JP2004014494A - Atmospheric pressure plasma generating apparatus - Google Patents

Atmospheric pressure plasma generating apparatus Download PDF

Info

Publication number
JP2004014494A
JP2004014494A JP2002201922A JP2002201922A JP2004014494A JP 2004014494 A JP2004014494 A JP 2004014494A JP 2002201922 A JP2002201922 A JP 2002201922A JP 2002201922 A JP2002201922 A JP 2002201922A JP 2004014494 A JP2004014494 A JP 2004014494A
Authority
JP
Japan
Prior art keywords
discharge
plasma
dielectric
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002201922A
Other languages
Japanese (ja)
Inventor
Miyuki Saito
斎藤 幸
Toshihiko Hatanaka
畑中 俊彦
Shunji Miura
三浦 俊二
Rikuo Sakurai
桜井 陸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORI ENGINEERING KK
Original Assignee
MORI ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORI ENGINEERING KK filed Critical MORI ENGINEERING KK
Priority to JP2002201922A priority Critical patent/JP2004014494A/en
Publication of JP2004014494A publication Critical patent/JP2004014494A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple, economical, and highly efficient atmospheric pressure plasma generating apparatus, without using an expensive He gas for lowering a discharge starting voltage or a pulse voltage of a high power, when cleaning organic and inorganic substances, or reforming the surface. <P>SOLUTION: An acicular form and a convex form 8 are equivalently combined on an high-frequency impressing electrode surface, and the surface is covered by dielectric substance, by the above, a corona discharge can be obtained at a low power. By obtaining a stable glow discharge from a streamer corona discharge while preventing an arc discharge by the concentration of electric fields, a stable plasma with high density can be supplied in a simple mechanism and an automation is easily accomplished. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は大気圧中に於て、コロナ放電からグロー放電に発展させ、アーク放電の発生を抑制するようにさせたプラズマ発生方法及び装置に関する。
【0002】
【従来の技術】
従来のプラズマ発生装置は、減圧方式が主流であり、大気圧方式が余り普及されていなかったのは幾つかの理由があった。その理由とは、大気圧中での安定なグロー放電の発生、維持が極めて難しく、ストリーマ放電又はアーク放電が発生しやすかったためである。
【0003】
特にダメージの起きない試料面へのクリーニングには、グロー放電が最適方法であり、如何に大気圧中でグロー放電を安定に発生させ、維持させるかが大きな課題であった。
【0004】
又、Heガスを使用して、放電開始電圧を低くして大気圧中でのHeラジカル粒子の寿命が長いことから、より安定なグロー放電が可能であるために実用化されているが、Heガスは高価であることからランニングコストが高くなることが問題となっていた。
【0005】
近年、印加する電圧を交流波形ではなく、パルス化して電圧の立上がり時間を100μSEC以下の早いパルスを利用して、プラズマを発生しやすくすると共に、アーク放電防止のためにアーク放電直前に印加パルス電圧を間欠的に遮断して、アーク放電化を防止し安定なグロー放電を持続する方法が発表されている。然しこの方法は非常に有効的ではあるが、立ち上りの早い電圧の印加と遮断は、電力が大きくなると使用するデバイスの特性から限界があり、又コスト的にも高くなる。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような諸欠点を改善して、大気圧中でより経済的で安定なグロー放電プラズマを発生させ、各種の表面処理及び表面改質等を効率良く行うプラズマ発生方式を提供するものである。
【0007】
【課題を解決するための手段】
アルミ等の金属で作成された高周波印加電極上に、針状の凸部を多数等間隔で形成し、電気力線を集中させて電界を強くすることにより、コロナ放電を発生しやすくする。この凸部面上は誘電体で覆い、ストリーマ状のコロナ放電を発生させるようにして、この電極をトリガー電極とする。更にこの針状の電極の周辺に等間隔で上面が平坦で、上記の針状電極の断面積より大きい断面積を有する凸部を多数形成する。この凸部は薄く、又凸部以外の電極面上は、より厚い誘電体で覆うように設置する。この誘電体面と設置電極面の距離を数mm程度に設定して、プラズマを凸部面上のみで発生させ、その他の電極面上では発生させないようにして発熱を抑制して、アーク放電を防止する。このことは大気圧中でより安定なグロー放電を発生させることを可能としたものである。
【0008】
【発明の実施の形態】
本発明にかかる実施例を説明する。まず構成について説明する。
図1に示すように、高周波印加電極面1上に針状電極部7の径を1mmφ長さ6mmとして5mm間隔で形成する。更にその周辺に先端が平坦で針状電極の断面積より大きい2mmの径の断面積を有する凸部電極8を針状電極7から約3.5mmの等間隔で多数成形する。凸部の長さは約3mmとする。尚、これらの針状電極7及び凸部極電8の先端部を各々約1mm厚の誘電体で覆い、その他の電極面では、より厚さ7mmの誘電体2で覆うようにする。この場合、おのおの凸部電極面の誘電体の厚さを1mmにするために各電極凸部を誘電体にはめ込むように穴を形成して、凸部電極を嵌合する。又凸部面の誘電体2は1mm厚にするために、針状電極部7に対して6mmの深さの穴、又2mm径の凸部に対しては3mmの深さの穴を形成すると共に、同位置に反対側から3mmの穴を形成することにより凸部面上の誘電体は1mmとする。
上記のように高周波印加電極面上に設置構成された誘電体面と相対するように、接地電極との距離を1mmから5mmの範囲で可変できるように、空間を形成して接地電極3を設置する。この場合、接地電極上に誘電体を設置してもよい。
【0009】
上記のように構成することにより、低い印加電圧で針状電極面上に強い電界を発生させ誘電体を介してコロナ放電をさせる。これをトリガーとして周辺の凸部電極面上の誘電体を介して、グロー放電に発展させることにより、放電開始電圧を低くすることが可能となった。
又、電極全面で放電するのではなく、凸部のみで放電するために発熱を小さく抑制できアーク放電を防止することが可能となった。
【0010】
プラズマ発生用のガスは、両電極間の側面より目的に応じたガス例えば、Ar、N、O又はH等のガスを導入して、両電極間に高周波電力を印加してプラズマを発生させ、両電極間の他の側面より試料面にプラズマ粒子を吹きつけるようにして、表面処理をすることが可能である。しかし、大気圧中ではガス分子の密度が高いため、発生した電子の衝突周波数が大きく、電子の平均自由行程が小さいため他の分子を電離するために必要なエネルギーを得ることが難しいので、印加する電力を大きくする必要があった。しかしこの方法は発熱が大きくなりアーク放電になりやすい。従ってより低い電力で放電を発生させるようにすることが望ましい。この解決策としては、電極面上に針状電極また凸部電極を形成して、電気力線が集中して電界が強くなるようにして、より低い電力でストリーマコロナ放電を発生させ、発生した光、電子やプラズマ粒子により電極の凸部でガス分子を励起し、解離又は電離してグロー放電に発展させることが可能で、より低い放電開始電圧で安定なグロー放電を得ることができる。従って、高価なHeガスを使用することなく安定なプラズマを発生させることができるので極めて経済的である。
又、目的に応じてガスの選定と最適のガス流量を選ぶと共に試料の大きさに準じて、最適の電極間距離を選んで、電極間距離と目的に適応した高周波印加電力の周波数10KHz〜13.56MHzの範囲で選定して、プラズマ密度とイオンエネルギーを適性に選定することにより、最も効率良く目的に応じた表面処理又は表面改質等をすることを可能とするものである。
【0011】
本方式においては、アーク放電は発生しにくいが万一発熱が問題になるときは、アーク放電を防止するために、印加電力を制御するか、又は外部から導入するガスの流量を適度に制御することにより、ガス中のプラズマ粒子の密度の制御と導入するガスの冷却効果により発熱を抑制することにより可能である。
【0012】
又、大気圧中では電離、解離後の各プラズマ粒子の再結合までの寿命が短く、グロー放電の空間領域が電極間に狭まれた空間に限定されるため、外部から導入するガスによってプラズマ粒子を散乱させ、試料面に均一にプラズマ粒子を接触させるようにすることが重要である。
【0013】
更に、誘電体に覆われた高周波印加電極と接地電極間のプラズマ発生空間の距離により発生する温度が左右される。パッシェンの法則のPd積(P:圧力、d:電極間距離)が大きくなると、プラズマ開始電圧又放電維持電圧が大きくなり、印加電力を大きくする必要があるため、発熱も大きくなる。又狭すぎるとストリーマコロナ放電になりやすく、安定なグロー放電が得にくくなる。従って一般的に大気圧の場合は上記の距離は1mm〜5mm程度が良い。
【0014】
印加する高周波電圧の周波数は10KHzから13.56MHzが好ましい。電極間の電界強度は1KV〜50KV/cm範囲で選定するのが良い。又、より安定なグロー放電を得るには、周波数度が高い方が良いが、大気圧の場合は、分子密度が大きいために減圧方式に比べて、発生するプラズマ密度が高く、発熱がしやすく、アーク放電になりやすい。このように発熱が必要以上に大きいときは、印加電圧を適当な時間間隔で印加を停止する間欠通電にすることも有効的な一つの方法である。又、周波数が数十KHzと低い場合でも、イオンが電極に強いエネルギーで衝突するために温度上昇は大きくなるが、プラズマ密度が小さいために電極間隔を小さくして、印加電力を最適値に選定すれば問題は発生しない。又、印加電力が数百KHz以下の低い周波数では整合器を必要としないが、数百KHz以上で反射波をなくするために負荷インピーダンスを一定にするための整合器を付加することが必要である。
【0015】
使用する反応ガスは、被処理物の材質と目的によって色々と使い分ける必要があるが、一般的に有機物の表面への汚れをとる場合、又は有機物の表面改質にはAr又は、NガスにOガス等を混入して行うのが一般的であるが、より処理時間を早くするためにCF4等の弗素系ガスを混合することも有効的である。
