JP2003133291A - Discharge plasma treatment apparatus and discharge plasma treatment method using it - Google Patents

Discharge plasma treatment apparatus and discharge plasma treatment method using it

Info

Publication number
JP2003133291A
JP2003133291A JP2001329374A JP2001329374A JP2003133291A JP 2003133291 A JP2003133291 A JP 2003133291A JP 2001329374 A JP2001329374 A JP 2001329374A JP 2001329374 A JP2001329374 A JP 2001329374A JP 2003133291 A JP2003133291 A JP 2003133291A
Authority
JP
Japan
Prior art keywords
discharge plasma
dielectric constant
discharge
electrode
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001329374A
Other languages
Japanese (ja)
Other versions
JP3782708B2 (en
Inventor
Koji Shimonishi
弘二 下西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001329374A priority Critical patent/JP3782708B2/en
Publication of JP2003133291A publication Critical patent/JP2003133291A/en
Application granted granted Critical
Publication of JP3782708B2 publication Critical patent/JP3782708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a discharge plasma treatment apparatus, which does not affect a thin film formed on a base material or the like by preventing abnormal discharge at the edge between parallel-plate electrodes, and to provide a discharge plasma treatment method using it. SOLUTION: The discharge plasma apparatus where treatment is conducted in a state to make glow discharge plasma, which is generated by applying an electric field between opposing electrodes whose opposing faces are coated with solid dielectrics, come in contact with the base material, is characterized in that high dielectric constant solid dielectrics each having a dielectric constant of not less than 10 and low dielectric constant solid dielectrics each having a dielectric constant of less than 10 are used as the solid dielectrics, and the low dielectric constant solid dielectrics are arranged at the end of the electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放電プラズマ処理
装置に関し、特に、電極対向面を2種類の固体誘電体で
被覆した電極を用いた放電プラズマ装置及びそれを用い
た放電プラズマ処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge plasma processing apparatus, and more particularly to a discharge plasma apparatus using an electrode whose electrode facing surface is coated with two kinds of solid dielectrics and a discharge plasma processing method using the same.

【0002】[0002]

【従来の技術】従来から、低圧条件下でグロー放電プラ
ズマを発生させて被処理体の表面改質、又は被処理体上
に薄膜形成を行う方法が実用化されている。しかし、こ
れらの低圧条件下における処理装置は、真空チャンバ
ー、真空排気装置等が必要であり、表面処理装置は高価
なものとなり、大面積基板等を処理する際にはほとんど
用いられていなかった。このため、特開平6−2149
号公報、特開平7−85997号公報、特開平10−1
54598号公報等に記載されているような大気圧近傍
の圧力下で放電プラズマを発生させる常圧プラズマ処理
装置が提案されてきている。
2. Description of the Related Art Conventionally, a method of generating a glow discharge plasma under a low pressure condition to modify the surface of an object to be processed or to form a thin film on the object to be processed has been put into practical use. However, the processing apparatus under these low-pressure conditions requires a vacuum chamber, a vacuum exhaust apparatus, etc., and the surface processing apparatus becomes expensive, and it has hardly been used when processing a large area substrate or the like. Therefore, JP-A-6-2149
JP-A-7-85997 and JP-A-10-1
There has been proposed an atmospheric pressure plasma processing apparatus for generating discharge plasma under a pressure near atmospheric pressure as described in Japanese Patent No. 54598.

【0003】このような処理方法においては、固体誘電
体等で被覆した平行平板型等の電極間に被処理体を設置
し、電極間に処理ガスを導入し、電極間に電圧を印加
し、発生したプラズマで被処理体を処理する装置を用い
ている。用いられる平行平板型の対向電極は、概略同面
積の平板2枚を平行に配置した電極が用いられ、両電極
が相対的に同じ位置に設置されており、電極端部同士が
直面する位置に配置されるので、電極端部のエッジが対
向する部分では、電界が集中し、針状放電と呼ばれる異
常放電が起こり易く、被処理基材の表面にダメージを与
えるという問題があった。
In such a processing method, an object to be processed is installed between parallel plate type electrodes covered with a solid dielectric, etc., a processing gas is introduced between the electrodes, and a voltage is applied between the electrodes. An apparatus that processes the object to be processed with the generated plasma is used. The parallel plate type counter electrode used is an electrode in which two flat plates having substantially the same area are arranged in parallel, and both electrodes are installed at the same relative positions, and the electrode ends face each other. Since the electrodes are arranged, the electric field is concentrated at the portions where the edges of the electrode ends face each other, and abnormal discharge called needle discharge is likely to occur, which causes a problem of damaging the surface of the substrate to be treated.

【0004】さらに、被処理体の特定部分のみにプラズ
マ処理を行いやすく、しかも被処理物を連続的に処理す
ることができ、かつ大面積基材の処理ができる装置とし
て、平行平板型電極の先端に長尺プラズマガス吹き出し
口ノズルを設けたリモート型プラズマ処理装置等が開発
されてきているが、この場合も、電極間の間隔を狭くし
て、高電圧を印加すると電極端部において針状放電が起
こり易く、端部の異常放電は、プラズマ流によって持ち
出され、被処理基材に転写され、被処理基材上の薄膜形
成等においては、スジ状の模様が入り、膜質不良の原因
となるといった問題を有していた。
Further, as a device capable of easily performing plasma treatment only on a specific portion of an object to be treated, capable of continuously treating the object to be treated and capable of treating a large area base material, a parallel plate type electrode is used. Remote-type plasma processing devices that have a long plasma gas outlet nozzle at the tip have been developed, but in this case as well, when the high voltage is applied by narrowing the gap between the electrodes, a needle-shaped electrode is formed at the electrode end. Discharge is likely to occur, abnormal discharge at the end is taken out by the plasma flow and transferred to the substrate to be treated, and when forming a thin film on the substrate to be treated, a streak-like pattern is formed, which is a cause of poor film quality It had a problem of becoming.

