低電圧に電圧シフトする同一極性のオフセット電圧(相殺電圧Vd)を発生するものであり、
第2の演算増幅器A6と第1抵抗R1と第2抵抗R2とは所定増幅度の反転増幅器を構成するものであり、
第1抵抗R1は同相電圧Va若しくは検出電圧Vbを受ける入力端と第2の演算増幅器A6の負入力端との間に接続され、
第2抵抗R2は第2の演算増幅器A6の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第3抵抗R3は第2のDA変換器30の出力端と第2の演算増幅器A6の正入力端との間に接続され、
第4抵抗R4は第2の演算増幅器A6の正入力端と回路アース間に接続されて、入力される同相電圧Va及び検出電圧Vbの両者を同一条件で低電圧に電圧シフトして出力する、ことを特徴とする上述半導体試験装置がある。
【0025】
次に、第12の解決手段を示す。ここで第6図(a)と第5図は、本発明に係る解決手段を示している。
上述オフセット電圧付与手段(オフセット電圧付与回路300c)の一態様は、電圧反転回路70と第2の演算増幅器A6と第1抵抗R1と第2抵抗R2と第3抵抗R3とを備え、
電圧反転回路70は上記印加電圧源が備える第1のDA変換器10から発生する基準電圧(設定電圧10s)を受けて、所定の増幅度で反転増幅した、同相電圧Va若しくは検出電圧Vbを所定の低電圧に電圧シフトする逆極性の所定のオフセット電圧(反転電圧70c)を発生するものであり、
第2の演算増幅器A6と第1抵抗R1と第2抵抗R2とは所定増幅度の反転増幅器を構成するものであり、
第1抵抗R1は同相電圧Va若しくは検出電圧Vbを受ける入力端と第2の演算増幅器A6の負入力端との間に接続され、
第2抵抗R2は第2の演算増幅器A6の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第3抵抗R3は電圧反転回路70の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第2の演算増幅器A6の正入力端は回路アースに接続されて、入力される同相電圧Va及び検出電圧Vbの両者を同一条件で低電圧に電圧シフトして出力する、ことを特徴とする上述半導体試験装置がある。
【0026】
次に、第13の解決手段を示す。ここで第6図(b)と第5図は、本発明に係る解決手段を示している。
上述オフセット電圧付与手段(オフセット電圧付与回路300d)の一態様は、第2の演算増幅器A6と第1抵抗R1と第2抵抗R2と第3抵抗R3と第4抵抗R4とを備え、
第2の演算増幅器A6と第1抵抗R1と第2抵抗R2とは所定増幅度の反転増幅器を構成するものであり、
第1抵抗R1は同相電圧Va若しくは検出電圧Vbを受ける入力端と第2の演算増幅器A6の負入力端との間に接続され、
第2抵抗R2は第2の演算増幅器A6の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第3抵抗R3は上記印加電圧源が備える第1のDA変換器10から発生する基準電圧(設定電圧10s)の出力端と第2の演算増幅器A6の正入力端との間に接続され、
第4抵抗R4は第2の演算増幅器A6の正入力端と回路アース間に接続されて、入力される同相電圧Va及び検出電圧Vbの両者を同一条件で低電圧に電圧シフトして出力する、ことを特徴とする上述半導体試験装置がある。
【0027】
次に、第14の解決手段を示す。ここで第8図(a)と第7図は、本発明に係る解決手段を示している。
上述オフセット電圧付与手段(オフセット電圧付与回路300e)の一態様は、第2の演算増幅器A6と第1抵抗R1と第2抵抗R2と第3抵抗R3とを備え、
第2の演算増幅器A6と第1抵抗R1と第2抵抗R2とは所定増幅度の反転増幅器を構成するものであり、
第1抵抗R1は同相電圧Va若しくは検出電圧Vbを受ける入力端と第2の演算増幅器A6の負入力端との間に接続され、
第2抵抗R2は第2の演算増幅器A6の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第3抵抗R3は上記印加電圧源が備える第1のDA変換器10から発生する基準電圧(設定電圧10s)の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第2の演算増幅器A6の正入力端は回路アースに接続されて、入力される同相電圧Va及び検出電圧Vbの両者を同一条件で低電圧に電圧シフトして出力する、ことを特徴とする上述半導体試験装置がある。
【0028】
次に、第15の解決手段を示す。ここで第8図(b)と第7図は、本発明に係る解決手段を示している。
上述オフセット電圧付与手段(オフセット電圧付与回路300f)の一態様は、電圧反転回路70と第2の演算増幅器A6と第1抵抗R1と第2抵抗R2と第3抵抗R3と第4抵抗R4とを備え、
電圧反転回路70は上記印加電圧源が備える第1のDA変換器10から発生する基準電圧(設定電圧10s)を受けて、所定の増幅度で反転増幅した、同相電圧Va若しくは検出電圧Vbとは逆極性の所定のオフセット電圧(反転電圧70c)を発生するものであり、
第2の演算増幅器A6と第1抵抗R1と第2抵抗R2とは所定増幅度の反転増幅器を構成するものであり、
第1抵抗R1は同相電圧Va若しくは検出電圧Vbを受ける入力端と第2の演算増幅器A6の負入力端との間に接続され、
第2抵抗R2は第2の演算増幅器A6の出力端と第2の演算増幅器A6の負入力端との間に接続され、
第3抵抗R3は電圧反転回路70の出力端と第2の演算増幅器A6の正入力端との間に接続され、
第4抵抗R4は第2の演算増幅器A6の正入力端と回路アース間に接続されて、入力される同相電圧Va及び検出電圧Vbの両者を同一条件で低電圧に電圧シフトして出力する、ことを特徴とする上述半導体試験装置がある。
【0029】
次に、第16の解決手段を示す。ここで第1図(c)は、本発明に係る解決手段を示している。
上述電流電圧変換手段(例えば電流検出抵抗手段RM)の一態様としては、単一の抵抗のみを備え、若しくは複数個の抵抗と切り替えリレーで所定の抵抗値に切替えできる電流測定レンジ機能を備える、ことを特徴とする上述半導体試験装置がある。
【0030】
次に、第17の解決手段を示す。ここで第10図は、本発明に係る解決手段を示している。
上述オフセット電圧付与手段(例えばオフセット電圧付与回路300,300b,300c,300d,300e,300f)に備える少なくとも上記第1抵抗R1と上記第2抵抗R2に対し、DUTの試験に先立って、段階的な電圧を当該抵抗の両端へ印加して測定する手段を具備し、
前記で得られた当該抵抗の非線形特性データと理想抵抗との偏差を特定する手段を具備し、
特定された当該抵抗の非線形特性に基づいて、DUTの電流を測定して得た同相電圧Va及び検出電圧Vb(若しくは差値の電位差Vx)に対して当該抵抗の非線形特性が理想抵抗となるように直線補正する手段を具備し、
