JP2004014648A - Connecting structure of circuit board and its forming method - Google Patents

Connecting structure of circuit board and its forming method Download PDF

Info

Publication number
JP2004014648A
JP2004014648A JP2002163502A JP2002163502A JP2004014648A JP 2004014648 A JP2004014648 A JP 2004014648A JP 2002163502 A JP2002163502 A JP 2002163502A JP 2002163502 A JP2002163502 A JP 2002163502A JP 2004014648 A JP2004014648 A JP 2004014648A
Authority
JP
Japan
Prior art keywords
substrate
electrode
connection structure
connection member
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163502A
Other languages
Japanese (ja)
Other versions
JP3823881B2 (en
Inventor
Toshishige Yamamoto
山本 利重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002163502A priority Critical patent/JP3823881B2/en
Publication of JP2004014648A publication Critical patent/JP2004014648A/en
Application granted granted Critical
Publication of JP3823881B2 publication Critical patent/JP3823881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable connecting structure between circuit boards suitable for surface mounting and strong against thermal stress, and to provide its forming method. <P>SOLUTION: The connecting structure between the electrodes of a package board, and a mounting board has a double envelope worm shape (i.e. a single curved part is provided in the outer circumference and a constricted part having a smallest diameter is located in the vicinity of the intermediate point between the boards) of a columnar connecting member and peripheral solder (brazing material). The connecting structure is formed by mounting the package board having the columnar connecting member formed previously on the electrode on the package board having electrodes coated with solder paste while aligning, and then fusing the solder by reflow. Molten solder on the electrode of the package board creeps on the outer circumference of the connecting member during reflow, and takes a hand-drum type shape due to surface tension. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子や半導体パッケージ等の電子部品を搭載または実装するために二つの回路基板間を接続する接続構造、より詳しくは表面実装型の接続構造と、この接続構造の形成方法およびこの接続構造を有する物品に関する。
【0002】
【従来の技術】
近年、半導体素子の高集積化や電子部品の小型化に伴い、半導体素子、半導体パッケージ、及び半導体素子を搭載した回路基板における外部端子密度は増大傾向にある。
【0003】
このため、端子を格子状に配置して基板主面に形成し、端子密度を増大させた端子構造が盛用されている。この端子構造は、基板表面から隆起しており、高密度であっても、隣接端子同士が短絡しない構造となっており、高密度の表面実装を実現する。
【0004】
例えば、半導体素子であればフリップチップ実装が、半導体パッケージであれば、BGA(Ball Grid Array)パッケージや、さらに小型化されたCSP(Chip Scale Pakage)が挙げられる。これらはいずれも、一般に、回路基板上に形成された球状の接続部材を介して外部回路基板と接続する構造であると特徴づけることができる。
【0005】
図1、2にセラミックBGAパッケージにおける接続構造を模式的に示す。
図1は、実装基板に実装される前のBGAパッケージの外部端子接続構造を模式的に示す部分拡大図である。球状の接続部材として高温半田ボールを用い、これがろう材の低温半田によって、回路基板であるパッケージ基板 (モジュール基板でも良い)の電極に予め接合されている。この接合は、基板の電極上に低温半田ペーストをスクリーン印刷により塗布し、この上に高温半田ボールを配置し、リフロー加熱して低温半田のみを溶融することにより達成される。
【0006】
図2は、実装基板に実装した後のBGAパッケージの実装接続構造を模式的に示す部分拡大図である。実装基板の電極に低温半田ペーストをスクリーン印刷により塗布した後、図1に示したBGAパッケージを、対応する電極が向かい合うように位置合わせして実装基板上に載置し、再度リフローすると、図2に示した実装接続構造が形成される。
【0007】
低温半田はリフローによって溶融し、電極及び高温半田ボールと濡れる一方で、自身の表面張力が作用する結果、低温半田からなる接合部(半田フィレット)は、図示のように湾曲部となる。高温半田ボールが球状であるため、実装後の接続構造では、図2に示すように、低温半田は上下の各基板との接合部でいずれも急峻な (曲率半径の小さい)湾曲形状をとることになる。
【0008】
【発明が解決しようとする課題】
一般に、パッケージ基板と実装基板が同じ材料でない限り、その熱膨張係数には差があるため、環境温度が上下すると接続部に応力が発生することは良く知られている。図2に示すように実装したBGAパッケージの場合、応力の集中は上記のように湾曲した接合部に集中し、この湾曲の曲率半径が小さいほど、応力に対する耐久性が乏しくなる。その結果、低温半田からなる湾曲した接合部の近傍にクラックが入り、信頼性に問題を生ずる。特にセラミックBGAパッケージでは、一般にプラスチック質である実装基板との熱膨張係数の差が大きく、発生する熱応力も大きくなるので、この問題がより深刻となる。また、上記の問題は、BGAに限らず、球状の接続部材を利用した他の接続構造にもあてはまる。
【0009】
従来、電子部品の表面実装の接続構造といえば、チップ部品について図3に示すような富士山型の構造であり、低温半田のろう付けで形成された半田フィレットは、図示のように緩やかなカーブを描いていた。従って、その曲率半径は大きく、熱応力に対する信頼性は高かった。
【0010】
しかし、半導体素子や電子部品の多端子化や小型化が進展し、BGAのような格子状端子による表面実装を行う必要に迫られて、前述した問題、即ち、半田フィレットの曲率半径が小さく、熱応力に対する耐久性が乏しいという問題が顕在化した。今後も多端子化、小型化は進展するので、これは抜本的に解決しなければならない重要な問題である。
【0011】
本発明は、熱応力に強く、信頼性の高い、表面実装に適した回路基板間の接続構造とその形成方法を提供することを課題とする。
【0012】
【課題を解決するための手段】
本発明者は、従来の接続部材が球状あるいは半球状をしているため、これを接続するろう材が描く湾曲の曲率半径が小さくなり、応力に対する信頼性の低下につながっていると考えた。従って、ろう材による接続部の曲率半径を大きくすることで、上記課題を解決できるはずである。
【0013】
本発明によれば、接続構造を、図4に模式的に示すように「鼓(ツツ゛ミ)型」とすることで、曲率半径を大きくすることができ、接続構造の熱応力に対する信頼性を高めることができる。
【0014】
この鼓型の接続構造は、二つの基板の一方の電極上に柱状、好ましくは円柱状の接続部材を形成しておき、下側に配置した他方の基板の電極に半田ペーストを塗布し、位置合わせ後にリフロー加熱することにより形成することができる。後で詳述するように、リフロー中に溶融した半田が接続部材の周囲を這い上がって、上側の基板に達し、表面張力によって自然に鼓型の湾曲形状をとる。即ち、この方法により、図5に示すように、柱状の接続部材とその周囲の半田 (広義にはろう材)とからなる、全体として鼓型の接続構造が形成される。
【0015】
本発明は、第1基板の主面に形成された少なくとも一つの第1電極と、第2基板の主面に形成された、前記第1電極に対向する少なくとも一つの第2電極とを接続する、二つの回路基板間の接続構造に関する。
【0016】
1態様において、本発明の接続構造は、柱状の接続部材とその周囲のろう材とから構成され、少なくとも一方の前記基板の主面に垂直な該接続構造の断面の形状が、両基板間にある最小径位置から第1電極および第2電極に向かって次第に径が増大する形状であることを特徴とする。
【0017】
好適態様において、
・柱状の接続部材は第1基板の第1電極上に予め形成されていたものであり、
・第1基板の基板材料が、柱状の接続部材に対応する位置で、この接続部材に向かって山型に張り出している。
【0018】
別の態様において、本発明の接続構造は、第1基板の第1電極上に予め形成されていた柱状の接続部材とその周囲のろう材とから構成され、少なくとも一方の前記基板の主面に垂直な該接続構造の断面の形状が、両基板間の接続部材の長さの中間点位置またはそれより第1基板に近い位置から第2電極に向かって次第に径が増大する形状であることを特徴とする。
【0019】
本発明によればまた、上記接続構造を有することを特徴とする回路基板および実装基板に表面実装された電子部品も提供される。
本発明によればさらに、第2基板の第2電極が形成されている主面にろう材を塗布し、第1電極上に柱状の接続部材が形成されている第1基板と上記第2基板を、第1電極と第2電極が向かい合い、接続部材がろう材と接するように配置した後、加熱してろう材を溶融することからなる、上記接続構造の形成方法も提供される。
【0020】
【発明の実施の形態】
本発明に係る接続構造は、第1基板の主面に形成された少なくとも一つの第1電極と、第2基板の主面に形成された、前記第1電極に対向する少なくとも一つの第2電極とを接続する、二つの回路基板間の接続構造である。
【0021】
二つの基板はいずれも回路基板である。本発明において、回路基板とは、回路を有する基板または基板様構造を全て含む意味である。典型的には、一方が半導体素子を搭載したパッケージ基板 (モジュール基板でもよい)であり、他方がパッケージを実装する実装基板である。しかし、本発明は、原理的にはフリップチップ実装にも適用でき、その場合には一方の基板は半導体素子そのものであり、他方の基板は素子を搭載する回路基板や半導体パッケージとなる。
【0022】
各基板の主面に形成された電極(即ち、第1電極および第2電極)は、通常はパッド状の電極(ランド)であり、当業者には周知の方法により形成することができる。
【0023】
1態様において、本発明の接続構造は、少なくとも一方の基板、両基板が平行に配置されていれば両方の基板、の主面に垂直なその断面の形状が、両基板間にある最小径位置から第1電極および第2電極に向かって次第に径が増大する形状であることを特徴とする。
【0024】
即ち、図4に示すように、上記断面において、径が最小のくびれ部が両基板間の中間の位置、理想的には両基板間の中間点 (接続構造の高さの半分)付近の位置にあり、それから上下両方向に径が単調に拡大するという、鼓型の接続構造である。図2に示すようにBGAによる接続構造では複数の湾曲 (ボールの湾曲も含めて、三つの湾曲)を有しているのとは異なり、本発明では、接続構造の断面形状は単一の湾曲から構成される。また、図3に示すような、単一湾曲から構成されていても、最小径の部分が一方の基板位置またはその近傍にある富士山型とも異なる。
【0025】
本発明の接続構造は、鼓型の単一湾曲であれば、その厳密な湾曲形状は問わない。湾曲形状は円弧であってもよく、あるい放物線のように円弧を外れた形状であってもよい。この湾曲形状は実質的に直線部分を含まない。
【0026】
本発明の接続構造の湾曲形状は、接続構造の外周部を構成する材料が溶融した時の表面張力によって形成される。従って、この材料はろう材、典型的には半田である。接続構造の全体をろう材から構成することも可能であるが、その場合には、ろう材が溶融した時に上側の基板を支えきれない恐れがある。そのため、ろう材のろう付け温度では溶融しない、別の材料とろう材を組合わせて接続構造を構成することが好ましい。
【0027】
従って、本発明の好ましい接続構造は、図5に示すように、ろう付け時に基板を支える支持部材としても機能する柱状の接続部材と、その周囲のろう材 (図示例では半田、好ましくは低温半田)とから構成される。接続部材は円柱状であることが好ましいが、角柱状であってもよい。接続部材は、溶融温度がろう材より十分に高く、ろう付け温度で溶融しない導電性材料、一般には電気良導体の金属もしくは合金から構成する。図示のように、接続部材は両基板の電極と接続されるので、接合に有利なように、少なくとも一方の基板の電極と同一または同系の材料から接続部材を形成することが好ましい。
【0028】
柱状の接続部材は、一方の基板の電極上 (即ち、第1基板の第1電極上)に予め形成しておくことが好ましい。方向性を持たない球状の半田ボールとは異なり、方向性のある柱状、例えば円柱状の接続部材を、1個ずつ直立させて電極上に配置するのは、コスト高となり、得策ではない。配置の難易度は、球状より柱状の方がはるかに高いからである。
【0029】
他方の基板 (即ち、第2基板)の電極 (即ち、第2電極)が形成されている主面には、ろう材を塗布する。ろう材としては、半田以外のものも使用可能であるが、以下では代表的なろう材である半田を使用した場合について説明する。半田は半田ペーストの形態で塗布することができる。半田ペーストの塗布は、常法に従って、スクリーン印刷により、電極 (およびその周辺)だけが塗布されるように行うことが好ましい。電極以外の基板主面に、半田で濡れにくい被覆(ソルダレジスト)を施してもよい。
【0030】
半田ペーストを塗布した第2基板の上に、柱状の接続部材が電極上に形成されている第1基板を、第1電極と第2電極が対向するように位置決めして乗せ、第1基板の接続部材を第2基板の電極上の半田ペーストと接触させた後、リフロー炉等で加熱して、半田を溶融させる。
【0031】
接続部材と電極は、半田濡れ性が、基板材料 (例、セラミックスまたはプラスチックス)に比べて高い。また、柱状、特に円柱状の接続部材は、ボールとは異なり、外周面 (側面)に垂直方向の湾曲がない。そのため、第2基板の第2電極上で溶融した半田は、パッド状の電極を超えて周囲の基板に広がるのではなく、第2電極上に集まり、接続部材の外周面を伝わって這い上がり、対向する第1基板の第1電極に到達し、その表面張力によって鼓型形状を実現する。
【0032】
こうして、図5に示す形態の本発明に係る接続構造が形成される。図示例では、パッケージ基板とその電極が第1基板と第1電極であり、実装基板とその電極が第2基板と第2電極に相当する。半導体パッケージの実装の場合、第1基板と第2基板はこの組合わせ (即ち、第1基板はパッケージ基板)とすることが好ましいが、逆の組合わせとすることも原理的には可能である。
【0033】
接続部材の高さが非常に高いと、溶融半田が這い上がり切れず、鼓型形状とはならずに、富士山形状となる。鼓型形状となる条件は、接続部材の寸法 (径と高さ)、接続部材の半田濡れ性、半田の塗布量、リフロー兼ねる条件等に左右されるので、これらの値を適切に選ぶ必要がある。
【0034】
図5に示すように、半田フィレットは、上下の両基板に達する単一の湾曲を構成するため、湾曲の曲率半径は最大となり、応力に対する耐久性が高い接続構造となる。従って、接続部が熱応力を受けても、湾曲した接続部にクラックが入る危険性が極めて小さく、信頼性の高い実装が可能となる。また、半田ペーストを実装基板 (第2基板)に塗布するだけで、実装基板側だけでなく、パッケージ基板 (第1基板)側でも、接続部材と基板との半田付けが達成される。従って、パッケージ基板の電極上に形成した接続部材と該電極との接合強度が弱くても、半田付けにより接続部材の接合強度が著しく高まる。
【0035】
但し、パッケージ基板 (第1基板)上の電極 (第1電極)と、その上に形成した接続部材との接合強度が十分に高い場合には、第1電極と接続部材との半田付けは必要ない。その場合には、上記の方法において、溶融半田が第1基板に到達するまで這い上がらずに、接続部材の中間まで這い上がって、実装基板 (第2基板)の電極 (第2電極)と接続部材との半田付けを行うだけでもよい。こうすると、鼓型ではなく、図6に示すような富士山型の接続構造が形成される。
【0036】
その場合でも、本発明に従って、半田フィレットの曲率半径を最大にするため、半田フィレットの高さが接続部材の高さの半分以上になるようにする。それにより、曲率半径が上記の鼓型と同等か、それより大きい接続構造となる。基板と接続部材が同じであれば、鼓型を形成するよりは少ない量の半田ペーストを塗布することによって、富士山型の半田フィレットを形成することができる。
【0037】
本発明のこの態様は、一般化すると、接続構造が第1基板の第1電極上に予め形成されていた柱状の接続部材とその周囲のろう材とから構成され、少なくとも一方の前記基板の主面に垂直な接続構造の断面の形状が、両基板間の接続部材の長さの中間点位置またはそれより第1基板に近い位置から第2電極に向かって次第に径が増大する形状であることを特徴とする接続構造である。
【0038】
第1基板の第1電極上に接続部材を形成する方法としては、高さが揃い、かつ導電性の良好な接続部材を形成できる任意の方法を利用することができる。第1基板が多層セラミック回路基板である場合、実施例に述べる方法を利用することができる。この方法は、グリーンシート積層法による多層セラミック回路基板の製造時に接続部材も同時に形成することができるので、接続部材を低コストで形成することができ、かつ原料の導体ペーストが緻密に焼結し、高さが揃った、信頼性の高い接続部材を形成することができる。
【0039】
【実施例】
まず、接続部材が予め第1電極上に形成された第1基板となる、電極上に円柱状接続部材を有する多層セラミック回路基板の製造方法を、図7〜9を参照しながら説明する。
【0040】
この方法で製造された回路基板2 (本発明における第1基板)は、図9(b)に示すように、多層セラミック基板の最上層の基板層21の上に、円柱状の接続部材50を有する。回路基板2は、下から順に積層されたセラミック基板層23, 22, 21と、層間の導通のためのビア20及び配線パターン59を有する。最上層21の上の配線パターン59の一部は、電極パッド、即ち、本発明における第1電極を構成しており、接続部材50はこの電極の上に形成される。
【0041】
まず、図7(a)に示すように、セラミック基板層21、22、23を形成するための基板形成用グリーンシート210, 220, 230と、これらのグリーンシートの焼成温度では焼結しない非焼結シート (これもグリーンシートである) 11, 12, 13を準備する。基板形成用グリーンシートは1000℃以下で焼結する低温焼成可能なグリーンシート (例、ガラスセラミック系)であることが好ましい。非焼結シートのうち、シート12は接続部材の形成用であり、残りの最外層のシート11, 13は、焼成時に導体ペーストや基板形成用グリーンシートと押圧板との融着を防止するためのものである。これらの非焼結シートは、いずれも焼成後に除去されるので、安価で焼成温度が高いアルミナ系のものとすることが好ましい。
【0042】
基板形成用グリーンシートはいずれも、質量%でCaO−Al−SiO−B系ガラス60%とアルミナ40%とよりなる低温焼成セラミック基板材料の混合粉末から作成する。この混合粉末に、溶剤、バインダー及び可塑剤を加え、混錬して、スラリーを調製し、このスラリーから常法のドクターブレード法により厚み0.3 mmのグリーンシートを作成する。
【0043】
非焼結シートは、接続部材形成用と押圧用のいずれも、アルミナ粉末をバインダーと混合して得たペーストから作成する。このペーストを、常法のドクターブレード法によりシート成形して、厚み0.3 mmのグリーンシートを作成する。
【0044】
次に、図7(b)に示すように、基板形成用グリーンシート210, 220と、接続部材形成用の非焼結シート12に、それぞれ直径0.3 mmの円筒形貫通孔215, 225, 10を形成する。貫通孔210, 220はビア形成用であり、貫通孔10は接続部材形成用である。これらの貫通孔には、図8(a)に示すように、導体ペースト5を充填する。この充填は、スキージを用いたスクリーン印刷法により行う。
【0045】
周知のように、導体ペーストは導体の金属粉末とバインダーを溶媒と混合してペースト化したものである。使用する導体ペーストは、基板形成用グリーンシートの焼成温度で焼結する導体材料からなるものである。焼成温度が1000℃以下の場合、一般に銀または銀合金が導体材料として使用される (本実施例では銀ペーストを使用)。非焼結シート12の貫通孔10に充填される導体ペースト (接続部材形成用)は、焼成中に非焼結シートと接着しないように、ガラスフリットを含有しないものを使用することが好ましい。基板形成用グリーンシートの貫通孔215,225に充填される導体ペースト (ビア形成用)も、ビアの電気抵抗を低くするため、ガラスフリットを含有しないものが好ましい。
【0046】
次いで、図8(b)に示すように、基板形成用グリーンシート210, 220, 230の上に、配線パターン59を形成する。最上層のグリーンシート210の上に形成する配線パターン59は、パッド電極用のパターンを含んでいる。配線パターンは、適当な導体ペーストのスクリーン印刷により形成するのが普通である。使用する導体ペーストは、やはり低温焼成用のものである。
【0047】
その後、図9(a)に示すように、下から順に、融着防止用非焼結シート13、基板形成用グリーンシート230, 220, 210、接続部材形成用の非焼結シート12、融着防止用非焼結シート11を、位置合わせしながら積層し、熱圧着して積層体を得る。熱圧着の条件は、温度100℃、積層体の押圧力5×10Pa、保持時間20秒である。
【0048】
次に、この積層体を、図9(a)に示すように上下からアルミナ製の押圧板101,102で加圧しながら、基板形成用グリーンシートが焼結し、非焼結シートは焼結しない温度で焼成して、基板形成用グリーンシート230, 220, 210を、貫通孔内に充填された導体ペースト5および配線パターン59と同時に焼結させる。押圧板は、耐火セラミックスまたは金属から形成できる。
【0049】
焼成条件は、設定温度900℃、保持時間20分である。焼成時の加圧は、積層体をその積層方向、即ち、その厚み方向に、7×10Paの力で加圧するように行う。この加圧により、後で詳しく説明するように、多数の接続部材50を形成した場合に、高さが揃い、かつ緻密に焼結した接続部材とすることができる。
【0050】
焼成により、電極形成用グリーンシートは焼結して一体化し、基板層23、22、21からなる多層セラミック回路基板が得られる。この回路基板は、焼結して基板に一体化された配線パターン59、ビア20および円柱状の接続部材50を有する。接続部材50は配線パターン59の一部を構成するパッド状電極の上に形成され、電極に接合している。接合部材50の高さは非焼結シートの厚みとほぼ同じである (図9(b)を参照)。
【0051】
一方、非焼結シートは、その焼結温度が焼成温度より高いため、焼成中には焼結しないが、それらのグリーンシートを結合していたバインダーや他の有機成分(例、可塑剤)は焼成中に熱分解して消失する。こうして、非焼結シートは焼成中に気孔率が高まり、焼成初期に各グリーンシートや導体ペーストから発生するガス (主に有機物の分解による)は、非焼結シートを経て支障なく排出することができる。
【0052】
最後に、非焼結シート11、12、13を除去する。これらのシートは、焼成中にバインダーが消失し、セラミック粒子 (アルミナ粉末)がもはや結合していないため、ハケで払うだけで簡単に除去できる。それにより、図9(b)に示す、接続部材50が一体に形成された多層セラミック回路基板2が現れる。基板上に残存する非焼結シート由来のアルミナ粉末は、水中での超音波洗浄により除去できる。
【0053】
回路基板2の表面に露出した電極と柱状の接続部材には、Ni/Au等のメッキ処理を行い、半田実装時の濡れ性を向上させることが好ましい。
こうして形成した回路基板2に半導体素子51等を搭載し、ワイヤーボンド等の方法で素子と回路基板の電極を接続して、半導体モジュール基板 (パッケージ基板)3を得る(図10)。
【0054】
次に、半田ペーストをその電極に塗布した実装基板5を用意し、この実装基板の上に、半導体モジュール基板3を位置合わせして載置し、リフロー炉で加熱することにより半田を溶融させると、半田52及び接続部材50からなる、本発明に係る鼓型形状の接続構造が得られる(図11)。使用した半田ペーストは共晶半田のペーストである。
【0055】
図12は、こうして形成された鼓型形状の接続構造の拡大断面写真である。
図11及び図12に示すように、本発明に係る、接続部材を半田フィレットが包囲した構造の鼓型形状の接続構造は、半田フィレットにより形成される外周形状が1個の湾曲しか有していないため、その曲率半径が大きい。従って、熱応力に対する信頼性が高い。また、円柱状接続部材が一体的に形成された回路基板を使用することで、BGAのような接続部材の配置コストが不要となり、コストが低下する。同時に、半田ペーストを実装基板側のみに塗布して、1回のリフロー加熱だけで鼓型の接続構造を実現できるため、工程が簡単である。
【0056】
最後に、前述した多層セラミック回路基板の製造方法において、積層体の焼成を加圧下で行うことによる効果について説明する。
グリーンシートを積層した積層体の焼成中、焼結するグリーンシートは空隙が減少し、セラミックス層の厚みがかなり小さくなる。一方、焼結しない非焼結シートは、焼成後も厚みはほとんど変化しない。
【0057】
ところで、グリーンシートに形成した径が1mmより小さい微小な多数の貫通孔の全てに、スクリーン印刷により導体ペーストを完全に充填するのは困難であり、一部の貫通孔では導体ペーストが不足することがある。さらに、貫通孔内の導体ペーストも焼結に伴って、その体積は縮小する。
【0058】
焼結するグリーンシート210, 220に形成されたビア形成用の貫通孔215, 225に充填された導体ペーストは、焼成中に周囲のグリーンシートの厚みが縮小するのに伴って、偏平化して圧縮され、仮にその貫通孔への導体ペーストの充填が不十分でも、十分に緻密化したビア20が形成される。
【0059】
一方、焼結しない非焼結シート12内の貫通孔10に充填された導体ペーストは、周囲の非焼結シート12の厚みが焼成中にほとんど変化しないため、上記の圧縮を受けない。また、この導体ペーストは、前述したように、ガラスフリットのような低融点の融着成分を含有していない。これらの条件が重なって、焼成により形成された接続部材59は、焼成中に加圧しないと、特に上部や外周部にボイドを多く含んだ、緻密化が不足したポーラスなものとなりがちである。特に、貫通孔への導体ペーストの充填が不十分であると、接続部材が陥没して、その高さが不揃いとなることもある。
【0060】
積層体の焼成を積層体の厚み方向に加圧しながら行うと、貫通孔10に充填された導体粉末の緻密度が低くなった時、その下側に存在する、焼成中に焼結温度付近で流動化した基板形成用グリーンシート210のセラミックス材料が、貫通孔10内に流入し、導体粉末を貫通孔の奥まで押し込む。この時、押圧用の非焼結シート11が蓋の役割を果たす。こうして、たとえ貫通孔への導体ペーストの充填が不完全であっても、蓋をされた貫通孔の先端まで密に導体が詰まった、緻密で高さが揃った接続部材が形成される。また、焼成中の加圧は、反りや、主面と同方向の収縮を抑制するという別の利点もある。
【0061】
こうして形成された接続部材は、図12に示すように、回路基板 (図示例ではモジュール基板)と接続部材との界面が直線とはならず、基板材料のセラミックスが接続部材内に流入することで形成された、セラミックスが接続部材に向かって山型に張り出して盛り上がることにより湾曲した界面を有する。パッド電極59も、流入するセラミックスに押されて同様に山型に変形する。山型の張出しは、山の高さが電極59 (即ち、第1基板の第1電極)の厚みに等しいか、それより大きいことが好ましい。
【0062】
非焼結シート11による蓋があるため、この基板からのセラミックスの接続部材への流入量は、導体ペーストの充填量に応じて自動的に制御され、接続部材の焼結密度と高さが安定する。接続部材と基板電極との界面がこのように変形していても、回路基板への悪影響がないことは、当業者には理解されよう。
【0063】
このような結果を得るのに必要な焼成時の加圧力は、セラミックス材料や焼成条件等にも依存するが、3〜15 kgf/cm(3〜15×10Pa)程度であろう。加圧力が小さすぎるとセラミックスの流動効果が小さく、大きすぎるとグリーンシートが変形する恐れがある。
【0064】
【発明の効果】
本発明の回路基板の接続構造は、曲率半径の大きい鼓型または富士山型の形状をとるため、熱応力を受けてもクラックが入りにくく、耐久性と信頼性に優れている。さらに、本発明の接続構造の形成方法によれば、予めパッケージ回路基板に接続部材を一体的に形成するため、半田ペーストの塗布は実装基板側のみでよく、リフロー加熱も1回ですむため、工程が簡単で安価である。
【図面の簡単な説明】
【図1】従来のBGAパッケージの外部端子を模式的に示す拡大断面図である。
【図2】実装基板に実装した上記BGAパッケージの接続構造を模式的に示す拡大断面図である。
【図3】実装基板に実装した従来のチップ部品の接続構造を模式的に示す拡大断面図である。
【図4】実装基板とパッケージ基板の間に形成された本発明に係る接続構造を模式的に示す拡大断面図である。
【図5】実装基板とパッケージ基板の間に形成された本発明に係る接続構造の1態様を模式的に示す拡大断面図である。
【図6】実装基板とパッケージ基板の間に形成された本発明に係る接続構造の別の態様を模式的に示す拡大断面図である。
【図7】図7(a), (b)は本発明に係る回路基板の接続構造に用いる接続部材の形成方法における工程の一部を模式的に示す説明図である。
【図8】図2(a), (b)は、上記方法における後続工程を模式的に示す説明図である。
【図9】図3(a), (b)は、上記方法におけるさらに後続の工程を模式的に示す説明図である。
【図10】上記方法で形成された接続部材を有する半導体パッケージの断面形状を模式的に示す説明図である。
【図11】本発明に係る回路基板の接続構造を模式的に示す説明図である。
【図12】本発明に係る回路基板の接続構造を拡大して示す断面写真である。
【符号の説明】
2:回路基板、3:半導体パッケージ (モジュール基板)、5:導体ペースト、10, 215, 225:貫通孔、11, 12, 13:非焼結グリーンシート、20:ビア、21, 22, 23:セラミックス基板層、50:接続部材、51:半導体素子、52:接続構造 (接続部)、59:配線パターン、101, 102:押圧板、210, 220, 230:基板形成用グリーンシート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a connection structure for connecting two circuit boards to mount or mount electronic components such as a semiconductor element and a semiconductor package, more specifically, a surface-mount connection structure, a method for forming the connection structure, and a method for forming the connection structure. The present invention relates to an article having a connection structure.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the external terminal density of a semiconductor element, a semiconductor package, and a circuit board on which the semiconductor element is mounted tends to increase with the increase in integration of semiconductor elements and miniaturization of electronic components.
[0003]
For this reason, a terminal structure in which the terminals are arranged in a grid and formed on the main surface of the substrate to increase the terminal density is used. This terminal structure protrudes from the surface of the substrate, and has a structure in which adjacent terminals are not short-circuited even at a high density, realizing high-density surface mounting.
[0004]
For example, flip-chip mounting is used for a semiconductor element, and a BGA (Ball Grid Array) package or a more miniaturized CSP (Chip Scale Package) is used for a semiconductor package. All of these can be characterized as generally having a structure of connecting to an external circuit board via a spherical connecting member formed on the circuit board.
[0005]
1 and 2 schematically show a connection structure in a ceramic BGA package.
FIG. 1 is a partially enlarged view schematically showing an external terminal connection structure of a BGA package before being mounted on a mounting board. A high-temperature solder ball is used as a spherical connecting member, and is previously bonded to an electrode of a package substrate (or a module substrate), which is a circuit substrate, by low-temperature soldering of a brazing material. This bonding is achieved by applying a low-temperature solder paste on the electrodes of the substrate by screen printing, arranging a high-temperature solder ball thereon, and performing reflow heating to melt only the low-temperature solder.
[0006]
FIG. 2 is a partially enlarged view schematically showing a mounting connection structure of a BGA package after being mounted on a mounting board. After the low-temperature solder paste is applied to the electrodes of the mounting board by screen printing, the BGA package shown in FIG. 1 is placed on the mounting board with the corresponding electrodes facing each other and reflowed. Is formed.
[0007]
The low-temperature solder is melted by the reflow and wets the electrodes and the high-temperature solder balls, while its own surface tension acts. As a result, the joint (solder fillet) made of the low-temperature solder becomes a curved portion as shown in the figure. Since the high-temperature solder balls are spherical, in the connection structure after mounting, the low-temperature solder must have a steep (small radius of curvature) curved shape at the joints with the upper and lower substrates, as shown in FIG. become.
[0008]
[Problems to be solved by the invention]
Generally, unless the package substrate and the mounting substrate are made of the same material, there is a difference in thermal expansion coefficient between the package substrate and the mounting substrate. Therefore, it is well known that a stress is generated at a connection portion when the environmental temperature rises or falls. In the case of the BGA package mounted as shown in FIG. 2, the concentration of stress concentrates on the curved joint as described above, and the smaller the radius of curvature of this curve, the lower the durability against stress. As a result, cracks are formed in the vicinity of the curved joint made of low-temperature solder, which causes a problem in reliability. In particular, in the case of a ceramic BGA package, the difference in thermal expansion coefficient from a mounting substrate which is generally made of plastic is large, and the generated thermal stress is also large, so that this problem becomes more serious. In addition, the above problem is not limited to the BGA, but also applies to other connection structures using spherical connection members.
[0009]
Conventionally, the surface mount connection structure of an electronic component has a Mt. Fuji type structure as shown in FIG. 3 for a chip component. I was drawing. Therefore, its radius of curvature was large and its reliability against thermal stress was high.
[0010]
However, with the increasing number of terminals and miniaturization of semiconductor elements and electronic components, the necessity of performing surface mounting using lattice-like terminals such as BGA has been pressed, and the above-mentioned problem, that is, the radius of curvature of the solder fillet is small, The problem of poor durability against thermal stress became apparent. This is an important problem that must be drastically solved, as the number of terminals and miniaturization will continue to advance in the future.
[0011]
An object of the present invention is to provide a connection structure between circuit boards that is resistant to thermal stress and high in reliability and suitable for surface mounting, and a method for forming the same.
[0012]
[Means for Solving the Problems]
The present inventor considered that since the conventional connecting member is spherical or hemispherical, the radius of curvature of the curve drawn by the brazing material connecting the connecting member is small, leading to a reduction in reliability against stress. Therefore, the above problem can be solved by increasing the radius of curvature of the connection portion by the brazing material.
[0013]
According to the present invention, the radius of curvature can be increased and the reliability of the connection structure with respect to thermal stress is increased by making the connection structure a “tsutsumi type” as schematically shown in FIG. be able to.
[0014]
In this drum-shaped connection structure, a columnar, preferably cylindrical connection member is formed on one electrode of two substrates, and a solder paste is applied to the electrode of the other substrate arranged below, and the position is determined. It can be formed by reflow heating after the alignment. As will be described in detail later, the solder melted during the reflow crawls around the connection member, reaches the upper substrate, and naturally takes a drum-shaped curved shape due to surface tension. That is, as shown in FIG. 5, a drum-shaped connection structure composed of a pillar-shaped connection member and its surrounding solder (in a broad sense, brazing material) is formed by this method.
[0015]
According to the present invention, at least one first electrode formed on the main surface of the first substrate is connected to at least one second electrode formed on the main surface of the second substrate and facing the first electrode. And a connection structure between two circuit boards.
[0016]
In one embodiment, the connection structure of the present invention includes a columnar connection member and a brazing material surrounding the connection member, and the cross-sectional shape of the connection structure perpendicular to the main surface of at least one of the substrates is formed between the two substrates. It is characterized in that the diameter gradually increases from a certain minimum diameter position toward the first electrode and the second electrode.
[0017]
In a preferred embodiment,
The columnar connecting member is formed in advance on the first electrode of the first substrate;
-The board | substrate material of a 1st board | substrate protrudes in a mountain shape toward this connection member in the position corresponding to a columnar connection member.
[0018]
In another aspect, a connection structure according to the present invention includes a columnar connection member formed in advance on a first electrode of a first substrate and a brazing material surrounding the columnar connection member. The shape of the cross section of the vertical connection structure is such that the diameter gradually increases toward the second electrode from the midpoint position of the length of the connection member between the two substrates or from a position closer to the first substrate. Features.
[0019]
According to the present invention, there is also provided an electronic component surface-mounted on a circuit board and a mounting board having the above-described connection structure.
According to the present invention, furthermore, a brazing material is applied to the main surface of the second substrate on which the second electrode is formed, and the first substrate and the second substrate on which the columnar connecting member is formed on the first electrode. After the first electrode and the second electrode face each other, the connecting member is disposed so as to be in contact with the brazing material, and then the brazing material is heated to melt the brazing material.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The connection structure according to the present invention may include at least one first electrode formed on the main surface of the first substrate and at least one second electrode formed on the main surface of the second substrate facing the first electrode. And a connection structure between the two circuit boards.
[0021]
Each of the two boards is a circuit board. In the present invention, the term “circuit board” means a board having a circuit or a board-like structure. Typically, one is a package substrate (or a module substrate) on which a semiconductor element is mounted, and the other is a mounting substrate on which a package is mounted. However, the present invention is also applicable in principle to flip-chip mounting, in which case one substrate is the semiconductor element itself, and the other substrate is a circuit board or semiconductor package on which the element is mounted.
[0022]
The electrodes formed on the main surface of each substrate (that is, the first electrode and the second electrode) are usually pad-shaped electrodes (lands), and can be formed by a method well known to those skilled in the art.
[0023]
In one aspect, the connection structure of the present invention is characterized in that at least one of the substrates, and if both substrates are arranged in parallel, the shape of the cross section perpendicular to the main surface of the two substrates is the minimum radial position between the two substrates. From the first electrode to the first electrode and the second electrode.
[0024]
That is, as shown in FIG. 4, in the above-mentioned cross section, the constricted portion having the smallest diameter is located at an intermediate position between the two substrates, ideally near the intermediate point (half the height of the connection structure) between the two substrates. This is a drum-shaped connection structure in which the diameter monotonically expands in both the up and down directions. As shown in FIG. 2, unlike the connection structure using the BGA, which has a plurality of curvatures (three curvatures including the curvature of a ball), in the present invention, the connection structure has a single curved shape. Consists of Further, even if it is constituted by a single curve as shown in FIG. 3, it is different from the Mt. Fuji type in which the portion having the minimum diameter is at or near one substrate position.
[0025]
The connection structure of the present invention is not limited to a strictly curved shape as long as it is a single drum-shaped curve. The curved shape may be a circular arc or a shape deviated from a circular arc like a parabola. This curved shape does not include a substantially straight portion.
[0026]
The curved shape of the connection structure of the present invention is formed by surface tension when the material forming the outer peripheral portion of the connection structure is melted. Therefore, this material is a brazing material, typically solder. The entire connection structure may be made of a brazing material, but in that case, there is a possibility that the upper substrate cannot be supported when the brazing material is melted. Therefore, it is preferable to form a connection structure by combining a brazing material with another material that does not melt at the brazing temperature of the brazing material.
[0027]
Therefore, as shown in FIG. 5, a preferred connection structure of the present invention is a column-shaped connection member which also functions as a support member for supporting a substrate during brazing, and a brazing material therearound (in the illustrated example, solder, preferably low-temperature solder). ). The connecting member is preferably cylindrical, but may be prismatic. The connecting member is made of a conductive material whose melting temperature is sufficiently higher than the brazing material and does not melt at the brazing temperature, generally a metal or alloy of a good electrical conductor. As shown in the figure, since the connection member is connected to the electrodes of both substrates, it is preferable to form the connection member from the same or similar material as the electrodes of at least one substrate so as to be advantageous for bonding.
[0028]
It is preferable that the columnar connecting member is formed in advance on the electrode of one substrate (that is, on the first electrode of the first substrate). Unlike spherical solder balls that do not have directivity, it is costly and not advisable to arrange directional columnar, for example, cylindrical connecting members, one by one, on the electrodes in an upright manner. This is because the arrangement difficulty is much higher in the columnar shape than in the spherical shape.
[0029]
A brazing material is applied to the main surface of the other substrate (ie, the second substrate) on which the electrodes (ie, the second electrodes) are formed. As the brazing material, a material other than solder can be used. Hereinafter, a case where solder, which is a typical brazing material, is used will be described. Solder can be applied in the form of a solder paste. It is preferable to apply the solder paste by screen printing according to a conventional method so that only the electrodes (and their surroundings) are applied. A coating (solder resist) that is not easily wetted by solder may be applied to the main surface of the substrate other than the electrodes.
[0030]
On the second substrate coated with the solder paste, a first substrate having a columnar connection member formed on the electrode is positioned and mounted so that the first electrode and the second electrode face each other. After the connection member is brought into contact with the solder paste on the electrode of the second substrate, the solder is melted by heating in a reflow furnace or the like.
[0031]
The connection members and the electrodes have higher solder wettability than the substrate material (eg, ceramics or plastics). Also, unlike a ball, a columnar connecting member, particularly a columnar connecting member, has no vertical curvature on the outer peripheral surface (side surface). Therefore, the solder melted on the second electrode of the second substrate does not spread to the surrounding substrate beyond the pad-shaped electrode, but gathers on the second electrode and crawls up along the outer peripheral surface of the connection member, It reaches the first electrode of the opposing first substrate and realizes a drum-shaped shape by its surface tension.
[0032]
In this way, a connection structure according to the present invention having the form shown in FIG. 5 is formed. In the illustrated example, the package substrate and its electrodes correspond to a first substrate and a first electrode, and the mounting substrate and its electrodes correspond to a second substrate and a second electrode. In the case of mounting a semiconductor package, it is preferable that the first substrate and the second substrate be in this combination (that is, the first substrate is a package substrate), but the combination in reverse is also possible in principle. .
[0033]
If the height of the connection member is extremely high, the molten solder cannot be crawled up and cut off, so that the shape of the connection member becomes Mt. The conditions for the shape of a drum are dependent on the dimensions (diameter and height) of the connecting member, the solder wettability of the connecting member, the amount of solder applied, the conditions that also serve as reflow, and so on. is there.
[0034]
As shown in FIG. 5, since the solder fillet forms a single curve reaching both the upper and lower substrates, the radius of curvature of the curve is maximized, and the connection structure has high durability against stress. Therefore, even if the connecting portion receives a thermal stress, the risk of cracking in the curved connecting portion is extremely small, and mounting with high reliability is possible. Further, by simply applying the solder paste to the mounting board (second board), soldering of the connection member and the board is achieved not only on the mounting board side but also on the package board (first board) side. Therefore, even if the bonding strength between the connection member formed on the electrode of the package substrate and the electrode is weak, the bonding strength of the connection member is significantly increased by soldering.
[0035]
However, when the bonding strength between the electrode (first electrode) on the package substrate (first substrate) and the connection member formed thereon is sufficiently high, soldering between the first electrode and the connection member is necessary. Absent. In that case, in the above method, the molten solder does not climb up to reach the first board, but climbs up to the middle of the connection member and connects to the electrode (second electrode) of the mounting board (second board). Only soldering with the member may be performed. In this way, a Mt. Fuji connection structure as shown in FIG. 6 is formed instead of the drum shape.
[0036]
Even so, in accordance with the present invention, the height of the solder fillet should be at least half the height of the connecting member to maximize the radius of curvature of the solder fillet. As a result, a connection structure having a radius of curvature equal to or larger than the above-described hourglass shape is obtained. If the substrate and the connecting member are the same, a mountain-shaped solder fillet can be formed by applying a smaller amount of solder paste than forming a drum shape.
[0037]
According to this aspect of the present invention, when generalized, the connection structure is composed of a columnar connection member formed in advance on the first electrode of the first substrate and a brazing material surrounding the columnar connection member. The cross-sectional shape of the connection structure perpendicular to the plane is such that the diameter gradually increases toward the second electrode from the midpoint of the length of the connection member between the two substrates or from a position closer to the first substrate. It is a connection structure characterized by the following.
[0038]
As a method of forming the connection member on the first electrode of the first substrate, any method that can form a connection member having uniform height and good conductivity can be used. When the first substrate is a multilayer ceramic circuit substrate, the method described in the embodiment can be used. According to this method, the connecting member can be formed at the same time when the multilayer ceramic circuit board is manufactured by the green sheet laminating method, so that the connecting member can be formed at a low cost, and the raw material conductive paste is densely sintered. A highly reliable connection member having a uniform height can be formed.
[0039]
【Example】
First, a method for manufacturing a multilayer ceramic circuit board having a columnar connecting member on an electrode, which is a first substrate in which a connecting member is formed on a first electrode in advance, will be described with reference to FIGS.
[0040]
As shown in FIG. 9B, the circuit board 2 (first substrate in the present invention) manufactured by this method has a columnar connecting member 50 on the uppermost substrate layer 21 of the multilayer ceramic substrate. Have. The circuit board 2 has ceramic substrate layers 23, 22, 21 stacked in order from the bottom, vias 20 for wiring between layers, and a wiring pattern 59. A part of the wiring pattern 59 on the uppermost layer 21 forms an electrode pad, that is, a first electrode in the present invention, and the connection member 50 is formed on this electrode.
[0041]
First, as shown in FIG. 7A, substrate forming green sheets 210, 220, 230 for forming the ceramic substrate layers 21, 22, 23, and non-sintering, which are not sintered at the firing temperature of these green sheets. Prepare sintering sheets (also green sheets) 11, 12, and 13. The green sheet for forming a substrate is preferably a green sheet that can be fired at a low temperature of 1000 ° C. or less (eg, a glass ceramic type). Among the non-sintered sheets, the sheet 12 is for forming a connection member, and the remaining outermost sheets 11 and 13 are for preventing fusion between a conductive paste or a green sheet for forming a substrate and a pressing plate during firing. belongs to. Since all of these non-sintered sheets are removed after firing, it is preferable to use an alumina-based sheet which is inexpensive and has a high firing temperature.
[0042]
All the green sheets for substrate formation were CaO-Al in mass%. 2 O 3 -SiO 2 -B 2 O 3 It is prepared from a mixed powder of a low-temperature fired ceramic substrate material composed of 60% of a base glass and 40% of alumina. A solvent, a binder, and a plasticizer are added to the mixed powder, and the mixture is kneaded to prepare a slurry. From the slurry, a green sheet having a thickness of 0.3 mm is formed by a conventional doctor blade method.
[0043]
The non-sintered sheet is prepared from a paste obtained by mixing alumina powder with a binder for both forming a connection member and pressing. The paste is formed into a sheet by a conventional doctor blade method to form a green sheet having a thickness of 0.3 mm.
[0044]
Next, as shown in FIG. 7B, cylindrical through holes 215, 225 and 0.35 mm in diameter are respectively formed in the green sheets 210 and 220 for forming the substrate and the non-sintered sheet 12 for forming the connecting member. Form 10. The through holes 210 and 220 are for forming a via, and the through hole 10 is for forming a connecting member. These through holes are filled with a conductive paste 5 as shown in FIG. This filling is performed by a screen printing method using a squeegee.
[0045]
As is well known, a conductor paste is a paste obtained by mixing a metal powder of a conductor and a binder with a solvent. The conductor paste to be used is made of a conductor material that sinters at the firing temperature of the green sheet for forming a substrate. When the firing temperature is 1000 ° C. or lower, silver or a silver alloy is generally used as a conductive material (in this embodiment, a silver paste is used). As the conductive paste (for forming the connection member) filled in the through holes 10 of the non-sintered sheet 12, it is preferable to use one that does not contain glass frit so as not to adhere to the non-sintered sheet during firing. The conductive paste (for forming a via) filled in the through holes 215 and 225 of the substrate forming green sheet also preferably does not contain glass frit in order to reduce the electric resistance of the via.
[0046]
Next, as shown in FIG. 8B, a wiring pattern 59 is formed on the green sheets 210, 220, and 230 for forming a substrate. The wiring pattern 59 formed on the uppermost green sheet 210 includes a pattern for a pad electrode. The wiring pattern is usually formed by screen printing of an appropriate conductor paste. The conductor paste used is also for low-temperature firing.
[0047]
Thereafter, as shown in FIG. 9A, the non-sintered sheet 13 for preventing fusion, the green sheets 230, 220, and 210 for forming the substrate, the non-sintered sheet 12 for forming the connection member, and the fusion The non-sintering sheets 11 for prevention are laminated while being aligned, and then thermocompression-bonded to obtain a laminated body. The conditions of thermocompression bonding are as follows: temperature 100 ° C., pressure of laminated body 5 × 10 6 Pa, holding time 20 seconds.
[0048]
Next, as shown in FIG. 9A, the green sheet for substrate formation is sintered while the laminated body is pressed from above and below with pressing plates 101 and 102 made of alumina, and the non-sintered sheet is not sintered. By firing at a temperature, the green sheets 230, 220, and 210 for forming a substrate are sintered simultaneously with the conductive paste 5 and the wiring pattern 59 filled in the through holes. The pressure plate can be formed from refractory ceramics or metal.
[0049]
The firing conditions are a set temperature of 900 ° C. and a holding time of 20 minutes. The pressure during firing was such that the laminated body was placed in the laminating direction, that is, in the direction of its thickness, at 7 × 10 5 It is performed so that pressure is applied with a force of Pa. As described later in detail, when a large number of connecting members 50 are formed by this pressurization, the connecting members 50 can be formed to have the same height and to be densely sintered.
[0050]
By firing, the green sheets for electrode formation are sintered and integrated to obtain a multilayer ceramic circuit board including the substrate layers 23, 22, and 21. This circuit board has a wiring pattern 59, a via 20, and a columnar connecting member 50 which are sintered and integrated with the board. The connection member 50 is formed on a pad-like electrode constituting a part of the wiring pattern 59 and is joined to the electrode. The height of the joining member 50 is substantially the same as the thickness of the non-sintered sheet (see FIG. 9B).
[0051]
On the other hand, non-sintered sheets do not sinter during firing because their sintering temperature is higher than the firing temperature, but the binder and other organic components (eg, plasticizers) that bound those green sheets are not Dissipates due to thermal decomposition during firing. Thus, the porosity of the non-sintered sheet increases during firing, and the gas (mainly due to the decomposition of organic substances) generated from each green sheet and the conductive paste in the early stage of firing can be discharged without difficulty through the non-sintered sheet. it can.
[0052]
Finally, the non-sintered sheets 11, 12, 13 are removed. These sheets can be easily removed by brushing because the binder has disappeared during firing and the ceramic particles (alumina powder) are no longer bound. Thereby, the multilayer ceramic circuit board 2 shown in FIG. 9B in which the connecting members 50 are integrally formed appears. The alumina powder derived from the non-sintered sheet remaining on the substrate can be removed by ultrasonic cleaning in water.
[0053]
It is preferable that the electrode and the columnar connection member exposed on the surface of the circuit board 2 be plated with Ni / Au or the like to improve wettability during solder mounting.
The semiconductor element 51 and the like are mounted on the circuit board 2 formed in this way, and the element and the electrode of the circuit board are connected by a method such as wire bonding to obtain a semiconductor module substrate (package substrate) 3 (FIG. 10).
[0054]
Next, a mounting board 5 in which a solder paste is applied to its electrodes is prepared, the semiconductor module board 3 is positioned and mounted on the mounting board, and the solder is melted by heating in a reflow furnace. Thus, a drum-shaped connection structure according to the present invention including the solder 52 and the connection member 50 is obtained (FIG. 11). The solder paste used was a eutectic solder paste.
[0055]
FIG. 12 is an enlarged cross-sectional photograph of the drum-shaped connection structure thus formed.
As shown in FIGS. 11 and 12, the drum-shaped connection structure according to the present invention, in which the connection member is surrounded by the solder fillet, has only one curved outer peripheral shape formed by the solder fillet. Therefore, its radius of curvature is large. Therefore, reliability against thermal stress is high. In addition, by using a circuit board on which a columnar connecting member is integrally formed, the cost of arranging the connecting member such as BGA becomes unnecessary, and the cost is reduced. At the same time, since the solder paste is applied only to the mounting substrate side and a drum-shaped connection structure can be realized only by one reflow heating, the process is simple.
[0056]
Finally, the effect of firing the laminate under pressure in the above-described method for manufacturing a multilayer ceramic circuit board will be described.
During firing of the laminated body in which the green sheets are stacked, the sintering green sheets have reduced gaps and the thickness of the ceramic layer is considerably reduced. On the other hand, the thickness of the non-sintered sheet that does not sinter hardly changes even after firing.
[0057]
By the way, it is difficult to completely fill a large number of small through-holes formed in a green sheet with a conductor paste by screen printing, and some of the through-holes run short of the conductive paste. There is. Further, the volume of the conductor paste in the through-hole also decreases with sintering.
[0058]
The conductive paste filled in the via-forming through holes 215 and 225 formed in the green sheets 210 and 220 to be sintered is flattened and compressed as the thickness of the surrounding green sheet is reduced during firing. Even if the through-hole is not sufficiently filled with the conductive paste, a sufficiently densified via 20 is formed.
[0059]
On the other hand, the conductive paste filled in the through holes 10 in the non-sintered non-sintered sheet 12 does not undergo the above-described compression because the thickness of the surrounding non-sintered sheet 12 hardly changes during firing. Further, as described above, this conductor paste does not contain a low melting point fusion component such as glass frit. When these conditions are overlapped, the connection member 59 formed by firing tends to be a porous material with insufficient densification, particularly containing a large amount of voids in the upper portion and the outer peripheral portion, unless pressed during firing. In particular, when the conductive paste is insufficiently filled in the through holes, the connection members may be depressed and the heights thereof may be uneven.
[0060]
When sintering of the laminate is performed while pressing in the thickness direction of the laminate, when the denseness of the conductor powder filled in the through-holes 10 becomes low, the sintering temperature existing below the sintering temperature during firing is present. The fluidized ceramic material of the substrate forming green sheet 210 flows into the through-hole 10 and pushes the conductive powder deep into the through-hole. At this time, the non-sintered sheet 11 for pressing functions as a lid. Thus, even if the filling of the conductive paste into the through hole is incomplete, a dense and uniform connecting member is formed in which the conductor is densely packed up to the tip of the covered through hole. Pressurization during firing also has another advantage of suppressing warpage and shrinkage in the same direction as the main surface.
[0061]
As shown in FIG. 12, the connection member formed in this manner is such that the interface between the circuit board (module substrate in the illustrated example) and the connection member does not become linear, and ceramics of the substrate material flows into the connection member. The formed ceramic has a curved interface as the ceramics protrude in a mountain shape toward the connecting member and rise. The pad electrode 59 is similarly deformed into a mountain shape by being pushed by the flowing ceramics. The peak-shaped protrusion preferably has a peak height equal to or greater than the thickness of the electrode 59 (that is, the first electrode of the first substrate).
[0062]
Since there is a lid made of the non-sintered sheet 11, the amount of ceramic flowing into the connection member from the substrate is automatically controlled according to the filling amount of the conductive paste, and the sintering density and height of the connection member are stable. I do. Those skilled in the art will understand that even if the interface between the connection member and the substrate electrode is deformed in this way, there is no adverse effect on the circuit board.
[0063]
The pressure during firing necessary to obtain such a result depends on the ceramic material, firing conditions, and the like, but is 3 to 15 kgf / cm. 2 (3 to 15 × 10 5 Pa). If the pressing force is too small, the flow effect of the ceramic is small, and if it is too large, the green sheet may be deformed.
[0064]
【The invention's effect】
Since the connection structure of the circuit board of the present invention takes the shape of a drum or a Mt. Fuji having a large radius of curvature, cracks are unlikely to occur even when subjected to thermal stress, and it is excellent in durability and reliability. Furthermore, according to the connection structure forming method of the present invention, since the connection member is integrally formed on the package circuit board in advance, the solder paste needs to be applied only on the mounting board side, and the reflow heating only needs to be performed once. The process is simple and inexpensive.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view schematically showing external terminals of a conventional BGA package.
FIG. 2 is an enlarged cross-sectional view schematically showing a connection structure of the BGA package mounted on a mounting board.
FIG. 3 is an enlarged sectional view schematically showing a connection structure of a conventional chip component mounted on a mounting board.
FIG. 4 is an enlarged sectional view schematically showing a connection structure according to the present invention formed between a mounting substrate and a package substrate.
FIG. 5 is an enlarged cross-sectional view schematically showing one embodiment of a connection structure according to the present invention formed between a mounting substrate and a package substrate.
FIG. 6 is an enlarged cross-sectional view schematically showing another aspect of the connection structure according to the present invention formed between a mounting substrate and a package substrate.
FIGS. 7A and 7B are explanatory views schematically showing a part of steps in a method for forming a connection member used for a circuit board connection structure according to the present invention.
FIGS. 2A and 2B are explanatory views schematically showing subsequent steps in the above method.
FIGS. 3A and 3B are explanatory views schematically showing further steps in the above method.
FIG. 10 is an explanatory diagram schematically showing a cross-sectional shape of a semiconductor package having a connection member formed by the above method.
FIG. 11 is an explanatory view schematically showing a connection structure of a circuit board according to the present invention.
FIG. 12 is an enlarged cross-sectional photograph showing a connection structure of a circuit board according to the present invention.
[Explanation of symbols]
2: circuit board, 3: semiconductor package (module board), 5: conductive paste, 10, 215, 225: through hole, 11, 12, 13: non-sintered green sheet, 20: via, 21, 22, 23: Ceramic substrate layer, 50: connection member, 51: semiconductor element, 52: connection structure (connection portion), 59: wiring pattern, 101, 102: pressing plate, 210, 220, 230: green sheet for substrate formation

Claims (7)

第1基板の主面に形成された少なくとも一つの第1電極と、第2基板の主面に形成された、前記第1電極に対向する少なくとも一つの第2電極とを接続する、二つの回路基板間の接続構造であって、
前記接続構造は、柱状の接続部材とその周囲のろう材とから構成され、少なくとも一方の前記基板の主面に垂直な該接続構造の断面の形状が、両基板間にある最小径位置から第1電極および第2電極に向かって次第に径が増大する形状であることを特徴とする接続構造。
Two circuits for connecting at least one first electrode formed on the main surface of the first substrate and at least one second electrode formed on the main surface of the second substrate and facing the first electrode; A connection structure between the substrates,
The connection structure is composed of a columnar connection member and a brazing filler metal around the connection member, and a cross-sectional shape of the connection structure perpendicular to a main surface of at least one of the substrates is formed from a minimum diameter position between the two substrates. A connection structure having a shape whose diameter gradually increases toward the first electrode and the second electrode.
柱状の接続部材が第1基板の第1電極の上に予め形成されていたものである、請求項1記載の接続構造。The connection structure according to claim 1, wherein the columnar connection member is formed in advance on the first electrode of the first substrate. 第1基板の基板材料が、柱状の接続部材に対応する位置で、この接続部材に向かって山型に張り出している、請求項2記載の接続構造。The connection structure according to claim 2, wherein the substrate material of the first substrate projects in a mountain shape toward the connection member at a position corresponding to the columnar connection member. 第1基板の主面に形成された少なくとも一つの第1電極と、第2基板の主面に形成された、前記第1電極に対向する少なくとも一つの第2電極とを接続する、二つの回路基板間の接続構造であって、
前記接続構造は、第1基板の第1電極上に予め形成されていた柱状の接続部材とその周囲のろう材とから構成され、少なくとも一方の前記基板の主面に垂直な該接続構造の断面の形状が、両基板間の接続部材の長さの中間点位置またはそれより第1基板に近い位置から第2電極に向かって次第に径が増大する形状であることを特徴とする接続構造。
Two circuits for connecting at least one first electrode formed on the main surface of the first substrate and at least one second electrode formed on the main surface of the second substrate and facing the first electrode; A connection structure between the substrates,
The connection structure includes a columnar connection member formed in advance on a first electrode of a first substrate and a brazing material surrounding the columnar connection member, and a cross section of the connection structure perpendicular to a main surface of at least one of the substrates. Is a shape whose diameter gradually increases toward the second electrode from a midpoint position of the length of the connecting member between the two substrates or a position closer to the first substrate than the intermediate position.
請求項1〜4のいずれかに記載の接続構造を有することを特徴とする回路基板。A circuit board having the connection structure according to claim 1. 請求項1〜4のいずれかに記載の接続構造を有することを特徴とする、実装基板に表面実装された電子部品。An electronic component surface-mounted on a mounting board, comprising the connection structure according to claim 1. 第2基板の第2電極が形成されている主面にろう材を塗布し、第1電極上に柱状の接続部材が形成されている第1基板と上記第2基板を、第1電極と第2電極が向かい合い、接続部材がろう材と接するように配置した後、加熱してろう材を溶融することからなる、請求項2〜4のいずれかに記載の接続構造の形成方法。A brazing material is applied to the main surface of the second substrate on which the second electrode is formed, and the first substrate having the columnar connection member formed on the first electrode and the second substrate are separated from each other by the first electrode and the first electrode. The method for forming a connection structure according to any one of claims 2 to 4, wherein the two electrodes face each other, and the connection member is arranged so as to be in contact with the brazing material, and then the heating member is melted by heating.
JP2002163502A 2002-06-04 2002-06-04 Connection structure between circuit boards, formation method thereof, circuit board, and electronic component surface-mounted on mounting board Expired - Lifetime JP3823881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163502A JP3823881B2 (en) 2002-06-04 2002-06-04 Connection structure between circuit boards, formation method thereof, circuit board, and electronic component surface-mounted on mounting board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163502A JP3823881B2 (en) 2002-06-04 2002-06-04 Connection structure between circuit boards, formation method thereof, circuit board, and electronic component surface-mounted on mounting board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006083676A Division JP4404063B2 (en) 2006-03-24 2006-03-24 Connection structure, formation method thereof, circuit board, and electronic component surface-mounted on mounting board

