JP2004011958A - Supercritical refrigerant cycle equipment - Google Patents

Supercritical refrigerant cycle equipment Download PDF

Info

Publication number
JP2004011958A
JP2004011958A JP2002163296A JP2002163296A JP2004011958A JP 2004011958 A JP2004011958 A JP 2004011958A JP 2002163296 A JP2002163296 A JP 2002163296A JP 2002163296 A JP2002163296 A JP 2002163296A JP 2004011958 A JP2004011958 A JP 2004011958A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
degree
superheat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163296A
Other languages
Japanese (ja)
Inventor
Shigenori Doi
土井 重紀
Toshiyuki Ebara
江原 俊行
Yoshiaki Kurosawa
黒澤 美暁
Mitsuhiko Ishino
石野 光彦
Eiju Fukuda
福田 栄寿
Yoshihiko Kobayashi
小林 好彦
Aritomo Yoshida
吉田 有智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002163296A priority Critical patent/JP2004011958A/en
Priority to EP03011552A priority patent/EP1369648A3/en
Priority to KR10-2003-0035461A priority patent/KR20030095240A/en
Priority to CNA031363911A priority patent/CN1470824A/en
Priority to US10/453,936 priority patent/US20040020223A1/en
Publication of JP2004011958A publication Critical patent/JP2004011958A/en
Priority to US11/029,392 priority patent/US7143595B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the cooling capacity of an evaporator in refrigerant cycle equipment whose high pressure side is operated by a supercritical pressure. <P>SOLUTION: This refrigerant cycle equipment has a compressor 10, a gas cooler 154, an expansion valve 156, and the evaporator 157 connected annularly in order and has the high pressure side operated by the supercritical pressure. The opening of the expansion valve 156 is adjusted based on thermal load conditions, the degree of the superheat in the outlet side of the evaporator 157 is controlled, and when the thermal load is high, the degree of the superheat in the outlet side of the evaporator 157 is made small and, when the thermal load is low, it is set large. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサ、ガスクーラ、絞り手段及びエバポレータを順次環状に接続して構成され、高圧側が超臨界圧力で運転される冷媒サイクル装置に関するものである。
【0002】
【従来の技術】
従来より例えば自動車の車室内を空調するカーエアコンは、ロータリコンプレッサ(コンプレッサ)、ガスクーラ、中間熱交換器、絞り手段(膨張弁等)及びエバポレータ等を順次環状に接続配管して冷媒サイクル(冷媒回路)が構成されている。そして、ロータリコンプレッサの回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側から吐出ポート、吐出消音室を経てガスクーラに流入して放熱し、中間熱交換器にて低圧側冷媒と熱交換した後、絞り手段で絞られてエバポレータに供給される。そこで冷媒が蒸発し、その時に周囲から吸熱することにより冷却作用を発揮して車室内を空調するものであった。
【0003】
【発明が解決しようとする課題】
ここで、近年では地球環境問題に対処するため、この種のカーエアコン等の冷媒サイクルにおいても、従来のフロンを用いずに例えば特公平7−18602号公報に示されるような自然冷媒であるCO(二酸化炭素)を冷媒として用い、高圧側を超臨界圧力として運転することが試みられているが、従来ではエバポレータの後にレシーバータンクを配設し、レシーバータンクに液冷媒を貯溜することを前提として、このレシーバータンク内の冷媒の液量を調整することにより冷房能力(冷凍能力)の制御を行っていた。
【0004】
即ち、絞り手段(膨張弁)の開度はレシバータンク内に貯留する冷媒の液量によって調整されているため、例えば、熱負荷が高い場合に絞り手段の開度が絞り気味とされていると、エバポレータ内で冷媒はガス/液体の二相混合体からほぼ完全にガスの状態となる。そのため、中間熱交換器に流入した低圧側の冷媒は高圧側の冷媒を十分に冷却することができない。その結果、絞り手段入口での冷媒の温度が高くなり、冷房能力が低下するため、所要の冷房能力を得るためにはより多くの冷媒循環量が必要となり、コンプレッサの消費電力が増加してしまう。
【0005】
このように、レシーバータンク内の冷媒の液量を調整することにより冷房能力の制御を行った場合、エバポレータの冷凍能力を常に最適な状態に維持することが困難で、その結果、エバポレータにおける冷房能力が低下すると云う問題があった。
【0006】
本発明は、係る従来の技術的課題を解決するために成されたものであり、高圧側が超臨界圧力で運転される冷媒サイクル装置において、エバポレータにおける冷房能力を向上させることを目的とする。
【0007】
【課題を解決するための手段】
即ち、本発明では熱負荷条件に基づいて絞り手段の開度を調整し、エバポレータ出口側の過熱度を制御するので、例えば請求項2の如く熱負荷が高い場合はエバポレータ出口側の過熱度を小さくし、熱負荷が低い場合には大きくとることにより、エバポレータにおける冷媒のエンタルピー差が大きくなり、エバポレータでの冷房能力を最大限引き出せるようになる。
【0008】
これにより、熱負荷条件が変化してもエバポレータの冷凍能力を常時最適状態に維持することが出来るようになる。
【0009】
特に、熱負荷が高い場合において、冷媒循環量を増やさずに冷凍能力を増大させることが出来るようになるので、コンプレッサの成績係数の向上を図ることが出来るようになる。
【0010】
請求項3の発明では、上記に加えてコンプレッサに吸い込まれる冷媒を一旦貯溜するレシーバータンクを備え、エバポレータから出て中間熱交換器を経た冷媒をレシーバータンクに流入させるようにしているので、エバポレータから出た温度の低い冷媒を、レシーバタンクを介さずに中間熱交換器に流入させ、ガスクーラから出た冷媒をより一層効果的に冷却することができるようになる。これにより、エバポレータの冷房能力の更なる改善を図ることができるようになる。
【0011】
請求項4の発明では、上記各発明に加えてCO冷媒を使用するので、環境問題の解決にも寄与できるようになる。
【0012】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷媒サイクル装置に使用するコンプレッサの実施例として、第1及び第2の回転圧縮要素を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図である。
【0013】
即ち、10はCO(二酸化炭素)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、このコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)から成る回転圧縮機構部18にて構成されている。
【0014】
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0015】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0016】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0017】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44にて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0018】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上カバー66、下カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0019】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒が密閉容器12内に吐出される。
【0020】
また、第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞する上部カバー66は、密閉容器12内を吐出消音室62と電動要素14側とに仕切る。
【0021】
そして、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述したCO(二酸化炭素)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等該存のオイルが使用される。
【0022】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0023】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。この冷媒導入管94の他端は後述するレシーバータンク158の下側に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒導入管96の一端は吐出消音室62と連通する。
【0024】
前記レシーバータンク158はコンプレッサ10に吸い込まれる冷媒の気液分離を行うタンクであり、密閉容器12の容器本体12Aの上部側面に溶接固定されたブラケット147に取り付けられている。
【0025】
次に、図2は本発明を自動車の車室内を冷房するカーエアコン(空気調和機)に適用した場合の冷媒サイクルを示しており、上述したコンプレッサ10は図2に示すカーエアコンの冷媒サイクルの一部を構成する。即ち、コンプレッサ10の冷媒吐出管96はガスクーラ154の入口に接続される。このガスクーラ154を出た配管は中間熱交換器160を経て絞り手段としての電子式膨張弁156に至る。
【0026】
膨張弁156の出口はエバポレータ157の入口に接続され、エバポレータ157の出口は中間熱交換器160を経て前記レシーバータンク158に至る。そして、レシーバータンク158の出口は冷媒導入管94に接続される。171は前記コンプレッサ10の電動要素14の回転数や膨張弁156の弁開度を制御(調整)する制御装置であり、エバポレータ157の出口側の冷媒温度を検出する温度センサ159Aの出力や、エバポレータ157の出口側の冷媒圧力を検出する圧力センサ159B、図示しない自動車の車室内温度を検出する車室内温度センサ161、車室内に差し込む日差しの日射量を検出する日射センサ162及び外気温を検出する外気温センサ163の出力も入力される。
【0027】
以上の構成で次に図3のp−h線図(モリエル線図)を参照しながら動作を説明する。制御装置171によりターミナル20及び図示されない配線を介してコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0028】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧(図3で実線で示すAの状態)の冷媒は、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0029】
そして、密閉容器12内の中間圧の冷媒ガスは、スリ−ブ144から出て冷媒導入管92及び上部支持部材54に形成された図示しない吸込通路を経由して図示しない吸込ポートから上シリンダ38の低圧室側に吸入される。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出管96より外部に吐出される。このとき、冷媒は適切な超臨界圧力まで圧縮されている(図3で実線で示すBの状態)。
【0030】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで空冷若しくは水冷方式により放熱された後、中間熱交換器160を通過する。冷媒はそこで低圧側の冷媒により更に冷却された後(図3のCの状態)、膨張弁156に至る。
【0031】
冷媒は膨張弁156における圧力低下により、図3に実線で示すDのようにガス/液体の二相混合体とされ、その状態でエバポレータ157内に流入する。そこで冷媒が蒸発し、そのときに車室内に循環される空気から吸熱することにより冷却作用を発揮して車内を冷房した後、流出する(図3のEの状態)。そして、中間熱交換器160を通過し、そこで高圧側の冷媒により加熱作用を受けた後、レシーバータンク158に至る。レシーバータンク158では気液が分離され、ガス冷媒のみが冷媒導入管94からコンプレッサ10の第1の回転圧縮要素32内に吸い込まれる(図3のAの状態)サイクルを繰り返す。
【0032】
制御装置171は、車室内温度センサ161、日射センサ162及び外気温センサ163の各出力に基づいてコンプレッサ10の電動要素14の回転数を制御することにより、冷媒サイクルの冷房能力(冷凍能力)を調整して車室内を設定温度に維持する制御を行う。
【0033】
更に、制御装置171は温度センサ159Aと圧力センサ159Bが検出するエバポレータ157の出口側の冷媒温度と圧力に基づき、膨張弁156の弁開度を調整する。この場合、制御装置171は、車室内温度センサ161、日射センサ162及び外気温センサ163の各出力に基づいて熱負荷を推定し、この推定された熱負荷と温度センサ159A及び圧力センサ159Bの出力に基づいて、膨張弁156の弁開度を調整する。例えば、車室内温度センサ161、日射センサ162及び外気温センサ163の各出力により熱負荷が高い(高負荷)と推定された場合には、制御装置171はエバポレータ157の出口側の過熱度(図3で実線で示すEの状態)が極力小さくなるように膨張弁156の弁開度を開き気味とする。
【0034】
ここで、高負荷時において膨張弁156の弁開度を絞り気味とし、図3に破線で示すE’のようにエバポレータ157の過熱度を大きくとった場合、エバポレータ157内で冷媒はガス/液体の二相混合状態から略完全にガスの状態となる。従って、中間熱交換器160においては殆ど低圧側の冷媒の蒸発が行われなくなり、低圧側の冷媒の温度も上昇してしまうため、高圧側の冷媒を充分に冷却することができない。特に、外気温が高いような場合には低圧側の冷媒温度がより一層上がりやすくなるため、中間熱交換器160における高圧側と低圧側での温度差が少なくなって熱交換が十分行えなくなる。
【0035】
一方、過熱度を小さくした場合、エバポレータ157内で冷媒はガス/液体の二相混合体状態から完全にガス状にはならない。そして、液体の冷媒は中間熱交換器160で蒸発し、このとき高圧側の冷媒を冷却する。このため、中間熱交換器160において低圧側の冷媒温度が上がりにくなり、低く維持され、高圧側の冷媒を充分に冷却することが出来るようになる。
【0036】
その結果、過熱度を小さくした場合、コンプレッサで圧縮された冷媒の吐出温度を下げることが出来るようになる(図3で実線で示すBの状態)。これにより、膨張弁156の入口における冷媒の温度が低くなり、エバポレータ157でのエンタルピー差が大きくなる。
【0037】
この状態を図3を用いて説明する。即ち、高負荷時においてエバポレータ157の出口側の過熱度を大きくとる場合、コンプレッサ10の吐出冷媒は図3に破線で示すB’の状態となり、膨張弁156を出てエバポレータ157に流入する冷媒は図3に破線で示すD’の状態となる。そして、この場合のエバポレータ157の冷房能力Qe’はQe’=Δie’×Gr’となる(Δie’はE’とD’のエンタルピー差であり、Gr’は冷媒流量である)。
【0038】
一方、上述の如く過熱度を小さくした場合の冷房能力Qeは、Qe=Δie×Grとなる(ΔieはEとDのエンタルピー差であり、Grは冷媒流量である)。そして、この図からも明らかなように、実線で示すΔieは破線で示すΔie’よりも大きくなるため、冷房能力Qeも、過熱度を大きくとる場合のQe’より大きくなり、エバポレータ157における冷房能力が向上することがわかる。
【0039】
一方、制御装置171が車室内温度センサ161、日射センサ162及び外気温センサ163の各出力に基づいて熱負荷が低い(中負荷、低負荷を含む)と推定した場合、制御装置171はエバポレータ157の出口側の過熱度(図4で実線で示すAの状態)が5deg程度の大きい値となるように、弁開度を絞り気味とする。
【0040】
ここで、低負荷時(中負荷時含む。以下同じ。)において膨張弁156の弁開度を開き気味として図4に破線で示すE’のようにエバポレータ157の過熱度が小さい場合、エバポレータ157内における冷媒の温度が高くなるため、空気との熱交換が充分に行われなくなり、冷房能力が低下する。
【0041】
以上の過熱度制御を図5に示す。即ち、車室内温度センサ161、日射センサ162及び外気温センサ163の各出力に基づいて推定された熱負荷が低負荷の場合、制御装置171は過熱度が大きくなるように膨張弁156を絞り気味とし、一方、高負荷時においては過熱度が小さくなるように膨張弁156を開き気味とするものである。
【0042】
このように、車室内温度センサ161、日射センサ162及び外気温センサ163の各出力に基づいて、熱負荷が高いと推定された場合はエバポレータ157出口側の過熱度が小さくなるように、熱負荷が低いと推定された場合にはエバポレータ157出口側の過熱度が大きくなるように膨張弁156の弁開度を制御することで、エバポレータ157における冷媒のエンタルピー差が大きくなり、エバポレータ157での冷房能力を最大限引き出せるようになる。
【0043】
これにより、あらゆる熱負荷条件においてエバポレータ157の冷房能力を最適状態に維持することが出来るようになる。
【0044】
更に、エバポレータ157から出て中間熱交換器160を経た冷媒をレシーバータンク158に流入させるようにしているので、エバポレータ158から出た温度の低い冷媒を、レシーバタンク158を介さずに中間熱交換器に流入させ、ガスクーラから出た冷媒をより一層効果的に冷却することができるようになる。これにより、冷房能力の更なる改善を図ることができるようになる。
【0045】
尚、本実施例では車室内温度センサ161、日射センサ162及び外気温センサ163の各出力を複合することで熱負荷を推定するものとしたが、これに限らず、車室内温度センサ、日射センサ又は外気温センサの個々の出力から熱負荷を推定するものであっても本発明は有効である。
【0046】
【発明の効果】
以上詳述した如く、本発明によればコンプレッサ、ガスクーラ、絞り手段及びエバポレータを順次環状に接続し、高圧側が超臨界圧力で運転される冷媒サイクル装置において、熱負荷条件に基づいて絞り手段の開度を調整し、エバポレータ出口側の過熱度を制御するので、例えば請求項2の如く熱負荷が高い場合はエバポレータ出口側の過熱度を小さくし、熱負荷が低い場合には大きくとることにより、エバポレータにおける冷媒のエンタルピー差が大きくなり、エバポレータでの冷房能力を最大限引き出せるようになる。
【0047】
これにより、熱負荷条件が変化してもエバポレータの冷凍能力を常時最適状態に維持することが出来るようになる。
【0048】
特に、熱負荷が高い場合において、冷媒循環量を増やさずに冷凍能力を増大させることが出来るようになるので、コンプレッサの成績係数の向上を図ることが出来るようになる。
【0049】
請求項3の発明では、上記に加えてコンプレッサに吸い込まれる冷媒を一旦貯溜するレシーバータンクを備え、エバポレータから出て中間熱交換器を経た冷媒をレシーバータンクに流入させるようにしているので、エバポレータから出た温度の低い冷媒を、レシーバタンクを介さずに中間熱交換器に流入させ、ガスクーラから出た冷媒をより一層効果的に冷却することができるようになる。これにより、エバポレータの冷房能力の更なる改善を図ることができるようになる。
【0050】
請求項4の発明では、上記各発明に加えてCO冷媒を使用するので、環境問題の解決にも寄与できるようになる。
【図面の簡単な説明】
【図1】本発明の冷媒サイクルを構成する多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】本発明の実施例のカーエアコンの冷媒サイクルを示す図である。
【図3】図2の冷媒サイクルの高負荷時におけるp−h線図である。
【図4】図2の冷媒サイクルの低負荷時におけるp−h線図である。
【図5】本発明における過熱度制御の熱負荷条件と過熱度の関係を示す図である。
【符号の説明】
10 多段圧縮式ロータリーコンプレッサ
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
154 ガスクーラ
156 膨張弁
157 エバポレータ
158 レシーバータンク
159A 温度センサ
159B 圧力センサ
160 中間熱交換器
161 車室内温度センサ
162 日射センサ
163 外気温センサ
171 制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a refrigerant cycle device in which a compressor, a gas cooler, a throttle device, and an evaporator are sequentially connected in a ring shape, and a high-pressure side is operated at a supercritical pressure.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, a car air conditioner that air-conditions the interior of an automobile has a refrigerant cycle (refrigerant circuit) in which a rotary compressor (compressor), a gas cooler, an intermediate heat exchanger, a throttle means (expansion valve, etc.), an evaporator, and the like are sequentially connected and connected in a ring shape. ) Is configured. Refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the rotary compressor, and is compressed by the operation of the rollers and the vanes to become high temperature and high pressure refrigerant gas. After flowing into the gas cooler through the sound deadening chamber and radiating heat, the intermediate heat exchanger exchanges heat with the low-pressure side refrigerant, and is then throttled by the throttle means and supplied to the evaporator. Then, the refrigerant evaporates, and at that time, absorbs heat from the surroundings to exert a cooling function to air-condition the vehicle interior.
[0003]
[Problems to be solved by the invention]
Here, in recent years, in order to deal with global environmental problems, even in this type of refrigerant cycle of a car air conditioner or the like, a natural refrigerant such as that disclosed in Japanese Patent Publication No. 2 Attempts have been made to use (carbon dioxide) as a refrigerant and operate at a supercritical pressure on the high pressure side, but conventionally it is assumed that a receiver tank is provided after the evaporator and the liquid refrigerant is stored in the receiver tank. As described above, the cooling capacity (refrigeration capacity) is controlled by adjusting the amount of the refrigerant in the receiver tank.
[0004]
That is, since the opening degree of the throttle means (expansion valve) is adjusted by the amount of the refrigerant stored in the receiver tank, for example, when the heat load is high, the opening degree of the throttle means is considered to be slightly throttled. In the evaporator, the refrigerant becomes almost completely gaseous from the gas / liquid two-phase mixture. Therefore, the low-pressure refrigerant flowing into the intermediate heat exchanger cannot sufficiently cool the high-pressure refrigerant. As a result, the temperature of the refrigerant at the inlet of the throttle means increases, and the cooling capacity decreases, so that a larger amount of refrigerant circulation is required to obtain the required cooling capacity, and the power consumption of the compressor increases. .
[0005]
As described above, when the cooling capacity is controlled by adjusting the liquid amount of the refrigerant in the receiver tank, it is difficult to always maintain the refrigeration capacity of the evaporator in an optimal state, and as a result, the cooling capacity of the evaporator is reduced. However, there is a problem that the temperature decreases.
[0006]
The present invention has been made to solve such a conventional technical problem, and has an object to improve the cooling capacity of an evaporator in a refrigerant cycle device in which a high pressure side is operated at a supercritical pressure.
[0007]
[Means for Solving the Problems]
That is, in the present invention, the degree of opening of the throttling means is adjusted based on the heat load condition, and the degree of superheat at the evaporator outlet side is controlled. For example, when the heat load is high as in claim 2, the degree of superheat at the evaporator outlet side is reduced. By making it smaller and increasing it when the heat load is low, the difference in the enthalpy of the refrigerant in the evaporator becomes large, and the cooling capacity in the evaporator can be maximized.
[0008]
As a result, the refrigerating capacity of the evaporator can be constantly maintained in an optimum state even when the heat load condition changes.
[0009]
In particular, when the heat load is high, the refrigeration capacity can be increased without increasing the amount of circulating refrigerant, so that the coefficient of performance of the compressor can be improved.
[0010]
In the invention of claim 3, in addition to the above, a receiver tank for temporarily storing the refrigerant sucked into the compressor is provided, and the refrigerant flowing out of the evaporator and passing through the intermediate heat exchanger is caused to flow into the receiver tank. The low-temperature refrigerant that has flowed out flows into the intermediate heat exchanger without passing through the receiver tank, so that the refrigerant that has flown out of the gas cooler can be more effectively cooled. As a result, the cooling capacity of the evaporator can be further improved.
[0011]
According to the fourth aspect of the present invention, since a CO 2 refrigerant is used in addition to the above-mentioned inventions, it is possible to contribute to solving environmental problems.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a vertical sectional side view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10 having first and second rotary compression elements as an embodiment of a compressor used in a refrigerant cycle device of the present invention.
[0013]
That is, reference numeral 10 denotes an internal intermediate pressure type multi-stage compression type rotary compressor using CO 2 (carbon dioxide) as a refrigerant. The compressor 10 has a cylindrical hermetic container 12 made of a steel plate and an inner space above the hermetic container 12. The electric element 14 disposed and accommodated, and the first rotary compression element 32 (first stage) and the second rotary compression element 34 which are disposed below the electric element 14 and driven by the rotation shaft 16 of the electric element 14. (The second stage).
[0014]
The closed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) 12B that closes an upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring omitted) 20 for supplying electric power to the electric element 14 is mounted in the mounting hole 12D. Have been.
[0015]
The electric element 14 includes a stator 22 annularly mounted along the inner peripheral surface of the upper space of the closed casing 12, and a rotor 24 inserted inside the stator 22 with a slight space therebetween. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center.
[0016]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound around teeth of the laminated body 26 by a direct winding (concentrated winding) method. The rotor 24 is formed of a laminated body 30 of electromagnetic steel sheets similarly to the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0017]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38, a lower cylinder 40 disposed above and below the intermediate partition plate 36, The upper and lower rollers 46 and 48 are eccentrically rotated by upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees in the inside 40, and the upper and lower cylinders 38 The vanes 50 and 52 partitioning the inside of the chamber 40 into a low-pressure chamber side and a high-pressure chamber side, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed to also serve as a bearing for the rotating shaft 16. It is composed of an upper support member 54 and a lower support member 56 as support members.
[0018]
On the other hand, the upper support member 54 and the lower support member 56 have a suction passage 60 (the upper suction passage is not shown) communicating with the insides of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. Then, discharge muffling chambers 62 and 64 formed by closing the recess with the upper cover 66 and the lower cover 68 are provided.
[0019]
The discharge muffling chamber 64 and the inside of the closed container 12 are communicated with each other by a communication passage penetrating the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate-pressure refrigerant compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the closed container 12.
[0020]
Further, an upper cover 66 that closes an upper opening of the discharge muffling chamber 62 that communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 divides the inside of the sealed container 12 into the discharge muffling chamber 62 and the electric element 14 side. .
[0021]
As the refrigerant, the above-mentioned CO 2 (carbon dioxide) which is a natural refrigerant in consideration of flammability and toxicity is used as the refrigerant, and the lubricating oil is, for example, mineral oil (mineral oil), Existing oils such as alkyl benzene oil, ether oil, ester oil, PAG (polyalkyl glycol) and the like are used.
[0022]
On the side surface of the container body 12A of the closed container 12, suction passages 60 (the upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge muffling chamber 62, and the upper side of the upper cover 66 (the lower end of the electric element 14 The sleeves 141, 142, 143, and 144 are respectively welded and fixed at positions corresponding to (substantially corresponding positions). One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the closed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 and communicates with the inside of the closed container 12.
[0023]
One end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introduction pipe 94 is connected to a lower side of a receiver tank 158 described later. A coolant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the coolant introduction pipe 96 communicates with the discharge muffling chamber 62.
[0024]
The receiver tank 158 is a tank for performing gas-liquid separation of the refrigerant sucked into the compressor 10 and is attached to a bracket 147 welded and fixed to an upper side surface of the container main body 12A of the closed container 12.
[0025]
Next, FIG. 2 shows a refrigerant cycle in the case where the present invention is applied to a car air conditioner (air conditioner) for cooling the interior of an automobile, and the compressor 10 described above uses the refrigerant cycle of the car air conditioner shown in FIG. Make up part. That is, the refrigerant discharge pipe 96 of the compressor 10 is connected to the inlet of the gas cooler 154. The pipe exiting the gas cooler 154 reaches an electronic expansion valve 156 as a throttle means via the intermediate heat exchanger 160.
[0026]
The outlet of the expansion valve 156 is connected to the inlet of the evaporator 157, and the outlet of the evaporator 157 reaches the receiver tank 158 via the intermediate heat exchanger 160. The outlet of the receiver tank 158 is connected to the refrigerant introduction pipe 94. A control device 171 controls (adjusts) the rotation speed of the electric element 14 of the compressor 10 and the opening degree of the expansion valve 156. The control device 171 outputs the output of the temperature sensor 159A that detects the refrigerant temperature at the outlet side of the evaporator 157, and the evaporator. 157, a pressure sensor 159B for detecting the refrigerant pressure on the outlet side, a vehicle temperature sensor 161 for detecting the temperature of the vehicle interior (not shown), a solar radiation sensor 162 for detecting the amount of solar radiation coming into the vehicle interior, and an outside air temperature. The output of the outside temperature sensor 163 is also input.
[0027]
The operation of the above configuration will now be described with reference to the ph diagram (Mollier diagram) of FIG. When the control device 171 supplies electricity to the stator coil 28 of the electric element 14 of the compressor 10 via the terminal 20 and wiring (not shown), the electric element 14 starts and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 eccentrically rotate inside the upper and lower cylinders 38 and 40.
[0028]
Thereby, the low pressure sucked into the low pressure chamber side of the cylinder 40 from the suction port (not shown) via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56 (the state indicated by the solid line A in FIG. 3). Is compressed by the operation of the rollers 48 and the vanes 52 to have an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the closed container 12 from the high pressure chamber side of the lower cylinder 40 through a communication passage (not shown). Thereby, the inside of the sealed container 12 has an intermediate pressure.
[0029]
The intermediate-pressure refrigerant gas in the sealed container 12 exits from the sleeve 144, passes through a refrigerant introduction pipe 92 and a suction port (not shown) formed in the upper support member 54, and passes from a suction port (not shown) to the upper cylinder 38. Is sucked into the low-pressure chamber. The sucked intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the rollers 46 and the vanes 50 to become a high-pressure and high-temperature refrigerant gas, and is formed on the upper support member 54 from the high-pressure chamber through a discharge port (not shown). The refrigerant is discharged from the refrigerant discharge pipe 96 to the outside through the discharge muffling chamber 62. At this time, the refrigerant is compressed to an appropriate supercritical pressure (state B shown by a solid line in FIG. 3).
[0030]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, where it is radiated by air cooling or water cooling, and then passes through the intermediate heat exchanger 160. The refrigerant there is further cooled by the low-pressure side refrigerant (state C in FIG. 3), and then reaches the expansion valve 156.
[0031]
The refrigerant is converted into a gas / liquid two-phase mixture as indicated by a solid line D in FIG. 3 due to a pressure drop in the expansion valve 156, and flows into the evaporator 157 in that state. Then, the refrigerant evaporates. At that time, the refrigerant absorbs heat from the air circulated in the vehicle compartment, exerts a cooling function, cools the interior of the vehicle, and then flows out (state E in FIG. 3). Then, it passes through the intermediate heat exchanger 160, where it is heated by the refrigerant on the high pressure side, and then reaches the receiver tank 158. In the receiver tank 158, the gas and liquid are separated, and a cycle in which only the gas refrigerant is sucked into the first rotary compression element 32 of the compressor 10 from the refrigerant introduction pipe 94 (state A in FIG. 3) is repeated.
[0032]
The control device 171 controls the cooling speed (refrigeration capacity) of the refrigerant cycle by controlling the number of revolutions of the electric element 14 of the compressor 10 based on the outputs of the vehicle interior temperature sensor 161, the solar radiation sensor 162, and the outside air temperature sensor 163. Control is performed to adjust and maintain the vehicle interior at the set temperature.
[0033]
Further, the controller 171 adjusts the opening degree of the expansion valve 156 based on the refrigerant temperature and pressure at the outlet side of the evaporator 157 detected by the temperature sensor 159A and the pressure sensor 159B. In this case, control device 171 estimates the heat load based on the outputs of vehicle interior temperature sensor 161, solar radiation sensor 162, and outside air temperature sensor 163, and outputs the estimated heat load and the outputs of temperature sensor 159A and pressure sensor 159B. , The valve opening of the expansion valve 156 is adjusted. For example, when it is estimated that the heat load is high (high load) based on the outputs of the vehicle interior temperature sensor 161, the solar radiation sensor 162, and the outside air temperature sensor 163, the control device 171 determines the degree of superheat on the exit side of the evaporator 157 (see FIG. The state of the expansion valve 156 is slightly opened so that the state of E shown by a solid line in FIG. 3) becomes as small as possible.
[0034]
Here, when the valve opening of the expansion valve 156 is slightly throttled at a high load and the degree of superheat of the evaporator 157 is increased as indicated by a broken line E ′ in FIG. 3, the refrigerant in the evaporator 157 contains gas / liquid. From a two-phase mixed state to a gas state almost completely. Therefore, in the intermediate heat exchanger 160, the refrigerant on the low pressure side hardly evaporates, and the temperature of the refrigerant on the low pressure side also increases, so that the refrigerant on the high pressure side cannot be sufficiently cooled. In particular, when the outside air temperature is high, the temperature of the refrigerant on the low-pressure side is more likely to rise, so that the temperature difference between the high-pressure side and the low-pressure side in the intermediate heat exchanger 160 is reduced, and heat exchange cannot be performed sufficiently.
[0035]
On the other hand, when the degree of superheat is reduced, the refrigerant does not completely change from a gas / liquid two-phase mixture state to a gas state in the evaporator 157. The liquid refrigerant evaporates in the intermediate heat exchanger 160, and at this time, cools the high-pressure refrigerant. For this reason, in the intermediate heat exchanger 160, the low-pressure side refrigerant temperature tends to rise, is maintained low, and the high-pressure side refrigerant can be sufficiently cooled.
[0036]
As a result, when the degree of superheat is reduced, the discharge temperature of the refrigerant compressed by the compressor can be reduced (state B shown by a solid line in FIG. 3). As a result, the temperature of the refrigerant at the inlet of the expansion valve 156 decreases, and the enthalpy difference at the evaporator 157 increases.
[0037]
This state will be described with reference to FIG. That is, when the degree of superheat at the outlet side of the evaporator 157 is increased at a high load, the refrigerant discharged from the compressor 10 is in the state of B ′ shown by a broken line in FIG. 3, and the refrigerant flowing out of the expansion valve 156 and flowing into the evaporator 157 is The state becomes D 'shown by a broken line in FIG. Then, the cooling capacity Qe ′ of the evaporator 157 in this case becomes Qe ′ = Δie ′ × Gr ′ (Δie ′ is the enthalpy difference between E ′ and D ′, and Gr ′ is the refrigerant flow rate).
[0038]
On the other hand, the cooling capacity Qe when the degree of superheat is reduced as described above is Qe = Δie × Gr (Δie is the enthalpy difference between E and D, and Gr is the refrigerant flow rate). As is clear from this figure, Δie indicated by the solid line is larger than Δie ′ indicated by the broken line, so that the cooling capacity Qe is also larger than Qe ′ when the degree of superheat is increased, and the cooling capacity of the evaporator 157 is reduced. It can be seen that is improved.
[0039]
On the other hand, when the control device 171 estimates that the heat load is low (including the medium load and the low load) based on the outputs of the vehicle interior temperature sensor 161, the solar radiation sensor 162, and the outside air temperature sensor 163, the control device 171 causes the evaporator 157 to operate. The opening degree of the valve is slightly reduced so that the degree of superheat at the outlet side (state A shown by a solid line in FIG. 4) becomes a large value of about 5 deg.
[0040]
Here, when the superheat degree of the evaporator 157 is small as indicated by a broken line E ′ in FIG. Since the temperature of the refrigerant in the inside becomes high, heat exchange with the air is not sufficiently performed, and the cooling capacity is reduced.
[0041]
FIG. 5 shows the above superheat control. That is, when the heat load estimated based on the outputs of the vehicle interior temperature sensor 161, the solar radiation sensor 162, and the outside air temperature sensor 163 is low, the control device 171 throttles the expansion valve 156 so that the degree of superheat increases. On the other hand, when the load is high, the expansion valve 156 is slightly opened so that the degree of superheat is reduced.
[0042]
As described above, when it is estimated that the heat load is high based on the outputs of the vehicle interior temperature sensor 161, the solar radiation sensor 162, and the outside air temperature sensor 163, the heat load is reduced so that the degree of superheat at the outlet side of the evaporator 157 is reduced. When it is estimated that the air temperature is low, the enthalpy difference of the refrigerant in the evaporator 157 is increased by controlling the opening degree of the expansion valve 156 so that the degree of superheat on the outlet side of the evaporator 157 is increased. You will be able to get the most out of your abilities.
[0043]
As a result, the cooling capacity of the evaporator 157 can be maintained in an optimum state under all heat load conditions.
[0044]
Further, since the refrigerant that has exited from the evaporator 157 and has passed through the intermediate heat exchanger 160 is allowed to flow into the receiver tank 158, the low-temperature refrigerant that has exited from the evaporator 158 can be passed through the intermediate heat exchanger And the refrigerant flowing out of the gas cooler can be more effectively cooled. This makes it possible to further improve the cooling capacity.
[0045]
In this embodiment, the heat load is estimated by combining the outputs of the vehicle interior temperature sensor 161, the solar radiation sensor 162, and the outside air temperature sensor 163. However, the present invention is not limited to this. Alternatively, the present invention is effective even when the heat load is estimated from the individual outputs of the outside air temperature sensor.
[0046]
【The invention's effect】
As described in detail above, according to the present invention, in a refrigerant cycle device in which a compressor, a gas cooler, a throttle device, and an evaporator are sequentially connected in a ring shape, and the high pressure side is operated at a supercritical pressure, opening of the throttle device based on a heat load condition. The degree of superheat is controlled by controlling the degree of superheat on the outlet side of the evaporator. The difference in enthalpy of the refrigerant in the evaporator increases, and the cooling capacity in the evaporator can be maximized.
[0047]
This makes it possible to always maintain the refrigerating capacity of the evaporator in an optimum state even when the heat load condition changes.
[0048]
In particular, when the heat load is high, the refrigeration capacity can be increased without increasing the amount of circulating refrigerant, so that the coefficient of performance of the compressor can be improved.
[0049]
In the invention of claim 3, in addition to the above, a receiver tank for temporarily storing the refrigerant sucked into the compressor is provided, and the refrigerant flowing out of the evaporator and passing through the intermediate heat exchanger is caused to flow into the receiver tank. The low-temperature refrigerant that has flowed out flows into the intermediate heat exchanger without passing through the receiver tank, so that the refrigerant that has flown out of the gas cooler can be more effectively cooled. As a result, the cooling capacity of the evaporator can be further improved.
[0050]
According to the fourth aspect of the present invention, since a CO 2 refrigerant is used in addition to the above-mentioned inventions, it is possible to contribute to solving environmental problems.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a multi-stage compression type rotary compressor constituting a refrigerant cycle of the present invention.
FIG. 2 is a diagram showing a refrigerant cycle of the car air conditioner according to the embodiment of the present invention.
FIG. 3 is a ph diagram of the refrigerant cycle of FIG. 2 at a high load.
4 is a ph diagram of the refrigerant cycle of FIG. 2 at a low load.
FIG. 5 is a diagram showing a relationship between a heat load condition of superheat control and a superheat in the present invention.
[Explanation of symbols]
10 Multi-stage rotary compressor 32 First rotary compression element 34 Second rotary compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 154 Gas cooler 156 Expansion valve 157 Evaporator 158 Receiver tank 159A Temperature sensor 159B Pressure sensor 160 Intermediate heat exchange 161 Car interior temperature sensor 162 Solar radiation sensor 163 Outside air temperature sensor 171 Control device

Claims (4)

コンプレッサ、ガスクーラ、絞り手段及びエバポレータを順次環状に接続し、高圧側が超臨界圧力で運転される冷媒サイクル装置であって、
熱負荷条件に基づいて前記絞り手段の開度を調整し、前記エバポレータ出口側の過熱度を制御することを特徴とする超臨界冷媒サイクル装置。
A compressor, a gas cooler, a restrictor and an evaporator are sequentially connected in a ring shape, and a high-pressure side is a refrigerant cycle device operated at a supercritical pressure,
A supercritical refrigerant cycle device, wherein the degree of opening of the throttling means is adjusted based on heat load conditions, and the degree of superheat at the evaporator outlet side is controlled.
熱負荷が高い場合は前記エバポレータ出口側の過熱度を小さくし、熱負荷が低い場合には大きくとることを特徴とする請求項1の超臨界冷媒サイクル装置。The supercritical refrigerant cycle device according to claim 1, wherein the superheat degree at the evaporator outlet side is reduced when the heat load is high, and is increased when the heat load is low. 前記ガスクーラを出た冷媒と前記エバポレータを出た冷媒とを熱交換させるための中間熱交換器と、前記コンプレッサに吸い込まれる冷媒を一旦貯溜するレシーバータンクとを備え、前記エバポレータから出て前記中間熱交換器を経た冷媒を前記レシーバータンクに流入させることを特徴とする請求項1又は請求項2の超臨界冷媒サイクル装置。An intermediate heat exchanger for exchanging heat between the refrigerant that has exited the gas cooler and the refrigerant that has exited the evaporator; and a receiver tank that temporarily stores the refrigerant sucked into the compressor. 3. The supercritical refrigerant cycle device according to claim 1, wherein the refrigerant that has passed through the exchanger flows into the receiver tank. CO冷媒を使用することを特徴とする請求項1、請求項2又は請求項3の超臨界冷媒サイクル装置。4. The supercritical refrigerant cycle device according to claim 1, wherein a CO 2 refrigerant is used.
JP2002163296A 2002-06-04 2002-06-04 Supercritical refrigerant cycle equipment Pending JP2004011958A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002163296A JP2004011958A (en) 2002-06-04 2002-06-04 Supercritical refrigerant cycle equipment
EP03011552A EP1369648A3 (en) 2002-06-04 2003-05-21 Supercritical refrigerant cycle system
KR10-2003-0035461A KR20030095240A (en) 2002-06-04 2003-06-03 Supercritical Refrigerant Cycle Device
CNA031363911A CN1470824A (en) 2002-06-04 2003-06-04 Super-criticial cold-catalyst circulation apparatus
US10/453,936 US20040020223A1 (en) 2002-06-04 2003-06-04 Supercritical refrigerant cycle system
US11/029,392 US7143595B2 (en) 2002-06-04 2005-01-06 Supercritical refrigerant cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163296A JP2004011958A (en) 2002-06-04 2002-06-04 Supercritical refrigerant cycle equipment

Publications (1)

Publication Number Publication Date
JP2004011958A true JP2004011958A (en) 2004-01-15

Family

ID=30431819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163296A Pending JP2004011958A (en) 2002-06-04 2002-06-04 Supercritical refrigerant cycle equipment

Country Status (1)

Country Link
JP (1) JP2004011958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108794A1 (en) 2012-01-17 2013-07-25 サントリーホールディングス株式会社 Novel glycosyltransferase gene and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108794A1 (en) 2012-01-17 2013-07-25 サントリーホールディングス株式会社 Novel glycosyltransferase gene and use thereof

Similar Documents

Publication Publication Date Title
US7143595B2 (en) Supercritical refrigerant cycle system
JP4219198B2 (en) Refrigerant cycle equipment
JP4208620B2 (en) Refrigerant cycle equipment
EP1486742A1 (en) Refrigerant cycle apparatus
JP2004011959A (en) Supercritical refrigerant cycle equipment
JP4039921B2 (en) Transcritical refrigerant cycle equipment
EP1426710B1 (en) Refrigerant cycling device
JP2004028485A (en) Co2 cooling medium cycle device
JP2004011957A (en) Supercritical refrigerant cycle equipment
JP2004011958A (en) Supercritical refrigerant cycle equipment
JP2004028492A (en) Cooling medium circuit using co2 cooling medium
JP2004251513A (en) Refrigerant cycle device
JP3986338B2 (en) Refrigerant circuit using inverter-controlled compressor
JP2005127215A (en) Transition critical refrigerant cycle device
JP2004108687A (en) Transition critical refrigerant cycle device
JP2004251492A (en) Refrigerant cycle device
JP2004251514A (en) Refrigerant cycle device
JP2004308489A (en) Refrigerant cycle apparatus
JP4036772B2 (en) Transcritical refrigerant cycle equipment
JP2003097477A (en) Sealed rotary compressor
JP2004170043A (en) Cooling device
JP2004270517A (en) Compressor and refrigerant cycle device
JP2004268771A (en) Air conditioner for vehicle
JP3625803B2 (en) Refrigerant circuit using CO2 refrigerant
JP2004332693A (en) Refrigerant cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Effective date: 20060424

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060904