を更に備えることで、ポリシリコン系等でモノリシックIC内に形成された当該抵抗素子の特異な非線形特性に伴う誤差要因を補正することを特徴とする上述半導体試験装置がある。
【0031】
尚、本願発明手段は、所望により、上記解決手段における各要素手段を適宜組み合わせて、実用可能な他の構成手段としても良い。また、上記各要素に付与されている符号は、発明の実施の形態等に示されている符号に対応するものの、これに限定するものではなく、実用可能な他の均等物を適用した構成手段としても良い。
【0032】
【発明の実施の形態】
以下に本発明を適用した実施の形態の一例を図面を参照しながら説明する。また、以下の実施の形態の説明内容によって特許請求の範囲を限定するものではないし、更に、実施の形態で説明されている要素や接続関係等が解決手段に必須であるとは限らない。更に、実施の形態で説明されている要素や接続関係等の形容/形態は、一例でありその形容/形態内容のみに限定するものではない。
【0033】
本発明について、図3〜図9を参照して以下に説明する。尚、従来構成に対応する要素は同一符号を付し、また重複する部位の説明は省略する。
【0034】
図3は、本発明の、複数チャンネルのDUTのICピンの電流を測定する電流測定部の要部構成例であり、1チャンネルを受ける場合と複数チャンネルを受ける場合である。この構成は図2の構成例に対してオフセット電圧付与回路300を追加して備える構成である。
オフセット電圧付与回路300は、演算増幅器A5とAD変換器60との間に挿入されて、電流検出抵抗手段RMの両端の同相電圧Vaと、検出電圧Vbを切替スイッチSW1と切替スイッチSW2を介して受け、演算増幅器A5でバッファした結果の高電圧な高電圧信号VA5を受けて、低電圧な差分出力電圧V60にシフトダウンさせるものである。例えば、30V前後の同相電圧Vaと、検出電圧Vbを、AD変換器60で量子化変換可能な電圧範囲、例えば±1V未満の低い差分出力電圧V60に電圧をシフトダウンさせる。
【0035】
図4(a)はオフセット電圧付与回路の第1の内部構成例である。
この構成要素は、DA変換器30と、抵抗R1、R2、R3と、演算増幅器A6とを備える例である。
【0036】
抵抗R3を除いたときにおいて、抵抗R1、R2と演算増幅器A6とによる回路構成は、一般的な反転増幅構成であって、高電圧信号VA5は抵抗R1を介しての負入力端へ供給される。この負入力端は演算増幅器の演算増幅作用により、正入力端側と同一の0V状態を常に維持する帰還動作をしている。演算増幅器A6の出力端は抵抗R1と抵抗R2とで決まる増幅率nで反転増幅された結果の差分出力電圧V60を出力する。
【0037】
抵抗R3とDA変換器30とは、出力される差分出力電圧V60が、所望の0V付近へシフトダウンさせる為のオフセット付与手段であって、抵抗R3を介して演算増幅器A6の負入力端へ接続されている。これにより、入力される高電圧信号VA5を相殺するように逆方向の相殺電圧Vdを、抵抗R3を介して演算増幅器A6の負入力端へ供給することができる。ここで、DA変換器30は設定データ30cに基づいて正電圧/負電圧の所望の電圧を発生できる。
尚、電流測定用のDA変換器30に対する設定制御は、DUT印加用のDA変換器10側の設定変更に連動して、所望の電圧へシフトダウンできるように連動した設定制御する必要性がある。
【0038】
この結果、DA変換器30へ供給する設定データ30cを所望に設定制御することで、入力される高電圧信号VA5に係わらず、演算増幅器A6の差分出力電圧V60は0V付近の低い差分出力電圧V60にシフトダウンすることができる。この結果、低分解能で安価なAD変換器が使用できる大きな利点が得られる。
【0039】
図9はオフセット電圧付与回路300による電圧のシフトダウン動作を説明する図である。ここで、図3(a)における一方の同相電圧Vaが20Vとし、他方の検出電圧Vbが20.2Vと仮定すると、このときの電位差Vxは0.2Vである。また、AD変換器で量子化する分解能は0.1mV単位の場合と仮定する。
前記数値条件例の場合、従来の図2に示す測定構成では、高電圧な同相電圧Vaと、検出電圧Vbを直接AD変換器で量子化変換する構成であるからして、20.2V迄を量子化変換できる高分解能なAD変換器が必要となる。この結果、分解能202000迄可能な18ビット分解能のAD変換器を適用して測定する必要性がある。
一方、本発明では0V付近へシフトダウンした低い差分出力電圧V60の0V若しくは0.2Vを対象として量子化変換すれば良いからして、0.2V迄を量子化変換できる低分解能なAD変換器が適用できる。この結果、分解能2000迄可能な11ビット分解能の安価なAD変換器が適用できる大きな利点が得られる。
【0040】
次に、上述した図4(a)に示す本発明のオフセット電圧付与回路300の回路構成によれば、構成部品のバラツキに伴う測定精度の影響が最小限にできる。これについて具体的な数値例を示して以下に説明する。ここで、従来と同様に、αは目的の抵抗値に対する誤差割合とし、nはゲインとする。また、図3(a、b)における演算増幅器A5の誤差要因として、オフセット=Aoとし、演算増幅器A6の誤差要因として、オフセット=Boと仮定する。
各抵抗の誤差要因としては、R1=R(1+α)、R2=n*R(1−α)、R3=R(1−α)と見なせる。
同相電圧Vaに対する同相電圧測定値Va1は、Va1=−Va(R2/R1)+Vc(R2/R3)+Ao(R2/R1)+Bo(R2+(R1//R3))/(R1//R3)の式である。
検出電圧Vbに対する検出電圧測定値Vb1は、Vb1=−Vb(R2/R1)+Vc(R2/R3)+Ao(R2/R1)+Bo(R2+(R1//R3))/(R1//R3)の式である。
ここで、Vb=Va−Vxを代入する。また、同相電圧Vaと、検出電圧Vbの温度変化等に伴うドリフト的な誤差要因は、切替スイッチSW1で両信号を切り替えて短期間中に測定するからして同一と見なせる。従って、
Va1−Vb1=(Vb−Va)(R2/R1) =Vx(R2/R1)
の式となる。この結果、抵抗R1、R2の誤差要因のみが測定値となるVxに対するゲイン誤差となる。従って、他の誤差要素は影響を受けないことが判る。
【0041】
図4(a)に示す本発明回路では演算増幅器A6を反転増幅器として使用し、正入力端子は回路アース(0V)へ接続しているので、反転入力端子は0V状態に帰還制御されている。
Va≒Vcとした場合、抵抗R2の両端に印加される電圧はVa−Vbの差電圧に比例する。
また、同相電圧Vaと検出電圧Vb測定時にR1の両端に印加される電圧変化はVxに比例し、同相電圧Vaに依存しない。
【0042】
従って、抵抗素子の特異な非線形特性に伴い、印加電圧によって抵抗値が変化してくるものの、上述した図4(a)の回路構成によれば、抵抗R1、R2の特異な非線形特性の影響は、Vxに比例した変化の最小限にできる利点を備えている。よって、精度の良いDUTの電流測定が実現できる。これにより、ポリシリコン系の薄膜抵抗を適用するモノリシックICの形成に対して、測定精度の影響が最小限でIC化が形成可能となる大きな利点が得られる。このことは、IC化に適した優れた回路構成である。
【0043】
次に、図4(b)はオフセット電圧付与回路の第2の内部構成例である。
このオフセット電圧付与回路300bの第2の内部構成は、図4(a)に示す構成要素に対して抵抗R4を追加し、接続を変更した構成例である。
抵抗R4は、抵抗R3と共に、DA変換器30から出力される相殺電圧Vdを所望に分圧する分圧用の抵抗である。抵抗R4の一端は回路アースに接続し、他端は演算増幅器A6の正入力端と抵抗R3の一端とに接続する。抵抗R3の他端はDA変換器30の出力端に接続している。この場合はDUTへ印加する試験電圧VSが低い場合に適している。
測定時において、演算増幅器A6の差分出力電圧V60には、抵抗R3、R4の抵抗値のバラツキに伴う測定誤差が生じるが、電流検出抵抗手段RMの両端の一方の同相電圧Vaを測定した同相電圧測定値Va1と、他方の検出電圧Vbを測定した検出電圧測定値Vb1とが各々短時間内に測定される。その後、ソフト演算処理でVa1−Vb1の引き算処理される結果、短時間内における同一測定条件で使用される差分出力電圧V60、抵抗R3、及び抵抗R4の誤差要因は、引き算処理によって誤差量が相殺される結果、実質的に誤差を生じない利点を備えてる。
【0044】
従って、上述した図4(b)の発明構成例によれば、上述図4(a)と同様に、抵抗R1、R2の電圧係数特性の影響は、Vxに比例した変化の最小限にできる利点を備えている。よって、精度の良いDUTの電流測定が実現できる。
【0045】
次に、図5(a)は本発明のDUTに電圧を印加し、その時の1チャンネルの電流を測定する電圧印加電流測定(VSIM)を示す、他の要部回路構成例である。この要部構成要素は、DA変換器10と、演算増幅器A1と、電流検出抵抗手段RMと、電流測定部200bとを備える。
【0046】
DA変換器10は、DUTのICピンへ印加すべき設定電圧10sを発生して演算増幅器A1の正入力端へ供給し、且つ電流測定部200bへも供給する接続構成である。
【0047】
本発明の電流測定部200bは、図4(a、b)に示すオフセット電圧付与回路300の内部構成におけるDA変換器30を削除し、代わりに上記DA変換器10からDUTへの印加用の設定電圧10sを受ける内部構成としている。
図5(b)は図5(a)に対応する1チャンネルの同相電圧Vaと検出電圧Vbと設定電圧10sとを受けて電流測定する電流測定部200bの内部原理回路図である。図5(c)は複数チャンネルからの同相電圧Vaと検出電圧Vbと設定電圧10sとを受けて電流測定する場合の電流測定部200bの内部原理回路図である。
【0048】
図5(b、c)におけるオフセット電圧付与回路300cは、DA変換器10からの設定電圧10sを受け、上述した高電圧信号VA5を受けて、所望の0V付近へシフトダウンした低電圧な差分出力電圧V60を出力する。
【0049】
図6(a)はオフセット電圧付与回路300cの第1の内部構成例であり、図6(b)はオフセット電圧付与回路300dの第2の内部構成例である。
図6(a)の構成要素は、電圧反転回路70と、抵抗R1、R2、R3と、演算増幅器A6とを備える例であり、図6(b)の構成要素は、抵抗R1、R2、R3、R4と、演算増幅器A6とを備える例である。
【0050】
電圧反転回路70は、図6(c)に示すように、入力される設定電圧10sbを受けて、この入力電圧の極性を演算増幅器A7で反転増幅させた反転電圧70cを出力ものである。一例として、入力電圧が+10Vのとき、−10Vを出力する。但し、反転電圧70cは上述したソフト演算処理によるVa1−Vb1の演算によって相殺されるので、精度の高い反転増幅は不要である。従って、抵抗R11、R12は厳密に同一抵抗値である必要性は無い。また演算増幅器A7にオフセットばらつきがあっても支障とはならない。尚、他の抵抗R1、R2、R3と、演算増幅器A6とは、図4の場合と同様であるからして説明を省略する。この構成では、DUT印加用のDA変換器10を所望の電圧に設定変更しても、無負荷電流のときには常にほぼ0Vの状態に電圧がオフセットされる利点が得られる。更に、設定制御が簡便にできる。
【0051】
従って、上述した図5及び図6の発明構成例によれば、DA変換器10を共有することで、上述したDA変換器30を削除できるからして、より一層安価に構成できる利点が得られる。更に、DUT印加用のDA変換器10側の設定変更に連動して、電流測定用の設定電圧も変更できるからして、利便性のよい設定制御が可能である。
【0052】
次に、図7(a)は本発明のDUTに電圧を印加し、その時の1チャンネルの電流を測定する電圧印加電流測定(VSIM)を示す、更に他の要部回路構成例である。この要部構成要素は、DA変換器10と、反転増幅バッファ手段80と、電流検出抵抗手段RMと、電流測定部200bとを備える。
【0053】
DA変換器10は、DUTのICピンへ印加すべき試験電圧VSに対して、電圧反転した設定電圧10sを発生する。これを電流測定部200bへも供給する。
【0054】
演算増幅器A1は、上記設定電圧10sを受けて、電流検出抵抗手段RMを介してDUTのICピンへ試験電圧VSとして供給するための誤差低減及び電力拡大用の演算増幅器である。
反転増幅バッファ手段80は抵抗R21、R22と、演算増幅器A1、A8とを備える。これは、DA変換器10からの設定電圧10sを受けて、電圧増幅ならびに極性反転した試験電圧VSを出力し、これをDUTへ供給するものである。
演算増幅器A1は反転増幅構成であり、抵抗R21とR22により反転増幅する増幅率が決まる。演算増幅器A8は試験電圧VSをハイインピーダンスで受けて電圧バッファした後、抵抗R22へ供給する。この結果、一例として、R21=R22で、入力電圧が+10Vのとき、−10Vの試験電圧VSがDUTへ供給される。
【0055】
図7(b)及び図7(c)に示す本発明のオフセット電圧付与回路300eは、演算増幅器A5とAD変換器60との間に挿入されて、電流検出抵抗手段RMの両端の同相電圧Vaと検出電圧Vbとを切替スイッチSW1を介し、演算増幅器A5でバッファした高電圧信号VA5を介して受けて、低電圧な差分出力電圧V60に電圧をシフトダウンさせるものである。
【0056】
図8はオフセット電圧付与回路300eの内部原理回路図である。
図8(a)のオフセット電圧付与回路300eの構成要素は、抵抗R1、R2、R3と、演算増幅器A6とを備える例であり、図8(b)のオフセット電圧付与回路300fの構成要素は、電圧反転回路70と、抵抗R1、R2、R3、R4と、演算増幅器A6とを備える例である。これらの内部動作は図4の場合とほぼ同様であるからして説明を省略する。この結果、図7(a)に示すDA変換器10を共有使用できることとなる。
【0057】
従って、上述した図7及び図8の発明構成例によれば、DA変換器10を共有することで、上述したDA変換器30を削除できるからして、より一層安価に構成できる利点が得られる。更に、DUT印加用のDA変換器10側の設定変更に連動して、電流測定用の設定電圧も変更できるからして、利便性のよい設定制御が可能である。無論、上述図4(a)と同様に、抵抗R1、R2の電圧係数特性の影響は、Vxに比例した変化の最小限にできる利点を備えている。よって、精度の良いDUTの電流測定が実現できる。
【0058】
尚、本発明の技術的思想は、上述実施の形態の具体構成例、接続形態例に限定されるものではない。更に、本発明の技術的思想に基づき、上述実施の形態を適宜変形して広汎に応用してもよい。
例えば、図5(c)、図7(c)の構成例では、複数チャンネルからの設定電圧10sを切替スイッチSW3が受けて、何れかに切り替えて出力する構成例であるが、特定チャンネルのDA変換器10に直接接続した構成でも実用可能であるからして、所望により、切替スイッチSW3を削除した構成としても良い。
【0059】
また、図10に示す抵抗素子の特異な非線形特性に対してキャリブレーション補正する手段を追加して備えても良い。即ち、補正対象とする回路部位、例えば図4に示す抵抗R1、R2に対して段階的な電圧を印加し、各印加電圧毎の差分出力電圧V60を測定する。前記の各印加電圧毎の測定データから理想抵抗との偏差を線形補正量として予め求め、これをキャリブレーションの補正量として保存しておく。得られた補正量に基づいて、DUTの電流を測定する差分出力電圧V60の測定データを受けて、ソフト処理により補正演算処理することにより、非直線性に伴う偏差は改善できる。この結果、DUTの電流測定の精度が更に向上できる。
【0060】
【発明の効果】
本発明は、上述の説明内容からして、下記に記載される効果を奏する。
上述した図4(a)の回路構成によれば、DA変換器30へ供給する設定データ30cを所望に設定制御することで、入力される高電圧信号VA5に係わらず、演算増幅器A6の差分出力電圧V60は0V付近の低い差分出力電圧V60にシフトダウンすることができる。この結果、低分解能で安価なAD変換器が使用できる大きな利点が得られる。
上述した図4(a)の回路構成によれば、抵抗R1、R2の特異な非線形特性の影響は、Vxに比例した変化の最小限にできる利点を備えている。よって、精度の良いDUTの電流測定が実現できる。これにより、ポリシリコン系の薄膜抵抗を適用するモノリシックICの形成に対して、測定精度の影響が最小限でIC化が形成可能となる大きな利点が得られる。このことは、IC化に適した優れた回路構成である。
【0061】
上述した図4(b)の発明構成例によれば、上述図4(a)と同様に、抵抗R1、R2の電圧係数特性の影響は、Vxに比例した変化の最小限にできる利点を備えている。よって、精度の良いDUTの電流測定が実現できる。
上述した図5及び図6の発明構成例によれば、DA変換器10を共有することで、上述したDA変換器30を削除できるからして、より一層安価に構成できる利点が得られる。更に、DUT印加用のDA変換器10側の設定変更に連動して、電流測定用の設定電圧も変更できるからして、利便性のよい設定制御が可能である。
上述した図7及び図8の発明構成例によれば、DA変換器10を共有することで、上述したDA変換器30を削除できるからして、より一層安価に構成できる利点が得られる。更に、DUT印加用のDA変換器10側の設定変更に連動して、電流測定用の設定電圧も変更できるからして、利便性のよい設定制御が可能である。無論、上述図4(a)と同様に、抵抗R1、R2の電圧係数特性の影響は、Vxに比例した変化の最小限にできる利点を備えている。よって、精度の良いDUTの電流測定が実現できる。
従って、本発明の技術的効果は大であり、産業上の経済効果も大である。
【図面の簡単な説明】
【図1】従来の、DUTに対して所望の電圧を印加し、その時の電流を測定する電圧印加電流測定(VSIM)を示す1チャンネルの要部回路構成と、その内部原理回路図と、測定レンジ機能を備える電流検出抵抗手段RMの例である。
【図2】従来の、1チャンネルのICピンの電流を測定する場合の要部原理構成例と、複数チャンネルのDUTのICピンの電流を測定する電流測定部の要部原理構成である。
【図3】本発明の、複数チャンネルのDUTのICピンの電流を測定する電流測定部の要部構成例であり、1チャンネルを受ける場合と複数チャンネルを受ける場合である。
【図4】オフセット電圧付与回路の第1の内部構成例と、第2の内部構成例である。
【図5】本発明のDUTに電圧を印加し、その時の1チャンネルの電流を測定する電圧印加電流測定(VSIM)を示す、他の要部回路構成例と、1チャンネルの同相電圧Vaと検出電圧Vbと設定電圧10sとを受けて電流測定する電流測定部200bの内部原理回路図と、複数チャンネルからの同相電圧Vaと検出電圧Vbと設定電圧10sとを受けて電流測定する場合の電流測定部200bの内部原理回路図と、電圧反転回路70の内部構成例である。
【図6】オフセット電圧付与回路300cの第1の内部構成例と第2の内部構成例である。
【図7】本発明の、DUTに電圧を印加し、その時の1チャンネルの電流を測定する電圧印加電流測定(VSIM)を示す、更に他の要部回路構成例と、1チャンネルの電流を測定する場合と複数チャンネルの電流を測定する場合の電流測定部200bの内部構成例である。
【図8】オフセット電圧付与回路300eの内部原理回路図である。
【図9】オフセット電圧付与回路300による電圧のシフトダウン動作を説明する図である。
【図10】印加電圧により理想抵抗に対して非線形の偏差を生じる説明図である。
【符号の説明】
A1,A2,A3,A5,A6,A7,A8 演算増幅器
R1,R2,R3,R4,R11,R12,R21,R22 抵抗
SW1,SW2,SW3 切替スイッチ
10,30 DA変換器
20,45,60 AD変換器
46 データメモリ
70 電圧反転回路
80 反転増幅バッファ手段
100,102,200b 電流測定部
300,300b,300c,300d,300e,300f オフセット電圧付与回路
DUT 被試験デバイス
RM 電流検出抵抗手段
Claims (17)
- 所定の一定電圧を負荷装置へ印加する印加電圧源と、
