JP2004019963A - 貫流型排熱ボイラ - Google Patents

貫流型排熱ボイラ Download PDF

Info

Publication number
JP2004019963A
JP2004019963A JP2002171767A JP2002171767A JP2004019963A JP 2004019963 A JP2004019963 A JP 2004019963A JP 2002171767 A JP2002171767 A JP 2002171767A JP 2002171767 A JP2002171767 A JP 2002171767A JP 2004019963 A JP2004019963 A JP 2004019963A
Authority
JP
Japan
Prior art keywords
water supply
command
flow rate
temperature
calculator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002171767A
Other languages
English (en)
Inventor
Isao Moriyama
森山 功
Takanori Tsutsumi
堤 孝則
Keisuke Sonoda
園田 圭介
Makoto Fujita
藤田 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002171767A priority Critical patent/JP2004019963A/ja
Publication of JP2004019963A publication Critical patent/JP2004019963A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】給水から過熱蒸気生成に至る加熱経路上での流動安定性が不安定になるのを防止し、かつ蒸発器部材の焼損を防止できる貫流型排熱ボイラを提供すること。
【解決手段】下方から上方に向かって発電装置の排ガスを導くケーシング内に、給水を受けて該給水を予熱する節炭器20a、20b、20cと、該節炭器20a、20b、20cからの前記給水を加熱して蒸気を発生する蒸発器21と、該蒸発器21からの前記蒸気を更に加熱して過熱蒸気を生成する過熱器22a、22b、22cとを備えた貫流型排熱ボイラにおいて、過熱蒸気温度に基づいて、前記蒸発器21出口における蒸気の過熱度を所定範囲内に保つように前記給水流量を制御する給水制御装置25を備えている。さらに、蒸発器21の出口部分が、高品質部材21aにより形成されている。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、貫流型排熱ボイラに係わり、特にガスタービン等から排出される排気ガスの排熱を利用して過熱蒸気を生成する貫流型排熱ボイラにおける給水制御装置に関する。
【0002】
【従来の技術】
この種の貫流型排熱ボイラの一例について、図12を参照しながら以下に説明する。
図12において、符号1はガスタービン、符号2は貫流型排熱ボイラである。ガスタービン1は、空気を圧縮する空気圧縮機3,圧縮された空気を用いて燃料を燃焼させる燃焼器4,燃焼器4で燃焼して膨張したガスが導入されて駆動するタービン5、後述する貫流型排熱ボイラ2からの蒸気が導入されるタービン6、および、タービン5およびタービン6の回転エネルギーから発電を行う発電機7を備えている。燃焼器4にはガバナ弁8を介して燃料が供給されている。このガバナ弁8は、負荷指令(発電装置指令)が入力されることにより、その指令値に応じた開度に調節されるようになっている。
【0003】
次いで貫流型排熱ボイラ2の構成について具体的に説明する。同図に示す従来の貫流型排熱ボイラ2は、下方から上方へ向かってガスタービン1の排気ガスGを導くケーシング11と、該ケーシング11内に上から下に向かって順番に配置された節炭器12、蒸発器13及び過熱器14と、ケーシング11の外部に設置されて節炭器12に給水Wを供給する給水ポンプ15および管寄せ16と、ケーシング11の外部に設置されて過熱器14からの過熱蒸気SSを取り入れる管寄せ17とを備えて構成される。
節炭器12、蒸発器13および過熱器14は、お互いの接続部を介して、管寄せ16から管寄せ17にかけて連続した流路をなすように構成されている。
節炭器12は、管寄せ16からの給水Wをその内部に通して予熱する役目をなし、また、蒸発器13は、節炭器12からの給水Wを加熱して蒸気Sを蒸発させる役目をなし、過熱器14は、蒸発器13からの蒸気Sを更に加熱して過熱蒸気SSを生成する役目をなす。
この従来の貫流型排熱ボイラによれば、給水ポンプ15を起動して給水を管寄せ16に送り込むことにより、節炭器12への給水が開始される。節炭器12ではケーシング11内を流れる排気ガスGからの排気が管壁面を介して熱交換され、蒸発器13に行く前の予熱が行われる。
予熱されて昇温した給水Wは、下方の蒸発器13へと送り込まれ、排気ガスGとの熱交換で更に昇温して蒸発することにより蒸気Sとなる。
続いて、蒸発器13から下方の過熱器14に向かって送り込まれる蒸気Sは、排気ガスGとの熱交換で更なる加熱を受けて過熱蒸気SSとなる。
このようにして生成される過熱蒸気SSは、管寄せ17を介してケーシング11の外部へと取り出される。