【0005】特に、原料ガスとして金属系ガスを用いる
場合や、処理の高速化を求められる場合、プラズマを高
密度で均一に発生させることが求められるが、高密度プ
ラズマと異常放電の防止を両立させることは困難であっ
た。
Particularly, when a metal-based gas is used as a source gas, or when high-speed processing is required, it is required to uniformly generate plasma at a high density, and both high-density plasma and prevention of abnormal discharge are achieved. It was difficult to get it done.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題に
鑑み、平行平板型電極間の端部での異常放電を抑制し、
基材上に形成される薄膜等に影響を与えない放電プラズ
マ処理装置及びそれを用いた放電プラズマ処理方法を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention suppresses abnormal discharge at the ends between parallel plate electrodes,
It is an object of the present invention to provide a discharge plasma processing apparatus that does not affect a thin film formed on a base material and a discharge plasma processing method using the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究した結果、平行平板型電極を被覆す
る固体誘電体として誘電率の異なる2種類の誘電体を用
い、電極端部を低誘電率固体誘電体で被覆することによ
り、電極端部における異常放電を抑えて安定したプラズ
マ放電を実現できることを見出し本発明を完成させた。
As a result of intensive studies to solve the above problems, the present inventor has used two types of dielectrics having different dielectric constants as a solid dielectric covering a parallel plate type electrode, The present invention has been completed by finding that it is possible to suppress abnormal discharge at the electrode end and realize stable plasma discharge by coating the part with a low dielectric constant solid dielectric.

【0008】すなわち、本発明の第1の発明は、対向面
が固体誘電体で被覆された対向電極間に電界を印加する
ことによって発生するグロー放電プラズマを基材に接触
させて処理を行う放電プラズマ処理装置であって、前記
固体誘電体として、誘電率10以上の高誘電率固体誘電
体と誘電率10未満の低誘電率固体誘電体を用い、前記
低誘電率固体誘電体が電極端部に配置されることを特徴
とする放電プラズマ処理装置である。
That is, the first aspect of the present invention is a discharge for performing treatment by contacting a substrate with glow discharge plasma generated by applying an electric field between opposing electrodes whose opposing surfaces are covered with a solid dielectric. In the plasma processing apparatus, a high dielectric constant solid dielectric having a dielectric constant of 10 or more and a low dielectric constant solid dielectric having a dielectric constant of less than 10 are used as the solid dielectric, and the low dielectric constant solid dielectric is an electrode end portion. Is a discharge plasma processing apparatus.

【0009】また、本発明の第2の発明は、前記対向電
極間に発生するグロー放電プラズマを、プラズマ発生空
間外に配置された基材に導いて処理を行うようになされ
た第1の発明に記載の放電プラズマ処理装置である。
The second aspect of the present invention is directed to the first aspect of the present invention, in which glow discharge plasma generated between the opposed electrodes is guided to a base material disposed outside the plasma generation space for processing. The discharge plasma processing apparatus described in 1.

【0010】また、本発明の第3の発明は、高誘電率固
体誘電体と低誘電率固体誘電体との境界が、電極対向面
に対して斜めになされていることを特徴とする第1又は
2の発明に記載の放電プラズマ処理装置である。
A third aspect of the present invention is characterized in that the boundary between the high-dielectric-constant solid dielectric and the low-dielectric-constant solid dielectric is oblique with respect to the electrode facing surface. Alternatively, it is the discharge plasma processing apparatus according to the second invention.

【0011】また、本発明の第4の発明は、第1〜3の
いずれかの発明に記載の放電プラズマ処理装置を用い、
パルス立ち上がり及び/又は立ち下がり時間が10μs
以下、電界強度が10〜1000kV/cmのパルス電
界を印加し、発生するグロー放電プラズマを基材に接触
させて処理を行うことを特徴とする放電プラズマ処理方
法である。
A fourth invention of the present invention uses the discharge plasma processing apparatus according to any one of the first to third inventions,
Pulse rise and / or fall time is 10 μs
Hereinafter, a discharge plasma processing method is characterized in that a pulsed electric field having an electric field strength of 10 to 1000 kV / cm is applied and the generated glow discharge plasma is brought into contact with the base material for processing.

【0012】[0012]

【発明の実施の形態】本発明は、対向面が固体誘電体で
被覆された対向電極間に電界を印加し、当該電極間に処
理ガスを導入して、発生するグロー放電プラズマを基材
に接触させて処理を行う放電プラズマ処理装置におい
て、両電極を被覆する固体誘電体として、誘電率10以
上の高誘電率固体誘電体と誘電率10未満の低誘電率固
体誘電体を用い、高誘電率固体誘電体が電極平面部に配
置され、低誘電率固体誘電体が電極端部に配置されるよ
うに被覆することにより異常放電を抑えた放電プラズマ
処理装置である。以下に詳細に本発明を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an electric field is applied between opposing electrodes whose opposing surfaces are covered with a solid dielectric, a processing gas is introduced between the electrodes, and the generated glow discharge plasma is applied to a substrate. In a discharge plasma processing apparatus that performs processing by bringing them into contact with each other, a high dielectric constant solid dielectric with a dielectric constant of 10 or more and a low dielectric constant solid dielectric with a dielectric constant of less than 10 are used as a solid dielectric with a high dielectric constant. The discharge plasma processing apparatus suppresses abnormal discharge by covering the low-dielectric-constant solid dielectric with the flat surface of the electrode and the low-dielectric-constant solid dielectric with the end of the electrode. The present invention will be described in detail below.

【0013】本発明に用いる装置の電極部分の一例を図
で説明する。図1は、本発明のプラズマ放電装置の印加
電極2と接地電極3、高誘電率固体誘電体5、低誘電体
固体誘電体6の設置場所を説明するための一例の模式的
断面図である。図1において、印加電極2と接地電極3
は対向して設けられ、放電空間4を形成し、電源1から
電圧が印加される。処理ガスは、矢印方向に放電空間4
に導入され、プラズマ化される。電極2及び3は固体誘
電体で被覆され、電極の放電部分の平面部分には高誘電
率固体誘電体5が、電極の端部は低誘電率固体誘電体6
がそれぞれ被覆されている。このように、電極の平面放
電部に高誘電率固体誘電体層を存在させることにより、
よりプラズマ化が促進され、電極端部に低誘電率固体誘
電体層を存在させることにより端部の針状放電等の異常
放電を抑制することができる。
An example of the electrode portion of the device used in the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an example for explaining installation locations of an application electrode 2, a ground electrode 3, a high dielectric constant solid dielectric 5 and a low dielectric solid dielectric 6 of a plasma discharge device of the present invention. . In FIG. 1, the application electrode 2 and the ground electrode 3
Are provided so as to face each other, form a discharge space 4, and a voltage is applied from a power source 1. The processing gas is the discharge space 4 in the direction of the arrow.
It is introduced into and is made into plasma. The electrodes 2 and 3 are covered with a solid dielectric, a high-dielectric-constant solid dielectric 5 is provided on the plane part of the discharge part of the electrode, and a low-dielectric-constant solid dielectric 6 is provided on the ends of the electrodes.
Are coated respectively. In this way, the presence of the high dielectric constant solid dielectric layer in the planar discharge part of the electrode
Plasmaization is further promoted, and the presence of the low-dielectric-constant solid dielectric layer at the end of the electrode makes it possible to suppress abnormal discharge such as needle discharge at the end.

【0014】ここで、本発明において、低誘電率固体誘
電体が電極端部に配置されているとは、一方の電極端部
から他方の電極の対向面に対して垂線を引いたとき、こ
の垂線が少なくとも低誘電率固体誘電体層を通るように
配置されていることを意味し、この垂線上に高誘電率固
体誘電体層が存在しても構わない。
Here, in the present invention, the fact that the low dielectric constant solid dielectric is arranged at the electrode end means that when a perpendicular line is drawn from one electrode end to the opposite surface of the other electrode, This means that the perpendicular line is arranged so as to pass through at least the low dielectric constant solid dielectric layer, and the high dielectric constant solid dielectric layer may be present on this perpendicular line.

【0015】図2は、本発明のプラズマ放電装置に用い
る固体誘電体で被覆した他の例の一方の電極の模式的断
面図の拡大図である。図2において、電極2又は3の放
電部分の平面部分には高誘電率固体誘電体5が、電極の
端部は低誘電率固体誘電体6がそれぞれ被覆され、高誘
電率固体誘電体5と低誘電率固体誘電体6の境界が電極
対向面に対して斜めになされている。図2のように両固
体誘電体をテーパー状に配置し、放電空間から電極との
隣接面に至る深さ方向全体に渡った誘電率(複合誘電
率)をグラデーション状に変化するように配置すると、
より電極端部の異常放電が抑えられると共に放電有効区
間が広がる効果がある。
FIG. 2 is an enlarged view of a schematic sectional view of one electrode of another example coated with a solid dielectric used in the plasma discharge device of the present invention. In FIG. 2, the high-dielectric-constant solid dielectric 5 is coated on the plane portion of the discharge portion of the electrode 2 or 3, and the low-dielectric-constant solid dielectric 6 is coated on the end portion of the electrode. The boundary of the low dielectric constant solid dielectric 6 is oblique to the electrode facing surface. If both solid dielectrics are arranged in a taper shape as shown in FIG. 2 and arranged so that the dielectric constant (composite dielectric constant) over the entire depth direction from the discharge space to the surface adjacent to the electrode changes in a gradation manner. ,
This has the effect of suppressing abnormal discharge at the electrode ends and expanding the effective discharge area.

【0016】図3は、本発明のプラズマ放電装置に用い
る固体誘電体で被覆した他の例の一方の電極の模式的断
面図の拡大図である。図3において、電極2又は3の放
電部分の平面部分には高誘電率固体誘電体5が被覆さ
れ、その上から全体を低誘電率固体誘電体6で被覆し、
高誘電率固体誘電体5と低誘電率固体誘電体6の境界が
電極対向面に対して斜めになされている。図3のように
電極放電部分の平面部を高誘電率固体誘電体層と低誘電
率固体誘電体層の2層にし、両固体誘電体をテーパー状
に配置することにより、平面部の微少アーク放電を抑制
する効果がより高まり、かつ、電極端部の異常放電が抑
えられると共に放電有効区間が広がる効果がある。
FIG. 3 is an enlarged view of a schematic sectional view of one electrode of another example coated with a solid dielectric used in the plasma discharge device of the present invention. In FIG. 3, a high-dielectric-constant solid dielectric 5 is coated on the plane part of the discharge part of the electrode 2 or 3, and the whole is covered with a low-dielectric-constant solid dielectric 6 from above,
The boundary between the high dielectric constant solid dielectric 5 and the low dielectric constant solid dielectric 6 is oblique to the electrode facing surface. As shown in FIG. 3, the flat portion of the electrode discharge portion is made into two layers, a high-dielectric-constant solid dielectric layer and a low-dielectric-constant solid dielectric layer, and by arranging both solid dielectrics in a taper shape, a minute arc of the flat portion The effect of suppressing the discharge is further enhanced, and the abnormal discharge at the end of the electrode is suppressed and the effective discharge section is expanded.

【0017】本発明の固体誘電体被覆電極を平行平板型
電極の先端に長尺プラズマガス吹き出し口ノズルを設け
たリモート型プラズマ処理装置等に用いる場合は、電極
の被処理基材に対向する側の端部のみを上記のような低
誘電率固体誘電体と高誘電率固体誘電体の構成により被
覆してもよい。
When the solid dielectric-coated electrode of the present invention is used in a remote plasma processing apparatus or the like in which a long plasma gas outlet nozzle is provided at the tip of a parallel plate type electrode, the side of the electrode facing the substrate to be processed. Only the end portion of the above may be covered with the structure of the low dielectric constant solid dielectric and the high dielectric constant solid dielectric as described above.

【0018】上記固体誘電体において、低誘電率固体誘
電体とは、誘電率が10未満、好ましくは4以下の固体
誘電体であって、例えば、アルミナ、石英、ポリテトラ
フルオロエチレン、ポリアミドイミド等を挙げることが
できる。また、高誘電率固体誘電体とは、誘電率が10
以上、好ましくは20以上、より好ましくは100以上
の固体誘電体であって、例えば、チタン酸バリウム、ジ
ルコニア等を挙げることができる。
In the above solid dielectrics, the low dielectric constant solid dielectrics are solid dielectrics having a dielectric constant of less than 10, preferably 4 or less, such as alumina, quartz, polytetrafluoroethylene, polyamideimide, etc. Can be mentioned. A high dielectric constant solid dielectric has a dielectric constant of 10
As described above, the solid dielectric material is preferably 20 or more, more preferably 100 or more, and examples thereof include barium titanate and zirconia.

【0019】上記両固体誘電体は、固体誘電体と電極が
密着し、かつ、接する電極の対向面を完全に覆うように
する必要があり、固体誘電体によって覆われずに電極同
士が直接対向する部位があると、そこからアーク放電が
生じやすい。
In both the above-mentioned solid dielectrics, it is necessary that the solid dielectric and the electrodes are in close contact with each other and that the opposing surfaces of the electrodes in contact with each other are completely covered. If there is a part to be arced, arc discharge easily occurs from that part.

【0020】電極平面部に被覆する高誘電率固体誘電体
の厚みは、0.1〜5mmが好ましく、より好ましくは
0.3〜2mmである。また、電極端部に被覆する低誘
電率固体誘電体の厚みは、0.1〜5mmが好ましく、
より好ましくは0.5〜2mmである。固体誘電体層全
体の厚みは、0.1〜5mmであることが好ましく、両
固体誘電体層がテーパー状に配置する場合は、全体の厚
みを超えないようにする必要がある。上記両固体誘電体
を被覆した形状は、シート状でもフィルム状でもよく、
厚すぎると放電プラズマを発生するのに高電圧を要する
ことがあり、薄すぎると電圧印加時に絶縁破壊が起こ
り、アーク放電が発生することがある。
The thickness of the high-dielectric-constant solid dielectric covering the flat surface of the electrode is preferably 0.1 to 5 mm, more preferably 0.3 to 2 mm. Further, the thickness of the low dielectric constant solid dielectric material covering the electrode end portion is preferably 0.1 to 5 mm,
More preferably, it is 0.5 to 2 mm. The total thickness of the solid dielectric layers is preferably 0.1 to 5 mm, and when both solid dielectric layers are arranged in a tapered shape, it is necessary that the total thickness does not exceed the total thickness. The shape coated with both solid dielectrics may be a sheet or a film,
If it is too thick, a high voltage may be required to generate discharge plasma, and if it is too thin, dielectric breakdown may occur when a voltage is applied and arc discharge may occur.

【0021】固体誘電体の電極への被覆方法としては、
溶射コーティング法、スパッタリング方法、CVD方法
等が挙げられ、これらの中では溶射コーティング法が好
ましい。
As a method of coating the solid dielectric with electrodes,
The thermal spray coating method, the sputtering method, the CVD method and the like can be mentioned, and among these, the thermal spray coating method is preferable.

【0022】上記電極の材質としては、銅、アルミニウ
ム等の金属単体、ステンレス、真鍮等の合金、金属間化
合物等からなるものが挙げられる。電極の形状として
は、プラズマ放電が安定にできれば、特に限定されない
が、電界集中によるアーク放電の発生を避けるために、
対向電極間の距離が一定となる構造であることが好まし
く、より好ましくは電圧印加電極と接地電極間の間が平
行平坦部分を有する形状であり、特に好ましくは、両電
極が略平面形状であるのが好ましい。
Examples of the material of the above-mentioned electrodes include those made of simple metals such as copper and aluminum, alloys such as stainless steel and brass, and intermetallic compounds. The shape of the electrode is not particularly limited as long as plasma discharge can be stabilized, but in order to avoid arc discharge due to electric field concentration,
It is preferable that the structure has a constant distance between the opposing electrodes, more preferably a shape having a parallel flat portion between the voltage application electrode and the ground electrode, and particularly preferably both electrodes are substantially flat. Is preferred.

【0023】上記電極間の距離は、固体誘電体の厚さ、
印加電圧の大きさ、プラズマを利用する目的等を考慮し
て適宜決定されるが、0.1〜50mmであることが好
ましく、より好ましくは0.1〜5mmである。0.1
mm未満では、電極間の間隔を置いて設置するのに充分
でないことがあり、一方、50mmを超えると、均一な
放電プラズマを発生させにくい。
The distance between the electrodes is determined by the thickness of the solid dielectric,
Although it is appropriately determined in consideration of the magnitude of the applied voltage, the purpose of utilizing plasma, etc., it is preferably 0.1 to 50 mm, more preferably 0.1 to 5 mm. 0.1
If it is less than mm, it may not be enough to install the electrodes with a space therebetween, while if it exceeds 50 mm, it is difficult to generate uniform discharge plasma.

【0024】本発明では、上記電極間に、パルス波、高
周波、マイクロ波等の電界が印加され、プラズマを発生
させるが、パルス電界を印加することが好ましく、特
に、電界の立ち上がり及び/又は立ち下がり時間が、1
0μs以下である電界が好ましい。10μsを超えると
放電状態がアークに移行しやすく不安定なものとなり、
パルス電界による高密度プラズマ状態を保持しにくくな
る。また、立ち上がり時間及び立ち下がり時間が短いほ
どプラズマ発生の際のガスの電離が効率よく行われる
が、40ns未満の立ち上がり時間のパルス電界を実現
することは、実際には困難である。より好ましくは50
ns〜5μsである。なお、ここでいう立ち上がり時間
とは、電圧(絶対値)が連続して増加する時間、立ち下
がり時間とは、電圧(絶対値)が連続して減少する時間
を指すものとする。
In the present invention, an electric field such as a pulse wave, a high frequency wave or a microwave is applied between the electrodes to generate plasma, but it is preferable to apply a pulsed electric field, and in particular, rise and / or rise of the electric field. Fall time is 1
An electric field of 0 μs or less is preferred. If it exceeds 10 μs, the discharge state easily shifts to an arc and becomes unstable,
It becomes difficult to maintain the high-density plasma state due to the pulsed electric field. Further, the shorter the rise time and the fall time are, the more efficiently the gas is ionized at the time of plasma generation, but it is actually difficult to realize a pulsed electric field having a rise time of less than 40 ns. More preferably 50
ns to 5 μs. Note that the rising time referred to here means the time when the voltage (absolute value) continuously increases, and the falling time means the time when the voltage (absolute value) continuously decreases.

【0025】上記パルス電界の電界強度は、10〜10
00kV/cmとなるようにするのが好ましく、より好
ましくは20〜1000kV/cmである。電界強度が
10kV/cm未満であると処理に時間がかかりすぎ、
1000kV/cmを超えるとアーク放電が発生しやす
くなる。
The electric field strength of the pulse electric field is 10 to 10
It is preferably set to 00 kV / cm, and more preferably 20 to 1000 kV / cm. If the electric field strength is less than 10 kV / cm, it takes too long to process,
If it exceeds 1000 kV / cm, arc discharge is likely to occur.

【0026】上記パルス電界の周波数は、0.5kHz
以上であることが好ましい。0.5kHz未満であると
プラズマ密度が低いため処理に時間がかかりすぎる。上
限は特に限定されないが、常用されている13.56M
Hz、試験的に使用されている500MHzといった高
周波帯でも構わない。負荷との整合のとり易さや取り扱
い性を考慮すると、500kHz以下が好ましい。この
ようなパルス電界を印加することにより、処理速度を大
きく向上させることができる。
The frequency of the pulsed electric field is 0.5 kHz.
The above is preferable. If it is less than 0.5 kHz, the plasma density is low and the treatment takes too long. The upper limit is not particularly limited, but is commonly used 13.56M
A high frequency band such as Hz or a test-use 500 MHz may be used. Considering the ease of matching with the load and the handling property, the frequency is preferably 500 kHz or less. By applying such a pulsed electric field, the processing speed can be greatly improved.

【0027】また、上記パルス電界におけるひとつのパ
ルス継続時間は、200μs以下であることが好まし
い。200μsを超えるとアーク放電に移行しやすくな
る。ここで、ひとつのパルス継続時間とは、ON、OF
Fの繰り返しからなるパルス電界における、ひとつのパ
ルスの連続するON時間を言う。
Further, one pulse duration in the above pulsed electric field is preferably 200 μs or less. If it exceeds 200 μs, arc discharge is likely to occur. Here, one pulse duration is ON, OF
It means the continuous ON time of one pulse in the pulse electric field composed of the repetition of F.

【0028】本発明の放電プラズマ処理装置は、どのよ
うな圧力下でも用いることができるが、常圧放電プラズ
マ処理に用いるとその効果を十分に発揮でき、特に、大
気圧近傍下の圧力下で用いるとその効果が十分に発揮さ
れる。
The discharge plasma processing apparatus of the present invention can be used under any pressure, but when it is used for normal pressure discharge plasma processing, its effect can be sufficiently exerted, especially under pressure near atmospheric pressure. When used, its effect is fully exerted.

【0029】上記大気圧近傍の圧力下とは、1.333
×104〜10.664×104Paの圧力下を指す。中
でも、圧力調整が容易で、装置が簡便になる9.331
×104〜10.397×104Paの範囲が好ましい。
The pressure under the atmospheric pressure is 1.333.
It refers to under a pressure of × 10 4 to 10.664 × 10 4 Pa. Among them, the pressure adjustment is easy, and the device is simple.
The range of × 10 4 to 10.397 × 10 4 Pa is preferable.

【0030】大気圧近傍の圧力下では、ヘリウム、ケト
ン等の特定のガス以外は安定してプラズマ放電状態が保
持されずに瞬時にアーク放電状態に移行することが知ら
れているが、パルス状の電界を印加することにより、ア
ーク放電に移行する前に放電を止め、再び放電を開始す
るというサイクルが実現されると考えられる。
It is known that under a pressure in the vicinity of the atmospheric pressure, except for a specific gas such as helium or ketone, the plasma discharge state is not maintained stably and the arc discharge state is instantaneously transferred. It is considered that a cycle of stopping the discharge before starting the arc discharge and restarting the discharge is realized by applying the electric field of.

【0031】本発明で処理できる被処理基材としては、
ポリエチレン、ポリプロピレン、ポリスチレン、ポリカ
ーボネート、ポリエチレンテレフタレート、ポリテトラ
フルオロエチレン、アクリル樹脂等のプラスチック、ガ
ラス、セラミック、金属等が挙げられる。基材の形状と
しては、板状、フィルム状等のものが挙げられるが、特
にこれらに限定されない。本発明の表面処理方法によれ
ば、様々な形状を有する基材の処理に容易に対応するこ
とができる。
As the substrate to be treated in the present invention,
Examples thereof include polyethylene, polypropylene, polystyrene, polycarbonate, polyethylene terephthalate, polytetrafluoroethylene, plastic such as acrylic resin, glass, ceramic, metal and the like. Examples of the shape of the substrate include a plate shape and a film shape, but are not particularly limited thereto. According to the surface treatment method of the present invention, it is possible to easily deal with the treatment of substrates having various shapes.

【0032】本発明で用いる処理ガスとしては、電界を
印加することによってプラズマを発生するガスであれ
ば、特に限定されず、処理目的により種々のガスを使用
できる。
The processing gas used in the present invention is not particularly limited as long as it is a gas that generates plasma by applying an electric field, and various gases can be used depending on the processing purpose.

【0033】上記処理用ガスとして、CF4、C26
CClF3、SF6等のフッ素含有化合物ガスを用いるこ
とによって、撥水性表面を得ることができる。
As the processing gas, CF 4 , C 2 F 6 ,
A water repellent surface can be obtained by using a fluorine-containing compound gas such as CClF 3 or SF 6 .

【0034】また、処理用ガスとして、O2、O3、水、
空気等の酸素元素含有化合物、N2、NH3等の窒素元素
含有化合物、SO2、SO3等の硫黄元素含有化合物を用
いて、基材表面にカルボニル基、水酸基、アミノ基等の
親水性官能基を形成させて表面エネルギーを高くし、親
水性表面を得ることができる。また、アクリル酸、メタ
クリル酸等の親水基を有する重合性モノマーを用いて親
水性重合膜を堆積することもできる。
Further, as processing gas, O 2 , O 3 , water,
Hydrophilicity of carbonyl group, hydroxyl group, amino group, etc. on the surface of the base material by using oxygen element-containing compounds such as air, nitrogen element-containing compounds such as N 2 , NH 3 and sulfur element-containing compounds such as SO 2 , SO 3 A hydrophilic surface can be obtained by forming a functional group to increase the surface energy. Further, the hydrophilic polymer film can be deposited by using a polymerizable monomer having a hydrophilic group such as acrylic acid or methacrylic acid.

【0035】さらに、Si、Ti、Sn等の金属の金属
−水素化合物、金属−ハロゲン化合物、金属アルコラー
ト等の処理用ガスを用いて、SiO2、TiO2、SnO
2等の金属酸化物薄膜を形成させ、基材表面に電気的、
光学的機能を与えることができ、ハロゲン系ガスを用い
てエッチング処理、ダイシング処理を行ったり、酸素系
ガスを用いてレジスト処理や有機物汚染の除去を行った
り、アルゴン、窒素等の不活性ガスによるプラズマで表
面クリーニングや表面改質を行うこともできる。
Further, using a processing gas such as a metal-hydrogen compound, a metal-halogen compound, a metal alcoholate of a metal such as Si, Ti or Sn, SiO 2 , TiO 2 , SnO is used.
A metal oxide thin film such as 2 is formed and is electrically and
Optical function can be given, and halogen gas is used for etching and dicing, oxygen gas is used for resist treatment and removal of organic contaminants, and inert gas such as argon and nitrogen is used. Surface cleaning and surface modification can also be performed with plasma.

【0036】経済性及び安全性の観点から、上記処理用
ガス単独雰囲気よりも、以下に挙げるような希釈ガスに
よって希釈された雰囲気中で処理を行うことが好まし
い。希釈ガスとしては、ヘリウム、ネオン、アルゴン、
キセノン等の希ガス、窒素気体等が挙げられる。これら
は単独でも2種以上を混合して用いてもよい。また、希
釈ガスを用いる場合、処理用ガスの割合は0.01〜1
0体積%であることが好ましい。
From the viewpoints of economy and safety, it is preferable to perform the treatment in an atmosphere diluted with a diluent gas as described below, rather than the atmosphere for the treatment gas alone. As the diluent gas, helium, neon, argon,
Examples include rare gases such as xenon, nitrogen gas, and the like. You may use these individually or in mixture of 2 or more types. When a diluting gas is used, the ratio of the processing gas is 0.01 to 1
It is preferably 0% by volume.

【0037】なお、本発明の装置によれば、プラズマ発
生空間中に存在する気体の種類を問わずグロー放電プラ
ズマを発生させることが可能である。公知の低圧条件下
におけるプラズマ処理はもちろん、特定のガス雰囲気下
の大気圧プラズマ処理においても、外気から遮断された
密閉容器内で処理を行うことが必須であったが、本発明
のグロー放電プラズマ処理装置を用いた方法によれば、
開放系、あるいは、気体の自由な流失を防ぐ程度の低気
密系での処理が可能となる。
According to the apparatus of the present invention, glow discharge plasma can be generated regardless of the type of gas existing in the plasma generation space. Not only plasma treatment under known low-pressure conditions, but also atmospheric pressure plasma treatment under a specific gas atmosphere, it was essential to perform treatment in a closed container shielded from the outside air, but glow discharge plasma of the present invention According to the method using the processing device,
It is possible to perform processing in an open system or in a low airtight system that prevents free flow of gas.

【0038】本発明のパルス電界を用いた大気圧放電処
理装置によると、全くガス種に依存せず、電極間におい
て直接大気圧下で放電を生じせしめることが可能であ
り、より単純化された電極構造、放電手順による大気圧
プラズマ装置、及び処理手法でかつ高速処理を実現する
ことができる。また、パルス周波数、電圧、電極間隔等
のパラメータにより処理に関するパラメータも調整でき
る。
According to the atmospheric pressure discharge processing apparatus using the pulsed electric field of the present invention, it is possible to cause the discharge directly between the electrodes under the atmospheric pressure without depending on the gas species at all, which is further simplified. It is possible to realize high-speed processing with an electrode structure, an atmospheric pressure plasma device by a discharge procedure, and a processing method. In addition, parameters related to processing can be adjusted by parameters such as pulse frequency, voltage, and electrode interval.

【0039】[0039]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明はこれら実施例のみに限定されるもので
はない。
EXAMPLES The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

【0040】実施例1 図3に示す電極を有する装置を用い、放電プラズマ処理
を行った。電極として、200mm×60mm×厚み1
5mmのSUS製平行平板電極を用いた。電極の平面部
に高誘電率固体誘電体としてチタン酸バリウムを0.6
mmの厚さに溶射コーティングし、続いて電極の端部に
低誘電率固体誘電体としてアルミナを0.6mmの厚さ
に溶射コーティングした。両電極を2mmの間隔をおい
て設置し、処理ガスとして、N280体積%とO220体
積%の混合希釈ガス中にTEOSを0.02g/min
となるように放電空間4に導入し、電極間に電圧20k
PP、周波数10kHzのパルス電界を印加し、発生し
たプラズマをSiウェーハ基材上に吹き付けた。プラズ
マの発生は、均一に良好であり、端部においても異常放
電が生ぜず、基材上には100nmのSiO2膜が形成
された。薄膜は、電極長手方向(幅方向)全体に渡って
膜厚±5%以内の均一なものであった。
Example 1 Discharge plasma treatment using the apparatus having the electrodes shown in FIG.
I went. As an electrode, 200 mm x 60 mm x thickness 1
A 5 mm SUS parallel plate electrode was used. Flat part of electrode
0.6 barium titanate as a high dielectric constant solid dielectric
Thermal spray coating to a thickness of mm, then to the end of the electrode
Alumina having a thickness of 0.6 mm as a low dielectric constant solid dielectric
Spray coated on. Place both electrodes at a distance of 2 mm
Installed as a processing gas, N280% by volume and O220 bodies
TEOS in mixed dilution gas of product% 0.02 g / min
Is introduced into the discharge space 4 so that the voltage between the electrodes is 20 k.
V PPGenerated by applying a pulsed electric field with a frequency of 10 kHz
The plasma was sprayed onto the Si wafer substrate. Plas
The occurrence of marks is uniformly good, and abnormal release occurs at the end as well.
No electricity is generated, and 100 nm SiO is formed on the substrate.2Film formed
Was done. The thin film covers the entire electrode longitudinal direction (width direction)
The film thickness was uniform within ± 5%.

【0041】比較例1 電極を端部まで高誘電率固体誘電体のチタン酸バリウム
のみで被覆する以外は、実施例1と同様にして基材上へ
の薄膜形成を行った。電極端部において、針状の微少な
落雷が見られ、基材の落雷箇所の薄膜には打痕状の模様
が認められた。また、電極長手方向の膜厚は±10%で
あった。
Comparative Example 1 A thin film was formed on a substrate in the same manner as in Example 1 except that the electrode was covered only with barium titanate, which is a high dielectric constant solid dielectric, up to the end portion. A minute needle-shaped lightning strike was observed at the electrode end, and a dent-like pattern was recognized on the thin film at the lightning strike location on the substrate. The film thickness in the longitudinal direction of the electrode was ± 10%.

【0042】[0042]

【発明の効果】本発明の放電プラズマ処理装置は、高密
度プラズマの発生と異常放電の防止を両立し、かつ簡便
な処理装置であるので、高速処理及び大面積処理に対応
可能でかつ半導体製造工程で用いられる種々の方法を始
めとして、あらゆるプラズマ処理方法において、インラ
イン化及び高速化を実現するのに有効に用いることがで
きる。これにより、処理時間の短縮化、コスト低下が可
能になり、従来では不可能あるいは困難であった様々な
用途への展開が可能となる。
Since the discharge plasma processing apparatus of the present invention is a simple processing apparatus capable of both generating high density plasma and preventing abnormal discharge, it can be applied to high speed processing and large area processing, and can be used for semiconductor manufacturing. It can be effectively used to achieve in-line and high speed in various plasma processing methods including various methods used in the process. As a result, the processing time can be shortened and the cost can be reduced, and it can be applied to various uses that were impossible or difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放電プラズマ処理装置の例を説明する
模式的断面図である。
FIG. 1 is a schematic sectional view illustrating an example of a discharge plasma processing apparatus of the present invention.

【図2】本発明の放電プラズマ処理装置の電極の一例を
説明する模式的断面図である。
FIG. 2 is a schematic cross-sectional view illustrating an example of electrodes of the discharge plasma processing apparatus of the present invention.

【図3】本発明の放電プラズマ処理装置の電極の一例を
説明する模式的断面図である。
FIG. 3 is a schematic cross-sectional view illustrating an example of electrodes of the discharge plasma processing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 電源(高電圧パルス電源) 2、3 電極 4 放電空間 5 高誘電率固体誘電体 6 低誘電率固体誘電体 1 power supply (high voltage pulse power supply) A few electrodes 4 discharge space 5 High dielectric constant solid dielectric 6 Low dielectric constant solid dielectric

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対向面が固体誘電体で被覆された対向電
極間に電界を印加することによって発生するグロー放電
プラズマを基材に接触させて処理を行う放電プラズマ処
理装置であって、前記固体誘電体として、誘電率10以
上の高誘電率固体誘電体と誘電率10未満の低誘電率固
体誘電体を用い、前記低誘電率固体誘電体が電極端部に
配置されることを特徴とする放電プラズマ処理装置。
1. A discharge plasma processing apparatus for performing processing by bringing glow discharge plasma generated by applying an electric field between opposite electrodes whose opposite surfaces are covered with a solid dielectric, to a substrate to perform treatment. A high dielectric constant solid dielectric having a dielectric constant of 10 or more and a low dielectric constant solid having a dielectric constant of less than 10 are used as the dielectrics, and the low dielectric constant solid dielectric is arranged at the end of the electrode. Electric discharge plasma processing device.
【請求項2】 前記対向電極間に発生するグロー放電プ
ラズマを、プラズマ発生空間外に配置された基材に導い
て処理を行うようになされた請求項1に記載の放電プラ
ズマ処理装置。
2. The discharge plasma processing apparatus according to claim 1, wherein the glow discharge plasma generated between the opposed electrodes is guided to a base material disposed outside the plasma generation space for processing.
【請求項3】 高誘電率固体誘電体と低誘電率固体誘電
体との境界が、電極対向面に対して斜めになされている
ことを特徴とする請求項1又は2に記載の放電プラズマ
処理装置。
3. The discharge plasma treatment according to claim 1, wherein a boundary between the high dielectric constant solid dielectric and the low dielectric constant solid dielectric is slanted with respect to the electrode facing surface. apparatus.
【請求項4】 請求項1〜3のいずれか1項に記載の放
電プラズマ処理装置を用い、パルス立ち上がり及び/又
は立ち下がり時間が10μs以下、電界強度が10〜1
000kV/cmのパルス電界を印加し、発生するグロ
ー放電プラズマを基材に接触させて処理を行うことを特
徴とする放電プラズマ処理方法。
4. The discharge plasma processing apparatus according to claim 1, wherein the pulse rise and / or fall time is 10 μs or less, and the electric field strength is 10 to 1.
A discharge plasma treatment method comprising applying a pulsed electric field of 000 kV / cm and bringing the generated glow discharge plasma into contact with a substrate to perform treatment.
JP2001329374A 2001-10-26 2001-10-26 Discharge plasma processing apparatus and discharge plasma processing method using the same Expired - Fee Related JP3782708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329374A JP3782708B2 (en) 2001-10-26 2001-10-26 Discharge plasma processing apparatus and discharge plasma processing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329374A JP3782708B2 (en) 2001-10-26 2001-10-26 Discharge plasma processing apparatus and discharge plasma processing method using the same

Publications (2)

Publication Number Publication Date
JP2003133291A true JP2003133291A (en) 2003-05-09
JP3782708B2 JP3782708B2 (en) 2006-06-07

Family

ID=19145287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329374A Expired - Fee Related JP3782708B2 (en) 2001-10-26 2001-10-26 Discharge plasma processing apparatus and discharge plasma processing method using the same

Country Status (1)

Country Link
JP (1) JP3782708B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259831A1 (en) * 2002-12-19 2004-07-08 Imt Innovative Messtechnik Gmbh Miniaturized plasma generator for atom spectroscopy has electrodes at least partly embedded in electrically insulating body with volume for generating plasma by coupling in electromagnetic energy
WO2007034747A1 (en) * 2005-09-22 2007-03-29 Sekisui Chemical Co., Ltd. Plasma processing device
JP2007115650A (en) * 2005-09-22 2007-05-10 Sekisui Chem Co Ltd Plasma treatment device
DE102006011312A1 (en) * 2006-03-11 2007-10-04 Fachhochschule Hildesheim/Holzminden/Göttingen Apparatus for plasma treatment under atmospheric pressure
JP2007280754A (en) * 2006-04-06 2007-10-25 Sekisui Chem Co Ltd Plasma processing apparatus
JP2008147099A (en) * 2006-12-13 2008-06-26 Sekisui Chem Co Ltd Plasma treatment device
JP2009135095A (en) * 2007-10-30 2009-06-18 Kyocera Corp Discharge electrode unit, discharge electrode assembly, and discharge treatment device
JP2010174325A (en) * 2009-01-29 2010-08-12 Kyocera Corp Discharge electrode unit, discharge electrode assembly and discharge treatment apparatus
KR101071246B1 (en) * 2008-11-27 2011-10-10 엘아이지에이디피 주식회사 Electrostatic chuck generating equivalent potential and plasma ion implantation apparatus including the same
JP2012099360A (en) * 2010-11-02 2012-05-24 Tohoku Ricoh Co Ltd Reformer and post-processing device and image forming device
JPWO2011099247A1 (en) * 2010-02-10 2013-06-13 国立大学法人愛媛大学 Electrode for plasma in liquid, plasma generator in liquid, and plasma generation method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259831A1 (en) * 2002-12-19 2004-07-08 Imt Innovative Messtechnik Gmbh Miniaturized plasma generator for atom spectroscopy has electrodes at least partly embedded in electrically insulating body with volume for generating plasma by coupling in electromagnetic energy
DE10259831B4 (en) * 2002-12-19 2005-06-09 Imt Innovative Messtechnik Gmbh plasma generator
WO2007034747A1 (en) * 2005-09-22 2007-03-29 Sekisui Chemical Co., Ltd. Plasma processing device
JP2007115650A (en) * 2005-09-22 2007-05-10 Sekisui Chem Co Ltd Plasma treatment device
CN101258784B (en) * 2005-09-22 2011-03-30 积水化学工业株式会社 Plasma processing device
KR100995210B1 (en) 2005-09-22 2010-11-17 세키스이가가쿠 고교가부시키가이샤 Plasma processing device
JP4499055B2 (en) * 2005-09-22 2010-07-07 積水化学工業株式会社 Plasma processing equipment
DE102006011312B4 (en) * 2006-03-11 2010-04-15 Fachhochschule Hildesheim/Holzminden/Göttingen - Körperschaft des öffentlichen Rechts - Apparatus for plasma treatment under atmospheric pressure
DE102006011312A1 (en) * 2006-03-11 2007-10-04 Fachhochschule Hildesheim/Holzminden/Göttingen Apparatus for plasma treatment under atmospheric pressure
US8136481B2 (en) 2006-03-11 2012-03-20 Fachhochschule Hildesheim/Holzminden/Goettingen Device for plasma treatment at atmospheric pressure
JP2007280754A (en) * 2006-04-06 2007-10-25 Sekisui Chem Co Ltd Plasma processing apparatus
JP4619315B2 (en) * 2006-04-06 2011-01-26 積水化学工業株式会社 Plasma processing equipment
JP2008147099A (en) * 2006-12-13 2008-06-26 Sekisui Chem Co Ltd Plasma treatment device
JP2009135095A (en) * 2007-10-30 2009-06-18 Kyocera Corp Discharge electrode unit, discharge electrode assembly, and discharge treatment device
KR101071246B1 (en) * 2008-11-27 2011-10-10 엘아이지에이디피 주식회사 Electrostatic chuck generating equivalent potential and plasma ion implantation apparatus including the same
JP2010174325A (en) * 2009-01-29 2010-08-12 Kyocera Corp Discharge electrode unit, discharge electrode assembly and discharge treatment apparatus
JPWO2011099247A1 (en) * 2010-02-10 2013-06-13 国立大学法人愛媛大学 Electrode for plasma in liquid, plasma generator in liquid, and plasma generation method
JP2012099360A (en) * 2010-11-02 2012-05-24 Tohoku Ricoh Co Ltd Reformer and post-processing device and image forming device

Also Published As

Publication number Publication date
JP3782708B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP5021877B2 (en) Discharge plasma processing equipment
JP2003093869A (en) Discharge plasma treatment apparatus
JP2003019433A (en) Discharge plasma treating apparatus and treating method using the same
JP3962280B2 (en) Discharge plasma processing equipment
JP3706027B2 (en) Plasma processing method
JP3782708B2 (en) Discharge plasma processing apparatus and discharge plasma processing method using the same
JPH02281734A (en) Treating method of surface by plasma
JP2003218099A (en) Method and system for discharge plasma processing
JP2003318000A (en) Discharge plasma treatment apparatus
JP2003208999A (en) Discharge plasma processing method and its equipment
JP2003317998A (en) Discharge plasma treatment method and apparatus therefor
JP2002237463A (en) Manufacturing method and device of semiconductor element
JP3254064B2 (en) Plasma processing method
JP2003338398A (en) Discharge plasma processing method and apparatus therefor
JP3722733B2 (en) Discharge plasma processing equipment
JP2003129246A (en) Discharge plasma treatment apparatus
JP3793451B2 (en) Discharge plasma processing equipment
JP2003142298A (en) Glow discharge plasma processing device
JP2003249399A (en) Discharge plasma processing device
JP2003154256A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using the same
JP2002151507A (en) Semiconductor element manufacturing method and apparatus thereof
JP4620322B2 (en) Plasma surface treatment equipment
JP2004115896A (en) Discharge plasma treatment device, and discharge plasma treatment method
JP2003171768A (en) Discharge plasma processor
JP2003093870A (en) Discharge plasma treatment apparatus and discharge plasma treatment method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees