JP2004006982A - レーザ増幅器、レーザ増幅方法及びレーザ増幅装置 - Google Patents

レーザ増幅器、レーザ増幅方法及びレーザ増幅装置 Download PDF

Info

Publication number
JP2004006982A
JP2004006982A JP2003291863A JP2003291863A JP2004006982A JP 2004006982 A JP2004006982 A JP 2004006982A JP 2003291863 A JP2003291863 A JP 2003291863A JP 2003291863 A JP2003291863 A JP 2003291863A JP 2004006982 A JP2004006982 A JP 2004006982A
Authority
JP
Japan
Prior art keywords
laser
wavelength
light source
level
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291863A
Other languages
English (en)
Inventor
Tadashi Kasamatsu
笠松 直史
Takashi Yano
矢野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003291863A priority Critical patent/JP2004006982A/ja
Publication of JP2004006982A publication Critical patent/JP2004006982A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

  【課題】 自己終端系遷移を形成する希土類元素を添加したレーザ増幅器、レーザ増幅方法及びレーザ増幅装置において、半導体レーザによる励起を可能とし、高効率、小型、長寿命及び高安定動作を同時に実現することができるレーザ増幅器、レーザ増幅方法及びレーザ増幅装置を提供する。
  【解決手段】 二つの適切に選択された波長を有する半導体レーザ光源を励起光源として用いることで達成される。励起光源に、イオンを基底準位からレーザ下準位又はそれより上方のエネルギレベルへ励起する第1の半導体レーザ励起光源と、第1励起光源とは異なる波長を有し、イオンをレーザ下準位からレーザ上準位へ励起する第2の半導体レーザ励起光源とを使用する。
【選択図】 図1

Description

 本発明は、希土類元素を添加した媒体を利得媒質とし、励起光源として半導体レーザを用いるレーザ増幅器とそれを使用したレーザ増幅方法及びレーザ増幅装置に関する。
 希土類元素を添加した結晶及びガラス媒質を活性媒体とするレーザ装置、即ちレーザ発振器及びレーザ増幅器等は、広く情報通信産業及び機械工業分野に応用されている。金属加工用大出力固体レーザ及び光ファイバ通信システムにおける光ファイバ増幅器はその典型的な例である。
 レーザ増幅器及びレーザ発振器の効率、サイズ、寿命及び機械的安定性は、主に励起光源により決定される。励起光源としての半導体レーザは、これらの点で、固体レーザ及びファイバレーザより優れている。このため、装置の実用性を考えると、励起光源として半導体レーザ(レーザダイオード:LD)を使用する方式(LD励起)が好ましい。励起光源としての固体レーザ及びファイバレーザは、様々な点で半導体レーザに対して不利な点が多い。特に不利な点として、LDと比較して効率、サイズ、機械的安定性及び寿命の点で不利であること以外に、波長1.05μm帯での受動光部品が少ないことが挙げられる。例えば、低損失且つ高アイソレーションの光アイソレータは実用化されていない。
 このようなレーザ装置においては、光励起によりエネルギを希土類イオンに供給しているため、装置の高効率動作のためには、励起光源の波長の選定が特に重要である。しかしながら、希土類イオンの種類によっては、最適な励起波長、即ちイオンの吸収波長帯が半導体レーザの波長とうまく整合せず、単一波長の半導体レーザによるLD励起が困難となるため、LD以外の光源を使用する必要がある場合がある。特に、レーザ下準位寿命がレーザ上準位寿命より長い自己終端系を形成するイオンを利得媒質として使用する場合は、以下の例で示すように、励起波長がより限定されるため、LD励起がより困難となる。
 一例として、フッ化物ガラス中のTm(ツリウム)イオンの場合について述べる。Tm等の希土類元素をフッ化物ガラス等の媒質中に添加すると、媒質中でイオン化し、Tmイオンとなる。図12は従来のツリウムファイバ増幅器の励起方法を示すエネルギ準位図である。併せて、従来の励起波長を同図中に明示する。また、図13は図12に示す遷移が発生する際のASEスペクトル(Amplified Spontaneous Emission:増幅された自然放出)を示すグラフ図である。図12に示すように、Tmイオンをコアに添加したファイバ増幅器において、1.04〜1.07μm(以下、1.05μm帯という)を励起波長とすることで、波長1.47μm帯の光増幅(遷移)を実現できる。同図中では、遷移aとして明示してある。また、このとき図13に示すようなASEスペクトルも得られる。より詳細には、非特許文献1(アイ・イー・イー・イー、ジャーナル・オブ・カンタム・エレクトロニクス(IEEE Journal of Quantum Electronics)第31巻、第1880頁、1995年)、特許文献1(特許第33444475号)及び非特許文献2(オプティクス・レターズ(Optics Letters)第24巻、第1684頁、1999年)に示されている。
 このようなファイバ増幅器においては、図12に示すように、1.05μm帯の励起光子が、Tmイオンの基底準位吸収()、それに引き続く非放射遷移(図示せず)及び励起状態吸収(又は)を引き起こし、2段階の遷移により、準位間に反転分布を形成する。この手法が有効な理由は、Tmイオンの基底準位吸収スペクトル及び励起準位吸収スペクトルが、波長約1.05μmにおいて重なり合うため、波長1.05μmの単一の励起光で励起可能なことによる。
特許第33444475号
アイ・イー・イー・イー、ジャーナル・オブ・カンタム・エレクトロニクス(IEEE Journal of Quantum Electronics)第31巻、第1880頁、1995年 オプティクス・レターズ(Optics Letters)第24巻、第1684頁、1999年
 しかしながら、上述のTm添加ファイバ増幅器においては、1.05μm帯励起を半導体レーザで実現するのは困難である。その理由は、半導体レーザにおける1.05μm帯のレーザ光の発振は、研究論文レベルでは報告されているが、実用に供する出力パワーレベル、例えば、約500mWの横シングルモード出力が実現できる装置は、研究レベル及び市販品共に、未だ存在しないためである。例えば、「アプライド・フィジクス・レターズ(Applied Physics Letters)第69巻、第248頁、1996年」に示されているように、現状、波長1.06μmの半導体レーザ出力は、研究論文レベルで200mW程度にとどまっている。
 こうした理由から、Tm添加ファイバ増幅器の公知例では、1.05μm帯の励起光源として、例えばNd:YAG、Nd:YLF、Yb:YAG等のLD励起固体レーザ及び例えばYb添加ファイバレーザ等のLD励起ファイバレーザが使用されている。
 一方、1.05μm帯以外の励起光源、例えば、準位を直接励起する0.79μm帯(波長は0.77〜0.80μm、図12では遷移b)及び準位を励起する0.67μm帯(波長は0.64〜0.68μm、図12では遷移c)等の励起は、いずれもLD励起可能であるが、例えば「エレクトロニクス・レターズ(Electronics Letters)第25巻、第1660頁、1989年」に示されているように、レーザ下準位()のイオン数密度が増大し、定常状態で反転分布を維持できず、高効率動作が不可能である。この理由は、Tmイオンにおいてはレーザ下準位寿命が約10msecであり、レーザ上準位寿命(寿命=1.3msec)より長いためである。このような系は自己終端系といわれ、このような自己終端系は、希土類元素においては、Tm以外にも、Er(エルビウム)及びHo(ホルミウム)等において観測されている。
 自己終端系を形成する希土類元素を用いるレーザ増幅器及びレーザ発振器においては、高効率動作のために、イオンを基底準位からレーザ下準位又はそれ以上の準位まで励起させる役割を担う励起光と、イオンをレーザ下準位からレーザ上準位へ励起し、反転分布を形成する役割を担う励起光とが、本質的に必要である。上述の如く、Tmにおける1.05μm帯の励起光は、その二つの役割を同時に実現するが、LDによる励起が不可能である。
 以上の例で示したように、自己終端系を形成するイオンを添加した媒体を利得媒質として用いる場合は、励起波長が限定されるため、LD励起が困難である。
 本発明はかかる問題点に鑑みてなされたものであって、自己終端系遷移を形成する希土類元素を添加したレーザ増幅器、レーザ増幅方法及びレーザ増幅装置並びにレーザ発振器において、半導体レーザによる励起を可能とし、高効率、小型、長寿命及び高安定動作を同時に実現することができるレーザ増幅器、レーザ増幅方法及びレーザ増幅装置を提供することを目的とする。
 本発明に係るレーザ増幅器は、希土類元素を添加した媒体を利得媒質とし、この媒体中の希土類イオンのエネルギ準位のうち、基底準位よりエネルギが高い2つのエネルギ準位間の誘導放出遷移を用い、この誘導放出遷移が前記2つのエネルギ準位のうちのレーザ上準位寿命よりレーザ下準位寿命が長い自己終端系遷移を形成するレーザ増幅器であって、基底準位から前記レーザ下準位又はそれより上方のエネルギ準位にイオンを励起する第1の励起光の光源と、前記第1の励起光の波長とは異なる波長を有し、前記レーザ下準位から前記レーザ上準位へイオンを励起する第2の励起光の光源とを備え、前記第1励起光源と前記第2励起光源のうち、少なくとも一方は半導体レーザにより構成されることを特徴とする。
 本発明のレーザ増幅器は、前記希土類元素を添加する媒体として、フルオロジルコニウム酸塩ガラスを使用することができる。
 更に、本発明のレーザ増幅器においては、一例として、前記希土類イオンがツリウム(Tm3+)であり、波長が1.53乃至1.90μm、波長が0.77乃至0.80μm、波長が0.64乃至0.68μmの3つの波長領域内のうち、いずれか一つの波長を有する第1励起光の光源と、波長が1.35乃至1.46μmの第2励起光の光源とを有する。また、本発明のレーザ増幅器は、媒体が光ファイバ形状であることが好ましい。
 本発明に係るレーザ増幅方法は、前述のレーザ増幅器を含む複数のレーザ増幅器を、直列又は並列に配列して利得を広帯域化したことを特徴とする。
 本発明に係るレーザ増幅装置は、前述のレーザ増幅器を含む複数のレーザ増幅器が、直列又は並列に配列されていることを特徴とする。
 なお、本発明に係るレーザ発振器は、希土類元素を添加した媒体を利得媒質とし、この媒体中の希土類イオンのエネルギ準位のうち、基底準位よりエネルギが高い2つのエネルギ準位間の誘導放出遷移を用い、この誘導放出遷移が前記2つのエネルギ準位のうちのレーザ上準位寿命よりレーザ下準位寿命が長い自己終端系遷移を形成するレーザ発振器であって、基底準位から前記レーザ下準位又はそれより上方のエネルギ準位にイオンを励起する第1の励起光の光源と、前記第1の励起光の波長とは異なる波長を有し、前記レーザ下準位から前記レーザ上準位へイオンを励起する第2の励起光の光源とを備え、前記第1励起光源と前記第2励起光源のうち、少なくとも一方は半導体レーザにより構成されていることを特徴とする。
 本発明のレーザ発振器は、前記希土類元素を添加する媒体として、フルオロジルコニウム酸塩ガラスを使用することができる。
 更に、本発明のレーザ発振器においては、一例として、前記希土類イオンがツリウム(Tm3+)であり、波長が1.53乃至1.90μm、波長が0.77乃至0.80μm、波長が0.64乃至0.68μmの3つの波長領域内のうち、いずれか一つの波長を有する第1励起光の光源と、波長が1.35乃至1.46μmの第2励起光の光源とを有する。
 本発明においては、自己終端系遷移を形成する希土類元素を添加したレーザ増幅器及びレーザ発振器において、二つの適切に選択された波長を有する半導体レーザ光源を励起光源として使用する。
 先ず、本発明における二つの励起光の作用について説明する。第1励起光は、イオンを基底準位からレーザ下準位又はそれより上方のエネルギレベルへ励起する。この第1励起光は、イオンを効率良く誘導放出遷移に関与するエネルギ準位群、即ちレーザ上準位及びレーザ下準位に励起する役割を有する。ここで、必ずしも第1励起光は、イオンをレーザ上準位より上方のエネルギ準位まで励起する必要はない。また、第1励起光のみを照射した場合、エネルギ準位が自己終端系であるため、レーザ下準位のイオン数密度が増大し、定常的な反転分布は形成されない。
 次に、第2励起光により、イオンを、レーザ下準位からレーザ上準位へ励起する。これにより所望のエネルギ準位間に反転分布を形成し、その誘導放出遷移におけるレーザ増幅動作を達成する。
 第1励起光は、レーザ下準位又はそれより上方のエネルギレベルへの基底準位吸収遷移に整合する波長を選定すれば良く、単一波長励起の場合に比べ選択肢が格段に増え、半導体レーザによる励起も可能である。第2励起光は、レーザ上準位とレーザ下準位間のエネルギギャップに相当する波長を選定すれば良い。これは注目している誘導放出遷移波長より若干短波長(約0.02〜0.10μm)の光源を選べば良く、この誘導放出遷移が半導体レーザで実現できる波長であれば、第2励起光も半導体レーザで実現できる。
 また、本発明の励起構成の中で、第1励起光の波長を基底準位及びレーザ下準位の間のエネルギギャップに相当するように設定した場合に、エネルギ変換効率、即ちスロープ効率が最大となる。その理由は、通常、非放射遷移によるエネルギ損失分がエネルギ変換効率を低下させる主原因となるが、励起光の波長を上述のように設定した場合、非放射遷移により失われるエネルギ損失分は極めて少なくなるためである。各エネルギ準位の幅を無視した単純な見積もりを行うと、Tm添加ファイバ増幅器における1.05μm励起の場合、ファイバ増幅器のスロープ効率の理論最大値ηsは、ηs=1.05/1.46/2=36%である。しかし、第1励起光の波長を1.56μmとし、第2励起光の波長を1.46μmとした場合、スロープ効率は50%に達する。レーザ発振器の場合はより顕著であり、閾値の5倍程度の励起パワーにおける理論スロープ効率は、1.05μm励起の場合はηs=73%であるが、1.42μm励起+1.56μm励起の場合はηs=97%にも達する。従って、本発明において、レーザ装置の高い動作効率を提供することも可能である。
 次に、利得媒質について説明する。ここでは、利得媒質中に添加する希土類元素として、Tmを例にとり本発明を説明するが、本発明で使用できる希土類元素は、基底準位よりエネルギの高い2つのエネルギ準位をレーザ上準位及びレーザ下準位としてこの2準位間の誘導放出遷移を用いることができ、この2準位が自己終端系遷移をなしており、イオンの有するエネルギ準位を考慮して現存する半導体レーザ波長に整合する第1励起光及び第2励起光のうち少なくとも一方を選択することができるものであればよく、Tmに限定されるものではない。
 希土類元素を添加する媒体は、通常の固体レーザ又はファイバレーザの媒体として用いられるものであればよいが、一般的にはガラス質である。例えば、石英、リン酸ガラス、ホウ酸ガラス、ゲルマニウムガラス、テルライトガラス又はフルオロジルコニウム酸塩ガラス等を挙げることができる。この中でも、フルオロジルコニウム酸塩ガラスは最もフォノンエネルギが低く、狭いエネルギ差の遷移でも非放射遷移せず、放射遷移により光としてエネルギを取り出すことができるので好ましい。また、媒体をファイバ形状とすると、長さにより利得を稼ぐことができるので、媒体形状としてはファイバ形状が望ましい。
 このように、本発明によるレーザ増幅器においては、第1及び第2の励起光を発振する2つの光源を有することにより、半導体レーザ励起が可能となる。そのため、固体レーザ又はファイバレーザ等の光源を、励起光源として用いることに起因する問題を排除するとともに、高効率を実現することができる。また、本発明は、レーザ増幅器の他、通常の共振器構造を付加することでレーザ発振器として構成することができる。更に、複数の前記レーザ増幅器を直列又は並列に接続することにより、利得を広帯域化したレーザ増幅装置を構成することができる。
 以上説明したように、本発明によれば、自己終端系を形成するイオンを添加したレーザ増幅器及びレーザ増幅装置において、半導体レーザ励起を可能とすることができ、高効率、小型、長寿命及び高安定のレーザ増幅器及びレーザ増幅装置を得ることができる。更に、本発明によれば、利得ピーク波長を長波長シフトしたレーザ増幅器を実現できる。このため、利得ピークをシフトしないファイバ増幅器とシフトしたファイバ増幅器とを、直列又は並列に接続することで、広い増幅波長帯域を有するレーザ増幅装置を実現でき、大容量化に対応可能な波長多重通信に使用することができる。
 以下、本発明の実施例について添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施例について説明する。本実施例では、ツリウム(Tm)を添加したフッ化物ファイバを増幅ファイバとし、放出光遷移として、遷移(1.47μm帯)に着目する。
 図1は、本実施例に係るレーザ増幅器の励起方法を示すエネルギ準位図である。図1に示すように、第1励起光の波長は、(1)レーザ下準位()励起波長:1.53〜1.90μm(遷移a)、(2)準位励起波長:1.10〜1.25μm(図示せず)、(3)準位励起波長:0.77〜0.80μm(遷移b)、(4)準位励起波長:0.64〜0.68μm(遷移c)等の選択肢があり、この中で半導体レーザ励起が可能なものは(1)、(3)及び(4)である。第2励起光の波長は、励起準位吸収に合致する1.35〜1.46μmの波長範囲であれば良く、半導体レーザで実現可能である。
 例えば、遷移aの場合、第1励起光の波長は基底準位と準位間とのエネルギギャップに相当するフォトンエネルギを持つように設定すれば良い。この基底準位吸収遷移は波長が1.65μmの位置にピークを持ち、波長が1.53μmから1.90μmまでの範囲に裾野を有する。本実施例では、第1励起光源を波長が1.56μm、最大出力が100mWの半導体レーザとする。この理由は、縦マルチモード半導体レーザの作製が容易であることと、本波長における光カプラ又はアイソレータ等の受動部品が既に開発されており、導入に支障が無いことである。但し、上記波長範囲内であれば、本質的には同様の動作が可能である。
 また、第2励起光の波長は、レーザ下準位とレーザ上準位との間のエネルギギャップに相当する波長を選択する。この遷移は励起準位吸収と呼ばれ、波長の詳細なデータは従来、公知にされていないため、本発明者等が測定した。その結果、波長1.41μm近傍にピークを有し、1.35〜1.46μmの範囲に広がる励起準位吸収スペクトルが得られた。この波長範囲内で第2励起光の波長を選択すれば良い。上記波長帯域の半導体レーザの作製は容易である。本実施例では、第2励起光源として、波長が励起準位吸収のピーク近傍である1.42μm、最大出力が100mWの縦マルチモードLDを使用する。
 図2は本実施例に係るレーザ増幅器の構成を示すブロック図である。増幅ファイバ1は、フルオロジルコニウム酸塩ガラスを母材とし、ツリウム濃度が2000ppm、コア径が2.0μm、ファイバ長が20mである。増幅ファイバ1の入力側には、波長多重カプラ3及び7が配置されている。波長多重カプラ3及び7は、夫々、第1励起光源2及び第2励起光源6に接続されている。波長多重カプラ7の更に入力側の信号入力ポートにはアイソレータ4が、増幅ファイバ1の出力ポートにはアイソレータ5が夫々配置されている。なお、図2において、アイソレータ4及び5内に示されている矢印は、アイソレータ4及び5における光の通過可能方向を示す。
 次に、本実施例に係るレーザ増幅器の動作について説明する。増幅前の信号光8は、信号入力ポートのアイソレータ4を通過した後、波長多重カプラ7及び3を通過し、増幅ファイバ1に導入される。一方、第1励起光源2及び第2励起光源6から出力した励起光は、夫々波長多重カプラ3及び7を介して増幅ファイバ1に導入される。信号光8は、増幅ファイバ1内で増幅され、アイソレータ5を通過した後、増幅信号9として出力される。アイソレータ4及びアイソレータ5は、戻り光による望ましくないレーザ発振を抑制する。
 図3は図2のレーザ増幅器におけるASEスペクトルを示すグラフ図である。図3に示すように、第1励起光(ピーク15)を入射せず、第2励起光(ピーク13)のみを入射した場合は、1.470μm近辺にASEは発生していない(スペクトル10)。しかし、第1励起光及び第2励起光がいずれも入射した場合は、スペクトル12が得られる。スペクトル12は、波長1.470μmにピーク14を持つ。ピーク14は1.450μmから1.490μmまで広がっており、従って、1.05μm単一波長励起の場合のASEスペクトル(図13参照)と同様のASE帯域が得られた。
 また、第1励起光及び/又は第2励起光の出力の調整により、ASEスペクトルの制御が可能である。第1励起光の出力を20mW、第2励起光の出力を10mWとするとき、スペクトル11が得られる。ピーク位置は1.485μmとなり、スペクトル12に比べて長波長側にシフトする。この理由は以下のように説明できる。第1励起光による遷移強度が、第2励起光による遷移強度に比して強い場合、レーザ下準位のイオン数が増加し、ファイバ中の反転分布率が低下する。このためASEスペクトルは長波長側にシフトする。これは、準位を仮想的な基底準位と見なした場合、エルビウム添加ファイバ増幅器において反転分布率の減少が利得帯域の長波シフトを招く現象と同じメカニズムである(例えば、特願平11−156745号参照)。また、図2では、励起光は装置の入力側から入射しているが、本発明の効果は、励起光の入射方向によらないことが確認されている。
 図4は本実施例のレーザ増幅器における利得の信号波長依存性の測定結果を示すグラフ図である。この測定においては、波長可変半導体レーザを信号光源とし、波長を1.44μmから1.55μmまで変化させる。出力は−30dBmとする。また、飽和信号の波長を1.500μm、出力を−10dBmとする。その結果、信号波長1.470μmにおいて最大利得約30dB、雑音指数5dB程度が得られる(黒丸)。このとき、第1励起光出力は50mW、第2励起光出力は70mWである。1.05μm励起の場合、同程度の利得を得るためには、200mWから300mWの励起出力が必要であるのに対し、より高効率であることが分かる。第1励起光の出力を100mW、第2励起光の出力を70mWとすると、ASEスペクトルの長波シフトと同様に利得の長波長シフト(白丸)が実現できる。この場合、最大利得は低下するが、これはファイバの長尺化により補償できる。
 次に、本発明の第2の実施例について説明する。図5は本発明の第2の実施例におけるレーザ発振器の構成を示すブロック図である。増幅ファイバ1、第1励起光源2及び第2励起光源6は、第1の実施例と同一であり、図5において、前記第1実施例と同一の構成物には同一符号を付してある。増幅ファイバ1の入力側に、第1励起光波長及び第2励起光波長に対して無反射、発振波長帯(1.47μm)に対して全反射するリアミラー20を設置し、増幅ファイバ1の出力側には、発振波長帯に対して部分反射する出力ミラー16が設けられている。リアミラー20の入力側には、第1励起光を透過し第2励起光を反射するダイクロイックミラー21が配置され、更に入力側には、レンズ17及び第1励起光源2が設けられている。リアミラー20,ダイクロイックミラー21、レンズ17及び第1励起光源2は、同一直線上に配置されている。また、ダイクロイックミラー21の入力側には、レンズ18及び第2励起光源6も設けられている。レンズ18及び第2励起光源6は、第2励起光源から出力された第2励起光が、レンズ18を通過し、ダイクロイックミラー21で反射して、リアミラー20を介して増幅ファイバ1に入射する位置に配置されている。
 次に、本実施例に係るレーザ発振器の動作について説明する。第1励起光源2から出力された第1励起光は、一旦自由空間に放射された後、レンズ17、ダイクロイックミラー21及びリアミラー20を介して増幅ファイバ1に入射する。また、第2励起光源6から出力された第2励起光は、一旦自由空間に放射された後、レンズ18、ダイクロイックミラー21及びリアミラー20を介して増幅ファイバ1に入射する。増幅ファイバ1内で、波長1.47μmのレーザが発振及び増幅され、出力ミラー16より出力する。
 図6は、本実施例におけるレーザ発振スペクトルを示すグラフ図である。本実施例のレーザ発振器により、励起パワーが170mWのとき、波長が1.47μm、最大出力が50mWのレーザ発振を得ることができる。スロープ効率は35%、光/光変換効率は30%である。ファイバ長の最適化により更に出力を増大させることも可能である。また、第1励起光源の波長を0.79μm(図1に示す遷移b)又は0.68μm(図1に示す遷移c)とした場合でも、同様の利得特性を得ることができる。
 次に、本発明の第3の実施例に係る波長可変ツリウム添加ファイバレーザ発振器について説明する。図7は本実施例の波長可変ツリウム添加ファイバレーザ発振器の構成を示すブロック図である。増幅ファイバ1、第1励起光源2及び第2励起光源6は、第1及び第2の実施例と同一であり、図7において、前記第2の実施例と同一の構成物には同一符号を付してある。増幅ファイバ1より入力側の構成は、第2の実施例と同じである。この第3の実施例においては、増幅ファイバ1の出力端側に、コリメートレンズ23及び回折格子22が設けられている。
 次に、この第3の実施例の動作について説明する。第1励起光源2から出力された第1励起光は、一旦自由空間に放射された後、レンズ17、ダイクロイックミラー21及びリアミラー20を介して増幅ファイバ1に入射する。また、第2励起光源6から出力された第2励起光は、一旦自由空間に放射された後、レンズ18、ダイクロイックミラー21及びリアミラー20を介して増幅ファイバ1に入射する。増幅ファイバ1内で、波長1.47μmのレーザが発振及び増幅され、コリメートレンズ23により平行化され、回折格子22において回折されてファイバレーザ発振光19として出力される。
 図8は、本実施例におけるレーザ波長同調発振スペクトルを示すグラフ図である。本実施例においては、波長1.46μmから1.48μmの範囲の任意の波長のレーザ発振を実現できる。波長が1.47μm、最大出力が10mWのレーザ発振を、励起パワー170mWで得ることができる。
 次に、本発明の第4の実施例について説明する。図9は本実施例のレーザ増幅装置の構成を示すブロック図である。本実施例に係るレーザ増幅装置は、前記第1の実施例に係るレーザ増幅器(図2参照)を2台直列に接続することにより構成されている。これにより、Tm添加ファイバを長尺化し、Tm添加ファイバ増幅器の利得帯域を通常の1.47μm帯より1.49μm帯へと長波側へシフトしている。
 図9に示すレーザ増幅装置においては、2台のレーザ増幅器24a及び24bを直列に配列し、2段構成となっている。レーザ増幅器24aはレーザ増幅器24bに対して入力側に配置している。増幅ファイバ1a及び1bは、フルオロジルコニウム酸塩ガラスを母材とし、ツリウム濃度が2000ppm、コア径が2.0μm、ファイバ長が20mの光ファイバである。本実施例のレーザ増幅装置においては、増幅ファイバ1a及び1bを直列に接続することにより、ファイバ長が合計で40mとなっている。
 レーザ増幅器24aにおいては、増幅ファイバ1aが設けられ、増幅ファイバ1aの入力側には、波長多重カプラ3a及び7aが設けられている。波長多重カプラ3a及び7aは、夫々、第1励起光源2a及び第2励起光源6aに接続されている。波長多重カプラ7aの更に入力側の信号入力ポートにはアイソレータ4が設けられ、増幅ファイバ1の出力ポートにはアイソレータ5aが設けられている。アイソレータ5aの出力側にはレーザ増幅器24bが接続されている。また、第1励起光源2a及び第2励起光源6aは、夫々第1励起光及び第2励起光を入力側から増幅ファイバ1aに導入するものである。
 レーザ増幅器24bにおいては、入力側から順に波長多重カプラ7b及び3b、増幅ファイバ1b、波長多重カプラ7c及びアイソレータ5bが設けられ、直列に接続されている。波長多重カプラ7b及び3bには夫々第2励起光源6b及び第1励起光源2bが接続され、波長多重カプラ7cには第2励起光源6cが接続されている。第1励起光源2b及び第2励起光源6bは夫々第1励起光及び第2励起光を入力側から増幅ファイバ1bに導入するものであり、第2励起光源6cは後方励起光源として第2励起光を出力側から増幅ファイバ1bに導入するものである。第1励起光源2a及び2bは前記第1の実施例における第1励起光源2と同じものであり、第2励起光源6a乃至6cは、前記第1の実施例における第2励起光源6と同じものである。アイソレータ4、5a及び5bは、戻り光による望ましくないレーザ発振を抑制するものである。なお、図9においてアイソレータ4、5a及び5b内に示されている矢印は、アイソレータ4、5a及び5bにおける光の通過可能方向を示す。
 次に、本実施例のレーザ増幅装置の動作について説明する。図9に示すように、増幅前の信号光8は、レーザ増幅器24aに入力され、アイソレータ4を通過した後、波長多重カプラ7a及び3aを通過し、増幅ファイバ1aに導入される。一方、第2励起光源6a及び第1励起光源2aから出力された励起光は、夫々波長多重カプラ7a及び3aを介して増幅ファイバ1aに導入される。信号光8は、増幅ファイバ1a内で増幅された後、アイソレータ5aを通過し、レーザ増幅器24bに対して出力される。
 レーザ増幅器24aから出力された光は、レーザ増幅器24bにおいて、波長多重カプラ7b及び3bを通過し、増幅ファイバ1bに導入される。一方、第2励起光源6b及び第1励起光源2bから出力された励起光は、夫々波長多重カプラ7b及び3bを介して増幅ファイバ1bに導入される。また、第2励起光源6cから出力された励起光は、波長多重カプラ7cを介して増幅ファイバ1cに導入される。前述のレーザ増幅器24aから出力された光は、増幅ファイバ1b内で増幅され、アイソレータ5bを通過し、増幅信号9として出力される。
 図10は、図9に示すレーザ増幅装置における増幅信号9の利得及び雑音指数の波長依存性の測定結果を示すグラフ図である。この測定においては、飽和信号として波長が1.476μm乃至1.509μmの範囲に等間隔に配置された16の波からなる波長多重信号と、小信号として出力が−20dBmの波長可変半導体レーザ光とを合わせてレーザ増幅装置に入力する。前記波長多重信号は、各波の出力が−15dBm/ch、全入力信号合計出力が−3dBmである。このとき、第1励起光源2aの出力は12mW、第1励起光源2bの出力は1.1mW、第2励起光源6aの出力は93mW、第2励起光源6bの出力は107mW、第2励起光源6cの出力は267mWである。また、利得及び雑音指数は前記小信号の波長を変えて測定する。測定の結果、信号波長が1.490μmのとき利得の最大値が得られ、このとき、利得が約26dB、雑音指数が約6.5dBとなる。また、波長が1.477乃至1.507μmの範囲にあるとき、20dB以上の利得を得ることができる。
 図11は、本実施例のレーザ増幅装置の出力及び光変換効率の全励起パワー依存性を示すグラフ図である。全励起パワーとは第1励起光源2a及び2b並びに第2励起光源6a、6b及び6cの各出力の和である。光変換効率は、レーザ増幅装置の出力を全励起パワーで除した値である。このとき、レーザ増幅装置の出力、光変換効率は共に全励起パワーに対して単調増加し、全励起パワーが最大のときに最大値をとる。このとき、光変換効率は最大29%に達する。この値は、1.05μm励起を行う場合と比較して高効率である。
 なお、本発明は、所望の誘導放出遷移を実現し得る希土類イオン並びに第1励起光源の波長及び強度並びに第2励起光源の波長及び強度を適切に選択することで、前述のTmイオン中の他の励起準位間遷移及び他の希土類イオンに対しても有効である。
本発明の第1の実施例に係るレーザ増幅器の励起方法を示すエネルギ準位図である。 本実施例におけるレーザ増幅器の構成を示すブロック図である。 本実施例のレーザ増幅器における増幅された自然放出光(ASE)スペクトルを示すグラフ図である。 本実施例のレーザ増幅器における利得の信号波長依存性の測定結果を示すグラフ図である。 本発明の第2の実施例におけるレーザ発振器の構成を示すブロック図である。 本実施例におけるレーザ増幅器の発振スペクトルを示すグラフ図である。 本発明の第3の実施例における波長可変ツリウムファイバレーザ発振器の構成を示すブロック図である。 本実施例における波長可変ツリウムファイバレーザ発振機の波長同調曲線を示すグラフ図である。 本発明の第4の実施例に係るレーザ増幅装置の構成を示すブロック図である。 本実施例のレーザ増幅装置における利得及び雑音指数の波長依存性の測定結果を示すグラフ図である。 本実施例のレーザ増幅装置の出力及び光変換効率の全励起パワー依存性を示すグラフ図である。 従来のツリウムファイバ増幅器の励起方法を示すエネルギ準位図である。 従来のツリウム励起法による蛍光スペクトル(ASEスペクトル)を示すグラフ図である。
符号の説明
 1、1a、1b;増幅ファイバ
 2、2a、2b;第1励起光源
 3、3a、3b;波長多重カプラ
 4;アイソレータ
 5、5a、5b;アイソレータ
 6、6a、6b、6c;第2励起光源
 7、7a、7b、7c;波長多重カプラ
 8;信号光
 9;増幅信号
 10;ツリウムにおいて第2励起光(波長1.42μm)のみを照射した場合のASEスペクトル(破線)
 11;第1励起光が強い場合に、ツリウムにおいて本発明による励起構成をとったときのASEスペクトル(点線)。
 12;第1励起光と第2励起光が同程度の強度の場合に、ツリウムにおいて本発明による励起構成をとったときのASEスペクトル(実線)。
 13;第2励起光(波長1.42μm)
 14;1.47μm帯ASE
 15;第1励起光(波長1.56μm)
 16;出力ミラー
 17;レンズ
 18;レンズ
 19;ファイバレーザ発振光
 20;リアミラー
 21;ダイクロイックミラー
 22;回折格子
 23;コリメートレンズ
 24a、24b;レーザ増幅器

Claims (6)

  1. 希土類元素を添加した媒体を利得媒質とし、この媒体中の希土類イオンのエネルギ準位のうち、基底準位よりエネルギが高い2つのエネルギ準位間の誘導放出遷移を用い、この誘導放出遷移が前記2つのエネルギ準位のうちのレーザ上準位寿命よりレーザ下準位寿命が長い自己終端系遷移を形成するレーザ増幅器であって、基底準位から前記レーザ下準位又はそれより上方のエネルギ準位にイオンを励起する第1の励起光の光源と、前記第1の励起光の波長とは異なる波長を有し、前記レーザ下準位から前記レーザ上準位へイオンを励起する第2の励起光の光源とを備え、前記第1励起光源と前記第2励起光源のうち、少なくとも一方は半導体レーザにより構成されることを特徴とするレーザ増幅器。
  2. 前記希土類元素を添加する媒体として、フルオロジルコニウム酸塩ガラスを使用することを特徴とする請求項1に記載のレーザ増幅器。
  3. 前記希土類イオンがツリウム(Tm3+)であり、波長が1.53乃至1.90μm、波長が0.77乃至0.80μm、波長が0.64乃至0.68μmの3つの波長領域内のうち、いずれか一つの波長を有する第1励起光の光源と、波長が1.35乃至1.46μmの第2励起光の光源とを有することを特徴とする請求項1又は2に記載のレーザ増幅器。
  4. 媒体が光ファイバ形状であることを特徴とする請求項1乃至3のいずれか1項に記載のレーザ増幅器。
  5. 請求項1乃至4のいずれか1項に記載のレーザ増幅器を含む複数のレーザ増幅器を、直列又は並列に配列して利得を広帯域化したことを特徴とするレーザ増幅方法。
  6. 請求項1乃至4のいずれか1項に記載のレーザ増幅器を含む複数のレーザ増幅器が、直列又は並列に配列されていることを特徴とするレーザ増幅装置。
JP2003291863A 2000-02-29 2003-08-11 レーザ増幅器、レーザ増幅方法及びレーザ増幅装置 Pending JP2004006982A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291863A JP2004006982A (ja) 2000-02-29 2003-08-11 レーザ増幅器、レーザ増幅方法及びレーザ増幅装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000054474 2000-02-29
JP2003291863A JP2004006982A (ja) 2000-02-29 2003-08-11 レーザ増幅器、レーザ増幅方法及びレーザ増幅装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001016358A Division JP2001320115A (ja) 2000-02-29 2001-01-24 レーザ増幅器、レーザ増幅方法及びレーザ増幅装置並びにレーザ発振器

Publications (1)

Publication Number Publication Date
JP2004006982A true JP2004006982A (ja) 2004-01-08

Family

ID=30445599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291863A Pending JP2004006982A (ja) 2000-02-29 2003-08-11 レーザ増幅器、レーザ増幅方法及びレーザ増幅装置

Country Status (1)

Country Link
JP (1) JP2004006982A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391077B2 (ja) * 2007-11-19 2014-01-15 ミヤチテクノス株式会社 レーザ光照射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391077B2 (ja) * 2007-11-19 2014-01-15 ミヤチテクノス株式会社 レーザ光照射装置

Similar Documents

Publication Publication Date Title
Kelson et al. Strongly pumped fiber lasers
JP3344475B2 (ja) レーザ発振器及びレーザ増幅器
US7113328B2 (en) Dual-wavelength pumped thulium-doped optical fiber amplifier
KR100415548B1 (ko) 2단 장파장 대역 어븀첨가 광섬유 증폭 장치
JP2002329908A (ja) レーザ増幅器
EP1130702B1 (en) Method and device for laser amplification
US6556342B1 (en) Thulium doped fiber pump for pumping Raman amplifiers
US6940877B2 (en) High-power narrow-linewidth single-frequency laser
US6738182B2 (en) Optical fiber amplifier
JP2001085768A (ja) フィードバックループを用いた光学素子測定用l−バンド光源
JP2688303B2 (ja) ファイバレーザおよびファイバ増幅器
US11276982B2 (en) Optical fiber amplifier for operation in two micron wavelength region
JP2004200690A (ja) ツリウム添加光ファイバ増幅器
JP2004006982A (ja) レーザ増幅器、レーザ増幅方法及びレーザ増幅装置
US7038845B2 (en) Optical amplifier and optical fiber laser
JP2001320115A (ja) レーザ増幅器、レーザ増幅方法及びレーザ増幅装置並びにレーザ発振器
EP1030416A2 (en) Laser amplifier and laser oscillator
AU648339B2 (en) A laser and an amplifier
JP3551155B2 (ja) 光ファイバ増幅器及びそれを備えた光増幅装置
JP2002185067A (ja) レーザ発振器及びレーザ増幅器
JPH09162468A (ja) レーザ発振器
Kaur et al. Role of an isolator in optimization of forward conversion efficiency in an Er-doped SFS source at 1.55 μm
JPH11317560A (ja) 光増幅器およびレーザ発振器
Wang et al. The numerical analysis of a broadly tunable ytterbium-doped fiber ring laser
Kurkov et al. High-power EDFA pumped by P-doped fiber-based Raman converter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070112