【0004】
【発明が解決しようとする課題】
ところで、上記従来の貫流型排熱ボイラでは、装置起動時や負荷変動時などの運用条件が変化する際に、蒸発器13内に完全に給水Wが蒸発せずに水と蒸気とが混在した気液混合状態となり、例えば、蒸発器13から下方の過熱器14に向かう蒸気Sと共に水が流れ落ちることがあり、このような場合、過熱器14内での蒸気の流動安定性が不安定になるおそれがあった。また、逆に蒸発器での入熱が過多の場合、蒸発器13で蒸発が完了し、さらに過熱蒸気となる。蒸発器はその材質が飽和温度で設計されており、この様な加熱蒸気の場合、蒸気温度が飽和温度以上となって蒸発気部材の焼損の危険性があった。
【0005】
本発明は上記事情に鑑みて成されたものであり、給水から過熱蒸気生成に至る加熱経路上での流動安定性が不安定になるのを防止し、かつ蒸発器部材の焼損を防止できる貫流型排熱ボイラを提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明は、他の装置から排出された排ガスを導くケーシング内に、給水を受けて該給水を予熱する節炭器と、該節炭器からの前記給水を加熱して蒸気を発生する蒸発器と、該蒸発器からの前記蒸気を更に加熱して過熱蒸気を生成する過熱器とを備えた貫流型排熱ボイラにおいて、前記蒸発器の出口における過熱蒸気の温度に基づいて、該過熱蒸気の過熱度を所定範囲内に保つように前記給水流量を制御する給水制御装置を備え、前記蒸発器の出口部分が、高品質部材により形成されていることを特徴とする。
【0007】
蒸発器出口における給水の加熱が足りないと、過熱器内に流入した水によって過熱器内での蒸気の流動性が不安定になる。一方、蒸発器における加熱が大きすぎると、適正範囲を超える高温の過熱蒸気により蒸発部部材が焼損してしまう。本発明においては、給水制御装置によって過熱度が適正な範囲内に保たれる。すなわち、蒸発器を出る流体は完全に蒸気となり、若干の過熱度を持つ。ここで、蒸発器の出口部は高品質部材により形成されている。高品質部材とは、水・蒸気の混合流体及び過熱蒸気状態の流体に対して耐熱性を有する部材である。給水制御装置は、蒸発器を出る流体が若干の過熱度を持つように制御するが、蒸発器の出口部が高品質部材により形成されているから、焼損は防がれる。給水制御装置はまた、過熱度が大きくなりすぎないように制御することで、蒸発器において高品質部材よりも上流側に高い過熱度を持つ蒸気が存在しないようにする。これによって高品質部材以外の部位の損傷を防ぐ。
なお、排ガスを排出する他の装置としてはガスタービンを挙げることができるが、これに限定されるものではない。
【0008】
請求項2に記載の発明は、請求項1に記載の貫流型排熱ボイラにおいて、前記給水制御装置は、過熱蒸気の温度を検出する温度検出手段と、前記他の装置としてのガスタービンの負荷指令に基づいた蒸気温度設定を算出する蒸気温度設定算出器と、前記過熱蒸気温度と蒸気温度設定との偏差に基づいて給水流量指令を生成する制御器とを備え、該給水流量指令に基づいて前記給水流量が制御されることを特徴とする。
【0009】
蒸発器出口での蒸発が不完全で、過熱器系統に水・蒸気の混合流体が流れ込んだ場合、蒸発器出口温度は飽和温度となり、過熱度が0度となる。
このとき、蒸気温度設定算出器で算出される蒸気温度設定と実際の蒸気温度との偏差が生じ、制御器は給水を減じさせる指令を出力する。
給水流量が減少した場合、給水の単位流量あたりの受熱量が増加し、蒸発器での蒸発が完全に行われるようになり、蒸発器出口での蒸気温度が上昇し、蒸気温度設定と実際の蒸気温度とが一致した時点で給水量は落ち着く。
また、蒸発器出口での蒸発が完全に終了し、更に加熱され必要以上の過熱蒸気の状態で過熱器に流れ込んだ場合、蒸発器出口の過熱度は所定温度以上となる。
このとき、蒸気温度設定算出器で算出される蒸気温度設定と実際の蒸気温度との偏差が生じ、制御器は給水を増加させる指令を出力する。
給水流量が増加した場合、給水の単位流量あたりの受熱量が減少し、蒸発器での蒸発が完全に行われた状態で過熱器に蒸気が流れ込むようになり、過熱蒸気温度が低下し、蒸気温度設定と実際の蒸気温度が一致した時点で給水量は落ち着く。
【0010】
請求項3に記載の発明は、請求項2に記載の貫流型排熱ボイラにおいて、前記負荷指令に基づいて給水先行設定を算出する負荷基準給水先行設定算出器を備え、該給水先行設定が、前記給水流量指令に足し合わせられることを特徴とする。
【0011】
本発明において、負荷基準給水先行設定算出器は、予め決められた負荷における排気ガス側と水・蒸気側との熱バランスにて、蒸発器出口にて給水が完全に蒸気になり、更に適当な過熱度を持つ給水流量を算出する。(本設定は、予め設計計画および燃焼試験等により準備される。)
これにより、本発明においては、温度偏差のずれを修正するように、制御器が動く。したがって、制御器の制御感度(ゲイン)を大きくすることができ、温度変化に対する追従性がより向上する。
【0012】
請求項4に記載の発明は、請求項2または3に記載の貫流型排熱ボイラにおいて、前記蒸発器出口における流体圧力に対する飽和温度を計算する飽和温度算出器と、該飽和温度算出器により計算された飽和温度と実際の蒸発器出口における流体温度との偏差を算出する偏差演算器と、該偏差演算器により算出された前記偏差に見合った増指令用給水バイアス信号を生成する増指令用給水バイアス信号発生器とを備え、該増指令用給水バイアス信号発生器により生成された増指令用給水バイアス信号と前記給水流量指令との和と、前記給水流量指令とのいずれか大きい方に基づいて給水流量が制御されることを特徴とする。
【0013】
本発明においては、何らかの原因で蒸発器の出口の流体(蒸気)温度が上昇した場合、増指令用給水バイアス信号によって給水流量指令を増加させ、蒸発器出口での流体温度を下げる。
【0014】
請求項5に記載の発明は、請求項2から4いずれかに記載の貫流型排熱ボイラにおいて、前記過熱蒸気の圧力に基づいて飽和温度を計算する飽和温度算出器と、該飽和温度算出器により計算された飽和温度と実際の過熱蒸気温度との偏差を算出する偏差演算器と、該偏差演算器により算出された前記偏差に見合った減指令用給水バイアス信号を生成する減指令用給水バイアス信号発生器とを備え、該減指令用給水バイアス信号発生器により生成された減指令用給水バイアス信号と前記給水流量指令との和と、前記給水流量指令とのいずれか小さい方に基づいて給水流量が制御されることを特徴とする。
【0015】
何らかの原因により過熱蒸気の温度が低下した場合、減指令用給水バイアス信号を用いて給水流量を低下させるので、蒸発器出口で過度の過熱不足状態になることを抑えることができる。
【0016】
請求項6に記載の発明は、請求項1に記載の貫流型排熱ボイラにおいて、前記給水制御装置は、過熱蒸気の温度を検出する温度検出手段と、前記ケーシング内に導入される排ガスによる入熱量に基づいた蒸気温度設定を算出する蒸気温度設定算出器と、前記過熱蒸気温度と蒸気温度設定との偏差に基づいて給水流量指令を生成する制御器とを備え、該給水流量指令に基づいて前記給水流量が制御されることを特徴とする。
【0017】
蒸発器出口での蒸発が不完全で、過熱器系統に水・蒸気の混合流体が流れ込んだ場合、過熱器で水の蒸発が起こり、結果として過熱器出口蒸気温度(これは温度検出手段により検出される)が蒸気温度設定算出器で算出される蒸気温度設定よりも下がる。
このとき、蒸気温度設定算出器で算出される蒸気温度設定と実際の蒸気温度との偏差が生じ、制御器は給水を減じさせる指令を出力する。
給水流量が減少した場合、給水の単位流量あたりの受熱量が増加し、蒸発器での蒸発が完全に行われるようになり、蒸発器出口での蒸気温度が上昇し、蒸気温度設定と実際の蒸気温度とが一致した時点で給水量は落ち着く。
また、蒸発器出口での蒸発が完全に終了し、更に加熱され必要以上の過熱蒸気の状態で過熱器に流れ込んだ場合、過熱器で更に加熱され、結果として過熱器出口蒸気温度が蒸気温度設定算出器で算出される蒸気温度設定よりも上昇する。
このとき、蒸気温度設定算出器で算出される蒸気温度設定と実際の蒸気温度との偏差が生じ、制御器は給水を増加させる指令を出力する。
給水流量が増加した場合、給水の単位流量あたりの受熱量が減少し、蒸発器での蒸発が完全に行われた状態で過熱器に蒸気が流れ込むようになり、過熱蒸気温度が低下し、蒸気温度設定と実際の蒸気温度が一致した時点で給水量は落ち着く。
また、本発明においては、蒸気温度設定をボイラに導入される入熱量に基づいて算出することによって、より追従性の良い給水制御が可能となる。
【0018】
請求項7に記載の発明は、請求項6に記載の貫流型排熱ボイラにおいて、前記入熱量に基づいて給水先行設定を算出する入熱基準給水先行設定算出器を備え、該給水先行設定が、前記給水流量指令に足し合わせられることを特徴とする。
【0019】
本発明において、入熱基準給水先行設定算出器は、予め決められた入熱量における排気ガス側と水・蒸気側との熱バランスにて、蒸発器出口にて給水が完全に蒸気になり、更に適当な過熱度を持つ給水流量を算出する。(本設定は、予め設計計画および燃焼試験等により準備される。)
これにより、本発明においては、温度偏差のずれを修正するように、制御器が動く。したがって、制御器の制御感度(ゲイン)を大きくすることができ、温度変化に対する追従性がより向上する。
【0020】
請求項8に記載の発明は、請求項6または7に記載の貫流型排熱ボイラにおいて、前記蒸発器出口における流体圧力に対する飽和温度を計算する飽和温度算出器と、該飽和温度算出器により計算された飽和温度と実際の蒸発器出口における流体温度との偏差を算出する偏差演算器と、該偏差演算器により算出された前記偏差に見合った増指令用給水バイアス信号を生成する増指令用給水バイアス信号発生器とを備え、該増指令用給水バイアス信号発生器により生成された増指令用給水バイアス信号と前記給水流量指令との和と、前記給水流量指令とのいずれか大きい方に基づいて給水流量が制御されることを特徴とする。
【0021】
本発明においては、何らかの原因で蒸発器の出口の流体(蒸気)温度が上昇した場合、増指令用給水バイアス信号によって給水流量指令を増加させ、蒸発器出口での流体温度を下げる。
【0022】
請求項9に記載の発明は、請求項6から8いずれかに記載の貫流型排熱ボイラにおいて、過熱蒸気の圧力に基づいて飽和温度を計算する飽和温度算出器と、該飽和温度算出器により計算された飽和温度と実際の過熱蒸気温度との偏差を算出する偏差演算器と、該偏差演算器により算出された前記偏差に見合った減指令用給水バイアス信号を生成する減指令用給水バイアス信号発生器とを備え、該減指令用給水バイアス信号発生器により生成された減指令用給水バイアス信号と前記給水流量指令との和と、前記給水流量指令とのいずれか小さい方に基づいて給水流量が制御されることを特徴とする。
【0023】
何らかの原因により過熱蒸気の温度が低下した場合、給水バイアス信号を用いて給水流量を低下させるので、蒸発器出口で過度の過熱不足状態になることを抑えることができる。
【0024】
請求項10に記載の発見は、請求項3から5いずれかに記載の貫流型排熱ボイラにおいて、前記ケーシング内に導入される排ガスによる入熱量に基づいて給水先行設定を算出する入熱基準給水先行設定算出器を備え、該給水先行設定と、前記負荷基準給水先行設定算出器によって算出された給水先行設定との偏差が、前記給水流量指令に足し合わされることを特徴とする。
【0025】
本発明においては、給水流量先行指令に対して、負荷指令に基づく給水先行設定と、ボイラへの入熱に基づく差分を足し込むことにより、より追従性の向上が実現する。
【0026】
【発明の実施の形態】
次に、本発明の実施形態について、図面を参照して説明する。本発明は、ガスタービン等から排出される排気ガスの排熱を利用して過熱蒸気を生成する貫流型排熱ボイラに関するものであり、その実施形態を図1〜図11の図面を参照しながら行うが、この発明がこれらの実施形態のみに限定解釈されるものではない。図1は、本発明の第1実施形態としての貫流型排熱ボイラにおける水・蒸気の流れを示しており、高圧・中圧・低圧系の3圧力系を有する排熱ボイラであり、これら3圧力系のいずれに用いても構わない。他の実施形態についても同様である。ここでは、高圧系について説明する。
図1においては、節炭器系を符号20,蒸発器を符号21、過熱器系を符号22で示してある。節炭器系20は、3つの節炭器20a、20b、20cからなり、過熱器系22は、3つの過熱器22a、22b、22cからなる。
【0027】
本貫流型排熱ボイラには、給水制御装置25として、以下の構成が設けられている。符号31は、蒸発器21の出口蒸気温度を検出する温度検出手段である。また、符号33は、ガバナ弁8(図12参照)への負荷指令(発電装置指令)32に基づく蒸気温度設定を算出する関数演算器(蒸気温度設定算出器)である。符号34は、温度検出手段31により検出された蒸気温度と、関数演算器33により算出された蒸気温度設定との偏差を計算する偏差演算器である。この偏差演算器34により算出された偏差は、符号35で示した制御器に与えられ、この制御器は、蒸発器21の出口蒸気温度を蒸気温度設定にコントロールするように給水流量指令を給水ポンプ15に指令として出力するものである。給水ポンプ15においては、制御器35の出力に見合う給水量をポンプ回転数またはポンプ出口に設置される給水制御弁の開度を制御することにより、ボイラにおいて必要とされる給水を供給するものである。すなわち、与えられた給水流量指令に追従する機能を含んだものであり、制御機能または制御装置を含んでいる。
関数演算器33で算出される蒸気温度設定は、予め決められた負荷におけるガス側と水・蒸気側との熱バランスにて、蒸発器21出口で給水が完全に蒸気になり、さらに若干の過熱度を持つように設定された蒸気温度設定である。(関数演算器33にて計算に用いられる関数は、予め設定計画および燃焼試験により準備される関数である。)
【0028】
また、蒸発器21の出口部(蒸発が完了する過熱経路近傍)は高品質部材21aにより形成されている。高品質部材とは、水・蒸気の混合流体及び過熱蒸気状態の流体に対して耐熱性を有する部材である。給水制御装置25は、蒸発器21を出る流体が若干の過熱度を持つように制御するが、蒸発器21の出口部が高品質部材21aにより形成されているから、損傷は防がれる。給水制御装置25はまた、過熱度が大きくなりすぎないように制御することで、蒸発器21内部において高品質部材21aよりも上流側に高い過熱度を持つ蒸気が存在しないようにする。これによって高品質部材21a以外の部位の損傷を防ぐ。
【0029】
このように構成された本実施形態においては、負荷に対して、蒸発器21の出口蒸気温度を所定の温度に制御することにより、蒸発器21出口での過熱度を適正範囲に保ち、過熱器22系統に蒸発が完了していない混合水の流入を防止する。
具体的には、今、蒸発器21出口での蒸発が不完全で、過熱器22系統に水・蒸気の混合水が流れ込んだ場合、蒸発器出口の過熱度は0度となる。
このとき、関数演算器33で算出される蒸気温度設定と実際の蒸気温度との偏差(これは偏差演算器34により算出される)が生じ、制御器35は給水を減じさせる指令を出力し、給水ポンプ15は、給水量を減じるよう働く。
給水流量が減少した場合、節炭器22,蒸発器21を流れる流体(給水)流量が減少し、単位流量あたりのガス側からの受熱量が増加し、蒸発器21での蒸発が完全に行われるようになり、蒸発器21出口での蒸気温度が上昇し、蒸気温度設定と実際の蒸気温度とが一致した時点で給水量は落ち着く。
また、蒸発器21出口での過熱蒸気の過熱度が過大である場合、関数演算器33で算出される蒸気温度設定と実際の蒸気温度との偏差(これは偏差演算器34により算出される)が生じ、制御器35は給水を増加させる指令を出力し、給水ポンプ15は、給水量を増加させるよう働く。
給水流量が増加した場合、節炭器22・蒸発器21を流れる流体(給水)流量が増加し、単位流量あたりのガス側からの受熱量が減少し、蒸発器21出口での蒸気温度が低下し、蒸気温度設定と蒸気温度が一致した時点で給水量は落ち着く。
【0030】
このように、適切な温度の蒸気が過熱器22に流れ込むので、加熱経路上での流動安定性が不安定になるのを防止することができる。また、蒸発器21の出口部が高品質部材21aとなっているため、蒸発器21を吐出した蒸気に適当な過熱度を持たせても、過熱蒸気によって蒸発器21出口部が損傷を受けることはない。また、制御器35は、蒸発器21出口での過熱度が大きくなりすぎないように制御することで、蒸発器21において高品質部材21aよりも上流側に高い過熱度を持つ蒸気が存在しないようにする。これによって高品質部材21a以外の部位の損傷を防ぐことができる。
【0031】
次に、本発明の第2実施形態について図2を用いて説明する。なお、上記第1実施形態と同一の構成については同一の符号を用い、その説明を省略する。
図2において、符号37は給水先行設定を算出する関数演算器(負荷基準給水先行設定算出器)である。この関数演算器37は、予め決められた負荷におけるガス側と水・蒸気側との熱バランスにて、蒸発器21出口にて給水が完全に蒸気になり、更に適当な過熱度を持つ給水流量を算出する。(本設定は、予め設計計画および燃焼試験等により準備される関数である。)
また、給水先行設定は、加算器36にて制御器35で算出された給水流量指令と足し合わされた後、上記第1実施形態と同様に給水ポンプ15に出力される。
【0032】
本回路によって、負荷に見合った給水がボイラに対してなされ、上記第1実施形態における温度偏差のずれを修正するように、制御器35が動く。したがって、制御器35の制御感度(ゲイン)を大きくすることができ、温度変化に対する追従性がより向上してより安定したボイラの運転が可能となる。
【0033】
次に、本発明の第3実施形態について図3を用いて説明する。なお、上記第2実施形態と同一の構成については同一の符号を用い、その説明を省略する。
図3において、符号38は蒸発器21出口における流体圧力を測定する圧力測定手段である。39は、圧力測定手段38により測定された圧力に対する飽和温度を計算する飽和温度算出器である。また、蒸発器21出口における流体の実際の温度は、温度計測手段31により計測され、前記飽和温度算出器39で算出された飽和温度と、温度計測手段31により計測された実際の温度との偏差が、偏差演算器41により算出される。そして、この偏差演算器41により算出された偏差に見合った増指令用給水バイアス信号が増指令用給水バイアス信号発生器42で生成され、この給水バイアス信号が加算器43にて、加算器36の出力である給水流量指令と足し合わされ、給水緊急増指令が準備される。そして、高値選択回路44にて、加算器36の出力である給水流量指令と加算器43の出力である給水緊急増指令とが比較され、高値であるものが実際の給水流量指令として給水ポンプ15に与えられる。
このように構成されていることにより、何らかの原因で蒸発器21の出口の流体(蒸気)温度が上昇した場合、飽和温度との偏差によって増指令用給水バイアス信号が増加し、この分だけ給水流量指令が増加する。すなわち、緊急給水流量増加を行うことができ、より安定したボイラの運転が可能となる。
【0034】
次に、本発明の第4実施形態について図4を用いて説明する。なお、上記第3実施形態と同一の構成については同一の符号を用い、その説明を省略する。
本実施形態において、符号47は、飽和温度算出器39において計算された飽和温度と、温度検出手段31により検出された実際の蒸気温度との偏差を求める偏差演算器である。この偏差に見合った減指令用給水バイアス信号が減指令用給水バイアス信号発生器48により生成され、この給水バイアス信号が加算器49にて、加算器36の出力である給水流量指令と足し合わされ、給水緊急減指令が準備される。そして、低値選択回路50にて、高値選択回路44の出力である給水流量指令と加算器49の出力である給水緊急減指令とが比較され、低値であるものが実際の給水流量指令として給水ポンプ15に与えられる。
このように構成されていることにより、以下の効果を得ることができる。
何らかの原因により蒸発器21出口の流体(蒸気)の温度が低下した場合、本実施形態においては、飽和温度との偏差によって減指令用給水バイアス信号が減少し、この分だけ給水流量指令が減少する。すなわち、緊急給水量減少信号を発生して給水量を低下させるので、蒸発器21出口で過度の過熱不足状態になることを抑えることができ、より安定したボイラの運転が可能となる。
【0035】
また、他の実施形態として、図5〜図8に示す構成とすることもできる。図5〜図8は、それぞれ上記第1実施形態〜第4実施形態の変形例であり、ガスタービン排ガス温度51とガスタービン排ガス流量52とを乗算器53でかけることで、排熱ボイラへの入熱量54が算出される。図5〜図8において、符号33’は入熱量54に基づく蒸気温度設定を算出する関数演算器(蒸気温度設定算出器)である。また、図6〜図8において、符号58は予め決められた入熱量におけるガス側と水・蒸気側との熱バランスにて、蒸発器21出口にて給水が完全に蒸気になるように給水流量を算出する関数演算器(入熱基準給水先行設定算出器)である。本設定は、予め設計計画および燃焼試験等により準備される関数である。
上記温度設定と給水先行設定の作り方は、負荷指令の場合と同様であり、ガスタービン排ガスがバイパスされない限り、負荷指令と排熱ボイラへのガスタービン入熱は、基本的に同等である。
このように構成されていることにより、排熱ボイラへの入熱に従ったより追従性の良い給水制御が可能となる。
【0036】
さらにまた、他の実施形態として、図9〜図11に示す構成とすることもできる。図9〜図11は、それぞれ上記第2実施形態〜第4実施形態の変形例であり、ガスタービン排ガス温度51とガスタービン排ガス流量52とを乗算器53でかけることで、排熱ボイラ入熱量54が算出される。この入熱量54に基づいて、関数演算器(入熱基準給水先行設定算出器)58において給水先行設定が算出される。
そして、関数演算器58により算出された給水先行設定と、関数演算器37により算出された給水先行設定との偏差が、偏差演算器55で求められる。この偏差は、比例器56を経た後、加算器57において給水流量指令に足し合わせる。すなわち、負荷指令に基づく給水先行設定と、入熱に基づく給水先行設定との間で偏差が出た場合、その偏差によって給水流量指令を補正することにより、追従性をより向上させることができる。
【0037】
【発明の効果】
以上説明したように、本発明の貫流型排熱ボイラにおいては、以下の効果を得ることができる。
請求項1に記載の発明によれば、給水制御装置によって過熱度が適正な範囲内に保たれるため、給水から過熱蒸気生成に至る加熱経路上での流動安定性が不安定になるのを防止し、かつ蒸発器部材の焼損を防止することができる。
また、蒸発器の出口部が高品質部材となっているため、蒸発器を吐出した蒸気に適当な過熱度を持たせても、過熱蒸気によって蒸発器出口部が損傷を受けることはない。また、給水制御装置は、蒸発器出口での過熱度が大きくなりすぎないように制御することで、蒸発器において高品質部材よりも上流側に高い過熱度を持つ蒸気が存在しないようにする。これによって高品質部材以外の部位の損傷を防ぐことができる。
請求項2に記載の発明によれば、蒸気温度と蒸気温度設定との偏差に基づいて制御器が給水流量を制御することで、蒸気温度設定と蒸気温度とを一致させることができる。
請求項3に記載の発明によれば、温度偏差のずれを修正するように、制御器が動くため、制御器の制御感度(ゲイン)を大きくすることができ、温度変化に対する追従性がより向上する。
請求項4に記載の発明によれば、何らかの原因で蒸発器の出口の流体(蒸気)温度が上昇した場合、給水バイアス信号によって給水流量指令を増加させることにより、蒸発器出口での流体温度を下げることができる。
請求項5に記載の発明によれば、何らかの原因により過熱蒸気の温度が低下した場合、給水バイアス信号を用いて給水流量を低下させるので、蒸発器出口で過度の過熱不足状態になることを抑えることができる。
【0038】
請求項6に記載の発明によれば、給水制御装置によって過熱度が適正な範囲内に保たれるため、給水から過熱蒸気生成に至る加熱経路上での流動安定性が不安定になるのを防止することができる。また、蒸気温度設定をボイラに導入される入熱量に基づいて算出することによって、より追従性の良い給水制御が可能となる。
請求項7に記載の発明によれば、温度偏差のずれを修正するように、制御器が動くため、制御器の制御感度(ゲイン)を大きくすることができ、温度変化に対する追従性がより向上する。
請求項8に記載の発明によれば、何らかの原因で蒸発器の出口の流体(蒸気)温度が上昇した場合、給水バイアス信号によって給水流量指令を増加させることにより、蒸発器出口での流体温度を下げることができる。
請求項9に記載の発明によれば、何らかの原因により過熱蒸気の温度が低下した場合、給水バイアス信号を用いて給水流量を低下させるので、蒸発器出口で過度の過熱不足状態になることを抑えることができる。
請求項10に記載の発明によれば、給水流量先行指令に対して、負荷指令に基づく給水先行設定と、ボイラへの入熱に基づく差分を足し込むことにより、より追従性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態として示した貫流型排熱ボイラの構成を示した図である。
【図2】本発明の第2実施形態として示した貫流型排熱ボイラの構成を示した図である。
【図3】本発明の第3実施形態として示した貫流型排熱ボイラの構成を示した図である。
【図4】本発明の第4実施形態として示した貫流型排熱ボイラの構成を示した図である。
【図5】本発明の第1実施形態の変形例として示した貫流型排熱ボイラの構成を示した図である。
【図6】本発明の第2実施形態の変形例として示した貫流型排熱ボイラの構成を示した図である。
【図7】本発明の第3実施形態の変形例として示した貫流型排熱ボイラの構成を示した図である。
【図8】本発明の第4実施形態の変形例として示した貫流型排熱ボイラの構成を示した図である。
【図9】本発明の第2実施形態の変形例として示した貫流型排熱ボイラの構成を示した図である。
【図10】本発明の第3実施形態の変形例として示した貫流型排熱ボイラの構成を示した図である。
【図11】本発明の第4実施形態の変形例として示した貫流型排熱ボイラの構成を示した図である。
【図12】ガスタービンと、従来の貫流型排熱ボイラとを示した図である。
【符号の説明】
21a 高品質部材
33 関数演算器(蒸気温度設定算出器)
37 関数演算器(負荷基準給水先行設定算出器)
39 飽和温度算出器
42 増指令用給水バイアス信号発生器
47 偏差演算器
48 減指令用給水バイアス信号発生器
58 関数演算器(入熱基準給水先行設定算出器)

Claims (10)

  1. 他の装置から排出された排ガスを導くケーシング内に、給水を受けて該給水を予熱する節炭器と、該節炭器からの前記給水を加熱して蒸気を発生する蒸発器と、該蒸発器からの前記蒸気を更に加熱して過熱蒸気を生成する過熱器とを備えた貫流型排熱ボイラにおいて、
    前記蒸発器の出口における過熱蒸気の温度に基づいて、該過熱蒸気の過熱度を所定範囲内に保つように前記給水流量を制御する給水制御装置を備え、前記蒸発器の出口部分が、高品質部材により形成されていることを特徴とする貫流型排熱ボイラ。
  2. 請求項1に記載の貫流型排熱ボイラにおいて、
    前記給水制御装置は、過熱蒸気の温度を検出する温度検出手段と、前記他の装置としてのガスタービンの負荷指令に基づいた過熱蒸気の蒸気温度設定を算出する蒸気温度設定算出器と、前記過熱蒸気温度と蒸気温度設定との偏差に基づいて給水流量指令を生成する制御器とを備え、該給水流量指令に基づいて前記給水流量が制御されることを特徴とする貫流型排熱ボイラ。
  3. 請求項2に記載の貫流型排熱ボイラにおいて、
    前記負荷指令に基づいて給水先行設定を算出する負荷基準給水先行設定算出器を備え、該給水先行設定が、前記給水流量指令に足し合わせられることを特徴とする貫流型排熱ボイラ。
  4. 請求項2または3に記載の貫流型排熱ボイラにおいて、
    前記蒸発器出口における流体圧力に対する飽和温度を計算する飽和温度算出器と、該飽和温度算出器により計算された飽和温度と実際の蒸発器出口における流体温度との偏差を算出する偏差演算器と、該偏差演算器により算出された前記偏差に見合った増指令用給水バイアス信号を生成する増指令用給水バイアス信号発生器とを備え、該増指令用給水バイアス信号発生器により生成された増指令用給水バイアス信号と前記給水流量指令との和と、前記給水流量指令とのいずれか大きい方に基づいて給水流量が制御されることを特徴とする貫流型排熱ボイラ。
  5. 請求項2から4いずれかに記載の貫流型排熱ボイラにおいて、
    前記過熱蒸気の圧力に基づいて飽和温度を計算する飽和温度算出器と、該飽和温度算出器により計算された飽和温度と実際の過熱蒸気温度との偏差を算出する偏差演算器と、該偏差演算器により算出された前記偏差に見合った減指令用給水バイアス信号を生成する減指令用給水バイアス信号発生器とを備え、該減指令用給水バイアス信号発生器により生成された減指令用給水バイアス信号と前記給水流量指令との和と、前記給水流量指令とのいずれか小さい方に基づいて給水流量が制御されることを特徴とする貫流型排熱ボイラ。
  6. 請求項1に記載の貫流型排熱ボイラにおいて、
    前記給水制御装置は、過熱蒸気の温度を検出する温度検出手段と、前記ケーシング内に導入される排ガスによる入熱量に基づいた蒸気温度設定を算出する蒸気温度設定算出器と、前記過熱蒸気温度と蒸気温度設定との偏差に基づいて給水流量指令を生成する制御器とを備え、該給水流量指令に基づいて前記給水流量が制御されることを特徴とする貫流型排熱ボイラ。
  7. 請求項6に記載の貫流型排熱ボイラにおいて、
    前記入熱量に基づいて給水先行設定を算出する入熱基準給水先行設定算出器を備え、該給水先行設定が、前記給水流量指令に足し合わせられることを特徴とする貫流型排熱ボイラ。
  8. 請求項6または7に記載の貫流型排熱ボイラにおいて、
    前記蒸発器出口における流体圧力に対する飽和温度を計算する飽和温度算出器と、該飽和温度算出器により計算された飽和温度と実際の蒸発器出口における流体温度との偏差を算出する偏差演算器と、該偏差演算器により算出された前記偏差に見合った増指令用給水バイアス信号を生成する増指令用給水バイアス信号発生器とを備え、該増指令用給水バイアス信号発生器により生成された増指令用給水バイアス信号と前記給水流量指令との和と、前記給水流量指令とのいずれか大きい方に基づいて給水流量が制御されることを特徴とする貫流型排熱ボイラ。
  9. 請求項6から8いずれかに記載の貫流型排熱ボイラにおいて、
    過熱蒸気の圧力に基づいて飽和温度を計算する飽和温度算出器と、該飽和温度算出器により計算された飽和温度と実際の過熱蒸気温度との偏差を算出する偏差演算器と、該偏差演算器により算出された前記偏差に見合った減指令用給水バイアス信号を生成する減指令用給水バイアス信号発生器とを備え、該減指令用給水バイアス信号発生器により生成された減指令用給水バイアス信号と前記給水流量指令との和と、前記給水流量指令とのいずれか小さい方に基づいて給水流量が制御されることを特徴とする貫流型排熱ボイラ。
  10. 請求項3から5いずれかに記載の貫流型排熱ボイラにおいて、
    前記ケーシング内に導入される排ガスによる入熱量に基づいて給水先行設定を算出する入熱基準給水先行設定算出器を備え、該給水先行設定と、前記負荷基準給水先行設定算出器によって算出された給水先行設定との偏差が、前記給水流量指令に足し合わされることを特徴とする貫流型排熱ボイラ。
JP2002171767A 2002-06-12 2002-06-12 貫流型排熱ボイラ Withdrawn JP2004019963A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171767A JP2004019963A (ja) 2002-06-12 2002-06-12 貫流型排熱ボイラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171767A JP2004019963A (ja) 2002-06-12 2002-06-12 貫流型排熱ボイラ

Publications (1)

Publication Number Publication Date
JP2004019963A true JP2004019963A (ja) 2004-01-22

Family

ID=31171539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171767A Withdrawn JP2004019963A (ja) 2002-06-12 2002-06-12 貫流型排熱ボイラ

Country Status (1)

Country Link
JP (1) JP2004019963A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263505A (ja) * 2006-03-29 2007-10-11 Tokyo Electric Power Co Inc:The 石炭焚きボイラの制御装置
JP2008032367A (ja) * 2006-07-31 2008-02-14 Babcock Hitachi Kk 貫流型排熱回収ボイラの制御方法
JP2019218870A (ja) * 2018-06-15 2019-12-26 日鉄エンジニアリング株式会社 バイナリー発電システム、およびバイナリー発電システムの制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263505A (ja) * 2006-03-29 2007-10-11 Tokyo Electric Power Co Inc:The 石炭焚きボイラの制御装置
JP4690924B2 (ja) * 2006-03-29 2011-06-01 東京電力株式会社 石炭焚きボイラの制御装置
JP2008032367A (ja) * 2006-07-31 2008-02-14 Babcock Hitachi Kk 貫流型排熱回収ボイラの制御方法
JP2019218870A (ja) * 2018-06-15 2019-12-26 日鉄エンジニアリング株式会社 バイナリー発電システム、およびバイナリー発電システムの制御方法
JP6991103B2 (ja) 2018-06-15 2022-01-12 日鉄エンジニアリング株式会社 バイナリー発電システム、およびバイナリー発電システムの制御方法

Similar Documents

Publication Publication Date Title
US8181463B2 (en) Direct heating organic Rankine cycle
KR101606293B1 (ko) 재순환식 폐열 증기 발생기의 작동 방법
US8511093B2 (en) Power generation plant and control method thereof
JP2849140B2 (ja) 廃熱蒸気発生方法と設備
AU2008328934B2 (en) Method for operating a once-through steam generator and forced-flow-once-through steam generator
US6195998B1 (en) Regenerative subsystem control in a kalina cycle power generation system
JP5292014B2 (ja) 貫流型排熱回収ボイラおよびその制御方法
JP2004019963A (ja) 貫流型排熱ボイラ
JP6516993B2 (ja) コンバインドサイクルプラント並びにボイラの蒸気冷却方法
JP5818963B2 (ja) 貫流ボイラの運転方法及び本方法を実施すべく構成されたボイラ
JP2004019961A (ja) 貫流型排熱ボイラ
JP2004019962A (ja) 貫流型排熱ボイラ
JPH0783005A (ja) 複合ごみ発電プラント
JP2008075996A (ja) 排熱回収ボイラとその蒸気圧力制御方法
KR102663870B1 (ko) 암모니아 기화 시스템, 이를 포함하는 발전 시스템 및 발전 시스템의 제어방법
JP3820636B2 (ja) 排気再燃型コンバインドサイクルプラントにおける給水温度制御方法及び装置
JP2839668B2 (ja) コージェネレーションプラントの出力制御装置
JP2002323203A (ja) 貫流ボイラの蒸気温度制御方法と装置
JP2007285220A (ja) コンバインドサイクル発電設備
JPH11201435A (ja) ごみ焼却発電プラントとその負荷制御方法
JPH05296401A (ja) 排熱回収ボイラ系統およびその主蒸気温度制御装置
JP2024037403A (ja) スーツブロワの運転制御装置、燃焼システム及びスーツブロワの運転制御方法
JPH1122421A (ja) ごみ焼却発電プラント
JP2002168406A (ja) ボイラの再熱蒸気温度制御装置
JPH0226122B2 (ja)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906