JP2004009768A - ソリッドタイヤ - Google Patents
ソリッドタイヤ Download PDFInfo
- Publication number
- JP2004009768A JP2004009768A JP2002161943A JP2002161943A JP2004009768A JP 2004009768 A JP2004009768 A JP 2004009768A JP 2002161943 A JP2002161943 A JP 2002161943A JP 2002161943 A JP2002161943 A JP 2002161943A JP 2004009768 A JP2004009768 A JP 2004009768A
- Authority
- JP
- Japan
- Prior art keywords
- polyurethane foam
- polyol
- solid tire
- weight
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Tires In General (AREA)
Abstract
【課題】所要分子量以上のポリオールと、ジフェニルメタンジイソシアネート(MDI)と、所要の架橋剤とを用いることで、中空ケーシング内に充填されるポリウレタンフォームの密度および反発弾性率を制御し、最終的に構造的な強度および転がり抵抗が好ましい値とされたソリッドタイヤを提供する。
【解決手段】ゴム製の中空ケーシング14の中空部14aにポリウレタンフォーム原料を充填・発泡硬化させてポリウレタンフォーム12としたソリッドタイヤにおいて、分子量5000以上のポリオールと、MDIと、官能基数3以上の架橋剤とを使用することで、前記フォーム12の充填時密度が350kg/m3以上で、所定測定法による転がり抵抗が2000g以下に設定される。
【選択図】 図1
【解決手段】ゴム製の中空ケーシング14の中空部14aにポリウレタンフォーム原料を充填・発泡硬化させてポリウレタンフォーム12としたソリッドタイヤにおいて、分子量5000以上のポリオールと、MDIと、官能基数3以上の架橋剤とを使用することで、前記フォーム12の充填時密度が350kg/m3以上で、所定測定法による転がり抵抗が2000g以下に設定される。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
この発明は、ゴム製の中空ケーシング内にポリウレタンフォームを充填してなるソリッドタイヤに関し、更に詳細には、重量物を載置し得る圧縮強度を有すると共に、その反発弾性率を制御することで任意の転がり抵抗を発現し得るようにしたソリッドタイヤに関するものである。
【0002】
【従来の技術】
一般に身体障害者や高齢者向けの電動車椅子、容器入り飲料等の重量物用の運搬カートおよびゴルフカート等に装着されるタイヤは、空気の漏出がなく、耐久性に優れると共に、メンテナンスが不要であることが要求される。そして前述の要求に応えるため、前記タイヤとしてその内部が中実構造となっている、所謂ソリッドタイヤが好適に採用されている。
【0003】
前記ソリッドタイヤとしては、一般に前記中実部分に弾性ゴム等を主材料としてその外形と共に一体成形したものや、汎用のニューマチックタイヤ(以下、空気圧タイヤと云う)の中空部に別途成形した輪状の弾性ゴム等の弾性部材を嵌め合わせたものが知られている。
【0004】
【発明が解決しようとする課題】
しかし、前記ソリッドタイヤの中実部素材である弾性ゴム等は、重量物等に対する耐荷重性を満足する強度を達成するために高比重とされ、この高比重故に該タイヤ重量が増大してしまう欠点が指摘される。この他、タイヤ重量の増加により、取り扱い性、乗り心地および転がり抵抗等の悪化も大きな問題となっている。また空気圧タイヤの場合、該タイヤの中空部に対して別途成形した弾性部材を嵌合して製造するため、該弾性部材を必要とされる該タイヤのサイズ毎に準備する必要等の問題があり、製造コストが増大する欠点があった。
【0005】
【発明の目的】
この発明は、従来のソリッドタイヤが有する前記問題に鑑み、これを好適に解決するべく提案されたものであって、ポリオールとして分子量5000以上の物質を使用すると共に、イソシアネートとしてジフェニルメタンジイソシアネート(MDI)を使用し、かつ3つ以上の官能基を有する架橋剤を用いることで、中空ケーシング内に充填されるポリウレタンフォームの反発弾性率等の物性値を所望の値に制御することで、最終的に得られるソリッドタイヤの、例えば圧縮強度等の構造的な強度と、転がり抵抗とを任意の好ましい値とし得るソリッドタイヤを提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を克服し、所期の目的を達成するため本願の発明に係るソリッドタイヤは、ゴム製の中空ケーシングと、その中空部に少なくとも1種類のポリオール、イソシアネートおよび各種添加物からなるポリウレタンフォーム原料を充填して発泡硬化させることでポリウレタンフォームとしたソリッドタイヤにおいて、前記ポリウレタンフォームは、ポリオールとして分子量5000以上の物質を使用すると共に、イソシアネートとしてジフェニルメタンジイソシアネート(MDI)を使用し、
前記添加物の1つである架橋剤として、官能基数が3以上の物質を全ポリオール100重量部に対して、0.1〜15重量部、好ましくは1〜15重量部添加すること作製され、
これにより、前記中空ケーシングに充填されたポリウレタンフォームの密度が350kg/m3以上で、JISK6302に規定される走行耐久試験機による楕行法で測定される転がり抵抗が2000g以下に設定されていることを特徴とする。
【0007】
【発明の実施の形態】
次に、本発明に係るソリッドタイヤにつき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。本願の発明者は、タイヤケーシングの中空部に、ポリオールとして分子量5000以上の物質を、イソシアネートとしてジフェニルメタンジイソシアネート(以下、MDIと云う)を夫々使用すると共に、添加物の1つである架橋剤として3官能基以上であり、該ポリオール100重量部に対して0.1〜15重量部、好ましくは1〜15重量部となる物質とその他添加物とを添加して得られるポリウレタンフォーム原料を充填することで、ソリッドタイヤとして充分に機能する範囲の構造的な強度等を発現する密度とし得ると共に、好ましい転がり抵抗を発現し得る反発弾性率を達成し得るポリウレタンフォームを内部構造とするソリッドタイヤが得られることを知見したものである。
【0008】
本発明の好適な実施例に係るソリッドタイヤは、図1に示す如く、身体障害者や高齢者向けの電動車椅子等に好適に使用される小型中実の、所謂ノンパンクタイヤであり、ゴムを材質とすると共に、該ソリッドタイヤの外形をなす環状の中空ケーシング14と、該ケーシング14内の中空部14aに所要のポリウレタンフォーム原料を所要のオーバーパック率で充填・発泡後にキュアさせることで、所要の密度および反発弾性率を発現するポリウレタンフォーム12とから構成される。
【0009】
前記中空ケーシング14を構成する材質は、従来の空気圧タイヤと同様のゴム組成物からなり、その外形状が環状でかつ断面溝形であり、取り付けられるべきホイール16のリム16aに密接するビード部14bや、該ビート部内部に周方向に埋設されたビードフィラ(図示せず)等の構造を有している。
【0010】
前記中空ケーシング14内に充填されるポリウレタンフォーム原料は、所要のポリオールおよびイソシアネート等を重合反応させることで得られる反応生成物であり、該ポリオールおよびイソシアネートの種類等を換えることにより、様々な物性を発現するものである。そして前記ポリウレタンフォーム原料は、充填された前記中空ケーシング14内で発泡硬化し、内部構造をなすポリウレタンフォーム12となる。前記ポリウレタンとは、ウレタン結合を有するポリマーを指し、該ウレタン結合はイソシアネート基を有するイソシアネートと、水酸基などの活性水素を有するポリオール等との付加反応により生成される。
【0011】
本発明に係るソリッドタイヤ10は、該ソリッドタイヤ10自体に掛かる荷重に抗するべく、前記中空ケーシング14に充填されたポリウレタンフォーム12が350kg/m3以上の密度を示すと共に、最終的に得られるソリッドタイヤ10が従来のニューマチックタイヤと略同等の性能を示す2000g以下の任意の転がり抵抗を発現する反発弾性率を示すように構成される。
【0012】
(密度について)
前記ポリウレタンフォーム12が発現すべき密度については、該ポリウレタンフォーム12が充填されたソリッドタイヤ10が発現するべき、剛性および耐久性等に代表される構造的な強度によって決定される。この構造的な強度は、前記密度の他に、硬度および中空ケーシング14に対するポリウレタンフォーム原料充填時のオーバーパック率等に大きく影響される。
【0013】
前記中空ケーシング14に対して、所要のオーバーパック率により充填された際のポリウレタンフォーム12の密度は、前述の如く、ソリッドタイヤ10の使用に際して要求される構造的な強度と大きく関連している。このため本発明においては、前記密度をソリッドタイヤ10の構造的な強度を評価する指標として採用している。そして前記ソリッドタイヤ10の構造的な強度は、前記密度が向上すればそれに伴って向上する物性値である。
【0014】
前記オーバーパック率は、前記ポリウレタンフォーム12をなすポリウレタンフォーム原料が中空ケーシング14内に充填される度合いを示し、その値が1の時は通常のフリーライズ発泡と同じである。この値は、基本的にイソシアネートの種類により決定され、本発明が採用するMDIの場合、2.4程度まで可能であると経験的に分かっている。そしてこのオーバーパックによって、ソリッドタイヤ10が発現する密度は、前記ポリウレタンフォーム12自体が発現する数値以上のものとなる。なお、前記オーバーパック率は、1.5程度に設定される。この程度の値が、製造上好適だからである。
【0015】
前記ソリッドタイヤ10に要求される構造的な強度は、使用用途や被載置物の重量等により変動するものであるが、本発明が目的とする、平均して150kg程度の重量を有する電動車椅子を支えるべく、使用される4本(すなわち荷重40kg程度/1本)のソリッドタイヤ10が必要とする充填されたポリウレタンフォーム12の密度は、以下の理由から350kg/m3以上と設定した。なお、以下に記載されるソリッドタイヤ10としては、図3に示す如く、リム幅3インチ(76.2mm)、取付リム(ホイール)径4インチ(100mm)の16aを有するホイール16に対して、ポリウレタンフォーム12が充填された中空ケーシング14が取り付けられて、その外形が260mm、最大幅が85mmとなる寸法のものが使用される。
【0016】
本発明においては、前記ソリッドタイヤ10に要求される構造的な強度を、所定の荷重を掛けた際の静荷重たわみ量を測定することで評価する。具体的には、図4に示す如く、前記ソリッドタイヤ10の回転心に392N(40Kg(本実施例における1本当たりのソリッドタイヤに掛かると推定した荷重([0015]参照)))の荷重を掛け、その際の該軸心部分の下方へ対する変位量が静荷重たわみ量として測定される。従って、80mm((タイヤ外形260mm−ホイール径100mm)/2)である前記ソリッドタイヤ10が、どの程度たわむかが測定されるものである。
【0017】
また、一般に前記電動車椅子用等のソリッドタイヤ10を考えた場合、前述の荷重を支えて、結果として長距離を安定的に走行可能としなければならない。そこで前記長距離を、1000kmと定義し、該1000kmの耐久走行試験を行ない、該試験後において、その外観に異常がない、すなわち使用に耐え得る良好な結果を出したソリッドタイヤ10について、その静荷重たわみ量を測定・関連付けを行なった。その結果、図3に示すソリッドタイヤ10について、前記静荷重たわみ量が約8mm(80mmの10%)以下であれば、前述の1000kmに亘る走行を充分になし得ると分かった。ここで実施した、1000km耐久走行試験の結果等については、後述([0051])の実験例に記載する。
【0018】
前記静荷重たわみ量は、基本的に中空ケーシング14に充填された際のポリウレタンフォーム12が発現する構造的な強度が、一定以上であれば達成されると考えられる。前記構造的な強度は、前述の如く、充填されたポリウレタンフォーム12の密度、すなわちポリウレタンフォーム12自体の密度および中空ケーシング14へのオーバーパック率と、硬度とによって決定されるが、こで該硬度は、イソシアネートインデックスを通常に使用される100〜105程度とすることで、特に問題ない数値となる。この他、前記ポリオールとして、後述([0030])するサブポリオールを使用するようにしても、前記硬度の上昇が期待できる。
【0019】
従って、前記静荷重たわみ量が約8mm以下で表せる構造的な強度は、本発明においては、充填されたポリウレタンフォーム12の密度だけで決定されるものであり、その際の密度は350kg/m3であった(後述([0051])の実験例参照)。
【0020】
このソリッドタイヤ10充填時のポリウレタンフォーム12の密度は、前述の如く、該ポリウレタンフォーム12自体の密度と該ソリッドタイヤ10に充填する際のオーバーパック率とをかけた数値となる。前記オーバーパック率は、前述([0014])の如く、2.4程度を最大としているので、該ポリウレタンフォーム12自体に求められる密度は、少なくとも146kg/m3以上(350(kg/m3)/2.4)に設定されることになる。そしてこのこの数値は、本発明に係るポリウレタンフォーム12により達成可能であり、具体的にはイソシアネートとしてMDIを使用することでにより達成される。
【0021】
なお、前記構造的な強度は、フォーム体の評価に多用される25%圧縮強度で表した場合、700kPa以上で本発明に係るソリッドタイヤ10の構造的な強度が達成可能であることも分かっている。
【0022】
(反発弾性率について)
前記ポリウレタンフォーム12の反発弾性率と、ソリッドタイヤ10の転がり抵抗との関係は、従来使用されている空気圧タイヤにおける空気圧(kPa)と転がり抵抗との関係と同じである。すなわち通常の空気圧タイヤは、その内部の中空部に充填されている空気圧により転がり抵抗が決定されている。前記空気圧タイヤの場合、一般に前記転がり抵抗は、前記空気圧が高いほど低い数値となり、従来の空気圧タイヤでの常用空気圧である150〜250kPaにおいては、2000g以下の数値となるものであり、本発明に係るソリッドタイヤ10についても同様の転がり抵抗とすることが1つの指標とされている(図2参照)。
【0023】
本発明に係るソリッドタイヤ10は、前記転がり抵抗の値を、内部に充填されるポリウレタンフォーム12の反発弾性率を制御することにより、2000g以下の任意の数値とし得る。また空気圧についても、ソリッドタイヤ10を使用すべき地理的状況、例えば砂地またはアスファルトによって好適な数値が存在するが、該空気圧は本発明のソリッドタイヤ10においては、前記反発弾性率であるので、その制御は容易である。
【0024】
そして本発明において前記転がり抵抗は、JISK6302に規定される走行耐久試験機により、ソリッドタイヤ10の走行速度が25km/hから5km/hに低下するまでの楕行時間を用いる楕行法により測定される。そして本発明においては、図2に示す転がり抵抗−空気圧グラフに併記される反発弾性率により、その関係が明確化されている。すなわち、従来の空気圧タイヤの常用空気圧(150〜250kPa)の範囲内となる反発弾性率は、約60〜80%程度(転がり抵抗は2000g以下)であり、この数値は本発明に係るポリウレタンフォーム12により達成可能である。具体的には、使用される分子量5000以上のポリオールの使用、添加物の1つである架橋剤の官能基数を3以上とすると共に、その添加量を全ポリオール100重量部に対して0.1〜15重量部に設定することよって達成される。
【0025】
また前記反発弾性率は、前記ポリウレタンフォーム原料からオーバーパックを行なわず得られるポリウレタンフォーム12と、所定のオーバーパック率により該ポリウレタンフォーム12が充填されたソリッドタイヤ10とでは殆ど変化がない。従って、前記反発弾性率によって決定される転がり抵抗は、前記ソリッドタイヤ10のトレッドパターン等の動摩擦抵抗等の副次的要因を除外すれば、前述のポリウレタンフォーム原料の組成だけによって決定されるものである。
【0026】
前記イソシアネートとしては、その分子構造によりポリオールとの反応性が高く、かつ泡化反応に較べて樹脂化反応が優先的に起こるMDIが使用される。一般にMDIは、その分子構造が直鎖状であるため、ポリウレタンフォーム12の原料として好適に使用されるTDIのような一定角度をもって屈曲、すなわち立体的形状を有していない。このため反発弾性率の如き、3次元的な構造に起因する機械的強度には劣っている一方で、2次元的な構造に起因する機械的強度、例えば引張強度および引裂強度は向上する特徴を有している。またその分子構造上、ポリウレタン樹脂を得る主原料の1つであるポリオールとの反応性に富み、更に水との反応性が低いために樹脂化反応が泡化反応に較べて優勢である。このためミクロ構造的に細かい気泡が多く発生し、速やかに樹脂化するためその密度が高くなる特徴を有する。なお、この速やかな樹脂化により得られるポリウレタンフォーム12は、TDIを原料として得られるフォームに較べて、その内部セルが細かくかつ破泡がなされて高通気性を有する、といった特徴的な構造も有している。
【0027】
また前記MDIは、前述の如く、ポリオール等の他の原料と混合して得られるポリウレタンフォーム原料の粘性を高める作用や、発泡硬化、すなわち反応性を高める作用を与えるものである。この作用のため、前記ホイール16に嵌め込まれた中空ケーシング14内にポリウレタンフォーム原料を充填、殊に高いオーバーパック率をもって充填した際に、該原料の充填圧により該ホイール16および中空ケーシング14の間にできる僅かな隙間等から漏れ出すことはない。前記MDIを使用したポリウレタンフォーム原料が許容するオーバーパック率は、基本的に該ポリウレタンフォーム原料の反応性で決定され、前述の如く、最高で2.4程度まで設定可能である。従って、前記ポリウレタンフォーム12自体がフリーライズ発泡で発現する密度の2.4倍までは向上させることが可能である。一方、この数値を超えたオーバーパック率を適用する場合には、前述の如く、前記ポリウレタンフォーム原料の充填圧により、該原料がホイール16および中空ケーシング14の間から漏れ出すので留意が必要である。
【0028】
一方水酸基を2個以上有する化合物は一般にポリオールと呼ばれ、本発明において好適に使用可能なポリオールとしては、水酸基価5〜35、不飽和度0.07mmol/g以下のポリアルキレンポリオールが挙げられ、該ポリオールが1種類以上使用される。また本発明においては、前述の如く分子量が5000以上の各ポリオールが使用される。一般に分子量が大きくなると、その分反応性が低下してイソシアネート成分との反応による発泡硬化に支障が出ることが考えられるが、本発明の場合、該イソシアネートとして反応性が高いMDIが使用されるため問題とならない。
【0029】
前記ポリオールの物性については、前述の如く、水酸基価が5〜35の範囲内であり、かつ不飽和度が0.07mmol/g以下と低いものが好適である。前記水酸基価は、ポリオール1g当たりの反応に有効に作用する反応性水酸基の度合いであり、この値が5未満であると、粘度等の上昇により加工性等が低下し、また35を越えると反発弾性率を悪化させるので好ましくない。前記不飽和度は、所謂重合反応等を起こし得る結合端部の度合いであり、この値が低いほど純度の高いポリウレタン樹脂からなるフォームが得られる。従って、この不飽和度が高いと、MDIとの反応より形成されるウレタン結合数が減少し、樹脂化による密度向上が阻害されて低密度化してしまう。
【0030】
また、ポリウレタン樹脂の主原料であるメインポリオールとしては、前記ポリアルキレンポリオール以外に、例えばポリエステルポリオール、水酸基含有ポリジエン、付加重合ポリマーまたは縮重合ポリマー等の微粒子が分散したポリマーポリオール等のポリオールを、所謂サブポリオールを加えるようにしてもよい。殊に本発明に係るソリッドタイヤ10に充填されるポリウレタンフォーム12の場合、前記サブポリオールとしては、連泡化を進め、かつ硬度を向上させ得るグラフトポリオールが好適である。
【0031】
前記添加物としては、通常のポリウレタン樹脂の製造に使用される重合開始剤としての触媒、架橋剤および発泡剤、更に必要に応じて鎖延長剤、難燃剤または紫外線吸収剤、酸化防止剤、老化防止剤、充填剤、可塑剤、着色剤、防黴剤または抗菌剤等が挙げられ、これら各副原料が必要に応じて添加される。例えば鎖延長剤としては、ジエチルトルエンジアミン、ジメチルチオトルエンジアミンなどの多価アミン等が、前記難燃剤としては、トリス−ジクロロプロピルホスフェート、トリス−クロロエチルホスフェート、ジブロモネオペンチルアルコール、トリブロモネオペンチルアルコール等が、前記紫外線吸収剤としては、2−(2−ヒドロキシ−5−ターシャリーブチルフェニル)ベンゾトリアゾール、2’−(2’ヒドロキシ−3’,5’−ジターシャリーブチルフェニル)5クロロベンゾトリアゾール、ビス(2,2,6,6−テトラメチル−4−ピペリジン)セパケート、4−ベンゾイロキシ−2,2,6,6−テトラメチルピペリジン等が夫々挙げられる。
【0032】
前記触媒としては、従来公知の物質を使用することが可能であり、例えばジメチルシクロヘキシルアミン、N−メチルジシクロヘキシルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N−メチルモルフォリン、N−エチルモルフォリン、N−ジメチルベンジルアミン等の非反応型モノアミン、トリエチレンジアミン、テトラメチルヘキサメチレンジアミン、ビスジメチルアミノエチルエーテル、テトラメチルプロパンジアミン、ジメチルアミノエチルモルフォリン、テトラメチルエチレンジアミン、ジアゾビシクロウンデセン、2−メチル−1,4−ジアゾ(2,2,2)ビシクロオクタン等の非反応型ジアミン、ペンタメチルジエチレントリアミン、ペンタメチルジプロピレントリアミン等の非反応型トリアミン、ジメチルエタノールアミン、N−トリオキシエチレン−N,N−ジメチルアミン、N,N−ジメチル−N−ヘキサノールアミン等の反応型アミンまたはこれらの有機酸塩、1−メチルイミダゾール、2−メチルイミダゾール、1,2−ジメチルイミダゾール、2,4−ジメチルイミダゾール、1−ブチル−2−メチルイミダゾール等のイミダゾール化合物、スタナスオクトエート、スタナスオレエート、ジブチルチンジラウレート、ジブチルチンジマレエート、オクチル酸鉛等の有機金属化合物、2,4,6−トリス(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノアルキル)ヘキサヒドロ−S−トリアジン、酢酸カリウム、オクチル酸カリウム、2−エチルヘキサン酸カリウム等の3量化触媒が挙げられる。
【0033】
前記触媒の添加量は、基本的には従来公知のポリウレタン樹脂からなるフォームの製造に準じるものであり、その量は全ポリオールを100重量部とした際に該ポリオールに対して0.01〜10重量部に設定される。この添加量が10重量部以上となると、ポリオールとMDIとの反応性が過剰となり、最終的に得られるポリウレタンフォーム12の硬度が高くなる等の悪影響を及ぼす。この他、前述のポリオールとMDIとの反応が短時間に完了してしまい、原料系の混合・調整等が困難となり、実際の製造には適さなくなる点にも注意が必要である。
【0034】
前記架橋剤としては、反応によりポリウレタンフォーム12となるポリウレタン樹脂の一部となった際に、立体的、すなわち3次元的な構造をなす3以上の多官能基を有する、例えばジエタノールアミンまたはトリエタノールアミン等の物質が好適である。このような架橋剤の使用は、前記ポリオールと同様に、60%以上の反発弾性率を達成するための重要な要素の一つである。この他、最終的に得られるソリッドタイヤ10を、例えばBMX用等の高い衝撃を受ける用途に使用する場合には、該ソリッドタイヤ10に機械的強度を与えるべくポリウレタンフォーム12に対して、引張強度等の、所謂2次元的な機械的強度の向上を達成させる場合には、前述の3以上の多官能基を有する架橋剤に加えてエチレングリコールの如き、その分子構造が直線的、すなわち2次元的である架橋剤を使用するようにしてもよい。具体的には、エチレングリコール、プロピレングリコール、ブタンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類、ヘキサメチレンジアミン、ヒドラジン、ジエチルトルエンジアミン、ジエチレントリアミン等のアミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミノアルコール類か挙げられる。また、短分子量ポリエーテルポリオールは前記架橋剤類に、エチレンオキサイド、プロピレンオキサイドを付加させた、水酸基価200以上の物質が挙げられる。
【0035】
前記架橋剤の添加量は、その量が少なくとも全ポリオールを100重量部とした際に該ポリオールに対して0.1〜15重量部、好ましくは1〜15重量部の範囲に設定される。この添加量が0.1重量部未満であると、ポリオールの分子量を5000以上とした場合であっても、60%以上の反発弾性率の達成は困難となる。一方、前記架橋剤の添加量が15重量部以上となると、本来向上させるべき反発弾性率を悪化させる作用を示すため、注意が必要である。これは発泡剤として使用される水の添加量過多の場合も同じであるが、得られるポリウレタンフォーム12内のウレア基の濃度上昇に伴うハードセグメントおよびソフトセグメント間の良好な相分離が阻害され、これにより該ソフトセグメントの運動阻害が発生するためである。なお前記ポリオールとして、前記不飽和度が充分に低く、かつ分子量12,000と非常に高い物質を選択した場合には、前記架橋剤は必ずしも必要とされない。しかしこのような特殊なポリオールは、その製造が困難であるため実用的ではない。
【0036】
前記発泡剤としては、水、HCFC−141b、HFC−134a、HFC−245faまたはHFC−365mfc等のハロゲン化炭化水素、シクロペンタン、イソペンタン、ノルマルペンタン等の炭化水素類、ノナフロロブチルメチルエーテル、ノナフロロイソブチルメチルエーテル、ノナフロロブチルエチルエーテル、ノナフロロイソブチルエチルエーテル、ペンタフロロエチルメチルエーテルまたはヘプタフロロイソプロピルメチルエーテル等のハイドロフルオロカーボン類或いは液化炭酸ガス等が用いられる。これら発泡剤のうち、水が汎用性等の点で一番好ましい。
【0037】
前記水については、前述の如く、その添加量に上限([0035])がある。そしてその量は、経験的に全ポリオールを100重量部とした際に、該ポリオールに対して1重量部程度であることが知られている。なお発泡剤としては、水の他、各種有機系発泡剤も使用可能である。また前記水の添加量は少ない程、良好な密度および反発弾性率を発現し得る。
【0038】
前記整泡剤については、通常のポリウレタンフォームの製造にて通常使用されている物質が使用可能である。例えばジメチルシロキサン系、ポリエーテルジメチルシロキサン系またはフェニルメチルシロキサン系等の各種整泡剤が挙げられる。添加量は全ポリオールを100重量部とした際に該ポリオールに対して3重量部が上限とされる。また発泡具合が良好である場合には、添加する必要はない。
【0039】
本発明に係るソリッドタイヤ10は、▲1▼前述した各成分を従来公知の方法で秤量・予備攪拌を施してポリオール成分とすると共に、イソシアネート成分を注入機または攪拌機を使用して急速に攪拌混合してポリウレタンフォーム原料を得る。▲2▼予め準備されホイール16に取り付けられた中空ケーシング14内にすばやく注入、所定の密度を発現させるべく所要のオーバーパック率で連続的に充填する。▲3▼ターンテーブル等の使用により充填された該ポリウレタンフォーム原料を該ケーシング14の中空部14a内で均一に発泡硬化させる。▲4▼最終的にこれに所要温度による加熱を行ないキュアを施すことで得られる。なお前記ポリウレタンフォーム原料の充填方法として、反応射出成形法、所謂RIMを用いてもよい。
【0040】
【実験例】
以下に、本発明に係るソリッドタイヤの実験例を示す。このソリッドタイヤの各物性値測定用の試験用試料は、基本的に分子量5000以上のポリオール、MDIおよび3以上の官能基を有する架橋剤、触媒および発泡剤としての水等の添加物を、下記の各表に示す所定割合等で混合して得たポリウレタンフォーム原料を用いて、以下の▲1▼完成品(ソリッドタイヤ)および▲2▼ソリッドタイヤ内部に充填されるポリウレタンフォーム、に係る2種類のとして得られるものである。本実験例における各試験片の作製時に使用した各原料を以下に記す。また各表における原料組成についての数字は、全ポリオールを100重量部と設定し、これに対する重量部で記載した。
【0041】
(試験用試料)
▲1▼前記ポリウレタンフォーム原料を、フリーライズで発泡させて得られるポリウレタンフォーム
▲2▼前記ポリウレタンフォーム原料を、別途予めホイールに取り付けられると共に、その一部に該原料を注入すべき注入孔が設けられた加熱済み中空ケーシング(市販品:サイズ3.00−4(図3参照))内に所定のオーバーパック率ですばやく注入する。そして注入後に前記ポリウレタンフォーム原料の注入が完了した中空ケーシングをターンテーブル上で横倒しの状態で載置してホイール軸を軸心として回転させつつ1分間放置し、最終的に温度80℃、30分の条件でキュア炉にてキュアさせて得られる完成品
【0042】
そして得られた2種類の試験用試料につき、夫々以下に記す物性等を確認・測定した。
▲1▼ポリウレタンフォームの試験用試料から測定する各物性:
各実施例および比較例について、密度(kg/m3)および反発弾性率(%)を夫々測定した。
▲2▼ポリウレタンフォームを充填した完成品としてのソリッドタイヤから測定する各物性:
下記の方法により、転がり抵抗(g)、静荷重たわみ量(mm)および1000km耐久走行試験(よい:○、悪い:×)を測定・観察すると共に、ソリッドタイヤとしての総合評価を、よい(○)、悪い(×)で表した。
【0043】
(基本的な使用原料)
・ポリオールA(分子量3000):商品名GL−3000;三洋化成工業製
・ポリオールB(分子量5000):商品名FA−703;三洋化成工業製
・ポリオールC(分子量6000):商品名PML−7001K;旭硝子製
・ポリオールD(分子量10000):商品名PML−7012;旭硝子製
・サブポリオール(分子量6000):商品名POP34−28;三井武田ケミカル製
・MDI:商品名ミリオネートMTL;日本ポリウレタン工業製
・架橋剤A:汎用のジエタノールアミン;三井化学製
・架橋剤B:汎用のエチレングリコール;三井化学製
・触媒A:商品名Me−DABCO;三井エアプロダクツ製
・触媒B:商品名NIAXA−1;OSiスペシャリティーズ製
【0044】
(測定方法)
・密度:得られた各試験体の体積と重量とから算出する。
・反発弾性率:JISK6400に準拠して評価する。得られた各試験用試料から100×100×50mmのピースを切り出し、反発弾性測定機にて評価する。
・転がり抵抗:図5に示す如く、図示しない駆動源により駆動される直径760mmのドラムに、各実施例および比較例に係るソリッドタイヤを980Nの荷重を掛けて押し付け、25km/hの速度を出すように回転させた後、該ドラムの駆動力を切り、所謂楕行状態で該速度が5km/hになるまでの走行距離を測定して、これから転がり抵抗を算出した。
・静荷重たわみ量(mm):図4および[0016]参照。
・1000km耐久走行試験:980Nの荷重をソリッドタイヤの回転軸に掛けつつ、該タイヤの走行速度が8km/hとなるように回転させ、1000km(125時間)の距離を走行させ、走行後の該ソリッドタイヤの外観等を目視により確認した。
【0045】
(▲1▼に係る実験1) ポリオールの分子量等について
実施例1−1としてポリオールBを使用し、実施例1−2としてポリオールCを使用し、実施例1−3としてポリオールDを使用し、実施例1−4としてポリオールDおよびサブポリオールを混合したものを使用し、比較例1−1としてポリオールAを使用した。また実験1における全ての実施例および比較例について、イソシアネートとしてMDIを、添加物として架橋剤A、触媒および発泡剤としての水等を使用した。そして各組成から、実施例1−1〜1−4および比較例1−1に係る各試験用試料を作製し、前述の▲1▼ポリウレタンフォームの試験用試料から測定する各物性について、観察・測定を実施した。各物質の混合量は以下の表1に記す。なおイソシアネートの混合量は、イソシアネートインデックスが105となるように設定されている。
【0046】
【表1】
【0047】
(▲1▼に係る実験1の結果)
結果を上記の表1に併せて示す。この表1から、ポリオールの分子量が5000未満であると、架橋剤の種類および量その他のその他の要素が充分であっても、反発弾性率が充分とならないことが確認された(比較例1−1)。またサブポリオールを混合した場合、しないものに較べて、密度がより向上することが確認された(実施例1−3および1−4)。なお反応性については、分子量が10000と高いものを使用しても問題を生じなかった。
【0048】
(▲1▼に係る実験2) 架橋剤の種類および量について
実施例2−1〜2−3および比較例2−1として架橋剤Aを使用し、比較例2−2および2−3として架橋剤Bを使用し、比較例2−4として何れの架橋剤を加えない組成とした。また実験2における全ての実施例および比較例について、ポリオールとして分子量5000のポリオールBを使用し、イソシアネートとしてMDIを使用し、添加物として触媒および発泡剤としての水等を使用した。そして各組成から、実施例2−1〜2−3並びに比較例2−1〜2−4に係る各試験用試料を作製し、前述の▲1▼ポリウレタンフォームの試験用試料から測定する各物性について、観察・測定を実施した。各物質の混合量は、以下の表2に記す。なおイソシアネートの混合量は、イソシアネートインデックスが105となるように設定されている。また架橋剤Aの例として前記実験1に係る実施例1−1を併記した。
【0049】
【表2】
【0050】
(▲1▼に係る実験2の結果)
結果を上記の表2に併せて示す。この表2から、架橋剤無しの場合や、架橋剤B、すなわち2官能の架橋剤を使用の場合には、ポリオール分子量等の要素が充分であっても、反発弾性率が充分とならないことが確認された(比較例2−2および2−3)。また架橋剤Aを使用した場合であっても、その添加量が全ポリオールを100重量部として、該ポリオールに対して0.1〜15重量部の範囲内になければ、充分な反発弾性率が得られないことが確認された(比較例2−1および2−4)。
【0051】
(▲2▼に係る実験3) ソリッドタイヤの密度(ポリウレタンフォーム密度×オーバーパック率)と、静荷重たわみ量および1000km耐久走行試験並びに反発弾性率と、転がり抵抗との関係について
前記実験1および実験2に係る全ての実施例および一部の比較例に使用された組成を、所定のオーバーパック率で中空ケーシングに充填して、実施例4−1〜4−10並びに比較例4−1〜4−4として、ソリッドタイヤを製造した。そして、得られた各ソリッドタイヤについて、前述の▲2▼ポリウレタンフォームを充填した完成品としてのソリッドタイヤから測定する各物性について、観察・測定を実施した。各物質の混合量等は、以下の表3に記すと共に、実施例4−1〜4−10並びに比較例4−1〜4−4に係る詳細な説明は、以下に記す。なおイソシアネートの混合量は、イソシアネートインデックスが105となるように設定されている。また中空ケーシングに充填されるポリウレタンフォーム原料から得られるポリウレタンフォームの密度(オープン密度)および反発弾性率を併記する。
【0052】
実施例4−1:実験1に係る実施例1−3、オーバーパック率1.5
〃 4−2:実験1に係る実施例1−4、オーバーパック率1.5
〃 4−3:実験1に係る実施例2−1、オーバーパック率1.5
〃 4−4:実験2に係る実施例2−2、オーバーパック率1.5
〃 4−5:実験2に係る実施例2−3、オーバーパック率1.5
〃 4−6:実験1に係る実施例1−1、オーバーパック率2.0
〃 4−7:実験1に係る実施例1−2、オーバーパック率2.0
〃 4−8:実験1に係る実施例1−4、オーバーパック率1.8
〃 4−9:実験1に係る実施例1−2を基として最適化した組成、オーバーパック率1.4
〃 4−10:実施例4−9と同様の組成を使用、オーバーパック率2.4
比較例4−1:実験1に係る実施例1−1、オーバーパック率1.5
〃 4−2:実験1に係る実施例1−2、オーバーパック率1.5
〃 4−3:実験1に係る比較例1−1、オーバーパック率1.5
〃 4−4:実施例4−9と同様の組成を使用、オーバーパック率2.5
【0053】
前記実施例4−9は、基本的に実験1に係る実施例1−2を基として最適化した実施例であり、メインポリオールとして、製造的にも好適な分子量6000の物質を使用し、かつ構造的な強度を向上させるサブポリオールを使用すると共に、架橋剤の添加量を好適な数値とした例である。前記実施例4−10は、実施例4−9と同様の組成を使用し、オーバーパック率を2.4に上昇させたものである。また比較例4−4は、実施例4−9と同様の組成を使用し、オーバーパック率を2.5に上昇させたものである。
【0054】
【表3】
【0055】
(実験3の結果)
結果を上記の表3に合わせて示す。この表3から、ソリッドタイヤの外形をなす中空ケーシングに充填された際のポリウレタンフォームの密度が、350kg/m3であり、かつ反発弾性率が60を上回る場合には、該ソリッドタイヤとして、優れた構造的な強度(静荷重たわみ量)を有すると共に、2000g以下の転がり抵抗値を達成することが確認された。また、オーバーパック率が2.4を越えた場合には、前記中空ケーシング内へ充填したポリウレタンフォーム原料が漏出してしまった(比較例4−4)。
【0056】
【発明の効果】
以上に説明した如く、本発明に係るソリッドタイヤによれば、一定以上の分子量を有するポリオールを使用すると共に、3つ以上の官能基を有する架橋剤を用いて反発弾性率を60%以上の数値を達成し得るポリウレタンフォームを得ることが可能となり、またこのポリウレタンフォームをソリッドタイヤ内に充填することで、該ポリウレタンフォームの反発弾性率により空気圧タイヤの常用空気圧によって発現される転がり抵抗と略同等な数値、具体的には2000g以下を達成し得るようになると共に、該反発弾性率の制御により転がり抵抗を任意に設定し得るソリッドタイヤを製造し得るようになった。
【0057】
またイソシアネートとして、密度の向上と高いオーバーパック率とを達成し得るジフェニルメタンジイソシアネート(MDI)を使用することで、重量物の輸送用途等に好適に使用し得る剛性等の構造的な強度を発現する、密度およびオーバーパック率からのソリッドタイヤとしての密度を達成し得るソリッドタイヤが得られた。
【図面の簡単な説明】
【図1】本発明の好適な実施例に係るソリッドタイヤの内部構造を一部切り欠いて示す斜視図である。
【図2】実施例に係るソリッドタイヤの反発弾性率と、従来の空気を充填した空気圧タイヤの空気圧および転がり抵抗の関係との相関を示すグラフ図である。
【図3】実施例および実験例に係るソリッドタイヤの静荷重たわみ量を測定する際に使用される該ソリッドタイヤの寸法を示した概略斜視図である。
【図4】図3に示したソリッドタイヤを使用して、静荷重たわみ量を測定する方法を示した概略図である。
【図5】実施例に係るソリッドタイヤの転がり抵抗を測定する装置の概略図である。
【符号の説明】
10 ソリッドタイヤ
12 ポリウレタンフォーム
14 中空ケーシング
14a 中空部
【発明の属する技術分野】
この発明は、ゴム製の中空ケーシング内にポリウレタンフォームを充填してなるソリッドタイヤに関し、更に詳細には、重量物を載置し得る圧縮強度を有すると共に、その反発弾性率を制御することで任意の転がり抵抗を発現し得るようにしたソリッドタイヤに関するものである。
【0002】
【従来の技術】
一般に身体障害者や高齢者向けの電動車椅子、容器入り飲料等の重量物用の運搬カートおよびゴルフカート等に装着されるタイヤは、空気の漏出がなく、耐久性に優れると共に、メンテナンスが不要であることが要求される。そして前述の要求に応えるため、前記タイヤとしてその内部が中実構造となっている、所謂ソリッドタイヤが好適に採用されている。
【0003】
前記ソリッドタイヤとしては、一般に前記中実部分に弾性ゴム等を主材料としてその外形と共に一体成形したものや、汎用のニューマチックタイヤ(以下、空気圧タイヤと云う)の中空部に別途成形した輪状の弾性ゴム等の弾性部材を嵌め合わせたものが知られている。
【0004】
【発明が解決しようとする課題】
しかし、前記ソリッドタイヤの中実部素材である弾性ゴム等は、重量物等に対する耐荷重性を満足する強度を達成するために高比重とされ、この高比重故に該タイヤ重量が増大してしまう欠点が指摘される。この他、タイヤ重量の増加により、取り扱い性、乗り心地および転がり抵抗等の悪化も大きな問題となっている。また空気圧タイヤの場合、該タイヤの中空部に対して別途成形した弾性部材を嵌合して製造するため、該弾性部材を必要とされる該タイヤのサイズ毎に準備する必要等の問題があり、製造コストが増大する欠点があった。
【0005】
【発明の目的】
この発明は、従来のソリッドタイヤが有する前記問題に鑑み、これを好適に解決するべく提案されたものであって、ポリオールとして分子量5000以上の物質を使用すると共に、イソシアネートとしてジフェニルメタンジイソシアネート(MDI)を使用し、かつ3つ以上の官能基を有する架橋剤を用いることで、中空ケーシング内に充填されるポリウレタンフォームの反発弾性率等の物性値を所望の値に制御することで、最終的に得られるソリッドタイヤの、例えば圧縮強度等の構造的な強度と、転がり抵抗とを任意の好ましい値とし得るソリッドタイヤを提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を克服し、所期の目的を達成するため本願の発明に係るソリッドタイヤは、ゴム製の中空ケーシングと、その中空部に少なくとも1種類のポリオール、イソシアネートおよび各種添加物からなるポリウレタンフォーム原料を充填して発泡硬化させることでポリウレタンフォームとしたソリッドタイヤにおいて、前記ポリウレタンフォームは、ポリオールとして分子量5000以上の物質を使用すると共に、イソシアネートとしてジフェニルメタンジイソシアネート(MDI)を使用し、
前記添加物の1つである架橋剤として、官能基数が3以上の物質を全ポリオール100重量部に対して、0.1〜15重量部、好ましくは1〜15重量部添加すること作製され、
これにより、前記中空ケーシングに充填されたポリウレタンフォームの密度が350kg/m3以上で、JISK6302に規定される走行耐久試験機による楕行法で測定される転がり抵抗が2000g以下に設定されていることを特徴とする。
【0007】
【発明の実施の形態】
次に、本発明に係るソリッドタイヤにつき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。本願の発明者は、タイヤケーシングの中空部に、ポリオールとして分子量5000以上の物質を、イソシアネートとしてジフェニルメタンジイソシアネート(以下、MDIと云う)を夫々使用すると共に、添加物の1つである架橋剤として3官能基以上であり、該ポリオール100重量部に対して0.1〜15重量部、好ましくは1〜15重量部となる物質とその他添加物とを添加して得られるポリウレタンフォーム原料を充填することで、ソリッドタイヤとして充分に機能する範囲の構造的な強度等を発現する密度とし得ると共に、好ましい転がり抵抗を発現し得る反発弾性率を達成し得るポリウレタンフォームを内部構造とするソリッドタイヤが得られることを知見したものである。
【0008】
本発明の好適な実施例に係るソリッドタイヤは、図1に示す如く、身体障害者や高齢者向けの電動車椅子等に好適に使用される小型中実の、所謂ノンパンクタイヤであり、ゴムを材質とすると共に、該ソリッドタイヤの外形をなす環状の中空ケーシング14と、該ケーシング14内の中空部14aに所要のポリウレタンフォーム原料を所要のオーバーパック率で充填・発泡後にキュアさせることで、所要の密度および反発弾性率を発現するポリウレタンフォーム12とから構成される。
【0009】
前記中空ケーシング14を構成する材質は、従来の空気圧タイヤと同様のゴム組成物からなり、その外形状が環状でかつ断面溝形であり、取り付けられるべきホイール16のリム16aに密接するビード部14bや、該ビート部内部に周方向に埋設されたビードフィラ(図示せず)等の構造を有している。
【0010】
前記中空ケーシング14内に充填されるポリウレタンフォーム原料は、所要のポリオールおよびイソシアネート等を重合反応させることで得られる反応生成物であり、該ポリオールおよびイソシアネートの種類等を換えることにより、様々な物性を発現するものである。そして前記ポリウレタンフォーム原料は、充填された前記中空ケーシング14内で発泡硬化し、内部構造をなすポリウレタンフォーム12となる。前記ポリウレタンとは、ウレタン結合を有するポリマーを指し、該ウレタン結合はイソシアネート基を有するイソシアネートと、水酸基などの活性水素を有するポリオール等との付加反応により生成される。
【0011】
本発明に係るソリッドタイヤ10は、該ソリッドタイヤ10自体に掛かる荷重に抗するべく、前記中空ケーシング14に充填されたポリウレタンフォーム12が350kg/m3以上の密度を示すと共に、最終的に得られるソリッドタイヤ10が従来のニューマチックタイヤと略同等の性能を示す2000g以下の任意の転がり抵抗を発現する反発弾性率を示すように構成される。
【0012】
(密度について)
前記ポリウレタンフォーム12が発現すべき密度については、該ポリウレタンフォーム12が充填されたソリッドタイヤ10が発現するべき、剛性および耐久性等に代表される構造的な強度によって決定される。この構造的な強度は、前記密度の他に、硬度および中空ケーシング14に対するポリウレタンフォーム原料充填時のオーバーパック率等に大きく影響される。
【0013】
前記中空ケーシング14に対して、所要のオーバーパック率により充填された際のポリウレタンフォーム12の密度は、前述の如く、ソリッドタイヤ10の使用に際して要求される構造的な強度と大きく関連している。このため本発明においては、前記密度をソリッドタイヤ10の構造的な強度を評価する指標として採用している。そして前記ソリッドタイヤ10の構造的な強度は、前記密度が向上すればそれに伴って向上する物性値である。
【0014】
前記オーバーパック率は、前記ポリウレタンフォーム12をなすポリウレタンフォーム原料が中空ケーシング14内に充填される度合いを示し、その値が1の時は通常のフリーライズ発泡と同じである。この値は、基本的にイソシアネートの種類により決定され、本発明が採用するMDIの場合、2.4程度まで可能であると経験的に分かっている。そしてこのオーバーパックによって、ソリッドタイヤ10が発現する密度は、前記ポリウレタンフォーム12自体が発現する数値以上のものとなる。なお、前記オーバーパック率は、1.5程度に設定される。この程度の値が、製造上好適だからである。
【0015】
前記ソリッドタイヤ10に要求される構造的な強度は、使用用途や被載置物の重量等により変動するものであるが、本発明が目的とする、平均して150kg程度の重量を有する電動車椅子を支えるべく、使用される4本(すなわち荷重40kg程度/1本)のソリッドタイヤ10が必要とする充填されたポリウレタンフォーム12の密度は、以下の理由から350kg/m3以上と設定した。なお、以下に記載されるソリッドタイヤ10としては、図3に示す如く、リム幅3インチ(76.2mm)、取付リム(ホイール)径4インチ(100mm)の16aを有するホイール16に対して、ポリウレタンフォーム12が充填された中空ケーシング14が取り付けられて、その外形が260mm、最大幅が85mmとなる寸法のものが使用される。
【0016】
本発明においては、前記ソリッドタイヤ10に要求される構造的な強度を、所定の荷重を掛けた際の静荷重たわみ量を測定することで評価する。具体的には、図4に示す如く、前記ソリッドタイヤ10の回転心に392N(40Kg(本実施例における1本当たりのソリッドタイヤに掛かると推定した荷重([0015]参照)))の荷重を掛け、その際の該軸心部分の下方へ対する変位量が静荷重たわみ量として測定される。従って、80mm((タイヤ外形260mm−ホイール径100mm)/2)である前記ソリッドタイヤ10が、どの程度たわむかが測定されるものである。
【0017】
また、一般に前記電動車椅子用等のソリッドタイヤ10を考えた場合、前述の荷重を支えて、結果として長距離を安定的に走行可能としなければならない。そこで前記長距離を、1000kmと定義し、該1000kmの耐久走行試験を行ない、該試験後において、その外観に異常がない、すなわち使用に耐え得る良好な結果を出したソリッドタイヤ10について、その静荷重たわみ量を測定・関連付けを行なった。その結果、図3に示すソリッドタイヤ10について、前記静荷重たわみ量が約8mm(80mmの10%)以下であれば、前述の1000kmに亘る走行を充分になし得ると分かった。ここで実施した、1000km耐久走行試験の結果等については、後述([0051])の実験例に記載する。
【0018】
前記静荷重たわみ量は、基本的に中空ケーシング14に充填された際のポリウレタンフォーム12が発現する構造的な強度が、一定以上であれば達成されると考えられる。前記構造的な強度は、前述の如く、充填されたポリウレタンフォーム12の密度、すなわちポリウレタンフォーム12自体の密度および中空ケーシング14へのオーバーパック率と、硬度とによって決定されるが、こで該硬度は、イソシアネートインデックスを通常に使用される100〜105程度とすることで、特に問題ない数値となる。この他、前記ポリオールとして、後述([0030])するサブポリオールを使用するようにしても、前記硬度の上昇が期待できる。
【0019】
従って、前記静荷重たわみ量が約8mm以下で表せる構造的な強度は、本発明においては、充填されたポリウレタンフォーム12の密度だけで決定されるものであり、その際の密度は350kg/m3であった(後述([0051])の実験例参照)。
【0020】
このソリッドタイヤ10充填時のポリウレタンフォーム12の密度は、前述の如く、該ポリウレタンフォーム12自体の密度と該ソリッドタイヤ10に充填する際のオーバーパック率とをかけた数値となる。前記オーバーパック率は、前述([0014])の如く、2.4程度を最大としているので、該ポリウレタンフォーム12自体に求められる密度は、少なくとも146kg/m3以上(350(kg/m3)/2.4)に設定されることになる。そしてこのこの数値は、本発明に係るポリウレタンフォーム12により達成可能であり、具体的にはイソシアネートとしてMDIを使用することでにより達成される。
【0021】
なお、前記構造的な強度は、フォーム体の評価に多用される25%圧縮強度で表した場合、700kPa以上で本発明に係るソリッドタイヤ10の構造的な強度が達成可能であることも分かっている。
【0022】
(反発弾性率について)
前記ポリウレタンフォーム12の反発弾性率と、ソリッドタイヤ10の転がり抵抗との関係は、従来使用されている空気圧タイヤにおける空気圧(kPa)と転がり抵抗との関係と同じである。すなわち通常の空気圧タイヤは、その内部の中空部に充填されている空気圧により転がり抵抗が決定されている。前記空気圧タイヤの場合、一般に前記転がり抵抗は、前記空気圧が高いほど低い数値となり、従来の空気圧タイヤでの常用空気圧である150〜250kPaにおいては、2000g以下の数値となるものであり、本発明に係るソリッドタイヤ10についても同様の転がり抵抗とすることが1つの指標とされている(図2参照)。
【0023】
本発明に係るソリッドタイヤ10は、前記転がり抵抗の値を、内部に充填されるポリウレタンフォーム12の反発弾性率を制御することにより、2000g以下の任意の数値とし得る。また空気圧についても、ソリッドタイヤ10を使用すべき地理的状況、例えば砂地またはアスファルトによって好適な数値が存在するが、該空気圧は本発明のソリッドタイヤ10においては、前記反発弾性率であるので、その制御は容易である。
【0024】
そして本発明において前記転がり抵抗は、JISK6302に規定される走行耐久試験機により、ソリッドタイヤ10の走行速度が25km/hから5km/hに低下するまでの楕行時間を用いる楕行法により測定される。そして本発明においては、図2に示す転がり抵抗−空気圧グラフに併記される反発弾性率により、その関係が明確化されている。すなわち、従来の空気圧タイヤの常用空気圧(150〜250kPa)の範囲内となる反発弾性率は、約60〜80%程度(転がり抵抗は2000g以下)であり、この数値は本発明に係るポリウレタンフォーム12により達成可能である。具体的には、使用される分子量5000以上のポリオールの使用、添加物の1つである架橋剤の官能基数を3以上とすると共に、その添加量を全ポリオール100重量部に対して0.1〜15重量部に設定することよって達成される。
【0025】
また前記反発弾性率は、前記ポリウレタンフォーム原料からオーバーパックを行なわず得られるポリウレタンフォーム12と、所定のオーバーパック率により該ポリウレタンフォーム12が充填されたソリッドタイヤ10とでは殆ど変化がない。従って、前記反発弾性率によって決定される転がり抵抗は、前記ソリッドタイヤ10のトレッドパターン等の動摩擦抵抗等の副次的要因を除外すれば、前述のポリウレタンフォーム原料の組成だけによって決定されるものである。
【0026】
前記イソシアネートとしては、その分子構造によりポリオールとの反応性が高く、かつ泡化反応に較べて樹脂化反応が優先的に起こるMDIが使用される。一般にMDIは、その分子構造が直鎖状であるため、ポリウレタンフォーム12の原料として好適に使用されるTDIのような一定角度をもって屈曲、すなわち立体的形状を有していない。このため反発弾性率の如き、3次元的な構造に起因する機械的強度には劣っている一方で、2次元的な構造に起因する機械的強度、例えば引張強度および引裂強度は向上する特徴を有している。またその分子構造上、ポリウレタン樹脂を得る主原料の1つであるポリオールとの反応性に富み、更に水との反応性が低いために樹脂化反応が泡化反応に較べて優勢である。このためミクロ構造的に細かい気泡が多く発生し、速やかに樹脂化するためその密度が高くなる特徴を有する。なお、この速やかな樹脂化により得られるポリウレタンフォーム12は、TDIを原料として得られるフォームに較べて、その内部セルが細かくかつ破泡がなされて高通気性を有する、といった特徴的な構造も有している。
【0027】
また前記MDIは、前述の如く、ポリオール等の他の原料と混合して得られるポリウレタンフォーム原料の粘性を高める作用や、発泡硬化、すなわち反応性を高める作用を与えるものである。この作用のため、前記ホイール16に嵌め込まれた中空ケーシング14内にポリウレタンフォーム原料を充填、殊に高いオーバーパック率をもって充填した際に、該原料の充填圧により該ホイール16および中空ケーシング14の間にできる僅かな隙間等から漏れ出すことはない。前記MDIを使用したポリウレタンフォーム原料が許容するオーバーパック率は、基本的に該ポリウレタンフォーム原料の反応性で決定され、前述の如く、最高で2.4程度まで設定可能である。従って、前記ポリウレタンフォーム12自体がフリーライズ発泡で発現する密度の2.4倍までは向上させることが可能である。一方、この数値を超えたオーバーパック率を適用する場合には、前述の如く、前記ポリウレタンフォーム原料の充填圧により、該原料がホイール16および中空ケーシング14の間から漏れ出すので留意が必要である。
【0028】
一方水酸基を2個以上有する化合物は一般にポリオールと呼ばれ、本発明において好適に使用可能なポリオールとしては、水酸基価5〜35、不飽和度0.07mmol/g以下のポリアルキレンポリオールが挙げられ、該ポリオールが1種類以上使用される。また本発明においては、前述の如く分子量が5000以上の各ポリオールが使用される。一般に分子量が大きくなると、その分反応性が低下してイソシアネート成分との反応による発泡硬化に支障が出ることが考えられるが、本発明の場合、該イソシアネートとして反応性が高いMDIが使用されるため問題とならない。
【0029】
前記ポリオールの物性については、前述の如く、水酸基価が5〜35の範囲内であり、かつ不飽和度が0.07mmol/g以下と低いものが好適である。前記水酸基価は、ポリオール1g当たりの反応に有効に作用する反応性水酸基の度合いであり、この値が5未満であると、粘度等の上昇により加工性等が低下し、また35を越えると反発弾性率を悪化させるので好ましくない。前記不飽和度は、所謂重合反応等を起こし得る結合端部の度合いであり、この値が低いほど純度の高いポリウレタン樹脂からなるフォームが得られる。従って、この不飽和度が高いと、MDIとの反応より形成されるウレタン結合数が減少し、樹脂化による密度向上が阻害されて低密度化してしまう。
【0030】
また、ポリウレタン樹脂の主原料であるメインポリオールとしては、前記ポリアルキレンポリオール以外に、例えばポリエステルポリオール、水酸基含有ポリジエン、付加重合ポリマーまたは縮重合ポリマー等の微粒子が分散したポリマーポリオール等のポリオールを、所謂サブポリオールを加えるようにしてもよい。殊に本発明に係るソリッドタイヤ10に充填されるポリウレタンフォーム12の場合、前記サブポリオールとしては、連泡化を進め、かつ硬度を向上させ得るグラフトポリオールが好適である。
【0031】
前記添加物としては、通常のポリウレタン樹脂の製造に使用される重合開始剤としての触媒、架橋剤および発泡剤、更に必要に応じて鎖延長剤、難燃剤または紫外線吸収剤、酸化防止剤、老化防止剤、充填剤、可塑剤、着色剤、防黴剤または抗菌剤等が挙げられ、これら各副原料が必要に応じて添加される。例えば鎖延長剤としては、ジエチルトルエンジアミン、ジメチルチオトルエンジアミンなどの多価アミン等が、前記難燃剤としては、トリス−ジクロロプロピルホスフェート、トリス−クロロエチルホスフェート、ジブロモネオペンチルアルコール、トリブロモネオペンチルアルコール等が、前記紫外線吸収剤としては、2−(2−ヒドロキシ−5−ターシャリーブチルフェニル)ベンゾトリアゾール、2’−(2’ヒドロキシ−3’,5’−ジターシャリーブチルフェニル)5クロロベンゾトリアゾール、ビス(2,2,6,6−テトラメチル−4−ピペリジン)セパケート、4−ベンゾイロキシ−2,2,6,6−テトラメチルピペリジン等が夫々挙げられる。
【0032】
前記触媒としては、従来公知の物質を使用することが可能であり、例えばジメチルシクロヘキシルアミン、N−メチルジシクロヘキシルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N−メチルモルフォリン、N−エチルモルフォリン、N−ジメチルベンジルアミン等の非反応型モノアミン、トリエチレンジアミン、テトラメチルヘキサメチレンジアミン、ビスジメチルアミノエチルエーテル、テトラメチルプロパンジアミン、ジメチルアミノエチルモルフォリン、テトラメチルエチレンジアミン、ジアゾビシクロウンデセン、2−メチル−1,4−ジアゾ(2,2,2)ビシクロオクタン等の非反応型ジアミン、ペンタメチルジエチレントリアミン、ペンタメチルジプロピレントリアミン等の非反応型トリアミン、ジメチルエタノールアミン、N−トリオキシエチレン−N,N−ジメチルアミン、N,N−ジメチル−N−ヘキサノールアミン等の反応型アミンまたはこれらの有機酸塩、1−メチルイミダゾール、2−メチルイミダゾール、1,2−ジメチルイミダゾール、2,4−ジメチルイミダゾール、1−ブチル−2−メチルイミダゾール等のイミダゾール化合物、スタナスオクトエート、スタナスオレエート、ジブチルチンジラウレート、ジブチルチンジマレエート、オクチル酸鉛等の有機金属化合物、2,4,6−トリス(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノアルキル)ヘキサヒドロ−S−トリアジン、酢酸カリウム、オクチル酸カリウム、2−エチルヘキサン酸カリウム等の3量化触媒が挙げられる。
【0033】
前記触媒の添加量は、基本的には従来公知のポリウレタン樹脂からなるフォームの製造に準じるものであり、その量は全ポリオールを100重量部とした際に該ポリオールに対して0.01〜10重量部に設定される。この添加量が10重量部以上となると、ポリオールとMDIとの反応性が過剰となり、最終的に得られるポリウレタンフォーム12の硬度が高くなる等の悪影響を及ぼす。この他、前述のポリオールとMDIとの反応が短時間に完了してしまい、原料系の混合・調整等が困難となり、実際の製造には適さなくなる点にも注意が必要である。
【0034】
前記架橋剤としては、反応によりポリウレタンフォーム12となるポリウレタン樹脂の一部となった際に、立体的、すなわち3次元的な構造をなす3以上の多官能基を有する、例えばジエタノールアミンまたはトリエタノールアミン等の物質が好適である。このような架橋剤の使用は、前記ポリオールと同様に、60%以上の反発弾性率を達成するための重要な要素の一つである。この他、最終的に得られるソリッドタイヤ10を、例えばBMX用等の高い衝撃を受ける用途に使用する場合には、該ソリッドタイヤ10に機械的強度を与えるべくポリウレタンフォーム12に対して、引張強度等の、所謂2次元的な機械的強度の向上を達成させる場合には、前述の3以上の多官能基を有する架橋剤に加えてエチレングリコールの如き、その分子構造が直線的、すなわち2次元的である架橋剤を使用するようにしてもよい。具体的には、エチレングリコール、プロピレングリコール、ブタンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類、ヘキサメチレンジアミン、ヒドラジン、ジエチルトルエンジアミン、ジエチレントリアミン等のアミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミノアルコール類か挙げられる。また、短分子量ポリエーテルポリオールは前記架橋剤類に、エチレンオキサイド、プロピレンオキサイドを付加させた、水酸基価200以上の物質が挙げられる。
【0035】
前記架橋剤の添加量は、その量が少なくとも全ポリオールを100重量部とした際に該ポリオールに対して0.1〜15重量部、好ましくは1〜15重量部の範囲に設定される。この添加量が0.1重量部未満であると、ポリオールの分子量を5000以上とした場合であっても、60%以上の反発弾性率の達成は困難となる。一方、前記架橋剤の添加量が15重量部以上となると、本来向上させるべき反発弾性率を悪化させる作用を示すため、注意が必要である。これは発泡剤として使用される水の添加量過多の場合も同じであるが、得られるポリウレタンフォーム12内のウレア基の濃度上昇に伴うハードセグメントおよびソフトセグメント間の良好な相分離が阻害され、これにより該ソフトセグメントの運動阻害が発生するためである。なお前記ポリオールとして、前記不飽和度が充分に低く、かつ分子量12,000と非常に高い物質を選択した場合には、前記架橋剤は必ずしも必要とされない。しかしこのような特殊なポリオールは、その製造が困難であるため実用的ではない。
【0036】
前記発泡剤としては、水、HCFC−141b、HFC−134a、HFC−245faまたはHFC−365mfc等のハロゲン化炭化水素、シクロペンタン、イソペンタン、ノルマルペンタン等の炭化水素類、ノナフロロブチルメチルエーテル、ノナフロロイソブチルメチルエーテル、ノナフロロブチルエチルエーテル、ノナフロロイソブチルエチルエーテル、ペンタフロロエチルメチルエーテルまたはヘプタフロロイソプロピルメチルエーテル等のハイドロフルオロカーボン類或いは液化炭酸ガス等が用いられる。これら発泡剤のうち、水が汎用性等の点で一番好ましい。
【0037】
前記水については、前述の如く、その添加量に上限([0035])がある。そしてその量は、経験的に全ポリオールを100重量部とした際に、該ポリオールに対して1重量部程度であることが知られている。なお発泡剤としては、水の他、各種有機系発泡剤も使用可能である。また前記水の添加量は少ない程、良好な密度および反発弾性率を発現し得る。
【0038】
前記整泡剤については、通常のポリウレタンフォームの製造にて通常使用されている物質が使用可能である。例えばジメチルシロキサン系、ポリエーテルジメチルシロキサン系またはフェニルメチルシロキサン系等の各種整泡剤が挙げられる。添加量は全ポリオールを100重量部とした際に該ポリオールに対して3重量部が上限とされる。また発泡具合が良好である場合には、添加する必要はない。
【0039】
本発明に係るソリッドタイヤ10は、▲1▼前述した各成分を従来公知の方法で秤量・予備攪拌を施してポリオール成分とすると共に、イソシアネート成分を注入機または攪拌機を使用して急速に攪拌混合してポリウレタンフォーム原料を得る。▲2▼予め準備されホイール16に取り付けられた中空ケーシング14内にすばやく注入、所定の密度を発現させるべく所要のオーバーパック率で連続的に充填する。▲3▼ターンテーブル等の使用により充填された該ポリウレタンフォーム原料を該ケーシング14の中空部14a内で均一に発泡硬化させる。▲4▼最終的にこれに所要温度による加熱を行ないキュアを施すことで得られる。なお前記ポリウレタンフォーム原料の充填方法として、反応射出成形法、所謂RIMを用いてもよい。
【0040】
【実験例】
以下に、本発明に係るソリッドタイヤの実験例を示す。このソリッドタイヤの各物性値測定用の試験用試料は、基本的に分子量5000以上のポリオール、MDIおよび3以上の官能基を有する架橋剤、触媒および発泡剤としての水等の添加物を、下記の各表に示す所定割合等で混合して得たポリウレタンフォーム原料を用いて、以下の▲1▼完成品(ソリッドタイヤ)および▲2▼ソリッドタイヤ内部に充填されるポリウレタンフォーム、に係る2種類のとして得られるものである。本実験例における各試験片の作製時に使用した各原料を以下に記す。また各表における原料組成についての数字は、全ポリオールを100重量部と設定し、これに対する重量部で記載した。
【0041】
(試験用試料)
▲1▼前記ポリウレタンフォーム原料を、フリーライズで発泡させて得られるポリウレタンフォーム
▲2▼前記ポリウレタンフォーム原料を、別途予めホイールに取り付けられると共に、その一部に該原料を注入すべき注入孔が設けられた加熱済み中空ケーシング(市販品:サイズ3.00−4(図3参照))内に所定のオーバーパック率ですばやく注入する。そして注入後に前記ポリウレタンフォーム原料の注入が完了した中空ケーシングをターンテーブル上で横倒しの状態で載置してホイール軸を軸心として回転させつつ1分間放置し、最終的に温度80℃、30分の条件でキュア炉にてキュアさせて得られる完成品
【0042】
そして得られた2種類の試験用試料につき、夫々以下に記す物性等を確認・測定した。
▲1▼ポリウレタンフォームの試験用試料から測定する各物性:
各実施例および比較例について、密度(kg/m3)および反発弾性率(%)を夫々測定した。
▲2▼ポリウレタンフォームを充填した完成品としてのソリッドタイヤから測定する各物性:
下記の方法により、転がり抵抗(g)、静荷重たわみ量(mm)および1000km耐久走行試験(よい:○、悪い:×)を測定・観察すると共に、ソリッドタイヤとしての総合評価を、よい(○)、悪い(×)で表した。
【0043】
(基本的な使用原料)
・ポリオールA(分子量3000):商品名GL−3000;三洋化成工業製
・ポリオールB(分子量5000):商品名FA−703;三洋化成工業製
・ポリオールC(分子量6000):商品名PML−7001K;旭硝子製
・ポリオールD(分子量10000):商品名PML−7012;旭硝子製
・サブポリオール(分子量6000):商品名POP34−28;三井武田ケミカル製
・MDI:商品名ミリオネートMTL;日本ポリウレタン工業製
・架橋剤A:汎用のジエタノールアミン;三井化学製
・架橋剤B:汎用のエチレングリコール;三井化学製
・触媒A:商品名Me−DABCO;三井エアプロダクツ製
・触媒B:商品名NIAXA−1;OSiスペシャリティーズ製
【0044】
(測定方法)
・密度:得られた各試験体の体積と重量とから算出する。
・反発弾性率:JISK6400に準拠して評価する。得られた各試験用試料から100×100×50mmのピースを切り出し、反発弾性測定機にて評価する。
・転がり抵抗:図5に示す如く、図示しない駆動源により駆動される直径760mmのドラムに、各実施例および比較例に係るソリッドタイヤを980Nの荷重を掛けて押し付け、25km/hの速度を出すように回転させた後、該ドラムの駆動力を切り、所謂楕行状態で該速度が5km/hになるまでの走行距離を測定して、これから転がり抵抗を算出した。
・静荷重たわみ量(mm):図4および[0016]参照。
・1000km耐久走行試験:980Nの荷重をソリッドタイヤの回転軸に掛けつつ、該タイヤの走行速度が8km/hとなるように回転させ、1000km(125時間)の距離を走行させ、走行後の該ソリッドタイヤの外観等を目視により確認した。
【0045】
(▲1▼に係る実験1) ポリオールの分子量等について
実施例1−1としてポリオールBを使用し、実施例1−2としてポリオールCを使用し、実施例1−3としてポリオールDを使用し、実施例1−4としてポリオールDおよびサブポリオールを混合したものを使用し、比較例1−1としてポリオールAを使用した。また実験1における全ての実施例および比較例について、イソシアネートとしてMDIを、添加物として架橋剤A、触媒および発泡剤としての水等を使用した。そして各組成から、実施例1−1〜1−4および比較例1−1に係る各試験用試料を作製し、前述の▲1▼ポリウレタンフォームの試験用試料から測定する各物性について、観察・測定を実施した。各物質の混合量は以下の表1に記す。なおイソシアネートの混合量は、イソシアネートインデックスが105となるように設定されている。
【0046】
【表1】
【0047】
(▲1▼に係る実験1の結果)
結果を上記の表1に併せて示す。この表1から、ポリオールの分子量が5000未満であると、架橋剤の種類および量その他のその他の要素が充分であっても、反発弾性率が充分とならないことが確認された(比較例1−1)。またサブポリオールを混合した場合、しないものに較べて、密度がより向上することが確認された(実施例1−3および1−4)。なお反応性については、分子量が10000と高いものを使用しても問題を生じなかった。
【0048】
(▲1▼に係る実験2) 架橋剤の種類および量について
実施例2−1〜2−3および比較例2−1として架橋剤Aを使用し、比較例2−2および2−3として架橋剤Bを使用し、比較例2−4として何れの架橋剤を加えない組成とした。また実験2における全ての実施例および比較例について、ポリオールとして分子量5000のポリオールBを使用し、イソシアネートとしてMDIを使用し、添加物として触媒および発泡剤としての水等を使用した。そして各組成から、実施例2−1〜2−3並びに比較例2−1〜2−4に係る各試験用試料を作製し、前述の▲1▼ポリウレタンフォームの試験用試料から測定する各物性について、観察・測定を実施した。各物質の混合量は、以下の表2に記す。なおイソシアネートの混合量は、イソシアネートインデックスが105となるように設定されている。また架橋剤Aの例として前記実験1に係る実施例1−1を併記した。
【0049】
【表2】
【0050】
(▲1▼に係る実験2の結果)
結果を上記の表2に併せて示す。この表2から、架橋剤無しの場合や、架橋剤B、すなわち2官能の架橋剤を使用の場合には、ポリオール分子量等の要素が充分であっても、反発弾性率が充分とならないことが確認された(比較例2−2および2−3)。また架橋剤Aを使用した場合であっても、その添加量が全ポリオールを100重量部として、該ポリオールに対して0.1〜15重量部の範囲内になければ、充分な反発弾性率が得られないことが確認された(比較例2−1および2−4)。
【0051】
(▲2▼に係る実験3) ソリッドタイヤの密度(ポリウレタンフォーム密度×オーバーパック率)と、静荷重たわみ量および1000km耐久走行試験並びに反発弾性率と、転がり抵抗との関係について
前記実験1および実験2に係る全ての実施例および一部の比較例に使用された組成を、所定のオーバーパック率で中空ケーシングに充填して、実施例4−1〜4−10並びに比較例4−1〜4−4として、ソリッドタイヤを製造した。そして、得られた各ソリッドタイヤについて、前述の▲2▼ポリウレタンフォームを充填した完成品としてのソリッドタイヤから測定する各物性について、観察・測定を実施した。各物質の混合量等は、以下の表3に記すと共に、実施例4−1〜4−10並びに比較例4−1〜4−4に係る詳細な説明は、以下に記す。なおイソシアネートの混合量は、イソシアネートインデックスが105となるように設定されている。また中空ケーシングに充填されるポリウレタンフォーム原料から得られるポリウレタンフォームの密度(オープン密度)および反発弾性率を併記する。
【0052】
実施例4−1:実験1に係る実施例1−3、オーバーパック率1.5
〃 4−2:実験1に係る実施例1−4、オーバーパック率1.5
〃 4−3:実験1に係る実施例2−1、オーバーパック率1.5
〃 4−4:実験2に係る実施例2−2、オーバーパック率1.5
〃 4−5:実験2に係る実施例2−3、オーバーパック率1.5
〃 4−6:実験1に係る実施例1−1、オーバーパック率2.0
〃 4−7:実験1に係る実施例1−2、オーバーパック率2.0
〃 4−8:実験1に係る実施例1−4、オーバーパック率1.8
〃 4−9:実験1に係る実施例1−2を基として最適化した組成、オーバーパック率1.4
〃 4−10:実施例4−9と同様の組成を使用、オーバーパック率2.4
比較例4−1:実験1に係る実施例1−1、オーバーパック率1.5
〃 4−2:実験1に係る実施例1−2、オーバーパック率1.5
〃 4−3:実験1に係る比較例1−1、オーバーパック率1.5
〃 4−4:実施例4−9と同様の組成を使用、オーバーパック率2.5
【0053】
前記実施例4−9は、基本的に実験1に係る実施例1−2を基として最適化した実施例であり、メインポリオールとして、製造的にも好適な分子量6000の物質を使用し、かつ構造的な強度を向上させるサブポリオールを使用すると共に、架橋剤の添加量を好適な数値とした例である。前記実施例4−10は、実施例4−9と同様の組成を使用し、オーバーパック率を2.4に上昇させたものである。また比較例4−4は、実施例4−9と同様の組成を使用し、オーバーパック率を2.5に上昇させたものである。
【0054】
【表3】
【0055】
(実験3の結果)
結果を上記の表3に合わせて示す。この表3から、ソリッドタイヤの外形をなす中空ケーシングに充填された際のポリウレタンフォームの密度が、350kg/m3であり、かつ反発弾性率が60を上回る場合には、該ソリッドタイヤとして、優れた構造的な強度(静荷重たわみ量)を有すると共に、2000g以下の転がり抵抗値を達成することが確認された。また、オーバーパック率が2.4を越えた場合には、前記中空ケーシング内へ充填したポリウレタンフォーム原料が漏出してしまった(比較例4−4)。
【0056】
【発明の効果】
以上に説明した如く、本発明に係るソリッドタイヤによれば、一定以上の分子量を有するポリオールを使用すると共に、3つ以上の官能基を有する架橋剤を用いて反発弾性率を60%以上の数値を達成し得るポリウレタンフォームを得ることが可能となり、またこのポリウレタンフォームをソリッドタイヤ内に充填することで、該ポリウレタンフォームの反発弾性率により空気圧タイヤの常用空気圧によって発現される転がり抵抗と略同等な数値、具体的には2000g以下を達成し得るようになると共に、該反発弾性率の制御により転がり抵抗を任意に設定し得るソリッドタイヤを製造し得るようになった。
【0057】
またイソシアネートとして、密度の向上と高いオーバーパック率とを達成し得るジフェニルメタンジイソシアネート(MDI)を使用することで、重量物の輸送用途等に好適に使用し得る剛性等の構造的な強度を発現する、密度およびオーバーパック率からのソリッドタイヤとしての密度を達成し得るソリッドタイヤが得られた。
【図面の簡単な説明】
【図1】本発明の好適な実施例に係るソリッドタイヤの内部構造を一部切り欠いて示す斜視図である。
【図2】実施例に係るソリッドタイヤの反発弾性率と、従来の空気を充填した空気圧タイヤの空気圧および転がり抵抗の関係との相関を示すグラフ図である。
【図3】実施例および実験例に係るソリッドタイヤの静荷重たわみ量を測定する際に使用される該ソリッドタイヤの寸法を示した概略斜視図である。
【図4】図3に示したソリッドタイヤを使用して、静荷重たわみ量を測定する方法を示した概略図である。
【図5】実施例に係るソリッドタイヤの転がり抵抗を測定する装置の概略図である。
【符号の説明】
10 ソリッドタイヤ
12 ポリウレタンフォーム
14 中空ケーシング
14a 中空部
Claims (4)
- ゴム製の中空ケーシング(14)と、その中空部(14a)に少なくとも1種類のポリオール、イソシアネートおよび各種添加物からなるポリウレタンフォーム原料を充填して発泡硬化させることでポリウレタンフォーム(12)としたソリッドタイヤにおいて、
前記ポリウレタンフォーム(12)は、ポリオールとして分子量5000以上の物質を使用すると共に、イソシアネートとしてジフェニルメタンジイソシアネート(MDI)を使用し、
前記添加物の1つである架橋剤として、官能基数が3以上の物質を全ポリオール100重量部に対して、0.1〜15重量部、好ましくは1〜15重量部添加すること作製され、
これにより、前記中空ケーシング(14)に充填されたポリウレタンフォーム(12)の密度が350kg/m3以上で、JISK6302に規定される走行耐久試験機による楕行法で測定される転がり抵抗が2000g以下に設定されている
ことを特徴とするソリッドタイヤ。 - 前記中空ケーシング(14)に対するポリウレタンフォーム原料の充填は、そのオーバーパック率が2.4以下に設定される請求項1記載のソリッドタイヤ。
- 前記ポリオールの不飽和度は、0.07mmol/g以下に設定される請求項1または2記載のソリッドタイヤ。
- 前記ポリオールの1つとして、グラフトポリオールが使用される請求項1〜3の何れかに記載のソリッドタイヤ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002161943A JP2004009768A (ja) | 2002-06-03 | 2002-06-03 | ソリッドタイヤ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002161943A JP2004009768A (ja) | 2002-06-03 | 2002-06-03 | ソリッドタイヤ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004009768A true JP2004009768A (ja) | 2004-01-15 |
Family
ID=30430864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002161943A Pending JP2004009768A (ja) | 2002-06-03 | 2002-06-03 | ソリッドタイヤ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004009768A (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005068584A1 (ja) | 2004-01-16 | 2005-07-28 | Mitsubishi Chemical Corporation | 蛍光体、及びそれを用いた発光装置、照明装置ならびに画像表示装置 |
CN100400314C (zh) * | 2006-01-27 | 2008-07-09 | 华南理工大学 | 一种聚氨酯实心轮胎及其制造方法 |
KR100930951B1 (ko) * | 2008-09-10 | 2009-12-10 | 현대자동차주식회사 | 차량용 카고 스크린 및 그 설치구조 |
KR200469294Y1 (ko) * | 2012-01-06 | 2013-10-02 | 황승덕 | 기능성이 향상된 노펑크 타이어 |
WO2015068850A1 (ja) * | 2013-11-11 | 2015-05-14 | 住友ゴム工業株式会社 | トレッドリングの剛性測定装置及びトレッドリングの均一性測定方法 |
JP2015093552A (ja) * | 2013-11-11 | 2015-05-18 | 住友ゴム工業株式会社 | トレッドリングの剛性測定装置及びトレッドリングの均一性測定方法 |
JP2015123729A (ja) * | 2013-12-27 | 2015-07-06 | 住友ゴム工業株式会社 | トレッドリングの剛性測定装置及びトレッドリングの均一性測定方法 |
JP2015209135A (ja) * | 2014-04-25 | 2015-11-24 | 株式会社をくだ屋技研 | 荷役作業車用車輪 |
JP2022547382A (ja) * | 2019-07-22 | 2022-11-14 | ダウ グローバル テクノロジーズ エルエルシー | ポリウレタン組成物、それを用いて調製された製品およびその調製方法 |
-
2002
- 2002-06-03 JP JP2002161943A patent/JP2004009768A/ja active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005068584A1 (ja) | 2004-01-16 | 2005-07-28 | Mitsubishi Chemical Corporation | 蛍光体、及びそれを用いた発光装置、照明装置ならびに画像表示装置 |
CN100400314C (zh) * | 2006-01-27 | 2008-07-09 | 华南理工大学 | 一种聚氨酯实心轮胎及其制造方法 |
KR100930951B1 (ko) * | 2008-09-10 | 2009-12-10 | 현대자동차주식회사 | 차량용 카고 스크린 및 그 설치구조 |
KR200469294Y1 (ko) * | 2012-01-06 | 2013-10-02 | 황승덕 | 기능성이 향상된 노펑크 타이어 |
EP3070455A4 (en) * | 2013-11-11 | 2017-07-05 | Sumitomo Rubber Industries, Ltd. | Device for measuring tread ring rigidity and method for measuring uniformity of tread ring |
JP2015093552A (ja) * | 2013-11-11 | 2015-05-18 | 住友ゴム工業株式会社 | トレッドリングの剛性測定装置及びトレッドリングの均一性測定方法 |
KR20160083883A (ko) * | 2013-11-11 | 2016-07-12 | 스미토모 고무 고교 가부시키가이샤 | 트레드 링의 강성 측정 장치 및 트레드 링의 균일성 측정 방법 |
WO2015068850A1 (ja) * | 2013-11-11 | 2015-05-14 | 住友ゴム工業株式会社 | トレッドリングの剛性測定装置及びトレッドリングの均一性測定方法 |
US10132721B2 (en) | 2013-11-11 | 2018-11-20 | Sumitomo Rubber Industries, Ltd. | Device for measuring tread ring rigidity and method for measuring uniformity of tread ring |
KR102244997B1 (ko) | 2013-11-11 | 2021-04-27 | 스미토모 고무 코교 카부시키카이샤 | 트레드 링의 강성 측정 장치 및 트레드 링의 균일성 측정 방법 |
JP2015123729A (ja) * | 2013-12-27 | 2015-07-06 | 住友ゴム工業株式会社 | トレッドリングの剛性測定装置及びトレッドリングの均一性測定方法 |
JP2015209135A (ja) * | 2014-04-25 | 2015-11-24 | 株式会社をくだ屋技研 | 荷役作業車用車輪 |
JP2022547382A (ja) * | 2019-07-22 | 2022-11-14 | ダウ グローバル テクノロジーズ エルエルシー | ポリウレタン組成物、それを用いて調製された製品およびその調製方法 |
JP7465947B2 (ja) | 2019-07-22 | 2024-04-11 | ダウ グローバル テクノロジーズ エルエルシー | ポリウレタン組成物、それを用いて調製された製品およびその調製方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6279576B2 (ja) | 複合フォーム | |
JP5319090B2 (ja) | 低密度硬質強化ポリウレタンおよびその製造方法 | |
US10710410B2 (en) | Polyurethane filled tires | |
JP5542668B2 (ja) | 快適性が増したポリウレタン製品の発泡に使用される樹脂組成物 | |
CA1039893A (en) | Flat free pneumatic tire and void free filling therefor | |
JP4624560B2 (ja) | 低レジリエンスで低振動数の成形ポリウレタンフォーム | |
JP7538198B2 (ja) | ヒドロハロオレフィン(hfo)含有ポリウレタン(pu)製剤 | |
JP2011038005A (ja) | 発泡ポリウレタンエラストマーの製造方法 | |
JP2019070423A (ja) | バウンドストッパおよびその製造方法 | |
JP2004009768A (ja) | ソリッドタイヤ | |
EP2886369A1 (en) | Polyurethane filled tires | |
JP3644640B2 (ja) | シートクッションパッド | |
JP2021509928A (ja) | 非空気入りタイヤならびにその製造方法およびその使用 | |
KR100319281B1 (ko) | 폴리우레아 탄성 중합체의 미세 발포체 | |
JP2009185155A (ja) | 低反発軟質ポリウレタンフォーム | |
KR101672062B1 (ko) | 미세기공 폴리우레탄 엘라스토머 및 그 제조 방법 | |
JP2005325146A (ja) | 鉄道用パッドの製造方法 | |
JP4109228B2 (ja) | ヘッドレスト用軟質ポリウレタンフォームの製造方法 | |
WO2008137546A1 (en) | Amine catalyst blend useful in the production of polyurethane articles | |
WO2020114786A1 (en) | Polyurethane microcellular elastomer, non-pneumatic tire and preparation process thereof | |
JP2004291725A (ja) | ランフラットタイヤ支持体及びその製造方法並びにランフラットタイヤ | |
JP2003342343A (ja) | 高反発弾性フォーム | |
JPH06322057A (ja) | ポリウレタンフォーム成形品 | |
JPH08268007A (ja) | パンクレスタイヤ、これに使用する発泡体充填材、および発泡体充填材の製造方法 | |
EP3556788A1 (en) | Non-pneumatic tire and method for preparing the same and use thereof |