Publications (2)

Publication Number Publication Date
JP2004014648A true JP2004014648A (en) 2004-01-15
JP3823881B2 JP3823881B2 (en) 2006-09-20

Family

ID=30431971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163502A Expired - Lifetime JP3823881B2 (en) 2002-06-04 2002-06-04 Connection structure between circuit boards, formation method thereof, circuit board, and electronic component surface-mounted on mounting board

Country Status (1)

Country Link
JP (1) JP3823881B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903426B2 (en) 2005-10-26 2011-03-08 Murata Manufacturing Co., Ltd. Multilayer electronic component, electronic device, and method for producing multilayer electronic component
JP2014175443A (en) * 2013-03-08 2014-09-22 Murata Mfg Co Ltd Module and method of manufacturing this module and electronic device including this module
KR20210009519A (en) * 2019-07-17 2021-01-27 삼성전자주식회사 Electronic device including interposer
CN113645758A (en) * 2021-08-11 2021-11-12 京东方科技集团股份有限公司 Flexible circuit board, manufacturing method thereof and display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903426B2 (en) 2005-10-26 2011-03-08 Murata Manufacturing Co., Ltd. Multilayer electronic component, electronic device, and method for producing multilayer electronic component
JP2014175443A (en) * 2013-03-08 2014-09-22 Murata Mfg Co Ltd Module and method of manufacturing this module and electronic device including this module
KR20210009519A (en) * 2019-07-17 2021-01-27 삼성전자주식회사 Electronic device including interposer
EP3984202A4 (en) * 2019-07-17 2022-08-24 Samsung Electronics Co., Ltd. Electronic device including interposer
US11744017B2 (en) 2019-07-17 2023-08-29 Samsung Electronics Co., Ltd. Electronic device including interposer
KR102659556B1 (en) * 2019-07-17 2024-04-23 삼성전자 주식회사 Electronic device including interposer
CN113645758A (en) * 2021-08-11 2021-11-12 京东方科技集团股份有限公司 Flexible circuit board, manufacturing method thereof and display device

Also Published As

Publication number Publication date
JP3823881B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP4310467B2 (en) Composite multilayer substrate and manufacturing method thereof
JP3173410B2 (en) Package substrate and method of manufacturing the same
JP4946225B2 (en) Multilayer ceramic electronic component, multilayer ceramic substrate, and method of manufacturing multilayer ceramic electronic component
JP2001068857A (en) Multilayer ceramic board and manufacture thereof
JP4509550B2 (en) Relay board, relay board with semiconductor element, board with relay board, structure comprising semiconductor element, relay board and board
WO2005071744A1 (en) Multilayer electronic part and structure for mounting multilayer electronic part
JP2010278139A (en) Semiconductor device and method for manufacturing the same
US6676784B2 (en) Process for the manufacture of multilayer ceramic substrates
US6408511B1 (en) Method of creating an enhanced BGA attachment in a low-temperature co-fired ceramic (LTCC) substrate
JP2681327B2 (en) Method for manufacturing bumped circuit board
JP2007324429A (en) Module component and manufacturing method therefor
JP3823881B2 (en) Connection structure between circuit boards, formation method thereof, circuit board, and electronic component surface-mounted on mounting board
JP4404063B2 (en) Connection structure, formation method thereof, circuit board, and electronic component surface-mounted on mounting board
JP3203731B2 (en) Semiconductor element substrate and mounting method, substrate with columnar terminals and method of manufacturing the same
JP4385782B2 (en) Composite multilayer substrate and manufacturing method thereof
JP2012074505A (en) Substrate for semiconductor mounting devices, and semiconductor mounting device
JP2007067364A (en) Ceramic substrate with chip-type electronic part mounted thereon and method for manufacturing the same
JP5287102B2 (en) Electronic component, substrate for electronic component, and manufacturing method thereof
JP4038611B2 (en) Ceramic substrate
JP4038610B2 (en) Manufacturing method of ceramic substrate
JP2002076193A (en) Semiconductor element storing package and package mounting board
JPH10242324A (en) Electrode-built-in ceramic substrate and manufacture thereof
JP2001177038A (en) Wiring board with lead pin and electronic component with lead pin
JP4044552B2 (en) Manufacturing method of ceramic substrate and electronic component module using ceramic substrate
JP4405253B2 (en) Relay board, relay board with semiconductor element, board with relay board, structure comprising semiconductor element, relay board and board

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3823881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

EXPY Cancellation because of completion of term