JP2003093869A - Discharge plasma treatment apparatus - Google Patents

Discharge plasma treatment apparatus

Info

Publication number
JP2003093869A
JP2003093869A JP2001298026A JP2001298026A JP2003093869A JP 2003093869 A JP2003093869 A JP 2003093869A JP 2001298026 A JP2001298026 A JP 2001298026A JP 2001298026 A JP2001298026 A JP 2001298026A JP 2003093869 A JP2003093869 A JP 2003093869A
Authority
JP
Japan
Prior art keywords
electrode
discharge
discharge plasma
voltage application
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001298026A
Other languages
Japanese (ja)
Other versions
JP3823037B2 (en
Inventor
Takuya Yara
卓也 屋良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001298026A priority Critical patent/JP3823037B2/en
Publication of JP2003093869A publication Critical patent/JP2003093869A/en
Application granted granted Critical
Publication of JP3823037B2 publication Critical patent/JP3823037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a discharge plasma treatment apparatus which can cope with high speed processing and large area processing, and does not damage a substrate and does not affect a thin film, or the like, generated on the substrate. SOLUTION: This discharge plasma treatment apparatus has a counter electrode comprising a voltage application electrode and a ground electrode, and at least one of the opposite surfaces of the electrodes is coated with a solid dielectric material. An electric field is applied between the electrodes of the counter electrode to generate glow discharge plasma between them. The generated glow discharge plasma is introduced to a substrate arranged outside of a plasma generating space so that the substrate is treated. The surfaces of the voltage application electrode and the ground electrode opposite to the substrate are coated with the solid dielectric material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放電プラズマ処理
装置に関し、特に、電圧印加電極と基材との間の異状放
電を抑制し、プラズマ発生空間外にある基材を処理する
放電プラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge plasma processing apparatus, and more particularly to a discharge plasma processing apparatus for suppressing abnormal discharge between a voltage application electrode and a base material and processing a base material outside a plasma generation space. Regarding

【0002】[0002]

【従来の技術】従来から、低圧条件下でグロー放電プラ
ズマを発生させて被処理体の表面改質、又は被処理体上
に薄膜形成を行う方法が実用化されている。しかし、こ
れらの低圧条件下における処理装置は、真空チャンバ
ー、真空排気装置等が必要であり、表面処理装置は高価
なものとなり、大面積基板等を処理する際にはほとんど
用いられていなかった。このため、特開平6−2149
号公報、特開平7−85997号公報等に記載されてい
るような大気圧近傍の圧力下で放電プラズマを発生させ
る常圧プラズマ処理装置が提案されてきている。
2. Description of the Related Art Conventionally, a method of generating a glow discharge plasma under a low pressure condition to modify the surface of an object to be processed or to form a thin film on the object to be processed has been put into practical use. However, the processing apparatus under these low-pressure conditions requires a vacuum chamber, a vacuum exhaust apparatus, etc., and the surface processing apparatus becomes expensive, and it has hardly been used when processing a large area substrate or the like. Therefore, JP-A-6-2149
Japanese Patent Laid-Open No. 7-85997 and Japanese Patent Laid-Open No. 7-85997 propose an atmospheric pressure plasma processing apparatus for generating discharge plasma under a pressure near atmospheric pressure.

【0003】しかしながら、常圧プラズマ処理方法にお
いても、固体誘電体等で被覆した平行平板型等の電極間
に被処理体を設置し、電極間に電圧を印加し、発生した
プラズマで被処理体を処理する装置では、被処理体全体
を放電空間に置くこととなり、被処理体にダメージを与
えることになりやすいという問題があった。
However, even in the atmospheric pressure plasma processing method, the object to be processed is installed between parallel plate type electrodes covered with a solid dielectric or the like, a voltage is applied between the electrodes, and the object to be processed is generated by the generated plasma. In the apparatus for treating the object, the entire object to be processed is placed in the discharge space, and the object to be processed is likely to be damaged.

【0004】このような問題を解決するものとして、被
処理体を放電空間中に配置するのではなく、その近傍に
配置し、放電空間から被処理体にプラズマを吹き付ける
リモート型の装置が提案されている。特開平11−25
1304号公報及び特開平11−260597号公報に
は外側電極を備えた筒状の反応管及び反応管の内部に内
側電極を具備し、両電極に冷却手段を設け、反応管内部
でグロー放電を発生させ、反応管からプラズマジェット
を吹き出して被処理体に吹きつけるプラズマ処理装置
が、特開平11−335868号公報には平行平板型の
電極を用い、さらに被処理体近傍の排気手段によって、
プラズマを被処理体に接触させるプラズマ処理装置が開
発されている。
As a solution to such a problem, a remote type apparatus has been proposed in which the object to be processed is not arranged in the discharge space but is disposed in the vicinity thereof and the plasma is blown from the discharge space to the object to be processed. ing. Japanese Patent Laid-Open No. 11-25
1304 and Japanese Patent Laid-Open No. 11-26097 disclose a cylindrical reaction tube having an outer electrode, an inner electrode inside the reaction tube, and cooling means provided on both electrodes to cause glow discharge inside the reaction tube. A plasma processing apparatus that generates and blows a plasma jet from a reaction tube onto a target object uses a parallel plate type electrode in Japanese Patent Laid-Open No. 11-335868, and further uses an exhaust means in the vicinity of the target object.
A plasma processing apparatus has been developed in which plasma is brought into contact with an object to be processed.

【0005】しかしながら、これらの装置は、放電空間
から被処理体までの距離が遠く、このため、生成したプ
ラズマを効率的に被処理体に接触させることができな
い。一方、電極を被処理体に近付けると、電極間のみで
なく、印加電極と被処理体との間でも放電が起こりやす
くなり、放電が安定しにくく、基材上に形成される薄膜
にスジ状の模様が入って、膜質不良となるという問題を
生じていた。
However, in these devices, the distance from the discharge space to the object to be processed is large, so that the generated plasma cannot be efficiently brought into contact with the object to be processed. On the other hand, when the electrode is brought close to the object to be processed, discharge is likely to occur not only between the electrodes but also between the applied electrode and the object to be processed, the discharge is difficult to stabilize, and stripes are formed on the thin film formed on the substrate. There was a problem that the film quality was poor due to the pattern

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題に
鑑み、高速処理及び大面積処理に対応可能でかつ、基材
にダメージを与えず、基材上に形成される薄膜等に影響
を与えない放電プラズマ処理装置を提供することを目的
とする。
In view of the above problems, the present invention is applicable to high-speed processing and large-area processing, does not damage the base material, and affects thin films and the like formed on the base material. It is an object of the present invention to provide a discharge plasma processing apparatus that does not apply.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、電圧印加電極と接地電
極の基材対向面を固体誘電体で被覆し、さらに、電圧印
加電極と接地電極の基材に対向とする面を固体誘電体で
被覆し、対向電極間でグロー放電プラズマを発生させ、
放電空間外に配置した被処理基材に接触させることによ
り、均一で、高速処理が可能で、かつ基材にダメージを
与えズ、良質な薄膜等を形成する処理を行うことができ
ることを見出し、本発明を完成させた。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have covered the substrate facing surfaces of the voltage application electrode and the ground electrode with a solid dielectric, and further applied the voltage application electrode. And the surface of the ground electrode facing the base material is covered with a solid dielectric, and glow discharge plasma is generated between the counter electrodes,
By contacting the substrate to be treated arranged outside the discharge space, it was found that uniform, high-speed treatment is possible, damage to the substrate, and treatment for forming a high-quality thin film can be performed. The present invention has been completed.

【0008】すなわち、本発明の第1の発明は、電圧印
加電極と接地電極からなる対向電極を有し、前記対向電
極の少なくとも一方の電極対向面が固体誘電体で被覆さ
れ、前記対向電極間に電界を印加することにより前記対
向電極間に発生するグロー放電プラズマを、プラズマ発
生空間外に配置された基材に導いて処理を行う処理装置
であって、前記電圧印加電極及び接地電極の基材に対向
する面が、固体誘電体によって覆われていることを特徴
とする放電プラズマ処理装置である。
That is, the first invention of the present invention has a counter electrode composed of a voltage application electrode and a ground electrode, at least one of the counter electrodes facing the electrode is covered with a solid dielectric, and A treatment device for guiding glow discharge plasma generated between the opposite electrodes by applying an electric field to a base material arranged outside the plasma generation space to perform treatment, wherein a base of the voltage application electrode and a ground electrode. The discharge plasma processing apparatus is characterized in that the surface facing the material is covered with a solid dielectric.

【0009】また、本発明の第2の発明は、電圧印加電
極及び接地電極の基材に対向する面の周縁が曲面によっ
て形成されることを特徴とする第1の発明に記載の放電
プラズマ処理装置である。
The second invention of the present invention is the discharge plasma treatment according to the first invention, characterized in that the peripheral edges of the surfaces of the voltage application electrode and the ground electrode facing the base material are formed by curved surfaces. It is a device.

【0010】また、本発明の第3の発明は、電極と基材
との間隔が10mm以下であることを特徴とする第1又
は2の発明に記載の放電プラズマ処理装置である。
A third invention of the present invention is the discharge plasma processing apparatus according to the first or second invention, wherein the distance between the electrode and the substrate is 10 mm or less.

【0011】また、本発明の第4の発明は、電圧印加電
極と接地電極からなる対向電極が、3枚以上の電極によ
り2つ以上の放電空間を形成する対向電極であることを
特徴とする第1〜3のいずれかの発明に記載の放電プラ
ズマ処理装置である。
A fourth aspect of the present invention is characterized in that the counter electrode composed of the voltage applying electrode and the ground electrode is a counter electrode which forms two or more discharge spaces by three or more electrodes. The discharge plasma processing apparatus according to any one of the first to third aspects of the invention.

【0012】また、本発明の第5の発明は、接地電極
(1)、電圧印加電極、接地電極(2)からなり、接地
電極(1)と電圧印加電極との間の空間、接地電極
(2)と電圧印加電極との間の空間が共に放電空間とな
されるように配置されることを特徴とする第4の発明に
記載の放電プラズマ処理装置である。
A fifth aspect of the present invention comprises a ground electrode (1), a voltage applying electrode and a ground electrode (2), a space between the ground electrode (1) and the voltage applying electrode, a ground electrode ( The discharge plasma processing apparatus according to the fourth invention is characterized in that the space between 2) and the voltage application electrode is arranged so as to serve as a discharge space.

【0013】また、本発明の第6の発明は、放電空間の
幅方向に垂直に基材を運搬する機構を備えた第1〜5の
いずれかの発明に記載の放電プラズマ処理装置である。
A sixth invention of the present invention is the discharge plasma processing apparatus according to any one of the first to fifth inventions, which is provided with a mechanism for transporting the substrate vertically to the width direction of the discharge space.

【0014】また、本発明の第7の発明は、電界が、パ
ルス立ち上がり及び/又は立ち下がり時間が10μs以
下、電界強度が10〜1000kV/cmのパルス電界
であることを特徴とする第1〜6のいずれかの発明に記
載の放電プラズマ処理装置である。
A seventh aspect of the present invention is characterized in that the electric field is a pulsed electric field having a pulse rise and / or fall time of 10 μs or less and an electric field strength of 10 to 1000 kV / cm. 6 is a discharge plasma processing apparatus according to any one of inventions 6;

【0015】[0015]

【発明の実施の形態】本発明は、対向する電極の少なく
とも一方の対向面を固体誘電体で被覆した電圧印加電極
と接地電極からなる対向電極間に電界を印加し、当該電
極間に処理ガスを導入して発生するグロー放電プラズマ
を放電空間から離れた位置に配置された被処理基材に誘
導して接触させて処理する放電プラズマ処理装置におい
て、電極と基材間のアーク放電等を阻止するために、電
圧印加電極と接地電極の基材に対向する面を固体誘電体
で被覆した放電プラズマ処理装置である。以下に詳細に
本発明を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, an electric field is applied between a counter electrode composed of a voltage applying electrode having at least one counter surface of a counter electrode covered with a solid dielectric and a ground electrode, and a processing gas is applied between the electrodes. Introduces glow discharge plasma generated by introducing a discharge plasma processing device that guides and contacts the substrate to be processed, which is located away from the discharge space, to prevent arc discharge between the electrode and substrate In order to achieve this, the discharge plasma processing apparatus has the surfaces of the voltage application electrode and the ground electrode facing the base material covered with a solid dielectric. The present invention will be described in detail below.

【0016】本発明の装置の一例を図で説明する。図1
は、本発明のプラズマ放電装置の例を説明するための模
式的装置図である。図1において、電圧印加電極2と接
地電極3は、対向して設置され、基材に対向する面は、
それぞれ固体誘電体6で被覆されている。処理ガスは、
矢印方向に電圧印加電極2と接地電極3で形成される放
電空間4に導入され、プラズマ化され、プラズマ吹き出
し口5から基材10に向かって吹き出される。電圧印加
電極2の基材10に対向する面が固体誘電体6で覆われ
ているため、基材に向けてのアーク放電が起きにくい。
すなわち、電圧印加電極に発生した小ストリーマは接地
電極に落ち、基材表面は避雷し、その結果、基材上に形
成される薄膜等に及ぼす影響がなくなる利点を有する。
電圧印加電極2と接地電極3の対向面は固体誘電体6で
被覆され、電圧印加電極2と接地電極3の基材に対向す
る面と側面との境界は、アーク放電の原因となりやすい
角部は丸められ、曲面によって形成されている。
An example of the device of the present invention will be described with reference to the drawings. Figure 1
FIG. 3 is a schematic device diagram for explaining an example of a plasma discharge device of the present invention. In FIG. 1, the voltage application electrode 2 and the ground electrode 3 are installed facing each other, and the surface facing the substrate is
Each is covered with a solid dielectric 6. The processing gas is
It is introduced into the discharge space 4 formed by the voltage application electrode 2 and the ground electrode 3 in the arrow direction, turned into plasma, and blown out from the plasma outlet 5 toward the substrate 10. Since the surface of the voltage application electrode 2 facing the base material 10 is covered with the solid dielectric 6, arc discharge toward the base material is unlikely to occur.
That is, the small streamer generated on the voltage application electrode falls on the ground electrode, and the surface of the base material is lightened, resulting in an advantage that it does not affect the thin film formed on the base material.
The facing surfaces of the voltage applying electrode 2 and the ground electrode 3 are covered with the solid dielectric 6, and the boundary between the surface facing the base material of the voltage applying electrode 2 and the ground electrode 3 and the side surface is a corner portion that is likely to cause arc discharge. Is rounded and formed by a curved surface.

【0017】図2は、3枚以上の電極により2つ以上の
放電空間を形成する対向電極からなる本発明のプラズマ
処理装置を説明するための模式的装置図である。図2に
おいて、接地電極3、電圧印加電極2、接地電極3’
は、それぞれ対向するように設置され、接地電極3と電
圧印加電極2との間の空間を放電空間4とし、接地電極
3’と電圧印加電極2との間の空間を放電空間4’と
し、電圧印加電極2と接地電極3の基材10に対向する
面は固体誘電体で被覆されている。処理ガスは、矢印方
向に放電空間4及び4’にそれぞれ導入され、放電空間
内4及び4’でプラズマ化され、プラズマ吹き出し口5
及び5’から基材10に向かって吹き出される。本装置
においては、3枚の電極を対向させ、真ん中に電圧印加
電極を配置し、両側に接地電極を配置することにより、
1台の電源で2ヶ所にプラズマを発生させることがで
き、より高速に基材を処理することができる。また、図
2においても、電圧印加電極2の基材10に対向する面
が固体誘電体6で覆われているため、基材に向けてのア
ーク放電が起きにくい。すなわち、電圧印加電極に発生
した小ストリーマは接地電極に落ち、基材表面は避雷
し、その結果、基材上に形成される薄膜等に及ぼす影響
がなくなる利点を有する。なお、電圧印加電極2と接地
電極3及び接地電極3’との対向面は固体誘電体6で被
覆されており、基材側の面はその周縁が全て曲面で形成
されている。
FIG. 2 is a schematic device diagram for explaining the plasma processing apparatus of the present invention, which is composed of opposing electrodes forming two or more discharge spaces by three or more electrodes. In FIG. 2, the ground electrode 3, the voltage application electrode 2, and the ground electrode 3 '
Are installed so as to face each other, the space between the ground electrode 3 and the voltage application electrode 2 is the discharge space 4, and the space between the ground electrode 3'and the voltage application electrode 2 is the discharge space 4 ', The surfaces of the voltage applying electrode 2 and the ground electrode 3 facing the base material 10 are covered with a solid dielectric. The processing gas is introduced into the discharge spaces 4 and 4'in the directions of the arrows, turned into plasma in the discharge spaces 4 and 4 ', and the plasma outlet 5
And 5 ′ toward the substrate 10. In this device, the three electrodes are opposed to each other, the voltage application electrode is arranged in the center, and the ground electrodes are arranged on both sides,
Plasma can be generated in two places with one power source, and the substrate can be processed at higher speed. Also in FIG. 2, since the surface of the voltage application electrode 2 facing the base material 10 is covered with the solid dielectric 6, arc discharge toward the base material is unlikely to occur. That is, the small streamer generated on the voltage application electrode falls on the ground electrode, and the surface of the base material is lightened, resulting in an advantage that it does not affect the thin film formed on the base material. The facing surfaces of the voltage applying electrode 2, the ground electrode 3 and the ground electrode 3'are covered with the solid dielectric 6, and the peripheral surface of the base material side surface is entirely curved.

【0018】また、本発明のプラズマ処理装置は、主と
して平行平板型電極間で発生する処理ガスのグロー放電
プラズマを放電空間から離れた位置に配置された被処理
基材に誘導して接触させて処理する装置であって、放電
空間のプラズマ吹き出し口からプラズマを基材に向かっ
て垂直に吹き出させるようにすると、より効果的に基材
を処理できる。したがって、放電空間の幅方向に垂直に
基材を運搬させる機構を併設することが好ましい。
Further, in the plasma processing apparatus of the present invention, the glow discharge plasma of the processing gas mainly generated between the parallel plate electrodes is guided to and brought into contact with the substrate to be processed arranged at a position away from the discharge space. In the apparatus for processing, if the plasma is blown out vertically from the plasma outlet of the discharge space toward the substrate, the substrate can be treated more effectively. Therefore, it is preferable to install a mechanism for transporting the base material perpendicularly to the width direction of the discharge space.

【0019】上記電極の材質としては、銅、アルミニウ
ム等の金属単体、ステンレス、真鍮等の合金、金属間化
合物等からなるものが挙げられる。電極の形状として
は、プラズマ放電が安定にできれば、特に限定されない
が、電界集中によるアーク放電の発生を避けるために、
対向電極間の距離が一定となる構造であることが好まし
く、より好ましくは電圧印加電極と接地電極間の間が平
行平坦部分を有する形状であり、特に好ましくは、両電
極が略平面形状であるのが好ましい。
Examples of the material of the above-mentioned electrodes include those made of simple metals such as copper and aluminum, alloys such as stainless steel and brass, and intermetallic compounds. The shape of the electrode is not particularly limited as long as plasma discharge can be stabilized, but in order to avoid arc discharge due to electric field concentration,
It is preferable that the structure has a constant distance between the opposing electrodes, more preferably a shape having a parallel flat portion between the voltage application electrode and the ground electrode, and particularly preferably both electrodes are substantially flat. Is preferred.

【0020】本発明の装置においては、電圧印加電極と
接地電極の対向面の一方又は双方は固体誘電体で被覆さ
れており、さらに電圧印加電極と接地電極の基材対向面
は完全に固体誘電体で被覆されている。この際、固体誘
電体と被覆される側の電極が密着し、かつ、接する電極
の対向面を完全に覆うようにする。固体誘電体によって
覆われずに電極同士が直接対向する部位があると、そこ
からアーク放電が生じやすい。
In the device of the present invention, one or both of the facing surfaces of the voltage applying electrode and the ground electrode are coated with a solid dielectric material, and the facing surface of the voltage applying electrode and the ground electrode facing the base material is completely solid dielectric. It is covered by the body. At this time, the solid dielectric and the electrode to be covered are in close contact with each other, and the facing surface of the contacting electrode is completely covered. If there is a portion where the electrodes directly face each other without being covered with the solid dielectric, arc discharge easily occurs from there.

【0021】上記電極同士の対向面の固体誘電体の厚み
は、0.01〜4mmであることが好ましい。厚すぎる
と放電プラズマを発生するのに高電圧を要することがあ
り、薄すぎると電圧印加時に絶縁破壊が起こり、アーク
放電が発生することがある。上記被処理基材に対向する
面を被覆する固体誘電体の厚みは、上記電極対向面の固
体誘電体よりも厚く、0.5〜8mmであることが好ま
しい。薄すぎるとアーク放電防止の効果が期待できず、
厚すぎると放電空間から被処理基材までの距離を小さく
する効果が期待できなくなる。
The thickness of the solid dielectric on the facing surface of the electrodes is preferably 0.01 to 4 mm. If it is too thick, a high voltage may be required to generate discharge plasma, and if it is too thin, dielectric breakdown may occur when a voltage is applied and arc discharge may occur. The thickness of the solid dielectric covering the surface facing the substrate to be treated is thicker than that of the solid facing the electrode, and is preferably 0.5 to 8 mm. If it is too thin, the effect of preventing arc discharge cannot be expected,
If it is too thick, the effect of reducing the distance from the discharge space to the substrate to be treated cannot be expected.

【0022】固体誘電体の材質としては、例えば、ポリ
テトラフルオロエチレン、ポリエチレンテレフタレート
等のプラスチック、ガラス、二酸化珪素、酸化アルミニ
ウム、二酸化ジルコニウム、二酸化チタン等の金属酸化
物、チタン酸バリウム等の複酸化物等が挙げられる。
Examples of the material of the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal oxides such as silicon dioxide, aluminum oxide, zirconium dioxide and titanium dioxide, and double oxidation such as barium titanate. Things etc. are mentioned.

【0023】特に、25℃環境下における比誘電率が1
0以上のものである固体誘電体を用いれば、低電圧で高
密度の放電プラズマを発生させることができ、処理効率
が向上する。比誘電率の上限は特に限定されるものでは
ないが、現実の材料では18,500程度のものが入手
可能であり、本発明に使用出来る。特に好ましくは比誘
電率が10〜100の固体誘電体である。上記比誘電率
が10以上である固体誘電体の具体例としては、二酸化
ジルコニウム、二酸化チタン等の金属酸化物、チタン酸
バリウム等の複酸化物を挙げることが出来る。
In particular, the relative dielectric constant under the environment of 25 ° C. is 1
If a solid dielectric material of 0 or more is used, a high density discharge plasma can be generated at a low voltage, and the processing efficiency is improved. The upper limit of the relative permittivity is not particularly limited, but as a practical material, about 18,500 is available and can be used in the present invention. A solid dielectric having a relative dielectric constant of 10 to 100 is particularly preferable. Specific examples of the solid dielectric having a relative dielectric constant of 10 or more include metal oxides such as zirconium dioxide and titanium dioxide, and complex oxides such as barium titanate.

【0024】上記電極間の距離は、固体誘電体の厚さ、
印加電圧の大きさ、プラズマを利用する目的等を考慮し
て適宜決定されるが、0.1〜10mmであることが好
ましく、より好ましくは0.1〜5mmである。0.1
mm未満では、電極間の間隔を置いて設置するのに充分
でないことがあり、一方、10mmを超えると、均一な
放電プラズマを発生させにくい。
The distance between the electrodes depends on the thickness of the solid dielectric,
Although it is appropriately determined in consideration of the magnitude of the applied voltage, the purpose of utilizing plasma, etc., it is preferably 0.1 to 10 mm, more preferably 0.1 to 5 mm. 0.1
If it is less than 10 mm, it may not be enough to install the electrodes with a space therebetween, while if it exceeds 10 mm, it is difficult to generate uniform discharge plasma.

【0025】上記電極と被処理基材の距離は、10mm
以下であることが好ましい。10mmを超えると、発生
した放電プラズマを効率よく被処理基材に接触させるこ
とができない。
The distance between the electrode and the substrate to be treated is 10 mm.
The following is preferable. If it exceeds 10 mm, the generated discharge plasma cannot be efficiently brought into contact with the substrate to be treated.

【0026】本発明では、上記電極間に、高周波電界や
パルス電界の電界が印加され、プラズマを発生させる
が、パルス電界を印加することが好ましく、特に、電界
の立ち上がり及び/又は立ち下がり時間が、10μs以
下である電界が好ましい。10μsを超えると放電状態
がアークに移行しやすく不安定なものとなり、パルス電
界による高密度プラズマ状態を保持しにくくなる。ま
た、立ち上がり時間及び立ち下がり時間が短いほどプラ
ズマ発生の際のガスの電離が効率よく行われるが、40
ns未満の立ち上がり時間のパルス電界を実現すること
は、実際には困難である。より好ましくは50ns〜5
μsである。なお、ここでいう立ち上がり時間とは、電
圧(絶対値)が連続して増加する時間、立ち下がり時間
とは、電圧(絶対値)が連続して減少する時間を指すも
のとする。
In the present invention, a high-frequency electric field or a pulsed electric field is applied between the electrodes to generate plasma, but it is preferable to apply the pulsed electric field, and in particular, the rise and / or fall time of the electric field is increased. An electric field of 10 μs or less is preferred. If it exceeds 10 μs, the discharge state easily shifts to an arc and becomes unstable, and it becomes difficult to maintain the high-density plasma state due to the pulsed electric field. Further, the shorter the rise time and the fall time, the more efficiently the gas is ionized during plasma generation.
Achieving pulsed electric fields with rise times less than ns is difficult in practice. More preferably 50 ns-5
μs. Note that the rising time referred to here means the time when the voltage (absolute value) continuously increases, and the falling time means the time when the voltage (absolute value) continuously decreases.

【0027】上記パルス電界の電界強度は、10〜10
00kV/cmとなるようにするのが好ましく、より好
ましくは20〜1000kV/cmである。電界強度が
10kV/cm未満であると処理に時間がかかりすぎ、
1000kV/cmを超えるとアーク放電が発生しやす
くなる。
The electric field strength of the pulse electric field is 10 to 10
It is preferably set to 00 kV / cm, and more preferably 20 to 1000 kV / cm. If the electric field strength is less than 10 kV / cm, it takes too long to process,
If it exceeds 1000 kV / cm, arc discharge is likely to occur.

【0028】上記パルス電界の周波数は、0.5kHz
以上であることが好ましい。0.5kHz未満であると
プラズマ密度が低いため処理に時間がかかりすぎる。上
限は特に限定されないが、常用されている13.56M
Hz、試験的に使用されている500MHzといった高
周波帯でも構わない。負荷との整合のとり易さや取り扱
い性を考慮すると、500kHz以下が好ましい。この
ようなパルス電界を印加することにより、処理速度を大
きく向上させることができる。
The frequency of the pulsed electric field is 0.5 kHz.
The above is preferable. If it is less than 0.5 kHz, the plasma density is low and the treatment takes too long. The upper limit is not particularly limited, but is commonly used 13.56M
A high frequency band such as Hz or a test-use 500 MHz may be used. Considering the ease of matching with the load and the handling property, the frequency is preferably 500 kHz or less. By applying such a pulsed electric field, the processing speed can be greatly improved.

【0029】また、上記パルス電界におけるひとつのパ
ルス継続時間は、200μs以下であることが好まし
い。200μsを超えるとアーク放電に移行しやすくな
る。ここで、ひとつのパルス継続時間とは、ON、OF
Fの繰り返しからなるパルス電界における、ひとつのパ
ルスの連続するON時間を言う。
Further, one pulse duration in the above pulsed electric field is preferably 200 μs or less. If it exceeds 200 μs, arc discharge is likely to occur. Here, one pulse duration is ON, OF
It means the continuous ON time of one pulse in the pulse electric field composed of the repetition of F.

【0030】本発明の放電プラズマ処理装置は、どのよ
うな圧力下でも用いることができるが、常圧放電プラズ
マ処理に用いるとその効果を十分に発揮でき、特に、大
気圧近傍下の圧力下で用いるとその効果が十分に発揮さ
れる。
The discharge plasma processing apparatus of the present invention can be used under any pressure, but when it is used for normal pressure discharge plasma processing, its effect can be sufficiently exhibited, especially under pressure near atmospheric pressure. When used, its effect is fully exerted.

【0031】上記大気圧近傍の圧力下とは、1.333
×104〜10.664×104Paの圧力下を指す。中
でも、圧力調整が容易で、装置が簡便になる9.331
×104〜10.397×104Paの範囲が好ましい。
Under the pressure near the above atmospheric pressure is 1.333.
It refers to under a pressure of × 10 4 to 10.664 × 10 4 Pa. Among them, the pressure adjustment is easy, and the device is simple.
The range of × 10 4 to 10.397 × 10 4 Pa is preferable.

【0032】大気圧近傍の圧力下では、ヘリウム、ケト
ン等の特定のガス以外は安定してプラズマ放電状態が保
持されずに瞬時にアーク放電状態に移行することが知ら
れているが、パルス状の電界を印加することにより、ア
ーク放電に移行する前に放電を止め、再び放電を開始す
るというサイクルが実現されると考えられる。
It is known that under a pressure in the vicinity of the atmospheric pressure, except for a specific gas such as helium and ketone, the plasma discharge state is not maintained stably and the arc discharge state is instantaneously transferred. It is considered that a cycle of stopping the discharge before starting the arc discharge and restarting the discharge is realized by applying the electric field of.

【0033】本発明で処理できる被処理基材としては、
ポリエチレン、ポリプロピレン、ポリスチレン、ポリカ
ーボネート、ポリエチレンテレフタレート、ポリテトラ
フルオロエチレン、アクリル樹脂等のプラスチック、ガ
ラス、セラミック、金属等が挙げられる。基材の形状と
しては、板状、フィルム状等のものが挙げられるが、特
にこれらに限定されない。本発明の表面処理方法によれ
ば、様々な形状を有する基材の処理に容易に対応するこ
とができる。
As the substrate to be treated by the present invention,
Examples thereof include polyethylene, polypropylene, polystyrene, polycarbonate, polyethylene terephthalate, polytetrafluoroethylene, plastic such as acrylic resin, glass, ceramic, metal and the like. Examples of the shape of the substrate include a plate shape and a film shape, but are not particularly limited thereto. According to the surface treatment method of the present invention, it is possible to easily deal with the treatment of substrates having various shapes.

【0034】本発明で用いる処理ガスとしては、電界を
印加することによってプラズマを発生するガスであれ
ば、特に限定されず、処理目的により種々のガスを使用
できる。
The processing gas used in the present invention is not particularly limited as long as it is a gas that generates plasma by applying an electric field, and various gases can be used depending on the processing purpose.

【0035】上記処理用ガスとして、CF4、C26
CClF3、SF6等のフッ素含有化合物ガスを用いるこ
とによって、撥水性表面を得ることができる。
As the processing gas, CF 4 , C 2 F 6 ,
A water repellent surface can be obtained by using a fluorine-containing compound gas such as CClF 3 or SF 6 .

【0036】また、処理用ガスとして、O2、O3、水、
空気等の酸素元素含有化合物、N2、NH3等の窒素元素
含有化合物、SO2、SO3等の硫黄元素含有化合物を用
いて、基材表面にカルボニル基、水酸基、アミノ基等の
親水性官能基を形成させて表面エネルギーを高くし、親
水性表面を得ることができる。また、アクリル酸、メタ
クリル酸等の親水基を有する重合性モノマーを用いて親
水性重合膜を堆積することもできる。
Further, as the processing gas, O 2 , O 3 , water,
Hydrophilicity of carbonyl group, hydroxyl group, amino group, etc. on the surface of the base material by using oxygen element-containing compounds such as air, nitrogen element-containing compounds such as N 2 , NH 3 and sulfur element-containing compounds such as SO 2 , SO 3 A hydrophilic surface can be obtained by forming a functional group to increase the surface energy. Further, the hydrophilic polymer film can be deposited by using a polymerizable monomer having a hydrophilic group such as acrylic acid or methacrylic acid.

【0037】さらに、Si、Ti、Sn等の金属の金属
−水素化合物、金属−ハロゲン化合物、金属アルコラー
ト等の処理用ガスを用いて、SiO2、TiO2、SnO
2等の金属酸化物薄膜を形成させ、基材表面に電気的、
光学的機能を与えることができ、ハロゲン系ガスを用い
てエッチング処理、ダイシング処理を行ったり、酸素系
ガスを用いてレジスト処理や有機物汚染の除去を行った
り、アルゴン、窒素等の不活性ガスによるプラズマで表
面クリーニングや表面改質を行うこともできる。
Further, by using a processing gas such as a metal-hydrogen compound of a metal such as Si, Ti or Sn, a metal-halogen compound or a metal alcoholate, SiO 2 , TiO 2 or SnO is used.
A metal oxide thin film such as 2 is formed and is electrically and
Optical function can be given, and halogen gas is used for etching and dicing, oxygen gas is used for resist treatment and removal of organic contaminants, and inert gas such as argon and nitrogen is used. Surface cleaning and surface modification can also be performed with plasma.

【0038】経済性及び安全性の観点から、上記処理用
ガス単独雰囲気よりも、以下に挙げるような希釈ガスに
よって希釈された雰囲気中で処理を行うことが好まし
い。希釈ガスとしては、ヘリウム、ネオン、アルゴン、
キセノン等の希ガス、窒素気体等が挙げられる。これら
は単独でも2種以上を混合して用いてもよい。また、希
釈ガスを用いる場合、処理用ガスの割合は0.01〜1
0体積%であることが好ましい。
From the viewpoint of economy and safety, it is preferable to carry out the treatment in an atmosphere diluted with a diluent gas as described below, rather than in the atmosphere for the treatment gas alone. As the diluent gas, helium, neon, argon,
Examples include rare gases such as xenon, nitrogen gas, and the like. You may use these individually or in mixture of 2 or more types. When a diluting gas is used, the ratio of the processing gas is 0.01 to 1
It is preferably 0% by volume.

【0039】なお、本発明の装置によれば、プラズマ発
生空間中に存在する気体の種類を問わずグロー放電プラ
ズマを発生させることが可能である。公知の低圧条件下
におけるプラズマ処理はもちろん、特定のガス雰囲気下
の大気圧プラズマ処理においても、外気から遮断された
密閉容器内で処理を行うことが必須であったが、本発明
のグロー放電プラズマ処理装置を用いた方法によれば、
開放系、あるいは、気体の自由な流失を防ぐ程度の低気
密系での処理が可能となる。
According to the apparatus of the present invention, glow discharge plasma can be generated regardless of the type of gas existing in the plasma generation space. Not only plasma treatment under known low-pressure conditions, but also atmospheric pressure plasma treatment under a specific gas atmosphere, it was essential to perform treatment in a closed container shielded from the outside air, but glow discharge plasma of the present invention According to the method using the processing device,
It is possible to perform processing in an open system or in a low airtight system that prevents free flow of gas.

【0040】本発明のパルス電界を用いた大気圧放電処
理装置によると、全くガス種に依存せず、電極間におい
て直接大気圧下で放電を生じせしめることが可能であ
り、より単純化された電極構造、放電手順による大気圧
プラズマ装置、及び処理手法でかつ高速処理を実現する
ことができる。また、パルス周波数、電圧、電極間隔等
のパラメータにより処理に関するパラメータも調整でき
る。
According to the atmospheric pressure discharge treatment apparatus using the pulsed electric field of the present invention, it is possible to directly generate the discharge between the electrodes under the atmospheric pressure without depending on the gas species, which is further simplified. It is possible to realize high-speed processing with an electrode structure, an atmospheric pressure plasma device by a discharge procedure, and a processing method. In addition, parameters related to processing can be adjusted by parameters such as pulse frequency, voltage, and electrode interval.

【0041】[0041]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明はこれら実施例のみに限定されるもので
はない。
EXAMPLES The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

【0042】実施例1 図1に示す装置を用い、放電プラズマ処理を行った。電
圧印加電極2及び接地電極3として、長さ100mm×
高さ50mm×厚み10mmのSUS製平行平板電極を
用い、各電極対向面には固体誘電体としてチタン酸バリ
ウム0.6mmに重ねてアルミナ0.6mmを溶射し、
2mmの間隔をおいて設置した。さらに両電極の基材側
の側面に厚み1mmのアルミナセラミックス板を配置し
た。基材として、表面に銅箔のついたポリイミド基材を
用い、アルミナセラミックス板6との間隔を0.5mm
になるように配置し、200mm/minで搬送するよ
にした。処理ガスとして、乾燥空気を15L/minの
速度で放電空間4に導入し、パルス立ち上がり速度5μ
s、電極間に電圧18kVPP、周波数10kHzのパル
ス電界を印加したところ、放電状態は、均一に良好であ
り、基材との異常放電も生ぜず、電極部からの落雷は見
られず、基材を処理できた。プラズマ処理前後のイオン
交換水に対する接触角の変化を測定したところ、銅箔表
面の接触角が90°から20°に変わって処理がなされ
たことが確認された。
Example 1 A discharge plasma treatment was carried out using the apparatus shown in FIG. As the voltage application electrode 2 and the ground electrode 3, a length of 100 mm ×
A parallel plate electrode made of SUS with a height of 50 mm and a thickness of 10 mm was used, and 0.6 mm of alumina was sprayed on barium titanate 0.6 mm as a solid dielectric on each electrode facing surface.
It was installed at an interval of 2 mm. Further, an alumina ceramics plate having a thickness of 1 mm was arranged on the side surfaces of both electrodes on the base material side. A polyimide base material with a copper foil on the surface is used as the base material, and the distance between the base material and the alumina ceramic plate 6 is 0.5 mm.
It was arranged so that it would be conveyed by 200 mm / min. Dry air was introduced into the discharge space 4 at a rate of 15 L / min as a processing gas, and the pulse rising rate was 5 μm.
When a pulsed electric field with a voltage of 18 kV PP and a frequency of 10 kHz was applied between the electrodes, the discharge state was uniformly good, no abnormal discharge with the base material occurred, and no lightning strike from the electrode part was observed. I was able to process the material. When the change in the contact angle with the ion-exchanged water before and after the plasma treatment was measured, it was confirmed that the contact angle on the surface of the copper foil changed from 90 ° to 20 ° and the treatment was performed.

【0043】比較例1 電圧印加電極と接地電極の基材対向面側にアルミナセラ
ミックス板を設けない以外は、実施例1と同様にして基
材を処理した。放電開始後、基材の銅箔表面に向かって
電圧印加電極先端部から、針状の微少な落雷が見られ、
基材の落雷箇所に打痕状の跡が認められた。
Comparative Example 1 A base material was treated in the same manner as in Example 1 except that the alumina ceramic plate was not provided on the surface of the voltage application electrode and the ground electrode facing the base material. After the start of discharge, a minute needle-shaped lightning strike was seen from the tip of the voltage application electrode toward the surface of the copper foil of the base material,
Scratch-like traces were found at the lightning strike locations on the substrate.

【0044】実施例2 図2に示す装置を用い、放電プラズマ処理を行った。電
圧印加電極2及び接地電極3として、長さ100mm×
高さ50mm×厚み10mmのSUS製平行平板電極を
用い、各電極対向面には固体誘電体としてアルミナ1m
mを溶射し、各2mmの間隔をおいて設置した。さらに
各電極の基材側の側面に厚み1mmのアルミナセラミッ
クス板を配置した。基材として、金電極およびソルダー
レジストを有する電子基板を用い、アルミナセラミック
ス板6との間隔を0.5mmになるように配置し、20
0mm/minで搬送するよにした。処理ガスとして、
乾燥空気を15L/minの速度で両放電空間に導入
し、電圧印加電極にパルス立ち上がり速度5μs、電圧
18kVPP、周波数10kHzのパルス電界を印加した
ところ、放電状態は、均一に良好であり、電極部からの
落雷は見られず、基材を処理できた。電子基板の金電極
およびソルダーレジスト表面の濡れ性を、プラズマ処理
前後のイオン交換水に対する接触角の変化を測定したと
ころ、金電極の接触角が85°から31°に変わり、ソ
ルダーレジスト部の接触角が83°から32°に変わ
り、処理が有効に行われたことを確認した。
Example 2 A discharge plasma treatment was carried out using the apparatus shown in FIG. As the voltage application electrode 2 and the ground electrode 3, a length of 100 mm ×
A parallel plate electrode made of SUS with a height of 50 mm and a thickness of 10 mm is used, and 1 m of alumina is used as a solid dielectric on each electrode facing surface.
m was sprayed and placed at intervals of 2 mm. Further, an alumina ceramics plate having a thickness of 1 mm was arranged on the side surface of each electrode on the base material side. An electronic substrate having a gold electrode and a solder resist was used as a base material, and the electronic substrate was placed so that the distance between the electrode and the alumina ceramic plate 6 was 0.5 mm.
It was conveyed at 0 mm / min. As processing gas,
When dry air was introduced into both discharge spaces at a rate of 15 L / min, and a pulsed electric field with a pulse rise rate of 5 μs, a voltage of 18 kV PP and a frequency of 10 kHz was applied to the voltage application electrode, the discharge state was uniformly good, and the electrode No lightning strike was seen from the area and the substrate could be treated. The wettability of the gold electrode and the solder resist surface of the electronic substrate was measured by measuring the change in the contact angle with ion-exchanged water before and after the plasma treatment. The contact angle of the gold electrode changed from 85 ° to 31 °, and the contact of the solder resist part The angle changed from 83 ° to 32 °, confirming that the treatment was effective.

【0045】[0045]

【発明の効果】本発明の常圧プラズマ処理装置は、被処
理基材に熱的、電気的ダメージを与えず、かつ異常放電
が起きない簡便な処理装置であるので、高速処理及び大
面積処理に対応可能でかつ半導体製造工程で用いられる
種々の方法を始めとして、あらゆるプラズマ処理方法に
おいて、インライン化及び高速化を実現するのに有効に
用いることができる。これにより、処理時間の短縮化、
コスト低下が可能になり、従来では不可能あるいは困難
であった様々な用途への展開が可能となる。
Since the atmospheric pressure plasma processing apparatus of the present invention is a simple processing apparatus which does not cause thermal or electrical damage to the substrate to be processed and does not cause abnormal discharge, high speed processing and large area processing are possible. It can be effectively used to realize in-line and high speed in various plasma processing methods including various methods applicable to the above and used in the semiconductor manufacturing process. This shortens the processing time,
The cost can be reduced, and it can be applied to various uses that were impossible or difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放電プラズマ処理装置の例を説明する
模式的図である。
FIG. 1 is a schematic diagram illustrating an example of a discharge plasma processing apparatus of the present invention.

【図2】本発明の放電プラズマ処理装置の例を説明する
模式的図である。
FIG. 2 is a schematic diagram illustrating an example of a discharge plasma processing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 電源(高電圧パルス電源) 2 電圧印加電極 3、3’ 接地電極 4、4’ 放電空間 5、5’ プラズマ吹き出し口 6 固体誘電体 10 基材 1 power supply (high voltage pulse power supply) 2 Voltage application electrode 3, 3'ground electrode 4, 4'discharge space 5, 5'plasma outlet 6 Solid dielectric 10 Base material

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電圧印加電極と接地電極からなる対向電
極を有し、前記対向電極の少なくとも一方の電極対向面
が固体誘電体で被覆され、前記対向電極間に電界を印加
することにより前記対向電極間に発生するグロー放電プ
ラズマを、プラズマ発生空間外に配置された基材に導い
て処理を行う処理装置であって、前記電圧印加電極及び
接地電極の基材に対向する面が、固体誘電体によって覆
われていることを特徴とする放電プラズマ処理装置。
1. A counter electrode having a voltage application electrode and a ground electrode, at least one of the counter electrodes facing the electrode is covered with a solid dielectric, and the counter electrode is formed by applying an electric field between the counter electrodes. A processing device for guiding glow discharge plasma generated between electrodes to a base material arranged outside a plasma generation space for processing, wherein the surfaces of the voltage application electrode and the ground electrode facing the base material are solid dielectrics. A discharge plasma processing apparatus characterized by being covered by a body.
【請求項2】 電圧印加電極及び接地電極の基材に対向
する面の周縁が曲面によって形成されることを特徴とす
る請求項1に記載の放電プラズマ処理装置。
2. The discharge plasma processing apparatus according to claim 1, wherein the peripheral edges of the surfaces of the voltage application electrode and the ground electrode facing the base material are formed by curved surfaces.
【請求項3】 電極と基材との間隔が10mm以下であ
ることを特徴とする請求項1又は2に記載の放電プラズ
マ処理装置。
3. The discharge plasma processing apparatus according to claim 1, wherein the distance between the electrode and the base material is 10 mm or less.
【請求項4】 電圧印加電極と接地電極からなる対向電
極が、3枚以上の電極により2つ以上の放電空間を形成
する対向電極であることを特徴とする請求項1〜3のい
ずれか1項に記載の放電プラズマ処理装置。
4. The counter electrode composed of a voltage application electrode and a ground electrode is a counter electrode which forms two or more discharge spaces by three or more electrodes. Discharge plasma processing apparatus according to item.
【請求項5】 接地電極(1)、電圧印加電極、接地電
極(2)からなり、接地電極(1)と電圧印加電極との
間の空間、接地電極(2)と電圧印加電極との間の空間
が共に放電空間となされるように配置されることを特徴
とする請求項4に記載の放電プラズマ処理装置。
5. A space consisting of a ground electrode (1), a voltage application electrode and a ground electrode (2), a space between the ground electrode (1) and the voltage application electrode, and a space between the ground electrode (2) and the voltage application electrode. 5. The discharge plasma processing apparatus according to claim 4, wherein both of the spaces are arranged to be discharge spaces.
【請求項6】 放電空間の幅方向に垂直に基材を運搬す
る機構を備えた請求項1〜5のいずれか1項に記載の放
電プラズマ処理装置。
6. The discharge plasma processing apparatus according to claim 1, further comprising a mechanism for transporting the substrate vertically to the width direction of the discharge space.
【請求項7】 電界が、パルス立ち上がり及び/又は立
ち下がり時間が10μs以下、電界強度が10〜100
0kV/cmのパルス電界であることを特徴とする請求
項1〜6のいずれか1項に記載の放電プラズマ処理装
置。
7. The electric field has a pulse rise and / or fall time of 10 μs or less and an electric field strength of 10 to 100.
The discharge plasma processing apparatus according to any one of claims 1 to 6, wherein the pulsed electric field is 0 kV / cm.
JP2001298026A 2001-09-27 2001-09-27 Discharge plasma processing equipment Expired - Lifetime JP3823037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298026A JP3823037B2 (en) 2001-09-27 2001-09-27 Discharge plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298026A JP3823037B2 (en) 2001-09-27 2001-09-27 Discharge plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2003093869A true JP2003093869A (en) 2003-04-02
JP3823037B2 JP3823037B2 (en) 2006-09-20

Family

ID=19118994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298026A Expired - Lifetime JP3823037B2 (en) 2001-09-27 2001-09-27 Discharge plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3823037B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103035A1 (en) * 2003-05-14 2004-11-25 Sekisui Chemical Co., Ltd. Plasma processing apparatus and method for producing same
JP2005251719A (en) * 2004-02-04 2005-09-15 Sekisui Chem Co Ltd Plasma treatment device and its manufacturing method
JP2005268170A (en) * 2004-03-22 2005-09-29 Sharp Corp Plasma processing device
JP2005302680A (en) * 2003-05-14 2005-10-27 Sekisui Chem Co Ltd Plasma processing device
JP2005302681A (en) * 2003-05-14 2005-10-27 Sekisui Chem Co Ltd Plasma processing device
JP2007080769A (en) * 2005-09-16 2007-03-29 Tohoku Univ Method for generating plasma and plasma generator
JP2008529243A (en) * 2005-02-04 2008-07-31 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク エヌ.ヴイ. (ヴイアイティーオー) Atmospheric pressure plasma jet
JP2009119356A (en) * 2007-11-14 2009-06-04 Toshiba Corp Discharge surface treatment apparatus and discharge surface treatment method
US20110005681A1 (en) * 2009-07-08 2011-01-13 Stephen Edward Savas Plasma Generating Units for Processing a Substrate
JP2012094523A (en) * 2011-11-21 2012-05-17 Tohoku Univ Plasma generating device
JP2013529352A (en) * 2010-03-31 2013-07-18 コロラド ステート ユニバーシティー リサーチ ファウンデーション Liquid-gas interface plasma device
KR101542897B1 (en) 2013-02-04 2015-08-07 한국기계연구원 Dielectric barrier discharge reactor for surface treatment
US9287091B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation System and methods for plasma application
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US9299956B2 (en) 2012-06-13 2016-03-29 Aixtron, Inc. Method for deposition of high-performance coatings and encapsulated electronic devices
US9359674B2 (en) 2011-01-10 2016-06-07 Aixtron, Inc. Apparatus and method for dielectric deposition
WO2016178819A1 (en) * 2015-05-05 2016-11-10 Eastman Kodak Company Radial -flow plasma treatment system
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
KR101731856B1 (en) * 2014-11-06 2017-05-02 호서대학교 산학협력단 Water Treatment Device using High Voltage Impulse
US10368939B2 (en) 2015-10-29 2019-08-06 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10441349B2 (en) 2015-10-29 2019-10-15 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
JP2019205995A (en) * 2018-05-09 2019-12-05 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Device for using hydrogen radical and application method therefor
US10526708B2 (en) 2012-06-19 2020-01-07 Aixtron Se Methods for forming thin protective and optical layers on substrates
US10709497B2 (en) 2017-09-22 2020-07-14 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US10973569B2 (en) 2017-09-22 2021-04-13 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US11207124B2 (en) 2019-07-08 2021-12-28 Covidien Lp Electrosurgical system for use with non-stick coated electrodes
US11369427B2 (en) 2019-12-17 2022-06-28 Covidien Lp System and method of manufacturing non-stick coated electrodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117001908A (en) 2015-05-28 2023-11-07 株式会社可乐丽 Polyvinyl alcohol polymer film and method for producing same

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302680A (en) * 2003-05-14 2005-10-27 Sekisui Chem Co Ltd Plasma processing device
JP2005302681A (en) * 2003-05-14 2005-10-27 Sekisui Chem Co Ltd Plasma processing device
WO2004103035A1 (en) * 2003-05-14 2004-11-25 Sekisui Chemical Co., Ltd. Plasma processing apparatus and method for producing same
JP2005251719A (en) * 2004-02-04 2005-09-15 Sekisui Chem Co Ltd Plasma treatment device and its manufacturing method
JP2005268170A (en) * 2004-03-22 2005-09-29 Sharp Corp Plasma processing device
JP2008529243A (en) * 2005-02-04 2008-07-31 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク エヌ.ヴイ. (ヴイアイティーオー) Atmospheric pressure plasma jet
JP2007080769A (en) * 2005-09-16 2007-03-29 Tohoku Univ Method for generating plasma and plasma generator
JP2009119356A (en) * 2007-11-14 2009-06-04 Toshiba Corp Discharge surface treatment apparatus and discharge surface treatment method
US9272359B2 (en) 2008-05-30 2016-03-01 Colorado State University Research Foundation Liquid-gas interface plasma device
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US9287091B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation System and methods for plasma application
US9096932B2 (en) 2009-07-08 2015-08-04 Aixtron, Inc. Methods for plasma processing
WO2011006018A3 (en) * 2009-07-08 2014-03-20 Plasmasi, Inc. Apparatus and method for plasma processing
US8697197B2 (en) 2009-07-08 2014-04-15 Plasmasi, Inc. Methods for plasma processing
US9096933B2 (en) 2009-07-08 2015-08-04 Aixtron, Inc. Methods for plasma processing
US9443702B2 (en) 2009-07-08 2016-09-13 Aixtron Se Methods for plasma processing
US10049859B2 (en) 2009-07-08 2018-08-14 Aixtron Se Plasma generating units for processing a substrate
CN103597119A (en) * 2009-07-08 2014-02-19 普拉斯玛斯公司 Apparatus and method for plasma processing
US20110005681A1 (en) * 2009-07-08 2011-01-13 Stephen Edward Savas Plasma Generating Units for Processing a Substrate
JP2013529352A (en) * 2010-03-31 2013-07-18 コロラド ステート ユニバーシティー リサーチ ファウンデーション Liquid-gas interface plasma device
US9359674B2 (en) 2011-01-10 2016-06-07 Aixtron, Inc. Apparatus and method for dielectric deposition
JP2012094523A (en) * 2011-11-21 2012-05-17 Tohoku Univ Plasma generating device
US9299956B2 (en) 2012-06-13 2016-03-29 Aixtron, Inc. Method for deposition of high-performance coatings and encapsulated electronic devices
US10526708B2 (en) 2012-06-19 2020-01-07 Aixtron Se Methods for forming thin protective and optical layers on substrates
KR101542897B1 (en) 2013-02-04 2015-08-07 한국기계연구원 Dielectric barrier discharge reactor for surface treatment
US10524848B2 (en) 2013-03-06 2020-01-07 Covidien Lp System and method for sinus surgery
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
KR101731856B1 (en) * 2014-11-06 2017-05-02 호서대학교 산학협력단 Water Treatment Device using High Voltage Impulse
CN107532299A (en) * 2015-05-05 2018-01-02 伊斯曼柯达公司 Radial Flow plasma process system
WO2016178819A1 (en) * 2015-05-05 2016-11-10 Eastman Kodak Company Radial -flow plasma treatment system
US11969204B2 (en) 2015-10-29 2024-04-30 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10441349B2 (en) 2015-10-29 2019-10-15 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US11135007B2 (en) 2015-10-29 2021-10-05 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US11298179B2 (en) 2015-10-29 2022-04-12 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10368939B2 (en) 2015-10-29 2019-08-06 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10973569B2 (en) 2017-09-22 2021-04-13 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US10709497B2 (en) 2017-09-22 2020-07-14 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US11432869B2 (en) 2017-09-22 2022-09-06 Covidien Lp Method for coating electrosurgical tissue sealing device with non-stick coating
JP2019205995A (en) * 2018-05-09 2019-12-05 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Device for using hydrogen radical and application method therefor
JP7440215B2 (en) 2018-05-09 2024-02-28 エーエスエム・アイピー・ホールディング・ベー・フェー Equipment for using hydrogen radicals and how to use them
US11207124B2 (en) 2019-07-08 2021-12-28 Covidien Lp Electrosurgical system for use with non-stick coated electrodes
US11369427B2 (en) 2019-12-17 2022-06-28 Covidien Lp System and method of manufacturing non-stick coated electrodes

Also Published As

Publication number Publication date
JP3823037B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP2003093869A (en) Discharge plasma treatment apparatus
JP5021877B2 (en) Discharge plasma processing equipment
JP2003019433A (en) Discharge plasma treating apparatus and treating method using the same
JP2003217898A (en) Discharge plasma processing device
JP3962280B2 (en) Discharge plasma processing equipment
JP2003218099A (en) Method and system for discharge plasma processing
JP2003318000A (en) Discharge plasma treatment apparatus
JP3782708B2 (en) Discharge plasma processing apparatus and discharge plasma processing method using the same
JP2003166065A (en) Discharge plasma treatment apparatus
JP2002151494A (en) Normal pressure plasma processing method and device therefor
JP2003338398A (en) Discharge plasma processing method and apparatus therefor
JP2003208999A (en) Discharge plasma processing method and its equipment
JP2003317998A (en) Discharge plasma treatment method and apparatus therefor
JP3722733B2 (en) Discharge plasma processing equipment
JP2004207145A (en) Discharge plasma processing device
JP2003059909A (en) Discharge plasma treatment apparatus and processing method using the same
JP2003129246A (en) Discharge plasma treatment apparatus
JP2002155370A (en) Method and system for atmospheric pressure plasma treatment
JP2003142298A (en) Glow discharge plasma processing device
JP3793451B2 (en) Discharge plasma processing equipment
JP2003093870A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using the same
JP2003154256A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using the same
JP2004103251A (en) Discharge plasma treatment device
JP2002151476A (en) Method and apparatus for removing resist
JP2003171768A (en) Discharge plasma processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R151 Written notification of patent or utility model registration

Ref document number: 3823037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7