JP2004012192A - 測定顕微鏡装置、その表示方法、及びその表示プログラム - Google Patents
測定顕微鏡装置、その表示方法、及びその表示プログラム Download PDFInfo
- Publication number
- JP2004012192A JP2004012192A JP2002163137A JP2002163137A JP2004012192A JP 2004012192 A JP2004012192 A JP 2004012192A JP 2002163137 A JP2002163137 A JP 2002163137A JP 2002163137 A JP2002163137 A JP 2002163137A JP 2004012192 A JP2004012192 A JP 2004012192A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- measurement
- area
- coordinate data
- dimensional coordinate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
【課題】測定に係るオペレータの負担を軽減させる。
【解決手段】多点測定が開始されると、オペレータの指示に応じてメッシュ状に分割した測定領域上にXYテーブルの現在位置を示すマークを表示すると共に、それが含まれるメッシュ領域を他のメッシュ領域と区別可能に表示する。XYテーブルが移動され、XYテーブルが三次元座標データを取得していないメッシュ領域に入ると、オートフォーカスを実行して合焦時の測定点の三次元座標データを取得し、そのメッシュ領域を、三次元座標データを取得していないメッシュ領域と識別可能に表示する。これにより、オペレータは、三次元座標データを取得した領域と取得していない領域を容易に識別可能になり、三次元座標データを取得すべき測定点を見失うことを回避でき、上記課題が解決される。
【選択図】 図3
【解決手段】多点測定が開始されると、オペレータの指示に応じてメッシュ状に分割した測定領域上にXYテーブルの現在位置を示すマークを表示すると共に、それが含まれるメッシュ領域を他のメッシュ領域と区別可能に表示する。XYテーブルが移動され、XYテーブルが三次元座標データを取得していないメッシュ領域に入ると、オートフォーカスを実行して合焦時の測定点の三次元座標データを取得し、そのメッシュ領域を、三次元座標データを取得していないメッシュ領域と識別可能に表示する。これにより、オペレータは、三次元座標データを取得した領域と取得していない領域を容易に識別可能になり、三次元座標データを取得すべき測定点を見失うことを回避でき、上記課題が解決される。
【選択図】 図3
Description
【0001】
【発明の属する技術分野】
本発明は、三次元形状の非接触寸法測定に用いられる測定顕微鏡装置、その表示方法、及びその表示プログラムに関する。
【0002】
【従来の技術】
従来、測定対象物をXYステージ上に載置し、拡大光学系を介して拡大観察しながらXYステージ及びZステージを手動で移動させ、その移動量から測定対象物の形状を測定する測定顕微鏡装置がある。また、このような測定顕微鏡装置の中には、レーザオートフォーカス手段を備えてZ方向の測定を自動化した測定顕微鏡装置もある。また、レーザオートフォーカス手段と電動XYステージを備えてXYZ方向の測定を自動化し、取得した三次元座標データに基づいて表面形状の観察や非接触の寸法測定を可能にした測定顕微鏡装置もある。
【0003】
また、測定対象物の形状を測定する技術の一例として、例えば、特開平2000−146532号公報には、測定物をXY方向にスキャンさせながら高さ情報を取得して測定物のエッジを検出し、測定物の寸法を非接触で測定する技術が記載されている。
【0004】
【発明が解決しようとする課題】
ところで、前述の測定顕微鏡装置において、測定対象物の形状を測定するためには、多数の三次元座標データを取得する必要がある。そのため、オペレータ(測定者等)は、その多数の三次元座標データを取得するための、多数の測定点の位置決めを行う必要があった。従って、例えば、拡大光学像を観察しながら手動XYステージを操作して測定点の位置決めを行うような場合には、測定中にオペレータは三次元座標データを取得した領域と取得していない領域とを区別できなくなる虞があり、測定対象物の形状の測定に多大な時間と労力が必要になることがあった。このような理由から、手動XYステージを用いた構成は安価で簡易な構成を実現できる可能性があるにもかかわらず実用化されていなかった。
【0005】
また、上記公報に記載された技術においても、手動XYステージを用いた場合には、同様の問題が生じる虞があった。
本発明の課題は、上記実情に鑑み、多点測定等のように多数の三次元座標データを取得する場合に三次元座標データを取得した領域と取得していない領域を容易に識別可能にして測定に係るオペレータの負担を軽減させると共に、測定対象物の表面形状の観察を容易にする測定顕微鏡装置、その表示方法、及びその表示プログラムを提供することである。
【0006】
【課題を解決するための手段】
本発明の第一の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置であって、測定領域を分割する分割手段と、該分割手段により分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する取得手段と、前記測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別できるように表示させる表示手段と、を備えた測定顕微鏡装置である。
【0007】
上記の構成によれば、三次元座標データが取得された領域と取得されていない領域が識別可能なように表示されると共に、XYテーブルの現在位置が含まれる領域と他の領域が区別可能なように表示される。これにより、例えば、オペレータ(測定者等)はデータが取得された領域と取得されていない領域を識別可能になり、測定に係る負担が軽減される。
【0008】
本発明の第二の態様は、前記第一の態様において、前記分割手段は、前記測定領域をメッシュ状に分割する、構成である。
この構成によれば、測定領域がメッシュ状(格子状)に分割される。これにより、例えば、オペレータが縦横のピッチを指定することによって容易に測定領域を分割することができる。
【0009】
本発明の第三の態様は、前記第二の態様において、前記表示手段は、前記測定領域を表示させるときに、前記三次元座標データが取得された領域に、該三次元座標データが取得された際の前記検出手段により検出された前記Zステージの座標に応じた色を着色して表示させる、構成である。
【0010】
この構成によれば、三次元座標データが取得された領域が、そのZステージの座標に応じた色に着色されて表示される。これにより、例えば、オペレータは測定対象物の形状の概略を確認することができる。
本発明の第四の態様は、前記第二の態様において、前記表示手段は、前記XYステージの現在位置が含まれる領域上に、前記XYステージの移動方向を示すマークを表示させる、構成である。
【0011】
この構成によれば、XYステージが移動されると、XYステージの現在位置が含まれる領域上にXYステージの移動方向を示すマークが表示される。これにより、例えば、オペレータはXYステージの移動方向を確認することができる。尚、このマークは、オペレータがXYステージの移動方向を確認可能な、記号、文字、図形若しくはこれらの結合等により表される。
【0012】
本発明の第五の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置であって、測定領域を分割する分割手段と、該分割手段により分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する取得手段と、前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得手段により取得された三次元座標データに基づく三次元形状像に重畳して表示させる表示手段と、を備えた測定顕微鏡装置である。
【0013】
上記の構成によれば、取得された三次元座標データに基づく三次元形状像に、取得された光学像に応じた画像に基づく画像が重畳されて表示される。これにより、例えば、オペレータは実際の測定対象物の表面形状及びその色に近い状態の三次元形状像を確認することができ、測定対象物の表面形状の観察が容易になる。
【0014】
本発明の第六の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置の表示方法であって、測定領域を分割し、該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得し、前記分割された測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別できるように表示させる、測定顕微鏡装置の表示方法である。
【0015】
上記の方法によれば、上記第一の態様と同じような作用・効果を得ることができる。
本発明の第七の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置の表示方法であって、測定領域を分割し、該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得し、前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得された三次元座標データに基づく三次元形状像に重畳して表示させる、測定顕微鏡装置の表示方法である。
【0016】
上記の方法によれば、上記第五の態様と同じような作用・効果を得ることができる。
本発明の第八の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置のコンピュータに、測定領域を分割する機能と、該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する機能と、前記分割された測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別できるように表示させる機能と、を実現させるための測定顕微鏡装置の表示プログラムである。
【0017】
上記のプログラムを測定顕微鏡装置のコンピュータに実行させることにより、上記第一の態様と同じような作用・効果を得ることができる。
本発明の第九の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置のコンピュータに、測定領域を分割する機能と、該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する機能と、前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得された三次元座標データに基づく三次元形状像に重畳して表示させる機能と、を実現させるための測定顕微鏡装置の表示プログラムである。
【0018】
上記のプログラムを測定顕微鏡装置のコンピュータに実行させることによって、上記第五の態様と同じような作用・効果を得ることができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
図1は、本発明の第一の実施の形態に係る測定顕微鏡装置の構成例である。
同図において、測定顕微鏡装置は、測定顕微鏡本体1、手動XYステージ(以下、単にXYステージと言う)2、PC3等を備えて構成されている。
【0020】
測定顕微鏡本体1には、ベース4上に、被測定物(測定対象物)が載置されるXYステージ2が取り付けられている。XYステージ2には、オペレータ(測定者等)の操作に応じて、このXYステージ2をX方向及びY方向に移動させるためのハンドル2a及び2bが設けられている。また、不図示ではあるが、XYステージ2の内部には、このXYステージ2のX方向の移動量(X座標)を検出するX検出器、及びそのY方向の移動量(Y座標)を検出するY検出器が備えられている。
【0021】
また、XYステージ2の上方には、Z軸モータを備えたZステージ5が設けられている。このZステージ5には対物レンズ6が取り付けられ、前述のZ軸モータの駆動により、コラム7に設けられたガイド8等の案内によってZステージ5の上下移動が行われるようになっている。尚、この上下移動は、XYステージ2に対し垂直な方向に行われる。また、不図示ではあるが、コラム7の内部には、Zステージ5の移動量(Z座標)を検出するZ検出器が備えられている。また、Zステージ5にはオートフォーカスユニット9が取り付けられ、被測定物と対物レンズ6との相対距離を一定に保たせることが可能なようになっている。また、オートフォーカスユニット9の上方には、接眼鏡筒10が取り付けられている。
【0022】
また、X検出器、Y検出器、及びZ検出器の出力信号は、コラム7内の不図示の信号演算回路により演算され、それぞれの出力信号に基づく移動量データ(座標データ)がX表示部11a、Y表示部11b、Z表示部11cへ送られ、その移動量データに基づく座標がX表示部11a、Y表示部11b、Z表示部11cに表示されるようになっている。また、この移動量データは、外部通信ケーブル12を介してホストコンピュータ3へも送られる。
【0023】
ホストコンピュータ3は、データ処理部3a、表示部3b、及び入力部(不図示)等を備えて構成されている。データ処理部3aには、CPU、メモリ、及び記録媒体等が備えられている。CPUは、中央演算処理装置であり、メモリに格納されている制御プログラムを読み出し実行することによって、この測定顕微鏡装置全体の動作を制御する。また、入力部は、ユーザからの各種指示等を受け付け、受け付けた指示等をCPUへ通知する。また、記録媒体には、取得された三次元座標データ等が記録される。
【0024】
次に、上述した構成の測定顕微鏡装置の動作について説明する。
尚、この測定顕微鏡装置の動作は、前述した通り、データ処理部3aのCPUがメモリに格納されている制御プログラムを読み込み実行することによって実現されるものである。
【0025】
図2は、オートフォーカス(自動焦点調節)が実行され、合焦時の測定点における三次元座標データ(XYZの各移動量データ)が取得される際の動作を示した図である。
同図に示したように、XYステージ2上には被測定物21が載置されている。また、前述したように対物レンズ6が取り付けられたZステージ5はZ軸モータ22の駆動により上下に移動し、その移動により被測定物21と対物レンズ6との相対距離が変化されるようになっている。
【0026】
まず、ホストコンピュータ3から合焦検出制御部23へオートフォーカスの実行指示が出力されると、合焦検出部24では、レーザプローブ光24aが出射され、焦点面24bの前方に設けられたピンホール24cを通過して受光面24dに受光された光(被測定物21からの光)に基づく信号と、焦点面24eの後方に設けられたピンホール24fを通過して受光面24gに受光された光(被測定物21からの光)に基づく信号とが合焦検出制御部23へ出力される。合焦検出制御部23では、これらの信号との差から焦点信号が求められ、この焦点信号に応じた駆動信号がZ軸駆動回路25へ出力される。
【0027】
Z軸駆動回路25は、この駆動信号に応じてZ軸モータ22を駆動する。これにより、Zステージ4が焦点位置へ移動され合焦状態となる。Zステージ4が焦点位置へ移動されると、合焦検出制御部23から合焦信号が発生され、この合焦信号がX軸移動量カウンタ26、Y軸移動量カウンタ27、及びZ軸移動量カウンタ28へ出力される。X軸移動量カウンタ26、Y軸移動量カウンタ27、及びZ軸移動量カウンタ28では、合焦信号が入力されると、この合焦信号が入力された時の、X軸検出器29の出力信号に基づく移動量データ、Y軸検出器30の出力信号に基づく移動量データ、及びZ軸検出器31の出力信号に基づく移動量データがホストコンピュータ3へ出力される。
【0028】
このような動作により、ホストコンピュータ3では、合焦時の測定点におけるXYZの各移動量データ、すなわち、合焦時の測定点における三次元座標データが取得される。
続いて、上述した動作が繰り返し行われて多数の測定点の三次元座標データが取得される多点測定に係る動作について説明する。
【0029】
図3(a),(b),(c),(d)は、多点測定に係る動作中に表示部3bに表示される表示画面の一例である。また、図4(a),(b)は、その表示画面上に表示されるマークの一例である。
尚、これらの表示画面は、データ処理部3aのCPUがメモリに格納されている制御プログラムを読み込み実行することによって、表示部3bに表示されるものである。
【0030】
図3(a)は、多点測定が開始される前に表示される表示画面の一例である。
同図(a)に示したように、まず、多点測定が開始される前に、オペレータの指示に応じて設定された測定領域41が表示される。この測定領域41は、オペレータの指示に応じて設定された被測定物21のXY方向の測定範囲を示す領域である。また、この測定領域41において、メッシュ状(格子状)に分割された複数の領域は、オペレータの指示に応じて設定された一定のピッチ42a、42bによって得られたものである。尚、この分割された一の領域をメッシュ領域とも言う。
【0031】
また、領域43は、XYステージ2の可動範囲を示す領域である。従って、領域43内の領域であって測定領域41以外の領域は、被測定物21の測定範囲外を示す領域になる。
同図(b)は、多点測定が開始されたときに表示される表示画面の一例である。
【0032】
同図(b)に示したように、多点測定が開始されると、XYステージ2の現在位置を示すマーク44が測定領域41上に表示されるとともに、XYステージ2の現在位置が含まれるメッシュ領域45が、色或いはパターン等によって他のメッシュ領域と区別して表示される。同図(b)の例では、そのメッシュ領域45が網掛けパターンにより示されている。
【0033】
これにより、オペレータは多点測定開始時のXYステージ2の現在位置を確認することができる。
また、多点測定中は、X軸移動量カウンタ26及びY軸移動量カウンタ27からXYステージ2のXYの各移動量データがホストコンピュータ3により定期的に読み出され、オペレータによるXYステージ2のハンドル2a、2bの操作によりXYステージ2が移動されると、読み出された移動量データに応じて、前述のマーク44の表示位置が移動される。但し、定期的に読み出された移動量データに変化が無い場合には、マーク44が十字マークとして現在位置が含まれるメッシュ領域上に表示され、その移動量データに変化があった場合には、図4(a)に示したように、マーク44がその変化量から求められるベクトル方向を向いた矢印マーク、すなわちXYステージ2の移動方向を示した矢印マークとして現在位置が含まれるメッシュ領域上に表示される。
【0034】
これにより、オペレータは、XYステージ2を移動させてもXYステージ2の現在位置を確認することができると共に、移動中のXYステージ2の移動方向をも確認することができる。
尚、矢印マークとして示されたマーク44として、オペレータがXYステージの移動方向を確認可能な、その他の形状の図形、記号、文字、若しくはこれらの結合等が表示されるものであっても良い。また、十字マークとして示されたマーク44として、その他の形状の図形、記号、文字、若しくはこれらの結合等が表示されるものであっても良い。
【0035】
また、オペレータによりXYステージ2が移動され、図4(b)に示したように、XYステージ2の現在位置が、例えば境界51を越えて隣接するメッシュ領域52に入ると、オートフォーカスの実行指示が合焦検出制御部23へ出力され、オートフォーカスが1回実行されて合焦時の測定点における三次元座標データがホストコンピュータ3へ出力される。尚、XYステージ2の現在位置が隣接するメッシュ領域に入ったか否かは、読み出されたXYステージ2のXYの移動量データに基づく座標が、隣接するメッシュ領域52に含まれたか否かにより判断可能である。
【0036】
ホストコンピュータ3では、この三次元座標データがデータ処理部3aの記録媒体に記録される。
但し、メッシュ領域内で一度データが取得されると、引き続きXYステージ2が移動されても、データが取得されていないメッシュ領域との境界を越えるまでは、ホストコンピュータ3から合焦検出制御部23へオートフォーカスの実行指示が出力されない。すなわち、一のメッシュ領域に対しては、1回だけオートフォーカスが実行され、そのときの合焦時の測定点における三次元座標データのみが取得されるようになる。このように、既にデータが取得されているメッシュ領域に再びXYステージ2が移動されたときにオートフォーカスを実行させないようにすることで、一のメッシュ領域において、必要以上のデータを取得させないようにすることができる。
【0037】
これにより、オペレータがXYステージを操作するような手動式のXYステージを適用した構成であっても、三次元座標データが取得される測定点の間隔が大きくばらつくことなく、多数の測定点の三次元座標データが、予めオペレータにより定められたピッチに応じて半自動化されて取得されるようになる。
【0038】
また、オペレータによりXYステージ2が操作されて、XYステージ2が複数のメッシュ領域上を移動されると、データを取得済みのメッシュ領域は、そのメッシュ領域の色或いはパターンによって、現在位置が含まれるメッシュ領域及びデータをまだ取得していないメッシュ領域と区別可能に表示される。
【0039】
図3(c)は、そのような場合に表示される表示画面の一例である。
同図(c)に示したように、網掛けパターンにより示された複数のメッシュ領域46は、三次元座標データを取得済みのメッシュ領域であり、他の網掛けパターンにより示されたメッシュ領域48は、XYステージ2の現在位置が含まれるメッシュ領域であり、他の複数のメッシュ領域47は、三次元座標データがまだ取得されていないメッシュ領域である。
【0040】
これにより、オペレータは、三次元座標データが取得された領域と取得されていない領域を容易に識別可能になり、三次元座標データを取得すべき測定点を見失うことを回避できる。また、オペレータは、所望の測定を行うために、XYステージ2をどのように移動させればよいかを測定中に認識することができ、測定に必要な三次元座標データの取得漏れを防止することができる。
【0041】
尚、本実施形態において、データ処理部3aのメモリに、Zの座標値と表示輝度又は表示色等を対応させたルックアップテーブルを予め格納させておき、三次元座標データが取得されたメッシュ領域が、ルックアップテーブルに基づいて、そのZの座標データに基づくZの座標値に応じた表示輝度または表示色等に着色されて表示されるようにしても良い。
【0042】
図3(d)は、そのような場合に表示される表示画面の一例である。
同図(d)に示したように、三次元座標データが取得されたメッシュ領域が、そのZの座標データに基づくZの座標値に応じた表示輝度又は表示色等に着色されて表示される。尚、同図(d)では、着色されたメッシュ領域を網掛けパターンにより示している。これにより、オペレータは、多点測定中に被測定物21の表面形状の概略を確認することができる。
【0043】
尚、このルックアップテーブルにおいて、Zの座標値と表示輝度又は表示色等の対応の代わりに、Zの座標データと表示輝度又は表示色等の対応を格納させておき、三次元座標データが取得されたメッシュ領域が、ルックアップテーブルに基づいて、そのZの座標データに応じた表示輝度または表示色等に着色されて表示されるようにしても良い。
【0044】
また、多点測定中に、オペレータの操作によりXYステージ2の位置が測定領域41から外れたときは、測定領域41以外の領域43をハイライト表示または点滅表示等させることでオペレータに注意を促すようにしても良い。
また、オペレータにより特定のメッシュ領域が指示されることにより、その指示されたメッシュ領域ではオートフォーカスの実行が禁止されるようにしても良い。これにより、オペレータは、測定領域41において三次元座標データを取得する必要のないメッシュ領域を設定することができる。
【0045】
また、合焦検出制御部23に、例えばフットスイッチ等のようなON/OFF制御可能なスイッチ手段を接続し、このフットスイッチがONされている間は、オートフォーカスが実行されないようにしてもよい。
また、本実施形態において、多点測定が開始される前に、測定範囲の代わりに測定開始位置が指示され、多点測定が開始された後はXYステージ2が移動されたメッシュ領域のみが動的に表示部3bに表示されるようにしても良い。尚、この場合、メッシュ領域は、例えば測定開始位置を基準にしてピッチ42a、42bによって決定される。
【0046】
また、本実施形態において、隣接するメッシュ領域において各々取得されたZの座標データの差が一定の閾値レベルを超えていた場合には、その隣接するメッシュ領域を更に複数の領域に分割し、その隣接するメッシュ領域を、色或いはハイライト等により区別可能に表示させるようにしても良い。
【0047】
図5は、そのような場合に表示される表示画面の一例である。
同図の例では、隣接するメッシュ領域において各々取得されたZの座標データの差が閾値レベルを超えていた隣接するメッシュ領域56、57を、網掛けパターンにより示している。また、その隣接するメッシュ領域56、57は、同図に示したように更に複数の領域に分割される。
【0048】
これにより、オペレータに対し、その隣接するメッシュ領域の詳細なデータを取得させるように促すことが可能になり、データ取得後の、その隣接するメッシュ領域の段差測定や距離測定等に係る測定精度を向上させることが可能になる。
また、本実施形態では、図3(a)に示したように、ピッチ42a、42bにしたがって一律に測定領域41が分割されるものであったが、測定領域41の分割のされ方は、これに限定されるものではなく、例えばデータを取得したい測定点等を考慮した、他の分割のされ方であっても良い。
【0049】
図6(a)は、測定領域41の他の分割例を示した図、同図(b)は、XYステージ2の移動方向の一例を示した図、同図(c)は、XYステージ2が同図(b)のように移動されたときにデータが取得された測定点を示した図である。
同図(a)に示した分割例は、例えば、測定領域41がピッチ42a、42bにしたがって一律に分割された後に、1ラインの領域を隔てた毎に1ラインの領域がX方向へ0.5ピッチづつシフトされることにより得られたものである。
【0050】
このように分割された測定領域41において、例えば、オペレータにより同図(b)の矢印に示したようにXYステージ2がほぼ等速に移動されると、同図(c)に示したようにデータが取得される測定点の位置が各ラインの領域において同一若しくはほぼ同一になる。
【0051】
また、同図(b)の矢印に示した以外にも、XYステージ2が所定のラインの領域上を移動された後に、隣接するラインの隣接するメッシュ領域へ移動されて該隣接するラインの領域上を移動される、等といったようにXYステージ2の移動が繰り返されることによっても同様に、データが取得される測定点の位置が各ラインの領域において同一若しくはほぼ同一になる。
【0052】
すなわち、同図(a)に示したように測定領域41を分割し、XYステージ2を前述したように移動させることにより、データが取得される測定点の位置を、各ラインの領域において同一若しくはほぼ同一にさせることが可能になる。従って、予めこのような測定点においてデータを取得したい場合等に好適である。
【0053】
また、上述してきた例では、分割された一の領域が矩形とされた例を示したが、その領域は矩形に限定されず、被測定物21の形状に合わせて、例えば円形等その他の任意形状であっても良い。
以上、本実施形態によれば、手動XYステージを用いた安価かつ簡易な構成を用いて多点測定等のように多数の三次元座標データが取得される場合に、測定領域と、三次元座標データが取得された領域と、三次元座標データが取得されていない領域と、XYステージの現在位置が、一度に表示画面上に識別可能に表示され、三次元座標データが、予めオペレータにより定められたピッチに準じて半自動化されて取得されるようになる。これにより、オペレータは三次元座標データを取得すべき測定点を見失うことを回避でき、三次元形状を測定するための多数の測定点の三次元座標データを容易に取得することが可能になり、測定に係るオペレータの負担を軽減させることができる。
【0054】
尚、本実施形態では、手動XYステージを用いた構成において特に有効であることを説明したが、測定中の経過がわかりやすくリアルタイムに表示されるようになるので、電動XYステージを用いた構成に応用しても有効である。
また、本実施形態の変形例として次のように構成することも可能である。
【0055】
設定した測定点の数が極めて多数であった場合に、メッシュ画面を拡大表示させることも可能である。さらに、測定中は現在位置を基準として拡大されたメッシュ表示領域がスクロールされるようになる。
このようにすると、多数にメッシュ分割されて画面上に1個1個のメッシュを細かく表示せざるを得ないような場合にも、オペレータに負担を掛けずに済む。
【0056】
メッシュ領域表示の拡大がされたときには、別途、全体とその中の拡大領域を示すビューワが表示されることで、測定領域全体の中での位置を見失うことが避けられる。
次に、本発明の第二の実施の形態について説明する。
【0057】
図7は、本発明の第ニの実施の形態に係る測定顕微鏡装置の構成例である。
尚、同図において、図1に示した構成と同一の構成については同一の符号を付して示している。
図7において、接眼鏡筒10上には、結像レンズを内蔵する鏡筒61とカラーカメラ62等を備えた撮像装置が取り付けられ、この撮像装置により撮像された画像信号は、不図示の画像取込回路により、ケーブル63を介してホストコンピュータ3へ送られるように構成されている。尚、撮像装置により撮像される画像信号は、対物レンズ6及び鏡筒61からなる拡大光学系により得られた光学像に基づくものである。その他の構成については、図1に示した構成と同様である。
【0058】
次に、上述した構成の測定顕微鏡装置の動作について説明する。
尚、この測定顕微鏡装置の動作は、前述した通り、データ処理部3aのCPUがメモリに格納されている制御プログラムを読み込み実行することによって実現されるものである。
【0059】
図8は、オートフォーカスが実行され、合焦時の測定点における三次元座標データとフレーム画像データが取得される際の動作を示した図である。
尚、同図において、図2に示した要素と同一の要素については同一の符号を付して示している。
【0060】
図8において、ホストコンピュータ3から合焦検出制御部23へオートフォーカスの実行指示が出力されてから、合焦信号が入力された時の、X軸検出器29の出力信号に基づく移動量データ、Y軸検出器30の出力信号に基づく移動量データ、及びZ軸検出器31の出力信号に基づく移動量データが、ホストコンピュータ3へ出力されるまでの動作は、前述の図2を用いて説明した通りである。
【0061】
但し、図8に示した動作においては、更に次のような動作が行われる。
合焦検出制御部23から出力された合焦信号は、同時に画像取込回路64へも入力される。画像取込回路64では、この合焦信号が入力されると、カラーカメラ62に対して非同期リセット信号が与えられる。カラーカメラ62では、この非同期リセット信号が与えられると、新しいフレーム画像の取得が開始されるように同期信号がリセットされ、新しいフレーム画像の取得が開始される。画像取込回路64では、カラーカメラ62により取得されたフレーム画像信号が取り込まれ、該フレーム画像信号がホストコンピュータ3へ出力される。ホストコンピュータ3では、この入力されたフレーム画像信号(フレーム画像データ)が、前述のXYZの各移動量データ(三次元座標データ)と関連づけられてデータ処理部3aの記録媒体に記録される。
【0062】
図9は、非同期リセット信号とフレーム画像信号の一例を示した図である。
同図上段に示した信号において、パルス信号70は、非同期リセット信号を示している。また、同図下段に示した信号において、信号71aは奇数フィールドの1ライン分のフレーム画像信号を示し、信号71bは偶数フィールドの1ライン分のフレーム画像信号を示している。尚、1ライン分のフレーム画像信号71は、この奇数フィールドの1ライン分のフレーム画像信号と、偶数フィールドの1ライン分のフレーム画像信号からなる。
【0063】
同図に示したように、非同期リセット信号70が与えられると、同期信号がリセットされ、奇数フィールドの1ライン分のフレーム画像信号71aと偶数フィールドの1ライン分のフレーム画像信号71bが、ホストコンピュータ3に取り込まれ、1ライン分のフレーム画像信号71が取得される。
【0064】
このように、奇数フィールドの1ライン分のフレーム画像信号と偶数フィールドの1ライン分のフレーム画像信号が、順次ホストコンピュータ3に取り込まれることにより、1フレーム分のフレーム画像が取得される。
このようにすることで、オートフォーカス完了時(合焦時)とカラーカメラ62による撮像開始時とのディレイを最小限にして、合焦時の測定点における画像を取得するようにしている。
【0065】
奇数フィールド、偶数フィールドからなるインターレースカメラの信号を例に示したが、インターレースせずにフレーム画像が構築されるプログレッシブスキャンタイプでも良い。
続いて、上述した動作が繰り返し行われて多数の測定点の三次元座標データが取得される多点測定に係る動作について説明する。
【0066】
本実施形態に係る多点測定に係る動作は、第一の実施の形態に係る多点測定に係る動作と同様に測定領域がメッシュ状に分割されて行われる。すなわち、オペレータによりXYステージ2が移動されると、XYステージ2が移動された各メッシュ領域において、1回だけオートフォーカスが実行されて合焦時の測定点における三次元座標データがホストコンピュータ3へ出力される。ホストコンピュータ3では、この合焦時の測定点における三次元座標データが、データ処理部3bの記録媒体に記録される。
【0067】
但し、この三次元座標データは、前述の合焦時にカラーカメラ62により撮像されたフレーム画像信号(フレーム画像データ)と共に記録される。
このようにして記録された多数の測定点における三次元座標データは、ホストコンピュータ3により、三次元像化されて表示部3bにグラフィック表示される。
【0068】
図10は、このときにグラフィック表示された表示画面の一例である。
同図に示したように、取得された多数の測定点における三次元座標データに基づく三次元形状像がグラフィック表示される。
ところで、前述のカラーカメラ62により撮像されたフレーム画像信号に基づく画像は、対物レンズ6及び鏡筒61からなる拡大光学系により、メッシュ領域のサイズに比べて広い視野範囲になっている。
【0069】
図11は、撮像された画像の視野範囲とメッシュ領域とのサイズを示した図である。
同図において、範囲80は、撮像された画像の視野範囲を示し、領域81は、メッシュ領域のサイズを示している。また、点82は、撮像された画像の中心(x1,y1)、点83は、メッシュ領域の中心(x2,y2)を示している。
【0070】
尚、オペレータがXYステージ2をどのように移動させるかによって、メッシュ領域内の任意の位置でオートフォーカスが実行されてデータが取得されるようになるので、点82、83に示したように、撮像された画像の中心とメッシュ領域の中心は必ずしも一致しない。
【0071】
この撮像された画像のメッシュ領域に対応する部分は、画像の中心を、X方向に(x2−x1)、Y方向に(y2−y1)の量だけシフトさせた上で、メッシュ領域のピッチにより抽出される(切り出される)。
このようにして各メッシュ領域に対応する部分が切り出された各画像は、対応する各メッシュ領域の位置において貼り合わせが行われ、1つのカラー画像に合成される。この合成されたカラー画像は、ホストコンピュータ3により画像処理され、図10に示した三次元形状像の表面に重畳されて(貼り付けられて)表示される。
【0072】
尚、このような三次元グラフィックは、例えばOpenGL(登録商標)等のような近年一般化されている技術により、容易に回転表示させることができ、また任意の視点から観察することが可能である。この三次元グラフィック上では、例えばマウス等の指示手段で指示した位置の最近傍で取得された三次元座標データが演算されることにより、距離や段差等の測定が可能になる。
【0073】
尚、本実施形態では、撮像された画像が切り出されてそのまま対応するメッシュ領域の位置に貼り合わされるものであったが、メッシュ領域のピッチが小さい場合、すなわち切り出された画像のサイズが十分に小さい場合には、切り出された画像に含まれる画素から色平均を求め、求めた色平均の色の画像を貼り合せるようにしても良い。これにより、メッシュ領域間の境界部の色が滑らかになるようなカラー画像を得ることができる。
【0074】
また、本実施形態において、メッシュ領域内の中心領域に対応する部分のみを切り出してその色平均を求め、この求めた色平均の色の画像を、対応する中心領域の位置に張り合わせ、その中心領域の間の部分については、隣接するメッシュ領域内の中心領域の色情報と各中心領域からの距離に応じた重みとにより平均化された色情報を割り当てて補間するようにしてカラー画像を得るようにしても良い。このような手法によっても、メッシュ領域間の境界部の色が滑らかになるようなカラー画像を得ることができる。
【0075】
図12は、そのような手法によって中心領域の間の部分についての色情報が補間される例を示した図である。
同図において、点Aは、本例において色情報を取得する点である。また、領域91、92、93、94は、メッシュ領域内の中心領域を示し、(R1,G1,B1)は中心領域91の色情報、(R2,G2,B2)は中心領域92の色情報、(R3,G3,B3)は中心領域93の色情報、(R4,G4,B4)は中心領域94の色情報を示している。尚、これらの色情報は、前述した通り、中心領域に含まれる画素の色平均により求めたものである。
【0076】
また、距離d1は中心領域91から点Aまでの距離、距離d2は中心領域92から点Aまでの距離、距離d3は中心領域93から点Aまでの距離、距離d4は中心領域94から点Aまでの距離を示している。
点Aの色情報(R,G,B)は、隣接する各中心領域91、92、93、94の各RGBに対して、
R=α1×R1+α2×R2+α3×R3+α4×R4、
G=α1×G1+α2×G2+α3×G3+α4×G4、
B=α1×B1+α2×B2+α3×B3+α4×B4、
とすることにより求められる。
【0077】
ここで、
α1+α2+α3+α4=1、D=d1+d2+d3+d4、
としたときに、
α1=D/(β×d1)、
α2=D/(β×d2)、
α3=D/(β×d3)、
α4=D/(β×d4)、
β=(D/d1)+(D/d2)+(D/d3)+(D/d4)
となっている。
【0078】
或いは、点Aの色情報を距離の2乗に関連づけて求めるようにしてもよい。
この場合、例えば、前述の式に対して、
D=d12+d22+d32+d42
としたときに、
α1=D/(β×d12)、
α2=D/(β×d22)、
α3=D/(β×d32)、
α4=D/(β×d42)、
β=(D/d12)+(D/d22)+(D/d32)+(D/d42)
のような関係で求めるようにすれば良い。
【0079】
尚、同図に示した例では、中心領域の間の点Aの色情報が補間される例を示したが、中心領域の間の所定領域の色情報が補間される場合についても同様にして色情報が求められる。
以上、本実施形態によれば、取得された多数の測定点の三次元座標データを三次元像化して表示し、その三次元形状像上に被測定物のカラー画像を重畳させることができるので、三次元座標データに基づく三次元形状像であっても、実際の被測定物の表面形状及びその色に近い状態で表示させることができる。
【0080】
また、三次元形状像がカラー像になることで、オペレータは、測定顕微鏡本体1によりニ次元観察した場合の観察像との対比が容易になり、所望の三次元距離等の測定を行うための測定位置の決定が容易になる。
以上、本発明の測定顕微鏡装置、その表示方法、及びその表示プログラムについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲において、各種の改良及び変更を行っても良いのはもちろんである。
【0081】
【発明の効果】
以上、詳細に説明したように、本発明によれば、多点測定等のように多数の三次元座標データを取得する場合に、三次元座標データを取得した領域と取得していない領域を容易に識別でき、測定に係るオペレータの負担を軽減させることができる。また、実際の測定対象物の表面形状及びその色に近い状態の三次元形状像を得ることができ、測定対象物の表面形状の観察を容易にすることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態に係る測定顕微鏡装置の構成例である。
【図2】オートフォーカスが実行され、合焦時の測定点における三次元座標データが取得される際の動作を示した図である。
【図3】(a),(b),(c),(d)は、多点測定に係る動作中に表示部に表示される表示画面の一例である。
【図4】(a),(b)は、表示画面上に表示されるマークの一例である。
【図5】隣接するメッシュ領域において各々取得されたZの座標データの差が一定の閾値レベルを超えていた場合に表示される表示画面の一例である。
【図6】(a)は測定領域の他の分割例を示した図、(b)はXYステージの移動方向の一例を示した図、(c)はXYステージが(b)のように移動されたときにデータが取得された測定点を示した図である。
【図7】本発明の第ニの実施の形態に係る測定顕微鏡装置の構成例である。
【図8】オートフォーカスが実行され、合焦時の測定点における三次元座標データとフレーム画像データが取得される際の動作を示した図である。
【図9】非同期リセット信号とフレーム画像信号の一例を示した図である。
【図10】三次元形状像がグラフィック表示された表示画面の一例である。
【図11】撮像された画像の視野範囲とメッシュ領域とのサイズを示した図である。
【図12】中心領域の間の部分についての色情報が補間される例を示した図である。
【符号の説明】
1 測定顕微鏡本体
2 手動XYステージ
2a、2b ハンドル
3 PC
3a データ処理部
3b 表示部
4 ベース
5 Zステージ
6 対物レンズ
7 コラム
8 ガイド
9 フォーカスユニット
10 接眼鏡筒
11a X表示部
11b Y表示部
11c Z表示部
12 外部通信ケーブル
21 被測定物
22 Z軸モータ
23 合焦検出制御部
24 合焦検出部
24a レーザプローブ光
24b、24e 焦点面
24c、24f ピンホール
24d、24g 受光面
25 Z軸駆動回路
26 X軸移動量カウンタ
27 Y軸移動量カウンタ
28 Z軸移動量カウンタ
29 X軸検出器
30 Y軸検出器
31 Z軸検出器
41 測定範囲
42a、42b ピッチ
43 XYステージの可動範囲
44 マーク
45 メッシュ領域
46、47 複数のメッシュ領域
48 メッシュ領域
51 境界
52 メッシュ領域
56、57 メッシュ領域
61 鏡筒
62 カラーカメラ
63 ケーブル
64 画像取込回路
70 非同期リセット信号
71、71a、71b フレーム画像信号
80 画像の視野範囲
81 メッシュ領域のサイズ
82 画像の中心
83 メッシュ領域の中心
91、92、93、94 中心領域
【発明の属する技術分野】
本発明は、三次元形状の非接触寸法測定に用いられる測定顕微鏡装置、その表示方法、及びその表示プログラムに関する。
【0002】
【従来の技術】
従来、測定対象物をXYステージ上に載置し、拡大光学系を介して拡大観察しながらXYステージ及びZステージを手動で移動させ、その移動量から測定対象物の形状を測定する測定顕微鏡装置がある。また、このような測定顕微鏡装置の中には、レーザオートフォーカス手段を備えてZ方向の測定を自動化した測定顕微鏡装置もある。また、レーザオートフォーカス手段と電動XYステージを備えてXYZ方向の測定を自動化し、取得した三次元座標データに基づいて表面形状の観察や非接触の寸法測定を可能にした測定顕微鏡装置もある。
【0003】
また、測定対象物の形状を測定する技術の一例として、例えば、特開平2000−146532号公報には、測定物をXY方向にスキャンさせながら高さ情報を取得して測定物のエッジを検出し、測定物の寸法を非接触で測定する技術が記載されている。
【0004】
【発明が解決しようとする課題】
ところで、前述の測定顕微鏡装置において、測定対象物の形状を測定するためには、多数の三次元座標データを取得する必要がある。そのため、オペレータ(測定者等)は、その多数の三次元座標データを取得するための、多数の測定点の位置決めを行う必要があった。従って、例えば、拡大光学像を観察しながら手動XYステージを操作して測定点の位置決めを行うような場合には、測定中にオペレータは三次元座標データを取得した領域と取得していない領域とを区別できなくなる虞があり、測定対象物の形状の測定に多大な時間と労力が必要になることがあった。このような理由から、手動XYステージを用いた構成は安価で簡易な構成を実現できる可能性があるにもかかわらず実用化されていなかった。
【0005】
また、上記公報に記載された技術においても、手動XYステージを用いた場合には、同様の問題が生じる虞があった。
本発明の課題は、上記実情に鑑み、多点測定等のように多数の三次元座標データを取得する場合に三次元座標データを取得した領域と取得していない領域を容易に識別可能にして測定に係るオペレータの負担を軽減させると共に、測定対象物の表面形状の観察を容易にする測定顕微鏡装置、その表示方法、及びその表示プログラムを提供することである。
【0006】
【課題を解決するための手段】
本発明の第一の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置であって、測定領域を分割する分割手段と、該分割手段により分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する取得手段と、前記測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別できるように表示させる表示手段と、を備えた測定顕微鏡装置である。
【0007】
上記の構成によれば、三次元座標データが取得された領域と取得されていない領域が識別可能なように表示されると共に、XYテーブルの現在位置が含まれる領域と他の領域が区別可能なように表示される。これにより、例えば、オペレータ(測定者等)はデータが取得された領域と取得されていない領域を識別可能になり、測定に係る負担が軽減される。
【0008】
本発明の第二の態様は、前記第一の態様において、前記分割手段は、前記測定領域をメッシュ状に分割する、構成である。
この構成によれば、測定領域がメッシュ状(格子状)に分割される。これにより、例えば、オペレータが縦横のピッチを指定することによって容易に測定領域を分割することができる。
【0009】
本発明の第三の態様は、前記第二の態様において、前記表示手段は、前記測定領域を表示させるときに、前記三次元座標データが取得された領域に、該三次元座標データが取得された際の前記検出手段により検出された前記Zステージの座標に応じた色を着色して表示させる、構成である。
【0010】
この構成によれば、三次元座標データが取得された領域が、そのZステージの座標に応じた色に着色されて表示される。これにより、例えば、オペレータは測定対象物の形状の概略を確認することができる。
本発明の第四の態様は、前記第二の態様において、前記表示手段は、前記XYステージの現在位置が含まれる領域上に、前記XYステージの移動方向を示すマークを表示させる、構成である。
【0011】
この構成によれば、XYステージが移動されると、XYステージの現在位置が含まれる領域上にXYステージの移動方向を示すマークが表示される。これにより、例えば、オペレータはXYステージの移動方向を確認することができる。尚、このマークは、オペレータがXYステージの移動方向を確認可能な、記号、文字、図形若しくはこれらの結合等により表される。
【0012】
本発明の第五の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置であって、測定領域を分割する分割手段と、該分割手段により分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する取得手段と、前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得手段により取得された三次元座標データに基づく三次元形状像に重畳して表示させる表示手段と、を備えた測定顕微鏡装置である。
【0013】
上記の構成によれば、取得された三次元座標データに基づく三次元形状像に、取得された光学像に応じた画像に基づく画像が重畳されて表示される。これにより、例えば、オペレータは実際の測定対象物の表面形状及びその色に近い状態の三次元形状像を確認することができ、測定対象物の表面形状の観察が容易になる。
【0014】
本発明の第六の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置の表示方法であって、測定領域を分割し、該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得し、前記分割された測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別できるように表示させる、測定顕微鏡装置の表示方法である。
【0015】
上記の方法によれば、上記第一の態様と同じような作用・効果を得ることができる。
本発明の第七の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置の表示方法であって、測定領域を分割し、該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得し、前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得された三次元座標データに基づく三次元形状像に重畳して表示させる、測定顕微鏡装置の表示方法である。
【0016】
上記の方法によれば、上記第五の態様と同じような作用・効果を得ることができる。
本発明の第八の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置のコンピュータに、測定領域を分割する機能と、該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する機能と、前記分割された測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別できるように表示させる機能と、を実現させるための測定顕微鏡装置の表示プログラムである。
【0017】
上記のプログラムを測定顕微鏡装置のコンピュータに実行させることにより、上記第一の態様と同じような作用・効果を得ることができる。
本発明の第九の態様は、測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置のコンピュータに、測定領域を分割する機能と、該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する機能と、前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得された三次元座標データに基づく三次元形状像に重畳して表示させる機能と、を実現させるための測定顕微鏡装置の表示プログラムである。
【0018】
上記のプログラムを測定顕微鏡装置のコンピュータに実行させることによって、上記第五の態様と同じような作用・効果を得ることができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
図1は、本発明の第一の実施の形態に係る測定顕微鏡装置の構成例である。
同図において、測定顕微鏡装置は、測定顕微鏡本体1、手動XYステージ(以下、単にXYステージと言う)2、PC3等を備えて構成されている。
【0020】
測定顕微鏡本体1には、ベース4上に、被測定物(測定対象物)が載置されるXYステージ2が取り付けられている。XYステージ2には、オペレータ(測定者等)の操作に応じて、このXYステージ2をX方向及びY方向に移動させるためのハンドル2a及び2bが設けられている。また、不図示ではあるが、XYステージ2の内部には、このXYステージ2のX方向の移動量(X座標)を検出するX検出器、及びそのY方向の移動量(Y座標)を検出するY検出器が備えられている。
【0021】
また、XYステージ2の上方には、Z軸モータを備えたZステージ5が設けられている。このZステージ5には対物レンズ6が取り付けられ、前述のZ軸モータの駆動により、コラム7に設けられたガイド8等の案内によってZステージ5の上下移動が行われるようになっている。尚、この上下移動は、XYステージ2に対し垂直な方向に行われる。また、不図示ではあるが、コラム7の内部には、Zステージ5の移動量(Z座標)を検出するZ検出器が備えられている。また、Zステージ5にはオートフォーカスユニット9が取り付けられ、被測定物と対物レンズ6との相対距離を一定に保たせることが可能なようになっている。また、オートフォーカスユニット9の上方には、接眼鏡筒10が取り付けられている。
【0022】
また、X検出器、Y検出器、及びZ検出器の出力信号は、コラム7内の不図示の信号演算回路により演算され、それぞれの出力信号に基づく移動量データ(座標データ)がX表示部11a、Y表示部11b、Z表示部11cへ送られ、その移動量データに基づく座標がX表示部11a、Y表示部11b、Z表示部11cに表示されるようになっている。また、この移動量データは、外部通信ケーブル12を介してホストコンピュータ3へも送られる。
【0023】
ホストコンピュータ3は、データ処理部3a、表示部3b、及び入力部(不図示)等を備えて構成されている。データ処理部3aには、CPU、メモリ、及び記録媒体等が備えられている。CPUは、中央演算処理装置であり、メモリに格納されている制御プログラムを読み出し実行することによって、この測定顕微鏡装置全体の動作を制御する。また、入力部は、ユーザからの各種指示等を受け付け、受け付けた指示等をCPUへ通知する。また、記録媒体には、取得された三次元座標データ等が記録される。
【0024】
次に、上述した構成の測定顕微鏡装置の動作について説明する。
尚、この測定顕微鏡装置の動作は、前述した通り、データ処理部3aのCPUがメモリに格納されている制御プログラムを読み込み実行することによって実現されるものである。
【0025】
図2は、オートフォーカス(自動焦点調節)が実行され、合焦時の測定点における三次元座標データ(XYZの各移動量データ)が取得される際の動作を示した図である。
同図に示したように、XYステージ2上には被測定物21が載置されている。また、前述したように対物レンズ6が取り付けられたZステージ5はZ軸モータ22の駆動により上下に移動し、その移動により被測定物21と対物レンズ6との相対距離が変化されるようになっている。
【0026】
まず、ホストコンピュータ3から合焦検出制御部23へオートフォーカスの実行指示が出力されると、合焦検出部24では、レーザプローブ光24aが出射され、焦点面24bの前方に設けられたピンホール24cを通過して受光面24dに受光された光(被測定物21からの光)に基づく信号と、焦点面24eの後方に設けられたピンホール24fを通過して受光面24gに受光された光(被測定物21からの光)に基づく信号とが合焦検出制御部23へ出力される。合焦検出制御部23では、これらの信号との差から焦点信号が求められ、この焦点信号に応じた駆動信号がZ軸駆動回路25へ出力される。
【0027】
Z軸駆動回路25は、この駆動信号に応じてZ軸モータ22を駆動する。これにより、Zステージ4が焦点位置へ移動され合焦状態となる。Zステージ4が焦点位置へ移動されると、合焦検出制御部23から合焦信号が発生され、この合焦信号がX軸移動量カウンタ26、Y軸移動量カウンタ27、及びZ軸移動量カウンタ28へ出力される。X軸移動量カウンタ26、Y軸移動量カウンタ27、及びZ軸移動量カウンタ28では、合焦信号が入力されると、この合焦信号が入力された時の、X軸検出器29の出力信号に基づく移動量データ、Y軸検出器30の出力信号に基づく移動量データ、及びZ軸検出器31の出力信号に基づく移動量データがホストコンピュータ3へ出力される。
【0028】
このような動作により、ホストコンピュータ3では、合焦時の測定点におけるXYZの各移動量データ、すなわち、合焦時の測定点における三次元座標データが取得される。
続いて、上述した動作が繰り返し行われて多数の測定点の三次元座標データが取得される多点測定に係る動作について説明する。
【0029】
図3(a),(b),(c),(d)は、多点測定に係る動作中に表示部3bに表示される表示画面の一例である。また、図4(a),(b)は、その表示画面上に表示されるマークの一例である。
尚、これらの表示画面は、データ処理部3aのCPUがメモリに格納されている制御プログラムを読み込み実行することによって、表示部3bに表示されるものである。
【0030】
図3(a)は、多点測定が開始される前に表示される表示画面の一例である。
同図(a)に示したように、まず、多点測定が開始される前に、オペレータの指示に応じて設定された測定領域41が表示される。この測定領域41は、オペレータの指示に応じて設定された被測定物21のXY方向の測定範囲を示す領域である。また、この測定領域41において、メッシュ状(格子状)に分割された複数の領域は、オペレータの指示に応じて設定された一定のピッチ42a、42bによって得られたものである。尚、この分割された一の領域をメッシュ領域とも言う。
【0031】
また、領域43は、XYステージ2の可動範囲を示す領域である。従って、領域43内の領域であって測定領域41以外の領域は、被測定物21の測定範囲外を示す領域になる。
同図(b)は、多点測定が開始されたときに表示される表示画面の一例である。
【0032】
同図(b)に示したように、多点測定が開始されると、XYステージ2の現在位置を示すマーク44が測定領域41上に表示されるとともに、XYステージ2の現在位置が含まれるメッシュ領域45が、色或いはパターン等によって他のメッシュ領域と区別して表示される。同図(b)の例では、そのメッシュ領域45が網掛けパターンにより示されている。
【0033】
これにより、オペレータは多点測定開始時のXYステージ2の現在位置を確認することができる。
また、多点測定中は、X軸移動量カウンタ26及びY軸移動量カウンタ27からXYステージ2のXYの各移動量データがホストコンピュータ3により定期的に読み出され、オペレータによるXYステージ2のハンドル2a、2bの操作によりXYステージ2が移動されると、読み出された移動量データに応じて、前述のマーク44の表示位置が移動される。但し、定期的に読み出された移動量データに変化が無い場合には、マーク44が十字マークとして現在位置が含まれるメッシュ領域上に表示され、その移動量データに変化があった場合には、図4(a)に示したように、マーク44がその変化量から求められるベクトル方向を向いた矢印マーク、すなわちXYステージ2の移動方向を示した矢印マークとして現在位置が含まれるメッシュ領域上に表示される。
【0034】
これにより、オペレータは、XYステージ2を移動させてもXYステージ2の現在位置を確認することができると共に、移動中のXYステージ2の移動方向をも確認することができる。
尚、矢印マークとして示されたマーク44として、オペレータがXYステージの移動方向を確認可能な、その他の形状の図形、記号、文字、若しくはこれらの結合等が表示されるものであっても良い。また、十字マークとして示されたマーク44として、その他の形状の図形、記号、文字、若しくはこれらの結合等が表示されるものであっても良い。
【0035】
また、オペレータによりXYステージ2が移動され、図4(b)に示したように、XYステージ2の現在位置が、例えば境界51を越えて隣接するメッシュ領域52に入ると、オートフォーカスの実行指示が合焦検出制御部23へ出力され、オートフォーカスが1回実行されて合焦時の測定点における三次元座標データがホストコンピュータ3へ出力される。尚、XYステージ2の現在位置が隣接するメッシュ領域に入ったか否かは、読み出されたXYステージ2のXYの移動量データに基づく座標が、隣接するメッシュ領域52に含まれたか否かにより判断可能である。
【0036】
ホストコンピュータ3では、この三次元座標データがデータ処理部3aの記録媒体に記録される。
但し、メッシュ領域内で一度データが取得されると、引き続きXYステージ2が移動されても、データが取得されていないメッシュ領域との境界を越えるまでは、ホストコンピュータ3から合焦検出制御部23へオートフォーカスの実行指示が出力されない。すなわち、一のメッシュ領域に対しては、1回だけオートフォーカスが実行され、そのときの合焦時の測定点における三次元座標データのみが取得されるようになる。このように、既にデータが取得されているメッシュ領域に再びXYステージ2が移動されたときにオートフォーカスを実行させないようにすることで、一のメッシュ領域において、必要以上のデータを取得させないようにすることができる。
【0037】
これにより、オペレータがXYステージを操作するような手動式のXYステージを適用した構成であっても、三次元座標データが取得される測定点の間隔が大きくばらつくことなく、多数の測定点の三次元座標データが、予めオペレータにより定められたピッチに応じて半自動化されて取得されるようになる。
【0038】
また、オペレータによりXYステージ2が操作されて、XYステージ2が複数のメッシュ領域上を移動されると、データを取得済みのメッシュ領域は、そのメッシュ領域の色或いはパターンによって、現在位置が含まれるメッシュ領域及びデータをまだ取得していないメッシュ領域と区別可能に表示される。
【0039】
図3(c)は、そのような場合に表示される表示画面の一例である。
同図(c)に示したように、網掛けパターンにより示された複数のメッシュ領域46は、三次元座標データを取得済みのメッシュ領域であり、他の網掛けパターンにより示されたメッシュ領域48は、XYステージ2の現在位置が含まれるメッシュ領域であり、他の複数のメッシュ領域47は、三次元座標データがまだ取得されていないメッシュ領域である。
【0040】
これにより、オペレータは、三次元座標データが取得された領域と取得されていない領域を容易に識別可能になり、三次元座標データを取得すべき測定点を見失うことを回避できる。また、オペレータは、所望の測定を行うために、XYステージ2をどのように移動させればよいかを測定中に認識することができ、測定に必要な三次元座標データの取得漏れを防止することができる。
【0041】
尚、本実施形態において、データ処理部3aのメモリに、Zの座標値と表示輝度又は表示色等を対応させたルックアップテーブルを予め格納させておき、三次元座標データが取得されたメッシュ領域が、ルックアップテーブルに基づいて、そのZの座標データに基づくZの座標値に応じた表示輝度または表示色等に着色されて表示されるようにしても良い。
【0042】
図3(d)は、そのような場合に表示される表示画面の一例である。
同図(d)に示したように、三次元座標データが取得されたメッシュ領域が、そのZの座標データに基づくZの座標値に応じた表示輝度又は表示色等に着色されて表示される。尚、同図(d)では、着色されたメッシュ領域を網掛けパターンにより示している。これにより、オペレータは、多点測定中に被測定物21の表面形状の概略を確認することができる。
【0043】
尚、このルックアップテーブルにおいて、Zの座標値と表示輝度又は表示色等の対応の代わりに、Zの座標データと表示輝度又は表示色等の対応を格納させておき、三次元座標データが取得されたメッシュ領域が、ルックアップテーブルに基づいて、そのZの座標データに応じた表示輝度または表示色等に着色されて表示されるようにしても良い。
【0044】
また、多点測定中に、オペレータの操作によりXYステージ2の位置が測定領域41から外れたときは、測定領域41以外の領域43をハイライト表示または点滅表示等させることでオペレータに注意を促すようにしても良い。
また、オペレータにより特定のメッシュ領域が指示されることにより、その指示されたメッシュ領域ではオートフォーカスの実行が禁止されるようにしても良い。これにより、オペレータは、測定領域41において三次元座標データを取得する必要のないメッシュ領域を設定することができる。
【0045】
また、合焦検出制御部23に、例えばフットスイッチ等のようなON/OFF制御可能なスイッチ手段を接続し、このフットスイッチがONされている間は、オートフォーカスが実行されないようにしてもよい。
また、本実施形態において、多点測定が開始される前に、測定範囲の代わりに測定開始位置が指示され、多点測定が開始された後はXYステージ2が移動されたメッシュ領域のみが動的に表示部3bに表示されるようにしても良い。尚、この場合、メッシュ領域は、例えば測定開始位置を基準にしてピッチ42a、42bによって決定される。
【0046】
また、本実施形態において、隣接するメッシュ領域において各々取得されたZの座標データの差が一定の閾値レベルを超えていた場合には、その隣接するメッシュ領域を更に複数の領域に分割し、その隣接するメッシュ領域を、色或いはハイライト等により区別可能に表示させるようにしても良い。
【0047】
図5は、そのような場合に表示される表示画面の一例である。
同図の例では、隣接するメッシュ領域において各々取得されたZの座標データの差が閾値レベルを超えていた隣接するメッシュ領域56、57を、網掛けパターンにより示している。また、その隣接するメッシュ領域56、57は、同図に示したように更に複数の領域に分割される。
【0048】
これにより、オペレータに対し、その隣接するメッシュ領域の詳細なデータを取得させるように促すことが可能になり、データ取得後の、その隣接するメッシュ領域の段差測定や距離測定等に係る測定精度を向上させることが可能になる。
また、本実施形態では、図3(a)に示したように、ピッチ42a、42bにしたがって一律に測定領域41が分割されるものであったが、測定領域41の分割のされ方は、これに限定されるものではなく、例えばデータを取得したい測定点等を考慮した、他の分割のされ方であっても良い。
【0049】
図6(a)は、測定領域41の他の分割例を示した図、同図(b)は、XYステージ2の移動方向の一例を示した図、同図(c)は、XYステージ2が同図(b)のように移動されたときにデータが取得された測定点を示した図である。
同図(a)に示した分割例は、例えば、測定領域41がピッチ42a、42bにしたがって一律に分割された後に、1ラインの領域を隔てた毎に1ラインの領域がX方向へ0.5ピッチづつシフトされることにより得られたものである。
【0050】
このように分割された測定領域41において、例えば、オペレータにより同図(b)の矢印に示したようにXYステージ2がほぼ等速に移動されると、同図(c)に示したようにデータが取得される測定点の位置が各ラインの領域において同一若しくはほぼ同一になる。
【0051】
また、同図(b)の矢印に示した以外にも、XYステージ2が所定のラインの領域上を移動された後に、隣接するラインの隣接するメッシュ領域へ移動されて該隣接するラインの領域上を移動される、等といったようにXYステージ2の移動が繰り返されることによっても同様に、データが取得される測定点の位置が各ラインの領域において同一若しくはほぼ同一になる。
【0052】
すなわち、同図(a)に示したように測定領域41を分割し、XYステージ2を前述したように移動させることにより、データが取得される測定点の位置を、各ラインの領域において同一若しくはほぼ同一にさせることが可能になる。従って、予めこのような測定点においてデータを取得したい場合等に好適である。
【0053】
また、上述してきた例では、分割された一の領域が矩形とされた例を示したが、その領域は矩形に限定されず、被測定物21の形状に合わせて、例えば円形等その他の任意形状であっても良い。
以上、本実施形態によれば、手動XYステージを用いた安価かつ簡易な構成を用いて多点測定等のように多数の三次元座標データが取得される場合に、測定領域と、三次元座標データが取得された領域と、三次元座標データが取得されていない領域と、XYステージの現在位置が、一度に表示画面上に識別可能に表示され、三次元座標データが、予めオペレータにより定められたピッチに準じて半自動化されて取得されるようになる。これにより、オペレータは三次元座標データを取得すべき測定点を見失うことを回避でき、三次元形状を測定するための多数の測定点の三次元座標データを容易に取得することが可能になり、測定に係るオペレータの負担を軽減させることができる。
【0054】
尚、本実施形態では、手動XYステージを用いた構成において特に有効であることを説明したが、測定中の経過がわかりやすくリアルタイムに表示されるようになるので、電動XYステージを用いた構成に応用しても有効である。
また、本実施形態の変形例として次のように構成することも可能である。
【0055】
設定した測定点の数が極めて多数であった場合に、メッシュ画面を拡大表示させることも可能である。さらに、測定中は現在位置を基準として拡大されたメッシュ表示領域がスクロールされるようになる。
このようにすると、多数にメッシュ分割されて画面上に1個1個のメッシュを細かく表示せざるを得ないような場合にも、オペレータに負担を掛けずに済む。
【0056】
メッシュ領域表示の拡大がされたときには、別途、全体とその中の拡大領域を示すビューワが表示されることで、測定領域全体の中での位置を見失うことが避けられる。
次に、本発明の第二の実施の形態について説明する。
【0057】
図7は、本発明の第ニの実施の形態に係る測定顕微鏡装置の構成例である。
尚、同図において、図1に示した構成と同一の構成については同一の符号を付して示している。
図7において、接眼鏡筒10上には、結像レンズを内蔵する鏡筒61とカラーカメラ62等を備えた撮像装置が取り付けられ、この撮像装置により撮像された画像信号は、不図示の画像取込回路により、ケーブル63を介してホストコンピュータ3へ送られるように構成されている。尚、撮像装置により撮像される画像信号は、対物レンズ6及び鏡筒61からなる拡大光学系により得られた光学像に基づくものである。その他の構成については、図1に示した構成と同様である。
【0058】
次に、上述した構成の測定顕微鏡装置の動作について説明する。
尚、この測定顕微鏡装置の動作は、前述した通り、データ処理部3aのCPUがメモリに格納されている制御プログラムを読み込み実行することによって実現されるものである。
【0059】
図8は、オートフォーカスが実行され、合焦時の測定点における三次元座標データとフレーム画像データが取得される際の動作を示した図である。
尚、同図において、図2に示した要素と同一の要素については同一の符号を付して示している。
【0060】
図8において、ホストコンピュータ3から合焦検出制御部23へオートフォーカスの実行指示が出力されてから、合焦信号が入力された時の、X軸検出器29の出力信号に基づく移動量データ、Y軸検出器30の出力信号に基づく移動量データ、及びZ軸検出器31の出力信号に基づく移動量データが、ホストコンピュータ3へ出力されるまでの動作は、前述の図2を用いて説明した通りである。
【0061】
但し、図8に示した動作においては、更に次のような動作が行われる。
合焦検出制御部23から出力された合焦信号は、同時に画像取込回路64へも入力される。画像取込回路64では、この合焦信号が入力されると、カラーカメラ62に対して非同期リセット信号が与えられる。カラーカメラ62では、この非同期リセット信号が与えられると、新しいフレーム画像の取得が開始されるように同期信号がリセットされ、新しいフレーム画像の取得が開始される。画像取込回路64では、カラーカメラ62により取得されたフレーム画像信号が取り込まれ、該フレーム画像信号がホストコンピュータ3へ出力される。ホストコンピュータ3では、この入力されたフレーム画像信号(フレーム画像データ)が、前述のXYZの各移動量データ(三次元座標データ)と関連づけられてデータ処理部3aの記録媒体に記録される。
【0062】
図9は、非同期リセット信号とフレーム画像信号の一例を示した図である。
同図上段に示した信号において、パルス信号70は、非同期リセット信号を示している。また、同図下段に示した信号において、信号71aは奇数フィールドの1ライン分のフレーム画像信号を示し、信号71bは偶数フィールドの1ライン分のフレーム画像信号を示している。尚、1ライン分のフレーム画像信号71は、この奇数フィールドの1ライン分のフレーム画像信号と、偶数フィールドの1ライン分のフレーム画像信号からなる。
【0063】
同図に示したように、非同期リセット信号70が与えられると、同期信号がリセットされ、奇数フィールドの1ライン分のフレーム画像信号71aと偶数フィールドの1ライン分のフレーム画像信号71bが、ホストコンピュータ3に取り込まれ、1ライン分のフレーム画像信号71が取得される。
【0064】
このように、奇数フィールドの1ライン分のフレーム画像信号と偶数フィールドの1ライン分のフレーム画像信号が、順次ホストコンピュータ3に取り込まれることにより、1フレーム分のフレーム画像が取得される。
このようにすることで、オートフォーカス完了時(合焦時)とカラーカメラ62による撮像開始時とのディレイを最小限にして、合焦時の測定点における画像を取得するようにしている。
【0065】
奇数フィールド、偶数フィールドからなるインターレースカメラの信号を例に示したが、インターレースせずにフレーム画像が構築されるプログレッシブスキャンタイプでも良い。
続いて、上述した動作が繰り返し行われて多数の測定点の三次元座標データが取得される多点測定に係る動作について説明する。
【0066】
本実施形態に係る多点測定に係る動作は、第一の実施の形態に係る多点測定に係る動作と同様に測定領域がメッシュ状に分割されて行われる。すなわち、オペレータによりXYステージ2が移動されると、XYステージ2が移動された各メッシュ領域において、1回だけオートフォーカスが実行されて合焦時の測定点における三次元座標データがホストコンピュータ3へ出力される。ホストコンピュータ3では、この合焦時の測定点における三次元座標データが、データ処理部3bの記録媒体に記録される。
【0067】
但し、この三次元座標データは、前述の合焦時にカラーカメラ62により撮像されたフレーム画像信号(フレーム画像データ)と共に記録される。
このようにして記録された多数の測定点における三次元座標データは、ホストコンピュータ3により、三次元像化されて表示部3bにグラフィック表示される。
【0068】
図10は、このときにグラフィック表示された表示画面の一例である。
同図に示したように、取得された多数の測定点における三次元座標データに基づく三次元形状像がグラフィック表示される。
ところで、前述のカラーカメラ62により撮像されたフレーム画像信号に基づく画像は、対物レンズ6及び鏡筒61からなる拡大光学系により、メッシュ領域のサイズに比べて広い視野範囲になっている。
【0069】
図11は、撮像された画像の視野範囲とメッシュ領域とのサイズを示した図である。
同図において、範囲80は、撮像された画像の視野範囲を示し、領域81は、メッシュ領域のサイズを示している。また、点82は、撮像された画像の中心(x1,y1)、点83は、メッシュ領域の中心(x2,y2)を示している。
【0070】
尚、オペレータがXYステージ2をどのように移動させるかによって、メッシュ領域内の任意の位置でオートフォーカスが実行されてデータが取得されるようになるので、点82、83に示したように、撮像された画像の中心とメッシュ領域の中心は必ずしも一致しない。
【0071】
この撮像された画像のメッシュ領域に対応する部分は、画像の中心を、X方向に(x2−x1)、Y方向に(y2−y1)の量だけシフトさせた上で、メッシュ領域のピッチにより抽出される(切り出される)。
このようにして各メッシュ領域に対応する部分が切り出された各画像は、対応する各メッシュ領域の位置において貼り合わせが行われ、1つのカラー画像に合成される。この合成されたカラー画像は、ホストコンピュータ3により画像処理され、図10に示した三次元形状像の表面に重畳されて(貼り付けられて)表示される。
【0072】
尚、このような三次元グラフィックは、例えばOpenGL(登録商標)等のような近年一般化されている技術により、容易に回転表示させることができ、また任意の視点から観察することが可能である。この三次元グラフィック上では、例えばマウス等の指示手段で指示した位置の最近傍で取得された三次元座標データが演算されることにより、距離や段差等の測定が可能になる。
【0073】
尚、本実施形態では、撮像された画像が切り出されてそのまま対応するメッシュ領域の位置に貼り合わされるものであったが、メッシュ領域のピッチが小さい場合、すなわち切り出された画像のサイズが十分に小さい場合には、切り出された画像に含まれる画素から色平均を求め、求めた色平均の色の画像を貼り合せるようにしても良い。これにより、メッシュ領域間の境界部の色が滑らかになるようなカラー画像を得ることができる。
【0074】
また、本実施形態において、メッシュ領域内の中心領域に対応する部分のみを切り出してその色平均を求め、この求めた色平均の色の画像を、対応する中心領域の位置に張り合わせ、その中心領域の間の部分については、隣接するメッシュ領域内の中心領域の色情報と各中心領域からの距離に応じた重みとにより平均化された色情報を割り当てて補間するようにしてカラー画像を得るようにしても良い。このような手法によっても、メッシュ領域間の境界部の色が滑らかになるようなカラー画像を得ることができる。
【0075】
図12は、そのような手法によって中心領域の間の部分についての色情報が補間される例を示した図である。
同図において、点Aは、本例において色情報を取得する点である。また、領域91、92、93、94は、メッシュ領域内の中心領域を示し、(R1,G1,B1)は中心領域91の色情報、(R2,G2,B2)は中心領域92の色情報、(R3,G3,B3)は中心領域93の色情報、(R4,G4,B4)は中心領域94の色情報を示している。尚、これらの色情報は、前述した通り、中心領域に含まれる画素の色平均により求めたものである。
【0076】
また、距離d1は中心領域91から点Aまでの距離、距離d2は中心領域92から点Aまでの距離、距離d3は中心領域93から点Aまでの距離、距離d4は中心領域94から点Aまでの距離を示している。
点Aの色情報(R,G,B)は、隣接する各中心領域91、92、93、94の各RGBに対して、
R=α1×R1+α2×R2+α3×R3+α4×R4、
G=α1×G1+α2×G2+α3×G3+α4×G4、
B=α1×B1+α2×B2+α3×B3+α4×B4、
とすることにより求められる。
【0077】
ここで、
α1+α2+α3+α4=1、D=d1+d2+d3+d4、
としたときに、
α1=D/(β×d1)、
α2=D/(β×d2)、
α3=D/(β×d3)、
α4=D/(β×d4)、
β=(D/d1)+(D/d2)+(D/d3)+(D/d4)
となっている。
【0078】
或いは、点Aの色情報を距離の2乗に関連づけて求めるようにしてもよい。
この場合、例えば、前述の式に対して、
D=d12+d22+d32+d42
としたときに、
α1=D/(β×d12)、
α2=D/(β×d22)、
α3=D/(β×d32)、
α4=D/(β×d42)、
β=(D/d12)+(D/d22)+(D/d32)+(D/d42)
のような関係で求めるようにすれば良い。
【0079】
尚、同図に示した例では、中心領域の間の点Aの色情報が補間される例を示したが、中心領域の間の所定領域の色情報が補間される場合についても同様にして色情報が求められる。
以上、本実施形態によれば、取得された多数の測定点の三次元座標データを三次元像化して表示し、その三次元形状像上に被測定物のカラー画像を重畳させることができるので、三次元座標データに基づく三次元形状像であっても、実際の被測定物の表面形状及びその色に近い状態で表示させることができる。
【0080】
また、三次元形状像がカラー像になることで、オペレータは、測定顕微鏡本体1によりニ次元観察した場合の観察像との対比が容易になり、所望の三次元距離等の測定を行うための測定位置の決定が容易になる。
以上、本発明の測定顕微鏡装置、その表示方法、及びその表示プログラムについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲において、各種の改良及び変更を行っても良いのはもちろんである。
【0081】
【発明の効果】
以上、詳細に説明したように、本発明によれば、多点測定等のように多数の三次元座標データを取得する場合に、三次元座標データを取得した領域と取得していない領域を容易に識別でき、測定に係るオペレータの負担を軽減させることができる。また、実際の測定対象物の表面形状及びその色に近い状態の三次元形状像を得ることができ、測定対象物の表面形状の観察を容易にすることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態に係る測定顕微鏡装置の構成例である。
【図2】オートフォーカスが実行され、合焦時の測定点における三次元座標データが取得される際の動作を示した図である。
【図3】(a),(b),(c),(d)は、多点測定に係る動作中に表示部に表示される表示画面の一例である。
【図4】(a),(b)は、表示画面上に表示されるマークの一例である。
【図5】隣接するメッシュ領域において各々取得されたZの座標データの差が一定の閾値レベルを超えていた場合に表示される表示画面の一例である。
【図6】(a)は測定領域の他の分割例を示した図、(b)はXYステージの移動方向の一例を示した図、(c)はXYステージが(b)のように移動されたときにデータが取得された測定点を示した図である。
【図7】本発明の第ニの実施の形態に係る測定顕微鏡装置の構成例である。
【図8】オートフォーカスが実行され、合焦時の測定点における三次元座標データとフレーム画像データが取得される際の動作を示した図である。
【図9】非同期リセット信号とフレーム画像信号の一例を示した図である。
【図10】三次元形状像がグラフィック表示された表示画面の一例である。
【図11】撮像された画像の視野範囲とメッシュ領域とのサイズを示した図である。
【図12】中心領域の間の部分についての色情報が補間される例を示した図である。
【符号の説明】
1 測定顕微鏡本体
2 手動XYステージ
2a、2b ハンドル
3 PC
3a データ処理部
3b 表示部
4 ベース
5 Zステージ
6 対物レンズ
7 コラム
8 ガイド
9 フォーカスユニット
10 接眼鏡筒
11a X表示部
11b Y表示部
11c Z表示部
12 外部通信ケーブル
21 被測定物
22 Z軸モータ
23 合焦検出制御部
24 合焦検出部
24a レーザプローブ光
24b、24e 焦点面
24c、24f ピンホール
24d、24g 受光面
25 Z軸駆動回路
26 X軸移動量カウンタ
27 Y軸移動量カウンタ
28 Z軸移動量カウンタ
29 X軸検出器
30 Y軸検出器
31 Z軸検出器
41 測定範囲
42a、42b ピッチ
43 XYステージの可動範囲
44 マーク
45 メッシュ領域
46、47 複数のメッシュ領域
48 メッシュ領域
51 境界
52 メッシュ領域
56、57 メッシュ領域
61 鏡筒
62 カラーカメラ
63 ケーブル
64 画像取込回路
70 非同期リセット信号
71、71a、71b フレーム画像信号
80 画像の視野範囲
81 メッシュ領域のサイズ
82 画像の中心
83 メッシュ領域の中心
91、92、93、94 中心領域
Claims (9)
- 測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置であって、
測定領域を分割する分割手段と、
該分割手段により分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する取得手段と、
前記測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別できるように表示させる表示手段と、
を備えたことを特徴とする測定顕微鏡装置。 - 前記分割手段は、
前記測定領域をメッシュ状に分割する、
ことを特徴とする請求項1記載の測定顕微鏡装置。 - 前記表示手段は、
前記測定領域を表示させるときに、前記三次元座標データが取得された領域に、該三次元座標データが取得された際の前記検出手段により検出された前記Zステージの座標に応じた色を着色して表示させる、
ことを特徴とする請求項2記載の測定顕微鏡装置。 - 前記表示手段は、
前記XYステージの現在位置が含まれる領域上に、前記XYステージの移動方向を示すマークを表示させる、
ことを特徴とする請求項2記載の測定顕微鏡装置。 - 測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置であって、
測定領域を分割する分割手段と、
該分割手段により分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する取得手段と、
前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得手段により取得された三次元座標データに基づく三次元形状像に重畳して表示させる表示手段と、
を備えたことを特徴とする測定顕微鏡装置。 - 測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置の表示方法であって、
測定領域を分割し、
該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得し、
前記分割された測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別できるように表示させる、
ことを特徴とする測定顕微鏡装置の表示方法。 - 測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置の表示方法であって、
測定領域を分割し、
該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得し、
前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得された三次元座標データに基づく三次元形状像に重畳して表示させる、
ことを特徴とする測定顕微鏡装置の表示方法。 - 測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段とを有する測定顕微鏡装置のコンピュータに、
測定領域を分割する機能と、
該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する機能と、
前記分割された測定領域を表示させるときに、前記三次元座標データが取得された領域と取得されていない領域を識別できるように表示させると共に、前記XYステージの現在位置が含まれる領域と他の領域を区別して表示させる機能と、
を実現させるための測定顕微鏡装置の表示プログラム。 - 測定対象物が載置されるXYステージと、該XYステージに対し垂直な方向に相対移動可能なZステージを有する拡大光学系と、前記XYステージ及び前記Zステージの座標を検出する検出手段と、前記測定対象物の測定点と前記拡大光学系との相対距離を一定に保つオートフォーカス手段と、前記拡大光学系により得られた光学像を撮像する撮像手段とを有する測定顕微鏡装置のコンピュータに、
測定領域を分割する機能と、
該分割された領域に前記検出手段により検出された前記XYステージの座標が含まれたときに前記オートフォーカス手段を動作させて前記測定対象物の三次元座標データを取得する機能と、
前記撮像手段により撮像された光学像に応じた画像に基づく画像を、前記取得された三次元座標データに基づく三次元形状像に重畳して表示させる機能と、
を実現させるための測定顕微鏡装置の表示プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002163137A JP2004012192A (ja) | 2002-06-04 | 2002-06-04 | 測定顕微鏡装置、その表示方法、及びその表示プログラム |
PCT/JP2003/007042 WO2003102500A1 (fr) | 2002-06-04 | 2003-06-03 | Procede d'obtention de coordonnees 3 d |
US10/505,020 US20050158558A1 (en) | 2002-06-04 | 2003-06-23 | Method of obtaining 3-d coordinates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002163137A JP2004012192A (ja) | 2002-06-04 | 2002-06-04 | 測定顕微鏡装置、その表示方法、及びその表示プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004012192A true JP2004012192A (ja) | 2004-01-15 |
Family
ID=30431688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002163137A Withdrawn JP2004012192A (ja) | 2002-06-04 | 2002-06-04 | 測定顕微鏡装置、その表示方法、及びその表示プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004012192A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007102190A (ja) * | 2005-09-12 | 2007-04-19 | Olympus Corp | 観察装置および観察方法 |
JP2009047493A (ja) * | 2007-08-16 | 2009-03-05 | Murata Mfg Co Ltd | 計測方法、計測装置及びプログラム |
JP2009128604A (ja) * | 2007-11-22 | 2009-06-11 | Olympus Corp | 顕微鏡の焦準装置 |
US7584730B2 (en) | 2003-05-01 | 2009-09-08 | Yamaha Hatsudoki Kabushiki Kaisha | Valve train device for engine |
US7953572B2 (en) | 2006-09-29 | 2011-05-31 | Konica Minolta Sensing, Inc. | Measurement system, and program product for measurement system |
WO2011127806A1 (en) * | 2010-04-12 | 2011-10-20 | Netop Industrial Company Limited | Microscope |
JP2014215153A (ja) * | 2013-04-25 | 2014-11-17 | 株式会社ミツトヨ | 画像測定装置及びその制御用プログラム |
CN113884414A (zh) * | 2021-08-26 | 2022-01-04 | 湖南伊鸿健康科技有限公司 | 一种标定计数板及显微镜镜头标定方法 |
-
2002
- 2002-06-04 JP JP2002163137A patent/JP2004012192A/ja not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7584730B2 (en) | 2003-05-01 | 2009-09-08 | Yamaha Hatsudoki Kabushiki Kaisha | Valve train device for engine |
JP2007102190A (ja) * | 2005-09-12 | 2007-04-19 | Olympus Corp | 観察装置および観察方法 |
US7953572B2 (en) | 2006-09-29 | 2011-05-31 | Konica Minolta Sensing, Inc. | Measurement system, and program product for measurement system |
JP2009047493A (ja) * | 2007-08-16 | 2009-03-05 | Murata Mfg Co Ltd | 計測方法、計測装置及びプログラム |
JP2009128604A (ja) * | 2007-11-22 | 2009-06-11 | Olympus Corp | 顕微鏡の焦準装置 |
WO2011127806A1 (en) * | 2010-04-12 | 2011-10-20 | Netop Industrial Company Limited | Microscope |
JP2014215153A (ja) * | 2013-04-25 | 2014-11-17 | 株式会社ミツトヨ | 画像測定装置及びその制御用プログラム |
CN113884414A (zh) * | 2021-08-26 | 2022-01-04 | 湖南伊鸿健康科技有限公司 | 一种标定计数板及显微镜镜头标定方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10508902B2 (en) | Three-dimensional measurement device | |
JP5732353B2 (ja) | 拡大観察装置、拡大観察方法および拡大観察プログラム | |
JP7137346B2 (ja) | 画像観察装置、画像観察方法及び画像観察プログラム並びにコンピュータで読み取り可能な記録媒体 | |
JP5281972B2 (ja) | 撮像装置 | |
JP5311143B2 (ja) | 測定装置および方法、並びに、プログラム | |
CN110388880B (zh) | 形状测量装置和形状测量方法 | |
US9798129B2 (en) | Microscope system and method for deciding stitched area | |
WO2003102500A1 (fr) | Procede d'obtention de coordonnees 3 d | |
JP2005172805A (ja) | 試料情報測定方法および走査型共焦点顕微鏡 | |
JP2001059940A (ja) | 顕微鏡及び記録媒体 | |
JP2006329684A (ja) | 画像計測装置及び方法 | |
JP6716383B2 (ja) | 顕微鏡システム、情報提示方法、プログラム | |
JP2004012192A (ja) | 測定顕微鏡装置、その表示方法、及びその表示プログラム | |
CN110858397A (zh) | 测量装置、测量装置的工作方法以及存储介质 | |
JP2019190919A (ja) | 形状測定装置、形状測定方法、形状測定プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器 | |
JP2018066908A (ja) | 拡大観察装置 | |
US20220269062A1 (en) | Magnified observation apparatus | |
JP6032870B2 (ja) | 計測方法 | |
JP2009092409A (ja) | 3次元形状測定装置 | |
JP2009294465A (ja) | 顕微鏡用撮像装置と、対物ミクロメータ | |
JP5602449B2 (ja) | 内視鏡装置 | |
JP6400767B2 (ja) | 計測内視鏡装置 | |
JP6068010B2 (ja) | 顕微鏡システム | |
KR100556013B1 (ko) | 미소 치수 측정 장치 | |
JP2004239890A (ja) | 拡大観察装置、拡大画像観察方法、拡大観察装置操作プログラムおよびコンピュータで読み取り可能な記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050906 |