【0016】
しかるに、無機物の除去は、一般的に大気圧プラズマに於ては、RIE効果(リアクテブイオンエッチング)による物理的にイオンによる逆スッパタリングで除去することが難しかった。しかし、金属酸化物等については、酸素との結合力が弱い場合に、Hガスによりプラズマで選択的に還元、又は分解させることが容易である。しかし乍ら、酸素との結合力が大きいもの例えば、Alは189Kcal/mol以上の解離エネルギーを持つために、低温プラズマでは還元、分解は極めて難しかった。
【0017】
処理すべき試料面をより均一にクリーニング又は表面改質するためには、処理用ガスの電極間への均一な導入が重要である。そのために小さな多数の穴を形成したシャワー板を用いて、ガスの注入を均一化することがよい方法である。又前記したように電極面上に誘電体を設置構成し、電力を印加することにより、誘電体バリア放電にすることにより誘電体面での電荷粒子のチャージング効果により、誘電体上に蓄積された電荷が、印加電圧と反対方向の電界を形成して、電極間の電位が放電維持電圧以下になり、放電は一旦停止することによって、放電が間欠的となると共に均一化され、発熱も抑制されるようになる。従って電極とその面に設置された誘電に、ガス流通用の穴を多数形成したシャワー電極とすることが非常に有効的である。
【0018】
【実施例】
以下、本発明の具体的なプラズマ処理の実施例を説明する。
図1のように高周波印加電極面上に5mm間隔で、径1mmφで長さ6mmの針状の電極を一列に10個形成する。その周辺に4個の径2mmφで長さ3mmの円筒凸部の中心が針状電極の中心との距離を7mmの間隔をおいて配列して22個を形成する。これらの針状電極及び凸部電極、更にその他の平面電極部を7mm厚さの誘電体で覆う場合に、針状電極の先端部及び凸部先端部は誘電体部の厚さが約1mmとなるように誘電体板中に各針状電極及び凸部電極部が誘電体中に嵌合できるように最適の穴径と長さを各々形成する。このように形成した誘電体を高周波印加電極面上に針状電極及び凸部電極部を誘電体中に形成した穴部にはめ込み、針状電極及び凸部電極部以外の平板電極部面の誘電体の厚さを7mmと厚くすることにより、この面上でのプラズマの発生を防止して、針状電極部分でより低い放電開始電圧で、先ずコロナ放電をし、更に周辺の凸部でグロー放電に進展させるようにする。
又これらの高周波電極上の誘電体面と対向する接地電極面との距離を1〜5mmの間で調整可能のように構成する。本実験では2mmに設定した。又誘電体としてセラミックを使用したが、之等と同等の材質であれば問題がない。
【0019】
このように構成された電極間の片側より、プラズマ発生用のガスとしてArガス10SCCMとOガス5SCCMをシャワ板を通過させて電極間に導入し、プラズマ発生後に電極間の他方よりこれらのプラズマ粒子を試料面上に吹きつけるようにして、表面処理をおこなった。この場合、プラズマ処理すべきか試料を誘電体で覆った高周波電極と接地電極間に設置して、プラズマ処理してもよい。
【0020】
上記のように構成された電極間に周波数60KHzで、高周波電力50Wを印加させ、プラズマを発生させる。試料としてFR5の材料のBGA基板を用いて、プラズマ吹き出し口から2cm離して30秒間プラズマを吹きつけして表面処理をおこなった。表面のクリーニング度は、表1に示すように、水滴接触角で判定した。結果は処理前の接触角が平均値で約89°のものが、プラズマ処理後は、平均値で27°であり、良好な表面処理効果があることが判った。基板面上の観察は、熱による変色及び変形等が一切なかったことを確認した。又、BGA基板のモールド後にプラズマ処理して、マーキング印刷したものは、極めて鮮明度が高く、剥離現象もなかった。以上の通り、大気圧中で簡単に表面処理ができるので、大型のPCB基板やストリップ基板、PIフレキシブルテープ等のデスミア処理やマーキング前の処理等にも非常に有効的である。
【0021】
【表1】

Figure 2004014494
【0022】
【発明の効果】
本発明は以上に述べたように多くの特徴を有しているので従来の減圧方法に比較して、真空装置を必要としないためイニシアルコストの削減や高価なHeガス等を必要としないのでランニングコストが安く、容易に連続的処理ができることから処理効果も大きく、確実に表面処理が可能であることから、生産性向上の寄与と共に経済的にコストダウンが可能となった。
【図面の簡単な説明】
【図1(a)】本発明のグロー放電プラズマ処理装置の電極構造図の上面図
【図1(b)】本発明のグロー放電プラズマ処理装置の電極構造のガス吹き出し側の断面図
【図1(C)】本発明のグロー放電プラズマ処理装置の電極構造のガス導入側の断面図
【符号の説明】
1 高周波印加電極面
2 上部電極絶縁版
3 接地電極
4 絶縁ワッシヤ
5 絶縁カラー
6 クランプボルト
7 針状の電極部
8 凸部電極
9 ガス導入パイプ
10 シャワ状ガス導通路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma generation method and apparatus that develop from corona discharge to glow discharge at atmospheric pressure to suppress the occurrence of arc discharge.
[0002]
[Prior art]
In the conventional plasma generator, the decompression method is mainly used, and the atmospheric pressure method has not been widely used for several reasons. This is because it is extremely difficult to generate and maintain a stable glow discharge at atmospheric pressure, and streamer discharge or arc discharge is easily generated.
[0003]
In particular, glow discharge is the most suitable method for cleaning the sample surface where no damage occurs, and it has been a major problem how to stably generate and maintain glow discharge at atmospheric pressure.
[0004]
In addition, since He gas is used to lower the discharge starting voltage and the life of He radical particles at atmospheric pressure is long, a more stable glow discharge is possible. Since the gas is expensive, the running cost is high.
[0005]
In recent years, the applied voltage is pulsed instead of an AC waveform, and a pulse with a rise time of 100 μSEC or less is used to make it easier to generate plasma. In addition, to prevent arc discharge, the applied pulse voltage is applied immediately before arc discharge. A method of intermittently shutting off, preventing arc discharge and maintaining a stable glow discharge has been disclosed. However, although this method is very effective, the application and cutoff of a voltage that rises quickly is limited by the characteristics of the device used as the power increases, and the cost increases.
[0006]
[Problems to be solved by the invention]
The present invention provides a plasma generation method that improves the above-mentioned drawbacks, generates more economical and stable glow discharge plasma at atmospheric pressure, and efficiently performs various surface treatments and surface modifications. Is what you do.
[0007]
[Means for Solving the Problems]
A large number of needle-shaped protrusions are formed at equal intervals on a high-frequency application electrode made of a metal such as aluminum, and the lines of electric force are concentrated to increase the electric field, so that corona discharge is easily generated. The surface of the convex portion is covered with a dielectric to generate a streamer-like corona discharge, and this electrode is used as a trigger electrode. Further, a large number of convex portions having a flat upper surface at equal intervals and having a cross-sectional area larger than the cross-sectional area of the needle-shaped electrode are formed around the needle-shaped electrode. The projection is thin and the electrode surface other than the projection is placed so as to be covered with a thicker dielectric. By setting the distance between this dielectric surface and the installation electrode surface to about several mm, plasma is generated only on the convex surface and not on other electrode surfaces to suppress heat generation and prevent arc discharge. I do. This makes it possible to generate a more stable glow discharge at atmospheric pressure.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described. First, the configuration will be described.
As shown in FIG. 1, needle electrodes 7 are formed on the high-frequency application electrode surface 1 at a distance of 5 mm with a diameter of 1 mm and a length of 6 mm. Further, a large number of convex electrodes 8 having a flat tip and a cross-sectional area of 2 mm larger than the cross-sectional area of the needle electrode are formed around the needle electrode 7 at regular intervals of about 3.5 mm from the needle electrode 7. The length of the projection is about 3 mm. The tips of the needle electrode 7 and the protruding pole electrode 8 are each covered with a dielectric having a thickness of about 1 mm, and the other electrode surfaces are covered with a dielectric 2 having a thickness of 7 mm. In this case, holes are formed so that each electrode protrusion is fitted into the dielectric so that the thickness of the dielectric on each protrusion electrode surface is 1 mm, and the protrusion electrodes are fitted. In order to make the dielectric 2 on the convex surface 1 mm thick, a hole having a depth of 6 mm is formed in the needle-shaped electrode portion 7 and a hole having a depth of 3 mm is formed in the convex portion having a diameter of 2 mm. At the same time, a hole of 3 mm is formed at the same position from the opposite side to make the dielectric on the convex surface 1 mm.
A space is formed and the ground electrode 3 is installed so that the distance to the ground electrode can be changed in a range of 1 mm to 5 mm so as to be opposed to the dielectric surface provided on the high frequency application electrode surface as described above. . In this case, a dielectric may be provided on the ground electrode.
[0009]
With the above configuration, a strong electric field is generated on the needle electrode surface at a low applied voltage, and corona discharge is caused via the dielectric. By using this as a trigger to develop a glow discharge through the dielectric on the peripheral convex electrode surface, it has become possible to lower the discharge starting voltage.
In addition, since the discharge is performed only at the protrusions, not at the entire surface of the electrode, heat generation can be suppressed to a small extent, and arc discharge can be prevented.
[0010]
As a gas for generating plasma, a gas such as Ar, N 2 , O 2, or H 2 is introduced from a side surface between the two electrodes, and a high-frequency power is applied between the two electrodes to generate plasma. It is possible to perform the surface treatment by generating the plasma particles and spraying the plasma particles on the sample surface from the other side surface between the two electrodes. However, at atmospheric pressure, the density of gas molecules is high, the collision frequency of the generated electrons is high, and the mean free path of the electrons is small, so it is difficult to obtain the energy required to ionize other molecules. Power needed to be increased. However, this method generates a large amount of heat and easily causes arc discharge. Therefore, it is desirable to generate discharge with lower power. As a solution to this, a needle electrode or a convex electrode is formed on the electrode surface so that the lines of electric force are concentrated and the electric field becomes strong, and a streamer corona discharge is generated with lower power and generated. It is possible to excite gas molecules at the projections of the electrodes with light, electrons or plasma particles and dissociate or ionize them to develop a glow discharge, thereby obtaining a stable glow discharge at a lower firing voltage. Therefore, stable plasma can be generated without using expensive He gas, which is extremely economical.
In addition, the selection of gas and the optimal gas flow rate are selected according to the purpose, and the optimal distance between the electrodes is selected according to the size of the sample. By appropriately selecting the plasma density and the ion energy in the range of .56 MHz, it is possible to perform the surface treatment or the surface modification according to the purpose most efficiently.
[0011]
In this method, arc discharge is unlikely to occur, but if heat generation becomes a problem, control the applied power or appropriately control the flow rate of gas introduced from the outside to prevent arc discharge. This is possible by suppressing the heat generation by controlling the density of the plasma particles in the gas and cooling the introduced gas.
[0012]
Also, at atmospheric pressure, the life of each plasma particle after ionization and dissociation until recombination is short, and the space region of the glow discharge is limited to the space narrow between the electrodes. It is important to scatter the plasma particles so that the plasma particles are uniformly brought into contact with the sample surface.
[0013]
Furthermore, the temperature generated depends on the distance of the plasma generation space between the high frequency application electrode covered with the dielectric and the ground electrode. When the Pd product (P: pressure, d: distance between electrodes) of Paschen's law increases, the plasma start voltage or the discharge sustaining voltage increases, and the applied power needs to be increased. On the other hand, if the width is too narrow, a streamer corona discharge easily occurs, and it is difficult to obtain a stable glow discharge. Therefore, in general, in the case of atmospheric pressure, the above distance is preferably about 1 mm to 5 mm.
[0014]
The frequency of the applied high-frequency voltage is preferably from 10 KHz to 13.56 MHz. The electric field strength between the electrodes is preferably selected in the range of 1 KV to 50 KV / cm. Also, in order to obtain a more stable glow discharge, a higher frequency is better, but in the case of atmospheric pressure, the generated plasma density is higher than that of the decompression method due to a large molecular density, and heat is easily generated. , Easy to arc discharge. When heat generation is unnecessarily large as described above, intermittent energization in which application of voltage is stopped at appropriate time intervals is one effective method. Also, even when the frequency is as low as several tens of KHz, the temperature rise is large because the ions collide with the electrode with strong energy. However, since the plasma density is small, the interval between the electrodes is reduced, and the applied power is selected to the optimum value. No problem will occur. Although a matching device is not required at a low frequency where the applied power is several hundred KHz or less, it is necessary to add a matching device for keeping the load impedance constant in order to eliminate reflected waves at several hundred KHz or more. is there.
[0015]
The reaction gas to be used needs to be used in various ways depending on the material and purpose of the object to be treated, but in general, when removing the stain on the surface of the organic material, or when modifying the surface of the organic material, use Ar or N 2 gas. In general, mixing is performed by mixing O 2 gas or the like, but it is also effective to mix a fluorine-based gas such as CF 4 to shorten the processing time.
[0016]
However, in general, it has been difficult to remove inorganic substances by reverse sputtering with ions by physically using the RIE effect (reactive ion etching) in atmospheric pressure plasma. However, it is easy to selectively reduce or decompose metal oxides or the like by plasma with H 2 gas when the bonding force with oxygen is weak. However, since those having a large bonding force with oxygen, for example, Al 2 O 3 have a dissociation energy of 189 Kcal / mol or more, reduction and decomposition were extremely difficult with low-temperature plasma.
[0017]
In order to more uniformly clean or modify the surface of a sample to be processed, it is important to introduce a processing gas uniformly between the electrodes. Therefore, it is a good method to use a shower plate having a large number of small holes to make gas injection uniform. In addition, as described above, a dielectric is provided on the electrode surface, and by applying power, a dielectric barrier discharge is caused to occur, and by the charging effect of the charged particles on the dielectric surface, the dielectric material is accumulated on the dielectric. The electric charge forms an electric field in the opposite direction to the applied voltage, and the potential between the electrodes becomes equal to or lower than the discharge sustaining voltage. By stopping the discharge once, the discharge becomes intermittent and uniform, and heat generation is suppressed. Become so. Therefore, it is very effective to use a shower electrode in which a large number of holes for gas flow are formed in the electrode and the dielectric provided on the surface thereof.
[0018]
【Example】
Hereinafter, specific examples of the plasma processing according to the present invention will be described.
As shown in FIG. 1, ten needle-like electrodes having a diameter of 1 mm and a length of 6 mm are formed in a line on the high-frequency application electrode surface at intervals of 5 mm. The center of the four cylindrical protrusions having a diameter of 2 mm and a length of 3 mm is arranged around the periphery thereof at a distance of 7 mm from the center of the needle electrode to form 22 pieces. When covering these needle-like electrodes and convex electrodes, and other planar electrode parts with a 7 mm-thick dielectric, the tip of the needle-like electrodes and the convex tip have a thickness of about 1 mm for the dielectric part. An optimal hole diameter and length are formed in the dielectric plate so that the needle-shaped electrodes and the protruding electrode portions can be fitted in the dielectric. The dielectric thus formed is fitted into the hole formed with the needle-shaped electrode and the convex electrode on the surface of the high-frequency application electrode, and the dielectric of the plate electrode surface other than the needle-shaped electrode and the convex electrode is formed. By increasing the body thickness to 7 mm, the generation of plasma on this surface is prevented, a corona discharge is first performed at a lower firing voltage at the needle-shaped electrode portion, and a glow is formed at the peripheral convex portion. Let it progress to discharge.
Further, the distance between the dielectric surface on these high-frequency electrodes and the ground electrode surface opposite thereto is adjusted to be adjustable between 1 and 5 mm. In this experiment, it was set to 2 mm. Although ceramic is used as the dielectric, there is no problem as long as the material is equivalent to the above.
[0019]
Ar gas (10 SCCM) and O 2 gas (5 SCCM) as plasma generation gas were introduced between the electrodes through a shower plate from one side between the electrodes configured as described above. After the plasma was generated, the plasma was generated from the other side between the electrodes. Surface treatment was performed by spraying the particles onto the sample surface. In this case, plasma treatment may be performed by placing the sample between a high-frequency electrode covered with a dielectric and a ground electrode.
[0020]
A high frequency power of 50 W at a frequency of 60 KHz is applied between the electrodes configured as described above to generate plasma. Using a BGA substrate made of FR5 as a sample, surface treatment was performed by spraying plasma for 2 seconds at a distance of 2 cm from the plasma outlet. As shown in Table 1, the cleaning degree of the surface was determined by the contact angle of a water droplet. As a result, the average contact angle before the treatment was about 89 °, and the average after the plasma treatment was 27 °, indicating a good surface treatment effect. Observation on the substrate surface confirmed that there was no discoloration or deformation due to heat at all. In addition, the plasma-processed marking printed after the molding of the BGA substrate had extremely high sharpness and no peeling phenomenon. As described above, since surface treatment can be easily performed at atmospheric pressure, it is very effective for desmearing large PCB substrates, strip substrates, PI flexible tapes, and the like, and processing before marking.
[0021]
[Table 1]
Figure 2004014494
[0022]
【The invention's effect】
Since the present invention has many features as described above, compared to the conventional decompression method, there is no need for a vacuum device, so that the initial cost can be reduced and expensive He gas or the like is not required, so that running is possible. Since the cost is low and the continuous treatment can be easily performed, the treatment effect is great, and the surface treatment can be surely performed. Therefore, it is possible to economically reduce the cost while contributing to the improvement of the productivity.
[Brief description of the drawings]
FIG. 1 (a) is a top view of an electrode structure diagram of a glow discharge plasma processing apparatus of the present invention. FIG. 1 (b) is a cross-sectional view on a gas blowing side of an electrode structure of a glow discharge plasma processing apparatus of the present invention. (C) Cross-sectional view on the gas introduction side of the electrode structure of the glow discharge plasma processing apparatus of the present invention.
DESCRIPTION OF SYMBOLS 1 High frequency application electrode surface 2 Upper electrode insulating plate 3 Ground electrode 4 Insulating washer 5 Insulating collar 6 Clamp bolt 7 Needle-like electrode part 8 Convex part electrode 9 Gas introduction pipe 10 Shower-like gas conduction path

Claims (3)

高周波印加電極面上に針状の先端部の断面積の小さい凸部と、この周辺より大きい断面積を有する凸部を多数形式し、各凸部の先端部面上に0.5〜1mm厚の誘電体で被覆するようにして、その他の高周波印加用電極面上は、より厚い3mm以上の誘電体で覆うように構成する。 この誘電体面から対向する接地電極面又は接地電極面上に誘電体を設置する場合は、 この誘電体面との距離を1〜5mmの間で可変できるようにして、 プラズマ発生空間を形成することを特徴とするプラズマクリーニング装置。On the surface of the high-frequency application electrode, a number of convex portions having a small cross-sectional area of a needle-like tip portion and a plurality of convex portions having a larger cross-sectional area than the periphery thereof are formed, and a thickness of 0.5 to 1 mm is provided on the tip portion surface of each convex portion. And the other high-frequency application electrode surface is covered with a thicker dielectric of 3 mm or more. When a dielectric is provided on the ground electrode surface facing the dielectric surface or on the ground electrode surface, it is necessary to {variable the distance from the dielectric surface to 1 to 5 mm to form a plasma generation space}. Characteristic plasma cleaning device. 上記のプラズマ発生用空間に、目的に応じたプラズマ発生用のガスを電極間に導入する場合は、 小さい径の穴を多数形成したシャワ板を通じて、 ガスを均一に流通させるように構成することを特徴とする請求項1のプラズマ発生装置。When a gas for plasma generation according to the purpose is introduced between the electrodes into the space for plasma generation described above, (1) through a shower plate having a large number of small-diameter holes, (2) the gas is uniformly distributed. The plasma generator according to claim 1, wherein: 上記の電極間に周波数10KHZ〜13.56MHZの範囲内で且つ電極間の電界強度は1KV〜50KV/cmの範囲内で選定して印加する。発熱の大きい時は、印加電圧を間欠通電にして発熱を抑制する。印加後先ず電界の強い断面積の小さい凸部で、コロナ放電を発生させ、これをトリガーとしてより断面積の大きい凸部でグロー放電に発展させる。 又その他の電極面では放電を発生させないようにして発熱を抑制して、 アーク放電を防止することを特徴とする大気圧プラズマ発生装置。A frequency is selected and applied between the electrodes within a range of 10 KHz to 13.56 MHZ, and an electric field strength between the electrodes is selected within a range of 1 KV to 50 KV / cm. When heat generation is large, the applied voltage is intermittently supplied to suppress heat generation. After the application, first, a corona discharge is generated at a convex portion having a strong electric field and a small cross-sectional area, and this is used as a trigger to develop a glow discharge at the convex portion having a larger cross-sectional area. (1) An atmospheric pressure plasma generator characterized by suppressing heat generation by preventing discharge from being generated on other electrode surfaces, and (2) preventing arc discharge.
JP2002201922A 2002-06-07 2002-06-07 Atmospheric pressure plasma generating apparatus Pending JP2004014494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201922A JP2004014494A (en) 2002-06-07 2002-06-07 Atmospheric pressure plasma generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201922A JP2004014494A (en) 2002-06-07 2002-06-07 Atmospheric pressure plasma generating apparatus

Publications (1)

Publication Number Publication Date
JP2004014494A true JP2004014494A (en) 2004-01-15

Family

ID=30437286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201922A Pending JP2004014494A (en) 2002-06-07 2002-06-07 Atmospheric pressure plasma generating apparatus

Country Status (1)

Country Link
JP (1) JP2004014494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647843A (en) * 2012-04-17 2012-08-22 中国科学院等离子体物理研究所 Atmospheric plasma generating device for sterilization
US8272348B2 (en) 2008-02-26 2012-09-25 Shimadzu Corporation Method for plasma deposition and plasma CVD system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8272348B2 (en) 2008-02-26 2012-09-25 Shimadzu Corporation Method for plasma deposition and plasma CVD system
CN102647843A (en) * 2012-04-17 2012-08-22 中国科学院等离子体物理研究所 Atmospheric plasma generating device for sterilization

Similar Documents

Publication Publication Date Title
RU2391801C2 (en) Atmospheric pressure plasmatron
JP4414765B2 (en) Plasma processing apparatus and plasma processing method
JP4578412B2 (en) Discharge plasma generation method
US6670766B2 (en) Plasma treatment apparatus and plasma treatment method
JP2009503781A (en) Injection type plasma processing apparatus and method
JP2003303814A (en) Plasma treatment apparatus and method therefor
JP2003019433A (en) Discharge plasma treating apparatus and treating method using the same
EP2257136B1 (en) Plasma generator
JP2003093869A (en) Discharge plasma treatment apparatus
JP2003100646A (en) Electric discharge plasma processing system
JP2003318000A (en) Discharge plasma treatment apparatus
KR20070012933A (en) Injection type plasma treatment apparatus
KR100491140B1 (en) Method and apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma
JP2003317998A (en) Discharge plasma treatment method and apparatus therefor
JP2003133291A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using it
JP2004014494A (en) Atmospheric pressure plasma generating apparatus
JP5088667B2 (en) Plasma processing equipment
JP2002035574A (en) Surface treatment method
JP2002008895A (en) Plasma treatment device and plasma treatment method
JP2004211161A (en) Plasma generating apparatus
JP2003100733A (en) Discharge plasma treatment system
JP2004055301A (en) Plasma treatment device and the plasma treatment method
JPH0523579A (en) Surface processing and its device
KR200306427Y1 (en) Apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma
JP4420116B2 (en) Plasma processing apparatus and plasma processing method