該印加電圧源の出力端と負荷装置との間に所定の抵抗を直接に挿入して、負荷装置に流れる電流量を電圧に変換する電流電圧変換手段と、
該印加電圧源の出力端の電圧を同相電圧とし、該電流電圧変換手段を介して負荷装置へ印加する電圧を検出電圧とし、前記両電圧間の差を電位差としたとき、該同相電圧と該検出電圧とを時系列に切り替えて受けて、所定の低電圧に電圧シフトし、シフトした電圧を各々受けて量子化変換した低電圧測定データを各々出力する電流測定手段と、
を具備することを特徴とする差動電圧測定装置。 - 被試験デバイス(DUT)のICピンへ所定の直流電圧を印加し、その時に流れる電流を測定する機能を備える半導体試験装置において、
所定の一定電圧をDUTへ印加する印加電圧源と、
該印加電圧源の出力端とDUTのICピンとの間に所定の抵抗を直接に挿入して、DUTに流れる電流量を電圧に変換する電流電圧変換手段と、
該印加電圧源の出力端の電圧を同相電圧とし、該電流電圧変換手段を介してDUTへ印加する電圧を検出電圧とし、前記両電圧間の差を電位差としたとき、
該同相電圧と該検出電圧とを時系列に切り替えて受けて、所定の低電圧に電圧シフトし、シフトした電圧を各々受けて量子化変換した低電圧測定データを各々出力する電流測定手段と、
を具備することを特徴とする半導体試験装置。 - 該印加電圧源は、第1のDA変換器と第1の演算増幅器とを備え、
該第1のDA変換器は外部から設定される設定データに基づいて所定の基準電圧を発生するものであり、
該第1の演算増幅器は電力用の演算増幅器であり、該基準電圧を正入力端に受け、DUTへ供給する試験電圧を負入力端に受け、当該第1の演算増幅器の出力端から該電流電圧変換手段を介してDUTへ試験電圧として供給するものであり、
該電流電圧変換手段の両端から該同相電圧と該検出電圧として第1の該電流測定手段へ供給する、ことを特徴とする請求項2記載の半導体試験装置。 - 該印加電圧源は、更に、該第1のDA変換器が発生する基準電圧を第2の該電流測定手段へ供給する、ことを特徴とする請求項3記載の半導体試験装置。
- 該印加電圧源は、第1のDA変換器と反転増幅バッファ手段とを備え、
該第1のDA変換器は外部から設定される設定データに基づいて所定の基準電圧を発生するものであり、
該反転増幅バッファ手段は電力用の反転型演算増幅器であり、該基準電圧を受け、DUTへ供給する試験電圧を受けて反転増幅し、当該反転増幅バッファ手段の出力端から該電流電圧変換手段を介してDUTへ試験電圧として供給するものであり、
該電流電圧変換手段の両端から該同相電圧と該検出電圧として第3の該電流測定手段へ供給し、且つ、該第1のDA変換器が発生する基準電圧を第3の該電流測定手段へ供給する、ことを特徴とする請求項2記載の半導体試験装置。 - 第1乃至第3の該電流測定手段は、オフセット電圧付与手段とAD変換器とデータ格納手段とを備え、
該オフセット電圧付与手段は該同相電圧と該検出電圧とを時系列に切り替えて受けて、所定の低電圧範囲に収まるように電圧シフトした該同相電圧に対応する第1の低電圧信号と、該検出電圧に対応する第2の低電圧信号を出力するものであり、
該AD変換器は低電圧に電圧シフトした該第1の低電圧信号と第2の低電圧信号とを時系列に受けて、各々を量子化変換した第1の測定データと第2の測定データを出力するものであり、
該データ格納手段は該第1の測定データと該第2の測定データを少なくとも1組格納可能なメモリ若しくはレジスタである、ことを特徴とする請求項2乃至5記載の半導体試験装置。 - 第1の該電流測定手段は、当該電流測定手段へ入力する1系統の該同相電圧と該検出電圧とを受けて、何れかに切り替えて該オフセット電圧付与手段へ供給する第1の入力信号切替手段を備える、ことを特徴とする請求項3記載の半導体試験装置。
- 第2の該電流測定手段は、複数チャンネルから該同相電圧と該検出電圧との組の複数群の入力信号を受けて、前記複数群の中の何れかの1つに切り替えて該オフセット電圧付与手段へ供給する第2の入力信号切替手段を備える、ことを特徴とする請求項4記載の半導体試験装置。
- 第3の該電流測定手段は、複数チャンネルから該同相電圧と該検出電圧との組の複数群の入力信号を受けて、前記複数群の中の何れかの1つに切り替えて該オフセット電圧付与手段へ供給し、且つ、複数チャンネルの該第1のDA変換器からの該設定電圧を受けて、前記で選択された該同相電圧若しくは該検出電圧に対応するチャンネルの該設定電圧に切り替えて該オフセット電圧付与手段へ供給する第3の入力信号切替手段を備える、ことを特徴とする請求項5記載の半導体試験装置。
- 該オフセット電圧付与手段は、第2のDA変換器と第2の演算増幅器と第1抵抗と第2抵抗と第3抵抗とを備え、
該第2のDA変換器は外部から設定されるオフセット設定データに基づいて、該同相電圧若しくは該検出電圧を所定の低電圧に電圧シフトする逆極性のオフセット電圧を発生するものであり、
該第2の演算増幅器と第1抵抗と第2抵抗とは所定増幅度の反転増幅器を構成するものであり、
該第1抵抗は該同相電圧若しくは該検出電圧を受ける入力端と該第2の演算増幅器の負入力端との間に接続され、
該第2抵抗は該第2の演算増幅器の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第3抵抗は該第2のDA変換器の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第2の演算増幅器の正入力端は回路アースに接続される、ことを特徴とする請求項6記載の半導体試験装置。 - 該オフセット電圧付与手段は、第2のDA変換器と第2の演算増幅器と第1抵抗と第2抵抗と第3抵抗と第4抵抗とを備え、
該第2のDA変換器は外部から設定されるオフセット設定データに基づいて、該同相電圧若しくは該検出電圧を所定の低電圧に電圧シフトする同一極性のオフセット電圧を発生するものであり、
該第2の演算増幅器と第1抵抗と第2抵抗とは所定増幅度の反転増幅器を構成するものであり、
該第1抵抗は該同相電圧若しくは該検出電圧を受ける入力端と該第2の演算増幅器の負入力端との間に接続され、
該第2抵抗は該第2の演算増幅器の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第3抵抗は該第2のDA変換器の出力端と該第2の演算増幅器の正入力端との間に接続され、
該第4抵抗は該第2の演算増幅器の正入力端と回路アース間に接続される、ことを特徴とする請求項6記載の半導体試験装置。 - 該オフセット電圧付与手段は、電圧反転回路と第2の演算増幅器と第1抵抗と第2抵抗と第3抵抗とを備え、
該電圧反転回路は該印加電圧源が備える第1のDA変換器から発生する基準電圧を受けて、所定の増幅度で反転増幅した所定のオフセット電圧を発生するものであり、
該第2の演算増幅器と第1抵抗と第2抵抗とは所定増幅度の反転増幅器を構成するものであり、
該第1抵抗は該同相電圧若しくは該検出電圧を受ける入力端と該第2の演算増幅器の負入力端との間に接続され、
該第2抵抗は該第2の演算増幅器の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第3抵抗は該電圧反転回路の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第2の演算増幅器の正入力端は回路アースに接続される、ことを特徴とする請求項6記載の半導体試験装置。 - 該オフセット電圧付与手段は、第2の演算増幅器と第1抵抗と第2抵抗と第3抵抗と第4抵抗とを備え、
該第2の演算増幅器と第1抵抗と第2抵抗とは所定増幅度の反転増幅器を構成するものであり、
該第1抵抗は該同相電圧若しくは該検出電圧を受ける入力端と該第2の演算増幅器の負入力端との間に接続され、
該第2抵抗は該第2の演算増幅器の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第3抵抗は該印加電圧源が備える第1のDA変換器から発生する基準電圧の出力端と該第2の演算増幅器の正入力端との間に接続され、
該第4抵抗は該第2の演算増幅器の正入力端と回路アース間に接続される、ことを特徴とする請求項6記載の半導体試験装置。 - 該オフセット電圧付与手段は、第2の演算増幅器と第1抵抗と第2抵抗と第3抵抗とを備え、
該第2の演算増幅器と第1抵抗と第2抵抗とは所定増幅度の反転増幅器を構成するものであり、
該第1抵抗は該同相電圧若しくは該検出電圧を受ける入力端と該第2の演算増幅器の負入力端との間に接続され、
該第2抵抗は該第2の演算増幅器の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第3抵抗は該印加電圧源が備える第1のDA変換器から発生する基準電圧の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第2の演算増幅器の正入力端は回路アースに接続される、ことを特徴とする請求項6記載の半導体試験装置。 - 該オフセット電圧付与手段は、電圧反転回路と第2の演算増幅器と第1抵抗と第2抵抗と第3抵抗と第4抵抗とを備え、
該電圧反転回路は該印加電圧源が備える第1のDA変換器から発生する基準電圧を受けて、所定の増幅度で反転増幅した所定のオフセット電圧を発生するものであり、
該第2の演算増幅器と第1抵抗と第2抵抗とは所定増幅度の反転増幅器を構成するものであり、
該第1抵抗は該同相電圧若しくは該検出電圧を受ける入力端と該第2の演算増幅器の負入力端との間に接続され、
該第2抵抗は該第2の演算増幅器の出力端と該第2の演算増幅器の負入力端との間に接続され、
該第3抵抗は該電圧反転回路の出力端と該第2の演算増幅器の正入力端との間に接続され、
該第4抵抗は該第2の演算増幅器の正入力端と回路アース間に接続される、ことを特徴とする請求項6記載の半導体試験装置。 - 該電流電圧変換手段は、単一の抵抗のみを備え、若しくは複数個の抵抗と切り替えリレーで所定の抵抗値に切替えできる電流測定レンジ機能を備える、ことを特徴とする請求項1又は2記載の半導体試験装置。
- 該オフセット電圧付与手段に備える少なくとも該第1抵抗と該第2抵抗に対し、DUTの試験に先立って、段階的な電圧を当該抵抗の両端へ印加して測定する手段と、
前記で得られた当該抵抗の非線形特性データと理想抵抗との偏差を特定する手段と、
特定された当該抵抗の非線形特性に基づいて、DUTの電流を測定して得た該同相電圧及び該検出電圧に対して当該抵抗の非線形特性が理想抵抗となるように直線補正する手段と、
を更に備えることを特徴とする請求項6乃至15記載の半導体試験装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002172556A JP4152676B2 (ja) | 2002-06-13 | 2002-06-13 | 差動電圧測定装置、半導体試験装置 |
US10/517,349 US7138819B2 (en) | 2002-06-13 | 2003-06-12 | Differential voltage measuring apparatus and semiconductor testing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002172556A JP4152676B2 (ja) | 2002-06-13 | 2002-06-13 | 差動電圧測定装置、半導体試験装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004020256A true JP2004020256A (ja) | 2004-01-22 |
JP4152676B2 JP4152676B2 (ja) | 2008-09-17 |
Family
ID=31172084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002172556A Expired - Fee Related JP4152676B2 (ja) | 2002-06-13 | 2002-06-13 | 差動電圧測定装置、半導体試験装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7138819B2 (ja) |
JP (1) | JP4152676B2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7589540B2 (en) | 2006-01-31 | 2009-09-15 | Samsung Electronics Co., Ltd. | Current-mode semiconductor integrated circuit device operating in voltage mode during test mode |
JP2009276296A (ja) * | 2008-05-16 | 2009-11-26 | Mazda Motor Corp | 電圧測定装置及び電圧測定方法 |
CN103048517A (zh) * | 2012-11-16 | 2013-04-17 | 北京思能达电力电子技术有限公司 | 用于矿热炉低压补偿的通过电极电流测量装置测量电极电流的方法 |
CN103499729A (zh) * | 2013-09-30 | 2014-01-08 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种串联电容补偿装置火花间隙用均压电容分压比的测量方法 |
CN104062534A (zh) * | 2013-03-22 | 2014-09-24 | 德克萨斯仪器股份有限公司 | 针对短路测试集成电路封装 |
JP2017019428A (ja) * | 2015-07-13 | 2017-01-26 | 富士重工業株式会社 | 車両用衝撃エネルギー吸収構造 |
JP2019057759A (ja) * | 2017-09-19 | 2019-04-11 | 株式会社東芝 | 増幅回路、ad変換器、無線通信装置、及びセンサシステム |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7207885B2 (en) | 2004-01-15 | 2007-04-24 | Espeed, Inc. | System and method for using a game controller device for electronic trading |
US8170945B2 (en) * | 2004-01-15 | 2012-05-01 | Bgc Partners, Inc. | System and method for providing security to a game controller device for electronic trading |
US7855576B1 (en) * | 2006-04-19 | 2010-12-21 | Altera Corporation | Versatile common-mode driver methods and apparatus |
JP4707608B2 (ja) * | 2006-05-19 | 2011-06-22 | 株式会社アドバンテスト | 測定回路及び試験装置 |
JP2008102344A (ja) * | 2006-10-19 | 2008-05-01 | Nec Electronics Corp | 表示装置の駆動回路およびそのテスト方法 |
US7812628B2 (en) * | 2006-12-13 | 2010-10-12 | Renesas Electronics Corporation | Method of on-chip current measurement and semiconductor IC |
US20080228618A1 (en) | 2007-03-15 | 2008-09-18 | Noviello Joseph C | System And Method For Providing An Operator Interface For Displaying Market Data, Trader Options, And Trader Input |
US8208237B2 (en) * | 2008-09-30 | 2012-06-26 | International Business Machines Corporation | Administering offset voltage error in a current sensing circuit |
US8558553B2 (en) | 2008-12-16 | 2013-10-15 | Infineon Technologies Austria Ag | Methods and apparatus for selecting settings for circuits |
US7755348B1 (en) * | 2009-03-28 | 2010-07-13 | Cypress Semiconductor Corporation | Current sensor output measurement system and method |
JP2012052862A (ja) * | 2010-08-31 | 2012-03-15 | Advantest Corp | 試験装置用の電源装置およびそれを用いた試験装置 |
KR20140115586A (ko) * | 2013-03-21 | 2014-10-01 | 삼성전자주식회사 | 이동식 소모 전류 측정 장치, 전류 측정 단말 및 소모 전류 측정 방법 |
US9140751B2 (en) * | 2013-03-27 | 2015-09-22 | Texas Instruments Incorporated | Testing integrated circuit packaging for output short circuit current |
CN105842518A (zh) * | 2016-03-25 | 2016-08-10 | 赵士立 | 一种机器线路无线电压测电笔 |
US10382034B2 (en) | 2016-11-22 | 2019-08-13 | Qualcomm Incorporated | Apparatus and method for sensing distributed load currents provided by power gating circuit |
US11156692B2 (en) | 2020-02-19 | 2021-10-26 | Teradyne, Inc. | Calibrating differential measurement circuitry |
CN117214661B (zh) * | 2023-09-11 | 2024-04-19 | 无锡市晶源微电子股份有限公司 | 一种针对运放的输入失调电压的测试装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6168533A (ja) | 1984-09-12 | 1986-04-08 | Toyota Motor Corp | 内燃機関の最高燃焼圧力発生時期検出方法 |
JPH0258840A (ja) | 1988-08-25 | 1990-02-28 | Toshiba Corp | 2−6族化合物半導体結晶の製造方法 |
JPH04370769A (ja) | 1991-06-19 | 1992-12-24 | Mitsubishi Electric Corp | A/d変換器を用いた電圧・電流信号の補正方法 |
JPH0634674A (ja) | 1992-05-21 | 1994-02-10 | Sony Tektronix Corp | 電流測定装置 |
JP3599256B2 (ja) | 1996-02-29 | 2004-12-08 | 株式会社アドバンテスト | 電圧印加電流測定回路 |
JP3392029B2 (ja) * | 1997-12-12 | 2003-03-31 | 株式会社アドバンテスト | Icテスタの電圧印加電流測定回路 |
JP4450892B2 (ja) | 1999-06-22 | 2010-04-14 | 株式会社アドバンテスト | アナログ信号処理回路、ad変換装置、半導体デバイス試験装置およびオシロスコープ |
JP2001036359A (ja) | 1999-07-22 | 2001-02-09 | Advantest Corp | アナログ信号処理回路およびad変換装置 |
JP4056923B2 (ja) * | 2003-04-28 | 2008-03-05 | 本田技研工業株式会社 | 地絡検知装置 |
US7046180B2 (en) * | 2004-04-21 | 2006-05-16 | Rosemount Inc. | Analog-to-digital converter with range error detection |
-
2002
- 2002-06-13 JP JP2002172556A patent/JP4152676B2/ja not_active Expired - Fee Related
-
2003
- 2003-06-12 US US10/517,349 patent/US7138819B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7589540B2 (en) | 2006-01-31 | 2009-09-15 | Samsung Electronics Co., Ltd. | Current-mode semiconductor integrated circuit device operating in voltage mode during test mode |
JP2009276296A (ja) * | 2008-05-16 | 2009-11-26 | Mazda Motor Corp | 電圧測定装置及び電圧測定方法 |
CN103048517A (zh) * | 2012-11-16 | 2013-04-17 | 北京思能达电力电子技术有限公司 | 用于矿热炉低压补偿的通过电极电流测量装置测量电极电流的方法 |
CN104062534A (zh) * | 2013-03-22 | 2014-09-24 | 德克萨斯仪器股份有限公司 | 针对短路测试集成电路封装 |
CN103499729A (zh) * | 2013-09-30 | 2014-01-08 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种串联电容补偿装置火花间隙用均压电容分压比的测量方法 |
JP2017019428A (ja) * | 2015-07-13 | 2017-01-26 | 富士重工業株式会社 | 車両用衝撃エネルギー吸収構造 |
JP2019057759A (ja) * | 2017-09-19 | 2019-04-11 | 株式会社東芝 | 増幅回路、ad変換器、無線通信装置、及びセンサシステム |
Also Published As
Publication number | Publication date |
---|---|
US7138819B2 (en) | 2006-11-21 |
JP4152676B2 (ja) | 2008-09-17 |
US20060038578A1 (en) | 2006-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4152676B2 (ja) | 差動電圧測定装置、半導体試験装置 | |
US7923997B2 (en) | Magneto-sensitive integrated circuit | |
US8860593B2 (en) | Data processing system | |
US6229301B1 (en) | Electronic circuit and method for a dimension-measuring device | |
US6255839B1 (en) | Voltage applied type current measuring circuit in an IC testing apparatus | |
EP3139186A1 (en) | Sensor circuit | |
Nagarajan et al. | An improved direct digital converter for bridge-connected resistive sensors | |
KR910008523B1 (ko) | 축차비교형 아날로그/디비탈 변환기 | |
US20110001501A1 (en) | Internal self-check resistance bridge and method | |
JP4745809B2 (ja) | 電流電圧印加・測定装置及び半導体検査装置 | |
US7429856B1 (en) | Voltage source measurement unit with minimized common mode errors | |
JPH1172529A (ja) | コンデンサの絶縁抵抗測定装置 | |
JP2863758B2 (ja) | 入力オフセット電圧補正装置 | |
JP2010096606A (ja) | 電圧印加電流測定回路とそれを用いた半導体試験装置 | |
JP2001183165A (ja) | センサの異常検出回路及び物理量検出装置 | |
JPH04370769A (ja) | A/d変換器を用いた電圧・電流信号の補正方法 | |
JPH08181610A (ja) | 高速高精度ad変換装置 | |
US20240097632A1 (en) | Integrated circuit and semiconductor device | |
JP3562703B2 (ja) | 計測装置 | |
JP3937364B2 (ja) | 電圧・抵抗発生測定装置 | |
JP2013021439A (ja) | 逐次比較型ad変換方法および装置 | |
JP2008067269A (ja) | デジタルアナログ変換装置及び直流試験装置 | |
JP2008304426A (ja) | 任意波形発生器および半導体テスト装置 | |
JP2948633B2 (ja) | 半導体装置の電圧測定方法 | |
KR100335136B1 (ko) | 신호 변환 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080418 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080702 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |