JP2004015879A - Motor drive - Google Patents

Motor drive Download PDF

Info

Publication number
JP2004015879A
JP2004015879A JP2002163694A JP2002163694A JP2004015879A JP 2004015879 A JP2004015879 A JP 2004015879A JP 2002163694 A JP2002163694 A JP 2002163694A JP 2002163694 A JP2002163694 A JP 2002163694A JP 2004015879 A JP2004015879 A JP 2004015879A
Authority
JP
Japan
Prior art keywords
motor
flux distribution
magnetic flux
encoder
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163694A
Other languages
Japanese (ja)
Other versions
JP4221645B2 (en
Inventor
Sadaaki Yamazaki
山崎 貞明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002163694A priority Critical patent/JP4221645B2/en
Publication of JP2004015879A publication Critical patent/JP2004015879A/en
Application granted granted Critical
Publication of JP4221645B2 publication Critical patent/JP4221645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor drive which has a small storage capacity, can eliminate the use of a cable for neutral point connection, and attain a high compensation effect even in the case that flux distribution depends on a motor used. <P>SOLUTION: This motor drive is mounted with a sine table 6 for producing balanced three-phase AC current on a permanent magnet motor having an encoder 2 thereon. The drive comprises a storage device 21 which is mounted inside the encoder 2 and stores the flux distribution of the motor 1; and a harmonics superimposing part 7 which superimposing harmonics on the sine table 6 by receiving the information of flux distribution of the motor 1 stored in a storage device 21 at the time of power ON, and using the information of the flux distribution and an electrical angle as the output of the encoder 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、モータを駆動するモータ駆動装置に関し、特にモータの磁束分布の歪みが原因で発生するトルクリップルを補償する装置に関する。
【0002】
【従来の技術】
従来の永久磁石型の3相同期モータを駆動するモータ駆動装置は図3のようになっている。図3は従来のモータ駆動装置のブロック図である。
図において、1はモータ、2はエンコーダ、3は速度制御器、4は電流アンプ、5は微分器、6はsinテーブル、8は加算器、9は乗算器である。
モータ駆動装置の重要な機能の1つは、モータ1に歪みのない平衡3相交流電流iu、iv、iwを供給することである。そのために、モータ駆動装置には、sinテーブル6が搭載されている。そして、電流の位相は、モータ1の磁極に合せて供給される。言い換えると、モータ1の誘起電圧と同相の電流を供給する。また、電流の振幅は、速度制御器3の出力であるトルク指令τrに比例する。この時、モータのギャップの磁束分布が正弦波で歪みがなければ、モータの発生トルクは回転角度によらず一定になる。
しかし、実際のモータでは、磁束分布に歪みが存在する。この場合、モータが発生するトルクには、回転角度により周期的に変動するトルクリップルが生じる。このトルクリップルは、サーボモータを用いたシステムの性能を劣化させる。
そこで、前記トルクリップルを低減するための技術として特開平5−260785号公報が提案されている。図4は特開平5−260785号公報のトルクリップル補償方法を示すブロック図である。図4に示すものは、図3のsinテーブル6の代わりに、各相毎に61のトルクリップル補正電流波形iu(θ)、iv(θ)、iw(θ)を記憶している。各相のトルクリップル補正電流波形61は、モータ1の各相の誘起電圧波形ku(θ)、kv(θ)、kw(θ)を計測して、次式で求める。
【0003】
【数2】

Figure 2004015879
【0004】
【発明が解決しようとする課題】
ところが、特開平5−260785号公報では、sinテーブルの代わりに3相独立にトルクリップル補正電流波形を記憶するので、記憶容量が大きくなる。また、3相独立にモータ巻線に電流を供給するので、中性点接続用のケーブルが必要になる。さらに、トルクリップル補正電流波形をアンプ側で記憶するので、モータによって磁束分布が異なる場合は、補償の効果が十分に得られないという問題があった。
本発明は、上記課題を解決するためになされたものであり。記憶容量が小さく、中性点接続用のケーブルが不要で、モータによって磁束分布が異なる場合に対しても補償の効果が十分に得られるモータ駆動装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記問題を解決するため、本発明は、エンコーダを装着した永久磁石型モータに供給する平衡3相交流電流を生成するためのsinテーブルを搭載したモータ駆動装置において、前記エンコーダ内部に搭載され、前記モータの磁束分布の情報を記憶する記憶装置と、前記モータに供給する電流に高調波を重畳するために、電源投入時に前記記憶装置に記憶された前記モータの磁束分布の情報を受取り、この磁束分布の情報と前記エンコーダの出力である電気角を用いて、前記sinテーブルに高調波を重畳させる高調波重畳部とを備え、前記モータの磁束分布を次の近似式で与えることを特徴とするものである。
【0006】
【数3】
Figure 2004015879
【0007】
ここで、Φ:磁束分布,θ:電気角、n:次数、A:n次高調波の振幅比、B:n次高調波の位相。
【0008】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。
図1は、本発明の実施例を示すモータ駆動装置のブロック図、図2は本発明の効果を示す図であって、(a)は補償前、(b)は補償後の状態を示す。なお、本発明が従来技術と同じ構成要素についてはその説明を省略し、異なる点のみ説明する。
図において、21は記憶装置、7は高調波重畳部である。
【0009】
本発明が従来技術と異なる構成のうち、記憶装置21は、モータ1の磁束分布の情報を記憶する。磁束分布は、モータの誘起電圧を計測して得ることができる。そして、磁束分布の情報は、電源投入直後にモータ駆動装置に伝送される。そして、この磁束分布の情報とエンコーダ2の出力であるモータの電気角を用いて高調波重畳部7でsinテーブルに高調波を重畳する。その結果、モータに供給する電流には、高調波電流が重畳され、トルクリップルを補償することができる。
まず、記憶装置21で記憶する磁束分布の情報について説明する。
一般に、モータのギャップの磁束分布は、モータの電気角の周期関数であり、次式で表わすことができる。
【0010】
【数4】
Figure 2004015879
【0011】
ここで、Φは磁束分布、θは電気角、nは次数、Aはn次高調波の振幅比、Bはn次高調波の位相である。
記憶装置21では、n、A、Bを記憶する。nは高々10程度で十分であり、記憶容量は小さくてよい。モータ毎に磁束分布が異なる場合は、これらの情報は、モータ毎に誘起電圧波形を計測して求める。
【0012】
次に、高調波重畳部7について説明する。
高調波重畳部7は、記憶装置21で記憶したn、A、Bを受取り、この情報とエンコーダ2の出力であるモータの電気角θを用いて、sinテーブルに以下の高調波を重畳する。
【0013】
【数5】
Figure 2004015879
【0014】
この変換では、3相の電流の合計はゼロとなり、モータの中性点接続用のケーブルは不要である。
以下、具体例を示す。
ここでは、モータの磁束分布に5次と7次の高調波が存在し、高調波と基本波の位相差が0の場合を考える。これは実際のモータの磁束分布としてよくあることである。この場合、記憶装置21の内容は、表1のようになる。
【0015】
【表1】
Figure 2004015879
【0016】
そして、モータの各巻線から見た磁束分布は、次式のようになる。
【0017】
【数6】
Figure 2004015879
補償がない場合は、モータの各巻線へはモータ駆動装置から次式で表される電流が供給される。
【0018】
【数7】
Figure 2004015879
【0019】
さらに、発生トルクは、次式で計算できる。
【0020】
【数8】
Figure 2004015879
【0021】
A5=−0.07、A7=0.03として、式6に式4、5を代入して求めた発生トルクを図2(a)に示す。このように、発生トルクは電気角の6倍の周波数で変動する。
本発明では、式3で示す高調波をsinテーブルに重畳するので、モータ駆動装置から供給される電流は、次式のようになる。
【0022】
【数9】
Figure 2004015879
【0023】
式6に式4、7を代入し、発生トルクを計算し、その結果を図2(b)に示す。同図から分かるように本発明によれはトルクリップルを補償できる。
ただし、この例のように5次と7次の高調波の場合は、次式に示すように、電流は5次高調波だけを重畳してもよい。
【0024】
【数10】
Figure 2004015879
【0025】
したがって、本発明に係るモータ駆動装置は、モータ1の磁束分布の情報をエンコーダ内部に設けた記憶装置21に記憶させ、電源投入直後に磁束分布の情報をモータ駆動装置に伝送し、このモータ駆動装置に伝送された当該磁束分布の情報とエンコーダ2の出力であるモータの電気角を用いて、モータに供給する電流に高調波電流を重畳させる構成にしたので、記憶容量が小さく、中性点接続用のケーブが不要で、各モータ毎に磁束分布のバラツキが大きい場合も、十分に補償の効果が得られ、トルクリップルが低減できるという効果がある。
【発明の効果】
以上述べたように、本発明によれば、モータ駆動装置は、モータの磁束分布の情報をエンコーダ内部に設けた記憶装置に記憶させ、電源投入直後に磁束分布の情報をモータ駆動装置に伝送し、このモータ駆動装置に伝送された当該磁束分布の情報とエンコーダの出力であるモータの電気角を用いて、モータに供給する電流に高調波電流を重畳させる構成にしたため、記憶容量が小さく、中性点接続用のケーブが不要で、各モータ毎に磁束分布のバラツキが大きい場合も、十分に補償の効果が得られ、トルクリップルを低減することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示すモータ駆動装置のブロック図である。
【図2】本発明の効果を示す図であって、(a)は補償前、(b)は補償後の状態である。
【図3】従来のモータ駆動装置のブロック図である。
【図4】特開平5−260785号公報のトルクリップル補償方法を示すブロック図である。
【符号の説明】
1 モータ
2 エンコーダ
21 記憶装置
3 速度制御器
4 電流アンプ
5 微分器
6 sinテーブル
61 トルクリップル補正電流波形
7 高調波重畳部
8 加算器
9 乗算器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor driving device for driving a motor, and more particularly, to a device for compensating for torque ripple generated due to distortion of a magnetic flux distribution of the motor.
[0002]
[Prior art]
FIG. 3 shows a conventional motor driving device for driving a permanent magnet type three-phase synchronous motor. FIG. 3 is a block diagram of a conventional motor drive device.
In the figure, 1 is a motor, 2 is an encoder, 3 is a speed controller, 4 is a current amplifier, 5 is a differentiator, 6 is a sine table, 8 is an adder, and 9 is a multiplier.
One of the important functions of the motor driving device is to supply the motor 1 with a balanced three-phase alternating current iu, iv, iw without distortion. For this purpose, a sine table 6 is mounted on the motor drive device. The phase of the current is supplied according to the magnetic pole of the motor 1. In other words, a current having the same phase as the induced voltage of the motor 1 is supplied. The amplitude of the current is proportional to the torque command τr output from the speed controller 3. At this time, if the magnetic flux distribution in the gap of the motor is a sine wave without distortion, the generated torque of the motor becomes constant regardless of the rotation angle.
However, in an actual motor, the magnetic flux distribution has distortion. In this case, the torque generated by the motor includes torque ripple that periodically varies depending on the rotation angle. This torque ripple degrades the performance of the system using the servomotor.
Therefore, Japanese Patent Application Laid-Open No. 5-260785 has been proposed as a technique for reducing the torque ripple. FIG. 4 is a block diagram showing a torque ripple compensation method disclosed in Japanese Patent Application Laid-Open No. 5-260785. The one shown in FIG. 4 stores 61 torque ripple correction current waveforms iu (θ), iv (θ), iw (θ) for each phase instead of the sine table 6 of FIG. The torque ripple correction current waveform 61 of each phase is obtained by measuring the induced voltage waveforms ku (θ), kv (θ), kw (θ) of each phase of the motor 1 and using the following equation.
[0003]
(Equation 2)
Figure 2004015879
[0004]
[Problems to be solved by the invention]
However, in Japanese Patent Application Laid-Open No. Hei 5-260785, since the torque ripple correction current waveform is stored in three phases independently instead of the sine table, the storage capacity becomes large. In addition, since current is supplied to the motor windings independently for the three phases, a cable for connecting a neutral point is required. Furthermore, since the torque ripple correction current waveform is stored on the amplifier side, when the magnetic flux distribution differs depending on the motor, there is a problem that the effect of compensation cannot be sufficiently obtained.
The present invention has been made to solve the above problems. An object of the present invention is to provide a motor drive device which has a small storage capacity, does not require a cable for connecting a neutral point, and can sufficiently obtain the effect of compensation even when the magnetic flux distribution differs depending on the motor.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a motor driving device equipped with a sine table for generating a balanced three-phase alternating current supplied to a permanent magnet type motor equipped with an encoder. A storage device for storing information on the magnetic flux distribution of the motor, and receiving the information on the magnetic flux distribution of the motor stored in the storage device at power-on, in order to superimpose harmonics on the current supplied to the motor, A harmonic superimposing unit that superimposes a harmonic on the sine table using distribution information and an electrical angle that is an output of the encoder, wherein a magnetic flux distribution of the motor is given by the following approximate expression. Things.
[0006]
[Equation 3]
Figure 2004015879
[0007]
Here, Φ 1 : magnetic flux distribution, θ: electrical angle, n: order, A n : amplitude ratio of n- th harmonic, B n : phase of n-th harmonic.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a motor driving device showing an embodiment of the present invention, and FIG. 2 is a diagram showing an effect of the present invention, wherein (a) shows a state before compensation and (b) shows a state after compensation. The description of the same components as those of the prior art will be omitted, and only different points will be described.
In the figure, 21 is a storage device, and 7 is a harmonic superimposing unit.
[0009]
The storage device 21 stores information on the magnetic flux distribution of the motor 1 in the configuration in which the present invention is different from the conventional technology. The magnetic flux distribution can be obtained by measuring the induced voltage of the motor. Then, the information of the magnetic flux distribution is transmitted to the motor driving device immediately after the power is turned on. Then, using the information on the magnetic flux distribution and the electrical angle of the motor, which is the output of the encoder 2, the harmonic superimposing unit 7 superimposes a harmonic on a sine table. As a result, the harmonic current is superimposed on the current supplied to the motor, and the torque ripple can be compensated.
First, information on the magnetic flux distribution stored in the storage device 21 will be described.
Generally, the magnetic flux distribution in the gap of the motor is a periodic function of the electric angle of the motor, and can be expressed by the following equation.
[0010]
(Equation 4)
Figure 2004015879
[0011]
Here, Φ 1 is the magnetic flux distribution, θ is the electrical angle, n is the order, An is the amplitude ratio of the n- th harmonic, and B n is the phase of the n-th harmonic.
In the storage device 21, stores n, A n, the B n. It is sufficient that n is at most about 10 and the storage capacity may be small. When the magnetic flux distribution differs for each motor, the information is obtained by measuring the induced voltage waveform for each motor.
[0012]
Next, the harmonic superposition unit 7 will be described.
Harmonic superposition unit 7, n stored in the storage device 21, A n, receives the B n, using the electrical angle θ of the motor, which is the output of this information and encoder 2, superimposes the following harmonic sin table I do.
[0013]
(Equation 5)
Figure 2004015879
[0014]
In this conversion, the sum of the three-phase currents becomes zero, and no cable for connecting the neutral point of the motor is required.
Hereinafter, specific examples will be described.
Here, a case is considered where the fifth and seventh harmonics exist in the magnetic flux distribution of the motor, and the phase difference between the harmonic and the fundamental wave is zero. This is often the case with the magnetic flux distribution of an actual motor. In this case, the contents of the storage device 21 are as shown in Table 1.
[0015]
[Table 1]
Figure 2004015879
[0016]
Then, the magnetic flux distribution viewed from each winding of the motor is as follows.
[0017]
(Equation 6)
Figure 2004015879
When there is no compensation, a current represented by the following equation is supplied to each winding of the motor from the motor driving device.
[0018]
(Equation 7)
Figure 2004015879
[0019]
Further, the generated torque can be calculated by the following equation.
[0020]
(Equation 8)
Figure 2004015879
[0021]
FIG. 2A shows the generated torque obtained by substituting Equations 4 and 5 into Equation 6 with A5 = −0.07 and A7 = 0.03. Thus, the generated torque fluctuates at a frequency six times the electrical angle.
In the present invention, since the harmonic represented by Expression 3 is superimposed on the sine table, the current supplied from the motor driving device is represented by the following expression.
[0022]
(Equation 9)
Figure 2004015879
[0023]
Expressions 4 and 7 are substituted into Expression 6, the generated torque is calculated, and the result is shown in FIG. As can be seen from the figure, according to the present invention, torque ripple can be compensated.
However, in the case of the fifth and seventh harmonics as in this example, the current may superimpose only the fifth harmonic as shown in the following equation.
[0024]
(Equation 10)
Figure 2004015879
[0025]
Therefore, the motor driving device according to the present invention stores the information of the magnetic flux distribution of the motor 1 in the storage device 21 provided inside the encoder, and transmits the information of the magnetic flux distribution to the motor driving device immediately after the power is turned on. Using the information of the magnetic flux distribution transmitted to the device and the electric angle of the motor, which is the output of the encoder 2, the harmonic current is superimposed on the current supplied to the motor, so that the storage capacity is small and the neutral point Even when a cable for connection is not required and the variation in magnetic flux distribution among the motors is large, there is an effect that a sufficient compensation effect can be obtained and the torque ripple can be reduced.
【The invention's effect】
As described above, according to the present invention, the motor driving device stores the information of the magnetic flux distribution of the motor in the storage device provided inside the encoder, and transmits the information of the magnetic flux distribution to the motor driving device immediately after turning on the power. By using the information of the magnetic flux distribution transmitted to the motor driving device and the electric angle of the motor which is the output of the encoder, the harmonic current is superimposed on the current supplied to the motor. Even when a cable for connecting the characteristic points is not necessary and the variation in the magnetic flux distribution is large for each motor, a sufficient effect of compensation can be obtained and the torque ripple can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram of a motor drive device showing an embodiment of the present invention.
2A and 2B are diagrams showing the effect of the present invention, wherein FIG. 2A shows a state before compensation and FIG. 2B shows a state after compensation.
FIG. 3 is a block diagram of a conventional motor drive device.
FIG. 4 is a block diagram showing a torque ripple compensation method disclosed in Japanese Patent Application Laid-Open No. 5-260785.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 motor 2 encoder 21 storage device 3 speed controller 4 current amplifier 5 differentiator 6 sin table 61 torque ripple correction current waveform 7 harmonic superimposing section 8 adder 9 multiplier

Claims (1)

エンコーダを装着した永久磁石型モータに供給する平衡3相交流電流を生成するためのsinテーブルを搭載したモータ駆動装置において、
前記エンコーダ内部に搭載され、前記モータの磁束分布の情報を記憶する記憶装置と、
前記モータに供給する電流に高調波を重畳するために、電源投入時に前記記憶装置に記憶された前記モータの磁束分布の情報を受取り、この磁束分布の情報と前記エンコーダの出力である電気角を用いて、前記sinテーブルに高調波を重畳させる高調波重畳部とを備え、前記モータの磁束分布を次の近似式で与えることを特徴とするモータ駆動装置。
Figure 2004015879
ここで、Φ:磁束分布、θ:電気角、n:次数、A:n次高調波の振幅比、B:n次高調波の位相。
In a motor drive device equipped with a sine table for generating a balanced three-phase AC current to be supplied to a permanent magnet type motor equipped with an encoder,
A storage device that is mounted inside the encoder and stores information on magnetic flux distribution of the motor;
In order to superimpose harmonics on the current supplied to the motor, when power is turned on, information on the magnetic flux distribution of the motor stored in the storage device is received, and the information on the magnetic flux distribution and the electrical angle which is the output of the encoder are calculated. And a harmonic superimposing section for superimposing harmonics on the sine table, wherein the magnetic flux distribution of the motor is given by the following approximate expression.
Figure 2004015879
Here, Φ 1 : magnetic flux distribution, θ: electrical angle, n: order, A n : amplitude ratio of n- th harmonic, B n : phase of n-th harmonic.
JP2002163694A 2002-06-05 2002-06-05 Motor drive device Expired - Fee Related JP4221645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163694A JP4221645B2 (en) 2002-06-05 2002-06-05 Motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163694A JP4221645B2 (en) 2002-06-05 2002-06-05 Motor drive device

Publications (2)

Publication Number Publication Date
JP2004015879A true JP2004015879A (en) 2004-01-15
JP4221645B2 JP4221645B2 (en) 2009-02-12

Family

ID=30432046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163694A Expired - Fee Related JP4221645B2 (en) 2002-06-05 2002-06-05 Motor drive device

Country Status (1)

Country Link
JP (1) JP4221645B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131795A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Drive device for rotating electrical machine
JP2008236923A (en) * 2007-03-22 2008-10-02 Meidensha Corp Eddy current reduction method and device of pm motor
JP2011036023A (en) * 2009-07-31 2011-02-17 Nissan Motor Co Ltd Device for controlling operation noise of vehicles
EP2006999A3 (en) * 2007-06-21 2017-05-03 Nissan Motor Co., Ltd. Axial gap type motor/generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131795A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Drive device for rotating electrical machine
JP2008236923A (en) * 2007-03-22 2008-10-02 Meidensha Corp Eddy current reduction method and device of pm motor
EP2006999A3 (en) * 2007-06-21 2017-05-03 Nissan Motor Co., Ltd. Axial gap type motor/generator
JP2011036023A (en) * 2009-07-31 2011-02-17 Nissan Motor Co Ltd Device for controlling operation noise of vehicles

Also Published As

Publication number Publication date
JP4221645B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4022630B2 (en) Power conversion control device, power conversion control method, and program for power conversion control
JP3746377B2 (en) AC motor drive control device
Rubino et al. Model predictive direct flux vector control of multi-three-phase induction motor drives
EP1492224A1 (en) Sensorless controller of ac motor and control method
JP2005033984A (en) Vector controlled dual inverter system for induction motor
JPH06343206A (en) Alternating-current induction motor driving system that is reorganizable for electric motorcar use
EP1914879B1 (en) System and method for universal adaptive torque control of permanent magnet motors
JP2004064909A (en) Motor control device
Rubino et al. Decoupled and modular torque control of multi-three-phase induction motor drives
WO2018008372A1 (en) 6-line 3-phase motor, inverter apparatus, and motor system
JP4117554B2 (en) Motor control device
JP2004120853A (en) Power output equipment
JP6113651B2 (en) Multi-phase motor drive
WO2020179867A1 (en) Motor system
JP4221645B2 (en) Motor drive device
Guerrero et al. Total airgap flux minimization in dual stator winding induction machines
JPH10243679A (en) Synchronous motor controller
JP3214371B2 (en) Synchronous generator control system and hybrid electric vehicle
JP2005033932A (en) Motor controller
JP2005117863A (en) Ac rotating electric machine device
JP2006050705A (en) Motor control unit
JP2008167557A (en) Motor control method
JP2008043175A (en) Control unit for motor
JPS62100191A (en) Drive system for multiplex-winding ac motor
JP4656267B2 (en) Vector control device for AC motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees