JP2004006946A - 電子デバイス用放熱体の製造方法 - Google Patents
電子デバイス用放熱体の製造方法 Download PDFInfo
- Publication number
- JP2004006946A JP2004006946A JP2003208567A JP2003208567A JP2004006946A JP 2004006946 A JP2004006946 A JP 2004006946A JP 2003208567 A JP2003208567 A JP 2003208567A JP 2003208567 A JP2003208567 A JP 2003208567A JP 2004006946 A JP2004006946 A JP 2004006946A
- Authority
- JP
- Japan
- Prior art keywords
- vol
- powder
- copper
- binder
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Powder Metallurgy (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
【課題】熱膨張係数がデバイスなどに近似し放熱性が良好な放熱体を得る。
【解決手段】本発明の放熱体10の製造方法は、W(Mo)の含有量がCuよりも多くなるような比率でW(Mo)粉末とCu粉末とバインダーとを混合、混練して成形用組成物とする第1成形用組成物作製工程と、この第1成形用組成物を成形型に充填して所定形状の貫通孔を備えた母材成形体10aを成形する第1成形工程と、Cuの含有量がW(Mo)よりも多くなるような比率でW(Mo)粉末とCu粉末とバインダーとを混合、混練して成形用組成物とする第2成形用組成物作製工程と、母材成形体10aの貫通孔12内に第2成形用組成物13を充填して一体成形体とする第2成形工程と、この一体成形体を加熱して一体成形体に含有されたバインダーを燃焼除去する脱バインダ処理工程と、バインダーが除去された一体成形体を焼結して複合焼結体とする焼結工程とを備える。
【選択図】 図1
【解決手段】本発明の放熱体10の製造方法は、W(Mo)の含有量がCuよりも多くなるような比率でW(Mo)粉末とCu粉末とバインダーとを混合、混練して成形用組成物とする第1成形用組成物作製工程と、この第1成形用組成物を成形型に充填して所定形状の貫通孔を備えた母材成形体10aを成形する第1成形工程と、Cuの含有量がW(Mo)よりも多くなるような比率でW(Mo)粉末とCu粉末とバインダーとを混合、混練して成形用組成物とする第2成形用組成物作製工程と、母材成形体10aの貫通孔12内に第2成形用組成物13を充填して一体成形体とする第2成形工程と、この一体成形体を加熱して一体成形体に含有されたバインダーを燃焼除去する脱バインダ処理工程と、バインダーが除去された一体成形体を焼結して複合焼結体とする焼結工程とを備える。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、各種の半導体素子からなる電子デバイスを搭載する基板あるいは電子デバイスを収容する容器に装着されて、電子デバイスが発生した熱を外部に放出する電子デバイス用放熱体の製造方法に係り、特に、熱膨張係数が電子デバイスあるいは電子デバイスを搭載する基板もしくは電子デバイスを収容する容器に近似する電子デバイス用放熱体の製造方法に関する。
【0002】
【従来の技術】
近年、半導体素子(熱電素子、IC、LSI、VLSI、ダイオード等)などの電子デバイスの高出力化や高集積化が進展し、電子デバイスからの発熱量も急激に増大化する傾向がある。そのため高集積化したハイブリットICなどの半導体装置においては、半導体素子の発熱を効率的に系外に放散させるために、銅や高融点金属材から成る放熱板をセラミックス回路基板に一体的に接合して用いている。しかしながら、銅や高融点金属材から成る放熱板は半導体素子や回路基板との熱膨張係数の差が大きいために、繰り返して作用する熱衝撃によって両部品の接合界面における熱応力が高まり剥離を引き起こし易い難点がある。
【0003】
そこで、半導体素子や回路基板に近似した熱膨張率を有する放熱板として、タングステン(W)などの高融点金属材料の焼結体から成る放熱板が実用化されるようになった。しかしながら、タングステン(W)などの高融点金属材料のみから成る放熱板では、熱伝導性が不十分となるため、タングステン(W)などの高融点金属材料のみから成る焼結体の空孔部に銅(Cu)などの高熱伝導性材料を溶浸(含浸)させた含浸焼結合金から成る放熱板が使用されるようになった。
【0004】
ところで、上述したような含浸焼結合金から成る放熱板は、例えば、以下のような手順で製造されている。即ち、タングステン(W)などの高融点材料粉末に、有機バインダーを予備配合して原料混合体とし、この原料混合体を、金型プレスでプレスして薄板状の成形体とする。この成形体を脱脂・焼結して多孔質の焼結体とした後、この焼結体の空孔部に銅(Cu)などの高熱伝導性材料を溶浸(含浸)させる。その後に、含浸焼結体の表面を、フライス盤やラップ盤などにより表面加工して、最終的に放熱板とする製法が一般的に採用されている。
【特許文献1】
特開平04−215462号公報
【特許文献2】
特開平09−232485号公報
【特許文献3】
特開平10−200208号公報
【特許文献4】
国際公開第00/13823号パンフレット
【特許文献5】
特開平07−211818号公報
【特許文献6】
特開平06−334074号公報
【特許文献7】
特開平09−107057号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述のようにして成形される含浸焼結体から成る放熱板にあっては、熱伝導性を向上させようとする場合には熱伝導性に優れた銅(Cu)の含有率を多くする必要がある。ところが、銅(Cu)の含有率を多くすると、放熱板全体としての熱膨張係数が大きくなるため、繰り返して作用する熱衝撃によって電子デバイスが装着された基板と放熱板との接合界面、あるいは電子デバイスが収容された容器と放熱板との接合界面における熱応力が高まり、放熱板が剥離を引き起こし易いという問題を生じた。
【0006】
また、含浸焼結体から成る放熱板にあっては、焼結体に形成された空孔内に銅(Cu)が溶浸(含浸)されているため、含浸された銅(Cu)が存在する部分に沿って熱伝導がなされて熱が拡散することとなり、熱伝導方向はランダムな方向となる。このため、例えば、放熱板が接合された容器内に電子デバイスが密閉されていると、この放熱板の放熱方向がランダムな方向になって、電子デバイスで発生した熱をこの容器の系外に素早く放熱することが困難で、放熱効率が悪いという問題も生じた。
【0007】
また、含浸焼結体から成る放熱板にあっては、焼結体に形成された空孔内に銅(Cu)を溶浸(含浸)させるため、最終的にラップ盤などを使用した表面研磨加工が必要となるので放熱板の製造工程が複雑になって、製造コストが上昇するという問題も生じた。また、焼結体とするための原料粉末の流動性、成形性、保形性を向上させるために、有機バインダーを使用している。このため、脱脂工程が必要になるが、脱脂工程が不十分であると、焼結体表面に炭化物が固着して空孔を閉塞し易いため、高熱伝導性材料の溶浸(含浸)操作が困難になるという問題もあった。
【0008】
さらに、焼結体の空孔内に高熱伝導性材料の溶浸(含浸)されない部分が存在するようになって、表面部においてもピンホールが発生し易く、このピンホールの上にめっき層を形成した場合には、めっき膨れを発生し易く、めっき性が良好で高品質の放熱板が得にくいという問題も生じた。また、高熱伝導性材料を溶浸(含浸)した後に、余剰の含浸材が焼結体表面に多量に付着するため、研削加工などによって表面に固着した余剰の含浸材を取り除いた後に、表面研磨加工を実施する必要があり、放熱板の仕上げ加工工数が増加して製造コストが上昇する問題も生じた。
【0009】
そこで、本発明は上記の如き問題点を解消するためになされたものであり、放熱方向(熱伝導方向)が一定で、かつ熱膨張係数が電子デバイス、あるいは電子デバイスを搭載する基板、もしくは電子デバイスを収容する容器に近似する放熱体の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の放熱体の製造方法は、タングステンあるいはモリブデンの含有量が銅よりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物とする第1成形用組成物作製工程と、この第1成形用組成物を成形型に充填して所定形状の貫通孔を備えた母材成形体を成形する第1成形工程と、銅の含有量がタングステンあるいはモリブデンよりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物とする第2成形用組成物作製工程と、母材成形体の貫通孔内に第2成形用組成物を充填して一体成形体とする第2成形工程と、この一体成形体を加熱して一体成形体に含有されたバインダーを燃焼除去する脱バインダ処理工程と、バインダーが除去された一体成形体を焼結して複合焼結体とする焼結工程とを備えるようにしている。
【0011】
このように、まず第1成形工程において所定形状の貫通孔を備えた母材成形体を成形した後、第2成形工程において母材成形体の貫通孔内に第2成形用組成物を充填して一体成形体とし、この一体成形体を加熱してバインダーを燃焼除去し、バインダーが除去された一体成形体を焼結して複合焼結体とすると、銅の含有量が少なく、かつタングステンまたはモリブデンの含有量が多い銅−タングステン合金または銅−モリブデン合金から構成される低熱膨張係数の材料からなる基板と、この基板の貫通孔内に銅の含有量が多く、かつタングステンまたはモリブデンの含有量が少ない銅−タングステン合金または銅−モリブデン合金からなる高熱伝導性材料が充填された複合焼結体からなる放熱体を簡単にかつ容易に製造することが可能となる。
【0012】
そして、このように低熱膨張係数を有する材料からなる基板に貫通孔を備えるとともに、この貫通孔内に高熱伝導性材料が充填されていると、高熱伝導性材料が存在する部分に沿って熱伝導がなされるため、熱伝導方向は貫通孔の軸方向になるとともに、低熱膨張係数の基板で熱膨張が抑制されるようになる。これにより、電子デバイスで発生した熱は電子デバイスを搭載する回路基板あるいは電子デバイスを収容する容器から素早く系外に放熱されるようになるとともに、この放熱体の熱膨張も抑制することが可能となる。
【0013】
一般に、電子デバイス、あるいは電子デバイスを搭載する回路基板、もしくは電子デバイスを収容する容器はセラミックスなどの低熱膨張係数を有する材料から形成されているため、これに接合される放熱体の熱膨張係数を近似させる必要がある。このため、本発明においては、銅の含有量が少なく、かつタングステンまたはモリブデンの含有量が多い銅−タングステン合金または銅−モリブデン合金、あるいは熱膨張係数が4ppm/K〜10ppm/K(但し、室温から400℃まで昇温したときの線膨張係数)以下のタングステン、鉄−ニッケル合金、鉄−ニッケル−コバルト合金から選択される1種により基板を構成している。
【0014】
この場合、貫通孔の平面形状は放熱体が用いられる用途に応じて適宜選択すればよいが、放熱体の製造性などを考慮すると、円形、楕円形等の丸形形状あるいは四角形、多角形等の角形形状とするのが好ましい。また、貫通孔の配置構造においても、放熱体が用いられる用途に応じて適宜選択すればよいが、均一な放熱性を考慮すると、厚み方向または長さ方向の一方向に均一あるいは不均一に分散させた一方向多芯状、もしくは厚み方向または長さ方向の一方向に放射状に分散させた一方向放射状に形成するのが好ましい。
【0015】
なお、貫通孔が占有する全体積が大きくなりすぎると熱伝導性が向上する反面、熱膨張率が増大するため、貫通孔が占有する全体積は基板の全体積に対して45体積%(45vol%)以下とするのが望ましい。一方、貫通孔が占有する全体積が小さくなりすぎると熱膨張率が向上する反面、熱伝導性が低下するため、貫通孔が占有する全体積は基板の全体積に対して10体積%(10vol%)以上とするのが望ましい。
また、貫通孔の平均孔径が小さくなりすぎると熱膨張率が向上する反面、熱伝導性が低下するため、貫通孔の平均孔径は0.05mm以上とするのが望ましい。一方、貫通孔の平均孔径が広くなりすぎると熱伝導性が向上する反面、熱膨張率が増大するため、貫通孔の平均孔径は1.00mm以下とするのが望ましい。
【0016】
なお、本発明の電子デバイス用放熱体は種々の電子デバイスに適用可能であるが、特に、一対の絶縁基板の相対向する表面に形成された一対の電極を介して半導体からなる複数の熱電素子が導電接続された熱電モジュールを冷却素子として備えた半導体レーザモジュールに適用するのが好ましい。この場合、半導体レーザ素子を搭載する基板に熱電モジュールの吸熱側が接合されているとともに、半導体レーザ素子を収容するパッケージの底壁に熱電モジュールの発熱側に接して上記の如き電子デバイス用放熱体が接合されている構造とすればよい。
【0017】
【発明の実施の形態】
ついで、本発明の実施の形態を、放熱体の作製例、熱特性の測定、放熱特性の測定、貫通孔の平面形状および配置構造の変形例ならびに放熱体の適用例の順で以下に説明する。
【0018】
1.放熱体の作製例
本発明の放熱体の作製例を図1に基づいて説明する。なお、図1は本発明の放熱体の製造工程を模式的に示す斜視図であり、図1(a)は第1工程を模式的に示す斜視図であり、図1(b)は第2工程を模式的に示す斜視図であり、図1(c)はこれらの工程を経て作製された複合焼結体を模式的に示す斜視図であり、図1(d)は得られた複合焼結体を切断した状態を模式的に示す斜視図である。
【0019】
まず、平均粒径が2μmのタングステン(W)粉末と、平均粒径が2μmの銅(Cu)粉末を用意し、これらを混合して、タングステン粉末が80体積%(80vol%)と銅粉末が20体積%(20vol%)とからなる混合金属粉末とした。ついで、得られた混合金属粉末と同体積のバインダー(例えば、アクリル樹脂とワックスを混合したもの)を混合し、これらに有機溶媒を添加して混練し、タングステンリッチなCu−Wからなる成形用組成物(第1成形用組成物)を得た後、この成形用組成物をペレット化した。
【0020】
この後、タングステンリッチなCu−Wからなる成形用組成物のペレットを射出成形機(図示せず)のホッパー内に充填した後、これを射出温度130℃、金型温度40℃で射出成形した後、金型を水冷して射出物を固化させて、図1(a)に示すような多数の貫通孔12が均等に配列された母材成形体(グリーン体)11を得た。なお、得られた母材成形体11は板状体であって、その厚みは2mmで、長さは30mmで、幅は20mmに形成されており、貫通孔12の孔径は0.50mmで、貫通孔12が占める体積は母材成形体11の全体積に対して30体積%であった。
【0021】
一方、平均粒径が2μmのタングステン(W)粉末と、平均粒径が2μmの銅(Cu)粉末を用意し、これらを混合して、タングステン粉末が25体積%(25vol%)と銅粉末が75体積%(75vol%)とからなる混合金属粉末とした。得られた混合金属粉末と同体積のバインダー(例えば、アクリル樹脂とワックスを混合したもの)を添加して混練し、銅リッチなCu−Wからなる成形用組成物(第2成形用組成物)を得た後、この成形用組成物をペレット化した。
【0022】
ついで、銅リッチなCu−Wからなる成形用組成物のペレットを射出成形機(図示せず)のホッパー内に充填するとともに、上述のようにして得られた母材成形体11を射出成形機の金型内に装填した後、射出温度130℃、金型温度40℃で射出成形した後、金型を水冷して射出物を固化させて、図1(b)に示すように、母材成形体11の多数の貫通孔12内に銅リッチなCu−Wからなる成形用組成物13が充填された基板10aを得た。
【0023】
ついで、得られた基板10aを焼結炉(図示せず)内に配置した後、この焼結炉内に1l/minの流速で窒素ガスを充填して焼結炉内を窒素ガス雰囲気にし、0.5℃/minの昇温速度で室温から410℃まで加熱して、基板10aに含有されたバインダーを燃焼させて脱バインダー処理を行った。この後、この焼結炉内に1l/minの流速で水素ガスを充填して焼結炉内を還元雰囲気にし、5℃/minの昇温速度で1450℃まで加熱した後、この温度を2時間保持して基板10aを焼結して、図1(c)に示すような複合焼結体10を作製した。
【0024】
このようにして得られた複合焼結体10は、図1(d)に示すように、タングステンリッチなCu−Wからなる低熱膨張係数の母材成形体11の貫通孔12の軸方向に沿って銅リッチなCu−Wからなる高熱伝導性の充填層13が形成されている。
【0025】
2.熱特性の測定
上述のように作製した複合焼結体10(母材成形体11の貫通孔の孔径が0.50mmで、貫通孔の体積比率が30vol%で、Wの体積比率が80vol%で、充填層13のCuの体積比率が75vol%のもの)の熱伝導率および熱膨張係数を、レーザーフラッシュ装置(日本真空理工(株)製:レーザーフラッシュサーマルホーンスタックアナライザTC7000)および熱膨張測定器(SEIKO製TMA6200)を用いて測定すると、熱伝導率は255W/mKで、熱膨張係数(室温から400℃まで昇温したときの線膨張係数)は8.0ppm/Kとなり、これらの数値を図2のグラフにプロットすると△2となった。
ついで、充填層13のCuの比率を100vol%および50vol%となるように調製したCu−W成形用組成物(第2成形用組成物)を用いて複合焼結体10を作製し、上述同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ△1、△3に示すような結果となった。
【0026】
また、貫通孔の孔径が0.50mmで、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を45vol%にして、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製し、上述同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ□1、□2、□3に示すような結果となった。
同様に、貫通孔の孔径が0.50mmで、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を10vol%にして、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ◇1、◇2、◇3に示すような結果となった。
【0027】
なお、比較のためにタングステン粉末を圧粉し、仮焼結してポーラスな状態にした後、この仮焼結体に銅板を積層し、加熱処理して銅を仮焼結体の空孔に溶浸させて焼結体(溶浸材)を作製し、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの)に示すような結果となった。
【0028】
また、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を30vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定した。この後、これらの数値を図3のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0029】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.00mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図3においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0030】
また、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を45vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図4のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0031】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.00mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図4においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0032】
さらに、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を10vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図5のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0033】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.0mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図5においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0034】
図2〜図5の結果から明らかなように、仮焼結体の空孔内に銅を溶浸した焼結体よりも、タングステンリッチなCu−Wからなる母材成形体の貫通孔に銅リッチなCu−Wからなる充填材を充填して焼結した複合焼結体10の方が、セラミックスやガラスの熱膨張係数(4〜10ppm/K(RT〜400℃))の範囲においては熱伝導率が向上していることが分かる。このことから、母材成形体の貫通孔の全体積(即ち、銅リッチなCu−Wからなる充填材の充填容積)を10vol%〜45vol%の範囲に規制する、好ましくは20vol%〜45vol%の範囲に規制するのが望ましいということができる。また、貫通孔の孔径を0.05mm(50μm)〜1.00mmの範囲に規制する、好ましくは0.10mm〜1.00mmの範囲に規制するのが望ましいということができる。
【0035】
3.放熱特性の測定
ついで、上述のように作製した複合焼結体10と、これと同じ熱膨張係数を有する溶浸材Xを用いて、放熱体の放熱速度(発熱体の温度上昇速度)の実験を行った。ここで、図6はこのような実験の様子を模式的に示す斜視図であり、放熱体(複合焼結体10あるいは溶浸材X)の上に発熱体(電熱ヒータ)Hを載置するとともに、これを断熱材14で被覆し、発熱体Hに電流を流して発熱体Hの温度を測定することにより行った。得られた測定結果に基づいて、発熱体Hの消費電力(W)を横軸とし、発熱体温度(℃)を縦軸として測定結果をプロットすると、図7に示すような結果が得られた。なお、図7において、△印は複合焼結体10の結果を示しており、○印は溶浸材Xの結果を示している。
図7の結果から明らかなように、放熱体として溶浸材Xを用いるよりも、複合焼結体10を用いた方が発熱体Hの温度上昇が小さいことが分かる。これは、複合焼結体10の放熱効率(放熱速度)が優れていることを意味する。
【0036】
なお、複合焼結体10としては、母材成形体11の貫通孔の孔径が0.50mmで、貫通孔の体積比率が30vol%で、Wの体積比率が80vol%で、充填層13のCuの体積比率が75vol%で、熱伝導率が255W/mKで、熱膨張係数が8.0ppm/Kで、熱抵抗が−0.061728K/Wのものを使用した。また、溶浸材Xとしては、熱伝導率が180W/mKで、熱膨張係数が8.0ppm/Kで、熱抵抗が0.043573K/Wのものを用いた。これらの複合焼結体10と溶浸材Xのサイズは厚みが10mmで、長さが30mmで、幅が30mmのものを使用した。
【0037】
4.貫通孔の平面形状および配置構造の変形例
上述した実施の形態においては、貫通孔の平面形状が円形で、かつ円形の貫通孔を均一に分散させた例について説明したが、貫通孔の平面形状およびその配置構造については種々の変形が可能である。ついで、貫通孔の平面形状およびその配置構造の変形例を図8に基づいて説明する。なお、図8は貫通孔の平面形状およびその配置構造の変形例を示す図であって、図8(a)は貫通孔の平面形状を変形させた第1変形例の放熱体を模式的に示す図であり、図8(b)は貫通孔の配置構造を変形させた第2変形例の放熱体を模式的に示す図であり、図8(c)は貫通孔の平面形状および配置構造を変形させた第3変形例の放熱体を模式的に示す図である。
【0038】
(1)第1変形例
本第1変形例の放熱体20は、図8(a)に示すように、タングステンリッチなCu−Wからなる母材基板21に平面形状が四角形状の貫通孔22が均等に分散させて形成されており、この貫通孔22内に銅リッチなCu−Wからなる充填材23が充填されている。なお、貫通孔22の平面形状は四角形状に限ることなく、放熱体が用いられる用途に応じて楕円等の丸形形状あるいは三角形または多角形の角形形状等の適宜の形状を選択すればよい。
【0039】
(2)第2変形例
本第2変形例の放熱体30は、図8(b)に示すように、タングステンリッチなCu−Wからなる母材基板31に平面形状が円形状の貫通孔32が不均一に分散させて形成されており、この貫通孔32内に銅リッチなCu−Wからなる充填材33が充填されている。なお、貫通孔22の平面形状は円形状に限ることなく、放熱体が用いられる用途に応じて楕円等の丸形形状あるいは四角形または多角形の角形形状等の適宜の形状を選択すればよい。
【0040】
(3)第3変形例
本第3変形例の放熱体40は、図8(c)に示すように、タングステンリッチなCu−Wからなる母材基板41に中心部から放射状に貫通孔42(46)を形成しており、この放射状に形成された貫通孔42内に銅リッチなCu−Wからなる充填材43が充填されている。
【0041】
5.放熱体の適用例
ついで、上述のように構成される放熱体の一適用例を、図9に基づいて説明する。なお、図9は本発明の放熱体を用いた半導体レーザモジュールを模式的に示す断面図である。ここで、半導体レーザモジュールは半導体レーザ素子とレンズ等をパッケージ内に一体的に収容して構成され、この半導体レーザモジュールに光ファイバを結合して光増幅器が構成されるものである。
【0042】
このような半導体レーザモジュールにおいて、レーザ光源として用いられる半導体レーザ素子は非常に高出力が要求され、数百mAの駆動電流を必要とするため、半導体レーザ素子の発熱による光出力の低下や寿命の低下を招くおそれがある。また、半導体レーザ素子はその雰囲気温度が変化すると波長が変化するなどの光特性が変わるため、光ファイバと結合する半導体レーザモジュールの構成体内にペルチェ素子からなる熱電モジュールを備えるようにして、半導体レーザ素子を冷却するようにしている。
【0043】
このような半導体レーザモジュール50は、例えば、図9に示すように、金属製パッケージ本体(枠体)52を備えており、この枠体52の1つの側壁52aに光取り出し窓52bを設けている。また、枠体52の下部に上述した放熱体10(20,30,40)が蝋付けにより枠体52の下部に固着されており、枠体52の上部には気密用のカバー52cが取り付けられている。ここで、枠体52内には、一対の基板51a,51b間に複数個のP型熱電素子とN型熱電素子とからなるペルチェ素子を図示しない電極を介して挟み込み、複数のP型熱電素子とN型熱電素子とがP,N,P,Nの順に電気的に直列に導電接続され、更に端部のP型熱電素子及びN型熱電素子を接合した電極にそれぞれリード線を接続して構成される熱電モジュール51が配置されている。
【0044】
一方の基板51aの上部には半導体レーザ素子54、レンズLおよび受光素子57等を搭載したベース板58が固定され、他方の基板51bの下部と放熱体10(20,30,40)の上面とを接合することにより、他方の基板51bは放熱体10(20,30,40)上に固定される。ベース板58は基板51aに接合されて固定されている。半導体レーザ素子54はヒートシンク55に搭載されており、このヒートシンク55は半導体レーザ素子54の放熱を行うと共に、半導体レーザ素子54とほぼ同じ熱膨張係数を有する材料(例えば、ダイヤモンド、SiC、シリコン、Cu−W溶浸材、Cu−W−Ni合金など)を使用して熱応力による故障を防止している。なお、ヒートシンク55を本発明の放熱体10(20,30,40)で構成するようにしてもよい。
【0045】
また、ヒートシンク55はヘッダ56に搭載され、このヘッダ56は半導体レーザ素子54の電極用の端子を有している。ヘッダ56の後部にはモニタ用の受光素子57が設けられており、この受光素子57は半導体レーザ素子54の温度変化等による光出力の変化を監視し、その光出力が常に一定になるように駆動回路にフィードバックをかけている。レンズLはレンズホルダ53により固定されている。
【0046】
なお、レンズホルダ53は、半導体レーザ素子54から出射され広がったレーザ光がレンズLにより平行光になるように光軸調整後、ベース58にYAGレーザで固定されるようになされている。これは、光学調整後の半導体レーザ素子54とレンズLの軸ずれ感度が1μm以下と厳しいため固定安定度の高いYAGレーザ溶接を用いるものである。これにより、半導体レーザ素子54から出射されたレーザ光はレンズLで平行光に変換され、この平行光が光取り出し窓52bを通過するようになる。
【0047】
レンズLの前方には、スリーブ59bが配置され、このスリーブ59bにフェルール59dを介してレンズ59aが固定されている。ここで、半導体レーザ素子54から出射され光取り出し窓52bを通過したレーザ光がレンズ59aで光ファイバ59cに効率よく入射するように光軸調整した後、スリーブ59bのA,B部でYAGレーザ溶接固定している。これにより、半導体レーザ素子54から出射された光はレンズLと59aとによって光ファイバ59cに効率良く結合される。このような半導体レーザモジュール50が高出力可能なのはペルチェ素子からなる熱電モジュール51で半導体レーザ素子54を常時冷却し、半導体レーザ素子54の発熱を低減しているとともに、熱電モジュール51の高温側(ペルチェ素子の発熱側)が放熱体10(20,30,40)により効率よく外部に放出するためである。
【0048】
【発明の効果】
上述したように、本発明の放熱体10(20,30,40)は、低熱膨張係数を有する材料からなる基板11(21,31,41)に貫通孔12(22,32,42)を備えるとともに、この貫通孔12(22,32,42)内に高熱伝導性材料13(23,33,43)が充填されているので、高熱伝導性材料13(23,33,43)が存在する部分に沿って熱伝導がなされるようになる。
【0049】
このため、熱伝導方向は貫通孔12(22,32,42)の軸方向になるとともに、低熱膨張係数の基板11(21,31,41)で熱膨張が抑制されるようになる。これにより、電子デバイスで発生した熱は電子デバイスを搭載する回路基板あるいは電子デバイスを収容する容器から素早く系外に放熱されるようになるとともに、この放熱体の熱膨張も抑制することが可能となる。
なお、上述した実施の形態においては、本発明の放熱体を半導体レーザモジュールに適用する例について説明したが、本発明の放熱体はこれに限らず、IC、LSI、VLSI、ダイオード等の種々の電子デバイスに適用できる。
【図面の簡単な説明】
【図1】本発明の放熱体の製造工程を模式的に示す斜視図であり、図1(a)は第1工程を模式的に示す斜視図であり、図1(b)は第2工程を模式的に示す斜視図であり、図1(c)はこれらの工程を経て作製された複合焼結体を模式的に示す斜視図であり、図1(d)は得られた複合焼結体を切断した状態を模式的に示す斜視図である。
【図2】銅の含有量が20vol%で孔径が0.50mmの貫通孔を備えた母材成形体の貫通孔の体積比率を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図3】銅の含有量が20vol%で貫通孔の体積比率を30vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図4】銅の含有量が20vol%で貫通孔の体積比率を45vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図5】銅の含有量が20vol%で貫通孔の体積比率を10vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図6】放熱体の放熱特性の実験を模式的に示す斜視図である。
【図7】発熱体の消費電力と発熱体の温度との関係を示す図である。
【図8】貫通孔の平面形状およびその配置構造の変形例を示す図であって、図8(a)は貫通孔の平面形状を変形させた第1変形例の放熱体を模式的に示す図であり、図8(b)は貫通孔の配置構造を変形させた第2変形例の放熱体を模式的に示す図であり、図8(c)は貫通孔の平面形状および配置構造を変形させた第3変形例の放熱体を模式的に示す図である。
【図9】本発明の放熱体を用いた半導体レーザモジュールを模式的に示す断面図である。
【符号の説明】
10…放熱体、11…基板、12…貫通孔、13…充填材(高熱伝導性材料)、14…断熱材、H…発熱体、20…放熱体、21…基板、22…貫通孔、23…充填材(高熱伝導性材料)、30…放熱体、31…基板、32…貫通孔、33…充填材(高熱伝導性材料)、40…放熱体、41…基板、42…貫通孔、43…充填材(高熱伝導性材料)、50…半導体レーザモジュール、51…熱電モジュール、52…枠体、52a…側壁、52b…光取り出し窓、53…レンズホルダ、54…半導体レーザ素子、55…ヒートシンク、56…ヘッダ、57…受光素子、58…ベース板、L…レンズ
【発明の属する技術分野】
本発明は、各種の半導体素子からなる電子デバイスを搭載する基板あるいは電子デバイスを収容する容器に装着されて、電子デバイスが発生した熱を外部に放出する電子デバイス用放熱体の製造方法に係り、特に、熱膨張係数が電子デバイスあるいは電子デバイスを搭載する基板もしくは電子デバイスを収容する容器に近似する電子デバイス用放熱体の製造方法に関する。
【0002】
【従来の技術】
近年、半導体素子(熱電素子、IC、LSI、VLSI、ダイオード等)などの電子デバイスの高出力化や高集積化が進展し、電子デバイスからの発熱量も急激に増大化する傾向がある。そのため高集積化したハイブリットICなどの半導体装置においては、半導体素子の発熱を効率的に系外に放散させるために、銅や高融点金属材から成る放熱板をセラミックス回路基板に一体的に接合して用いている。しかしながら、銅や高融点金属材から成る放熱板は半導体素子や回路基板との熱膨張係数の差が大きいために、繰り返して作用する熱衝撃によって両部品の接合界面における熱応力が高まり剥離を引き起こし易い難点がある。
【0003】
そこで、半導体素子や回路基板に近似した熱膨張率を有する放熱板として、タングステン(W)などの高融点金属材料の焼結体から成る放熱板が実用化されるようになった。しかしながら、タングステン(W)などの高融点金属材料のみから成る放熱板では、熱伝導性が不十分となるため、タングステン(W)などの高融点金属材料のみから成る焼結体の空孔部に銅(Cu)などの高熱伝導性材料を溶浸(含浸)させた含浸焼結合金から成る放熱板が使用されるようになった。
【0004】
ところで、上述したような含浸焼結合金から成る放熱板は、例えば、以下のような手順で製造されている。即ち、タングステン(W)などの高融点材料粉末に、有機バインダーを予備配合して原料混合体とし、この原料混合体を、金型プレスでプレスして薄板状の成形体とする。この成形体を脱脂・焼結して多孔質の焼結体とした後、この焼結体の空孔部に銅(Cu)などの高熱伝導性材料を溶浸(含浸)させる。その後に、含浸焼結体の表面を、フライス盤やラップ盤などにより表面加工して、最終的に放熱板とする製法が一般的に採用されている。
【特許文献1】
特開平04−215462号公報
【特許文献2】
特開平09−232485号公報
【特許文献3】
特開平10−200208号公報
【特許文献4】
国際公開第00/13823号パンフレット
【特許文献5】
特開平07−211818号公報
【特許文献6】
特開平06−334074号公報
【特許文献7】
特開平09−107057号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述のようにして成形される含浸焼結体から成る放熱板にあっては、熱伝導性を向上させようとする場合には熱伝導性に優れた銅(Cu)の含有率を多くする必要がある。ところが、銅(Cu)の含有率を多くすると、放熱板全体としての熱膨張係数が大きくなるため、繰り返して作用する熱衝撃によって電子デバイスが装着された基板と放熱板との接合界面、あるいは電子デバイスが収容された容器と放熱板との接合界面における熱応力が高まり、放熱板が剥離を引き起こし易いという問題を生じた。
【0006】
また、含浸焼結体から成る放熱板にあっては、焼結体に形成された空孔内に銅(Cu)が溶浸(含浸)されているため、含浸された銅(Cu)が存在する部分に沿って熱伝導がなされて熱が拡散することとなり、熱伝導方向はランダムな方向となる。このため、例えば、放熱板が接合された容器内に電子デバイスが密閉されていると、この放熱板の放熱方向がランダムな方向になって、電子デバイスで発生した熱をこの容器の系外に素早く放熱することが困難で、放熱効率が悪いという問題も生じた。
【0007】
また、含浸焼結体から成る放熱板にあっては、焼結体に形成された空孔内に銅(Cu)を溶浸(含浸)させるため、最終的にラップ盤などを使用した表面研磨加工が必要となるので放熱板の製造工程が複雑になって、製造コストが上昇するという問題も生じた。また、焼結体とするための原料粉末の流動性、成形性、保形性を向上させるために、有機バインダーを使用している。このため、脱脂工程が必要になるが、脱脂工程が不十分であると、焼結体表面に炭化物が固着して空孔を閉塞し易いため、高熱伝導性材料の溶浸(含浸)操作が困難になるという問題もあった。
【0008】
さらに、焼結体の空孔内に高熱伝導性材料の溶浸(含浸)されない部分が存在するようになって、表面部においてもピンホールが発生し易く、このピンホールの上にめっき層を形成した場合には、めっき膨れを発生し易く、めっき性が良好で高品質の放熱板が得にくいという問題も生じた。また、高熱伝導性材料を溶浸(含浸)した後に、余剰の含浸材が焼結体表面に多量に付着するため、研削加工などによって表面に固着した余剰の含浸材を取り除いた後に、表面研磨加工を実施する必要があり、放熱板の仕上げ加工工数が増加して製造コストが上昇する問題も生じた。
【0009】
そこで、本発明は上記の如き問題点を解消するためになされたものであり、放熱方向(熱伝導方向)が一定で、かつ熱膨張係数が電子デバイス、あるいは電子デバイスを搭載する基板、もしくは電子デバイスを収容する容器に近似する放熱体の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の放熱体の製造方法は、タングステンあるいはモリブデンの含有量が銅よりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物とする第1成形用組成物作製工程と、この第1成形用組成物を成形型に充填して所定形状の貫通孔を備えた母材成形体を成形する第1成形工程と、銅の含有量がタングステンあるいはモリブデンよりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物とする第2成形用組成物作製工程と、母材成形体の貫通孔内に第2成形用組成物を充填して一体成形体とする第2成形工程と、この一体成形体を加熱して一体成形体に含有されたバインダーを燃焼除去する脱バインダ処理工程と、バインダーが除去された一体成形体を焼結して複合焼結体とする焼結工程とを備えるようにしている。
【0011】
このように、まず第1成形工程において所定形状の貫通孔を備えた母材成形体を成形した後、第2成形工程において母材成形体の貫通孔内に第2成形用組成物を充填して一体成形体とし、この一体成形体を加熱してバインダーを燃焼除去し、バインダーが除去された一体成形体を焼結して複合焼結体とすると、銅の含有量が少なく、かつタングステンまたはモリブデンの含有量が多い銅−タングステン合金または銅−モリブデン合金から構成される低熱膨張係数の材料からなる基板と、この基板の貫通孔内に銅の含有量が多く、かつタングステンまたはモリブデンの含有量が少ない銅−タングステン合金または銅−モリブデン合金からなる高熱伝導性材料が充填された複合焼結体からなる放熱体を簡単にかつ容易に製造することが可能となる。
【0012】
そして、このように低熱膨張係数を有する材料からなる基板に貫通孔を備えるとともに、この貫通孔内に高熱伝導性材料が充填されていると、高熱伝導性材料が存在する部分に沿って熱伝導がなされるため、熱伝導方向は貫通孔の軸方向になるとともに、低熱膨張係数の基板で熱膨張が抑制されるようになる。これにより、電子デバイスで発生した熱は電子デバイスを搭載する回路基板あるいは電子デバイスを収容する容器から素早く系外に放熱されるようになるとともに、この放熱体の熱膨張も抑制することが可能となる。
【0013】
一般に、電子デバイス、あるいは電子デバイスを搭載する回路基板、もしくは電子デバイスを収容する容器はセラミックスなどの低熱膨張係数を有する材料から形成されているため、これに接合される放熱体の熱膨張係数を近似させる必要がある。このため、本発明においては、銅の含有量が少なく、かつタングステンまたはモリブデンの含有量が多い銅−タングステン合金または銅−モリブデン合金、あるいは熱膨張係数が4ppm/K〜10ppm/K(但し、室温から400℃まで昇温したときの線膨張係数)以下のタングステン、鉄−ニッケル合金、鉄−ニッケル−コバルト合金から選択される1種により基板を構成している。
【0014】
この場合、貫通孔の平面形状は放熱体が用いられる用途に応じて適宜選択すればよいが、放熱体の製造性などを考慮すると、円形、楕円形等の丸形形状あるいは四角形、多角形等の角形形状とするのが好ましい。また、貫通孔の配置構造においても、放熱体が用いられる用途に応じて適宜選択すればよいが、均一な放熱性を考慮すると、厚み方向または長さ方向の一方向に均一あるいは不均一に分散させた一方向多芯状、もしくは厚み方向または長さ方向の一方向に放射状に分散させた一方向放射状に形成するのが好ましい。
【0015】
なお、貫通孔が占有する全体積が大きくなりすぎると熱伝導性が向上する反面、熱膨張率が増大するため、貫通孔が占有する全体積は基板の全体積に対して45体積%(45vol%)以下とするのが望ましい。一方、貫通孔が占有する全体積が小さくなりすぎると熱膨張率が向上する反面、熱伝導性が低下するため、貫通孔が占有する全体積は基板の全体積に対して10体積%(10vol%)以上とするのが望ましい。
また、貫通孔の平均孔径が小さくなりすぎると熱膨張率が向上する反面、熱伝導性が低下するため、貫通孔の平均孔径は0.05mm以上とするのが望ましい。一方、貫通孔の平均孔径が広くなりすぎると熱伝導性が向上する反面、熱膨張率が増大するため、貫通孔の平均孔径は1.00mm以下とするのが望ましい。
【0016】
なお、本発明の電子デバイス用放熱体は種々の電子デバイスに適用可能であるが、特に、一対の絶縁基板の相対向する表面に形成された一対の電極を介して半導体からなる複数の熱電素子が導電接続された熱電モジュールを冷却素子として備えた半導体レーザモジュールに適用するのが好ましい。この場合、半導体レーザ素子を搭載する基板に熱電モジュールの吸熱側が接合されているとともに、半導体レーザ素子を収容するパッケージの底壁に熱電モジュールの発熱側に接して上記の如き電子デバイス用放熱体が接合されている構造とすればよい。
【0017】
【発明の実施の形態】
ついで、本発明の実施の形態を、放熱体の作製例、熱特性の測定、放熱特性の測定、貫通孔の平面形状および配置構造の変形例ならびに放熱体の適用例の順で以下に説明する。
【0018】
1.放熱体の作製例
本発明の放熱体の作製例を図1に基づいて説明する。なお、図1は本発明の放熱体の製造工程を模式的に示す斜視図であり、図1(a)は第1工程を模式的に示す斜視図であり、図1(b)は第2工程を模式的に示す斜視図であり、図1(c)はこれらの工程を経て作製された複合焼結体を模式的に示す斜視図であり、図1(d)は得られた複合焼結体を切断した状態を模式的に示す斜視図である。
【0019】
まず、平均粒径が2μmのタングステン(W)粉末と、平均粒径が2μmの銅(Cu)粉末を用意し、これらを混合して、タングステン粉末が80体積%(80vol%)と銅粉末が20体積%(20vol%)とからなる混合金属粉末とした。ついで、得られた混合金属粉末と同体積のバインダー(例えば、アクリル樹脂とワックスを混合したもの)を混合し、これらに有機溶媒を添加して混練し、タングステンリッチなCu−Wからなる成形用組成物(第1成形用組成物)を得た後、この成形用組成物をペレット化した。
【0020】
この後、タングステンリッチなCu−Wからなる成形用組成物のペレットを射出成形機(図示せず)のホッパー内に充填した後、これを射出温度130℃、金型温度40℃で射出成形した後、金型を水冷して射出物を固化させて、図1(a)に示すような多数の貫通孔12が均等に配列された母材成形体(グリーン体)11を得た。なお、得られた母材成形体11は板状体であって、その厚みは2mmで、長さは30mmで、幅は20mmに形成されており、貫通孔12の孔径は0.50mmで、貫通孔12が占める体積は母材成形体11の全体積に対して30体積%であった。
【0021】
一方、平均粒径が2μmのタングステン(W)粉末と、平均粒径が2μmの銅(Cu)粉末を用意し、これらを混合して、タングステン粉末が25体積%(25vol%)と銅粉末が75体積%(75vol%)とからなる混合金属粉末とした。得られた混合金属粉末と同体積のバインダー(例えば、アクリル樹脂とワックスを混合したもの)を添加して混練し、銅リッチなCu−Wからなる成形用組成物(第2成形用組成物)を得た後、この成形用組成物をペレット化した。
【0022】
ついで、銅リッチなCu−Wからなる成形用組成物のペレットを射出成形機(図示せず)のホッパー内に充填するとともに、上述のようにして得られた母材成形体11を射出成形機の金型内に装填した後、射出温度130℃、金型温度40℃で射出成形した後、金型を水冷して射出物を固化させて、図1(b)に示すように、母材成形体11の多数の貫通孔12内に銅リッチなCu−Wからなる成形用組成物13が充填された基板10aを得た。
【0023】
ついで、得られた基板10aを焼結炉(図示せず)内に配置した後、この焼結炉内に1l/minの流速で窒素ガスを充填して焼結炉内を窒素ガス雰囲気にし、0.5℃/minの昇温速度で室温から410℃まで加熱して、基板10aに含有されたバインダーを燃焼させて脱バインダー処理を行った。この後、この焼結炉内に1l/minの流速で水素ガスを充填して焼結炉内を還元雰囲気にし、5℃/minの昇温速度で1450℃まで加熱した後、この温度を2時間保持して基板10aを焼結して、図1(c)に示すような複合焼結体10を作製した。
【0024】
このようにして得られた複合焼結体10は、図1(d)に示すように、タングステンリッチなCu−Wからなる低熱膨張係数の母材成形体11の貫通孔12の軸方向に沿って銅リッチなCu−Wからなる高熱伝導性の充填層13が形成されている。
【0025】
2.熱特性の測定
上述のように作製した複合焼結体10(母材成形体11の貫通孔の孔径が0.50mmで、貫通孔の体積比率が30vol%で、Wの体積比率が80vol%で、充填層13のCuの体積比率が75vol%のもの)の熱伝導率および熱膨張係数を、レーザーフラッシュ装置(日本真空理工(株)製:レーザーフラッシュサーマルホーンスタックアナライザTC7000)および熱膨張測定器(SEIKO製TMA6200)を用いて測定すると、熱伝導率は255W/mKで、熱膨張係数(室温から400℃まで昇温したときの線膨張係数)は8.0ppm/Kとなり、これらの数値を図2のグラフにプロットすると△2となった。
ついで、充填層13のCuの比率を100vol%および50vol%となるように調製したCu−W成形用組成物(第2成形用組成物)を用いて複合焼結体10を作製し、上述同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ△1、△3に示すような結果となった。
【0026】
また、貫通孔の孔径が0.50mmで、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を45vol%にして、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製し、上述同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ□1、□2、□3に示すような結果となった。
同様に、貫通孔の孔径が0.50mmで、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を10vol%にして、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ◇1、◇2、◇3に示すような結果となった。
【0027】
なお、比較のためにタングステン粉末を圧粉し、仮焼結してポーラスな状態にした後、この仮焼結体に銅板を積層し、加熱処理して銅を仮焼結体の空孔に溶浸させて焼結体(溶浸材)を作製し、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図2のグラフにプロットするとそれぞれ○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの)に示すような結果となった。
【0028】
また、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を30vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定した。この後、これらの数値を図3のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0029】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.00mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図3においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0030】
また、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を45vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図4のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0031】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.00mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図4においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0032】
さらに、Wの体積比率が80vol%の母材成形体11を用いて、貫通孔の体積比率を10vol%にし、貫通孔の孔径を0.05mm、0.50mm、1.00mmに変化させるとともに、充填層13のCuの体積比率が100vol%、75vol%および50vol%に変化させて複合焼結体10を作製した。ついで、上述と同様に熱伝導率および熱膨張係数をそれぞれ測定し、これらの数値を図5のグラフにプロットすると、貫通孔の孔径が0.05mmのものは◇1(Cuが100vol%のもの)、◇2(Cuが75vol%のもの)、◇3(Cuが50vol%のもの)となった。
【0033】
また、貫通孔の孔径が0.50mmのものは□1(Cuが100vol%のもの)、□2(Cuが75vol%のもの)、□3(Cuが50vol%のもの)となった。さらに、貫通孔の孔径が1.0mmのものは△1(Cuが100vol%のもの)、△2(Cuが75vol%のもの)、△3(Cuが50vol%のもの)となった。なお、図5においても図2と同様に溶浸材(○1(仮焼結体の空孔率が35vol%のもの)、○2(仮焼結体の空孔率が27.5vol%のもの)、○3(仮焼結体の空孔率が21vol%のもの))の結果も示している。
【0034】
図2〜図5の結果から明らかなように、仮焼結体の空孔内に銅を溶浸した焼結体よりも、タングステンリッチなCu−Wからなる母材成形体の貫通孔に銅リッチなCu−Wからなる充填材を充填して焼結した複合焼結体10の方が、セラミックスやガラスの熱膨張係数(4〜10ppm/K(RT〜400℃))の範囲においては熱伝導率が向上していることが分かる。このことから、母材成形体の貫通孔の全体積(即ち、銅リッチなCu−Wからなる充填材の充填容積)を10vol%〜45vol%の範囲に規制する、好ましくは20vol%〜45vol%の範囲に規制するのが望ましいということができる。また、貫通孔の孔径を0.05mm(50μm)〜1.00mmの範囲に規制する、好ましくは0.10mm〜1.00mmの範囲に規制するのが望ましいということができる。
【0035】
3.放熱特性の測定
ついで、上述のように作製した複合焼結体10と、これと同じ熱膨張係数を有する溶浸材Xを用いて、放熱体の放熱速度(発熱体の温度上昇速度)の実験を行った。ここで、図6はこのような実験の様子を模式的に示す斜視図であり、放熱体(複合焼結体10あるいは溶浸材X)の上に発熱体(電熱ヒータ)Hを載置するとともに、これを断熱材14で被覆し、発熱体Hに電流を流して発熱体Hの温度を測定することにより行った。得られた測定結果に基づいて、発熱体Hの消費電力(W)を横軸とし、発熱体温度(℃)を縦軸として測定結果をプロットすると、図7に示すような結果が得られた。なお、図7において、△印は複合焼結体10の結果を示しており、○印は溶浸材Xの結果を示している。
図7の結果から明らかなように、放熱体として溶浸材Xを用いるよりも、複合焼結体10を用いた方が発熱体Hの温度上昇が小さいことが分かる。これは、複合焼結体10の放熱効率(放熱速度)が優れていることを意味する。
【0036】
なお、複合焼結体10としては、母材成形体11の貫通孔の孔径が0.50mmで、貫通孔の体積比率が30vol%で、Wの体積比率が80vol%で、充填層13のCuの体積比率が75vol%で、熱伝導率が255W/mKで、熱膨張係数が8.0ppm/Kで、熱抵抗が−0.061728K/Wのものを使用した。また、溶浸材Xとしては、熱伝導率が180W/mKで、熱膨張係数が8.0ppm/Kで、熱抵抗が0.043573K/Wのものを用いた。これらの複合焼結体10と溶浸材Xのサイズは厚みが10mmで、長さが30mmで、幅が30mmのものを使用した。
【0037】
4.貫通孔の平面形状および配置構造の変形例
上述した実施の形態においては、貫通孔の平面形状が円形で、かつ円形の貫通孔を均一に分散させた例について説明したが、貫通孔の平面形状およびその配置構造については種々の変形が可能である。ついで、貫通孔の平面形状およびその配置構造の変形例を図8に基づいて説明する。なお、図8は貫通孔の平面形状およびその配置構造の変形例を示す図であって、図8(a)は貫通孔の平面形状を変形させた第1変形例の放熱体を模式的に示す図であり、図8(b)は貫通孔の配置構造を変形させた第2変形例の放熱体を模式的に示す図であり、図8(c)は貫通孔の平面形状および配置構造を変形させた第3変形例の放熱体を模式的に示す図である。
【0038】
(1)第1変形例
本第1変形例の放熱体20は、図8(a)に示すように、タングステンリッチなCu−Wからなる母材基板21に平面形状が四角形状の貫通孔22が均等に分散させて形成されており、この貫通孔22内に銅リッチなCu−Wからなる充填材23が充填されている。なお、貫通孔22の平面形状は四角形状に限ることなく、放熱体が用いられる用途に応じて楕円等の丸形形状あるいは三角形または多角形の角形形状等の適宜の形状を選択すればよい。
【0039】
(2)第2変形例
本第2変形例の放熱体30は、図8(b)に示すように、タングステンリッチなCu−Wからなる母材基板31に平面形状が円形状の貫通孔32が不均一に分散させて形成されており、この貫通孔32内に銅リッチなCu−Wからなる充填材33が充填されている。なお、貫通孔22の平面形状は円形状に限ることなく、放熱体が用いられる用途に応じて楕円等の丸形形状あるいは四角形または多角形の角形形状等の適宜の形状を選択すればよい。
【0040】
(3)第3変形例
本第3変形例の放熱体40は、図8(c)に示すように、タングステンリッチなCu−Wからなる母材基板41に中心部から放射状に貫通孔42(46)を形成しており、この放射状に形成された貫通孔42内に銅リッチなCu−Wからなる充填材43が充填されている。
【0041】
5.放熱体の適用例
ついで、上述のように構成される放熱体の一適用例を、図9に基づいて説明する。なお、図9は本発明の放熱体を用いた半導体レーザモジュールを模式的に示す断面図である。ここで、半導体レーザモジュールは半導体レーザ素子とレンズ等をパッケージ内に一体的に収容して構成され、この半導体レーザモジュールに光ファイバを結合して光増幅器が構成されるものである。
【0042】
このような半導体レーザモジュールにおいて、レーザ光源として用いられる半導体レーザ素子は非常に高出力が要求され、数百mAの駆動電流を必要とするため、半導体レーザ素子の発熱による光出力の低下や寿命の低下を招くおそれがある。また、半導体レーザ素子はその雰囲気温度が変化すると波長が変化するなどの光特性が変わるため、光ファイバと結合する半導体レーザモジュールの構成体内にペルチェ素子からなる熱電モジュールを備えるようにして、半導体レーザ素子を冷却するようにしている。
【0043】
このような半導体レーザモジュール50は、例えば、図9に示すように、金属製パッケージ本体(枠体)52を備えており、この枠体52の1つの側壁52aに光取り出し窓52bを設けている。また、枠体52の下部に上述した放熱体10(20,30,40)が蝋付けにより枠体52の下部に固着されており、枠体52の上部には気密用のカバー52cが取り付けられている。ここで、枠体52内には、一対の基板51a,51b間に複数個のP型熱電素子とN型熱電素子とからなるペルチェ素子を図示しない電極を介して挟み込み、複数のP型熱電素子とN型熱電素子とがP,N,P,Nの順に電気的に直列に導電接続され、更に端部のP型熱電素子及びN型熱電素子を接合した電極にそれぞれリード線を接続して構成される熱電モジュール51が配置されている。
【0044】
一方の基板51aの上部には半導体レーザ素子54、レンズLおよび受光素子57等を搭載したベース板58が固定され、他方の基板51bの下部と放熱体10(20,30,40)の上面とを接合することにより、他方の基板51bは放熱体10(20,30,40)上に固定される。ベース板58は基板51aに接合されて固定されている。半導体レーザ素子54はヒートシンク55に搭載されており、このヒートシンク55は半導体レーザ素子54の放熱を行うと共に、半導体レーザ素子54とほぼ同じ熱膨張係数を有する材料(例えば、ダイヤモンド、SiC、シリコン、Cu−W溶浸材、Cu−W−Ni合金など)を使用して熱応力による故障を防止している。なお、ヒートシンク55を本発明の放熱体10(20,30,40)で構成するようにしてもよい。
【0045】
また、ヒートシンク55はヘッダ56に搭載され、このヘッダ56は半導体レーザ素子54の電極用の端子を有している。ヘッダ56の後部にはモニタ用の受光素子57が設けられており、この受光素子57は半導体レーザ素子54の温度変化等による光出力の変化を監視し、その光出力が常に一定になるように駆動回路にフィードバックをかけている。レンズLはレンズホルダ53により固定されている。
【0046】
なお、レンズホルダ53は、半導体レーザ素子54から出射され広がったレーザ光がレンズLにより平行光になるように光軸調整後、ベース58にYAGレーザで固定されるようになされている。これは、光学調整後の半導体レーザ素子54とレンズLの軸ずれ感度が1μm以下と厳しいため固定安定度の高いYAGレーザ溶接を用いるものである。これにより、半導体レーザ素子54から出射されたレーザ光はレンズLで平行光に変換され、この平行光が光取り出し窓52bを通過するようになる。
【0047】
レンズLの前方には、スリーブ59bが配置され、このスリーブ59bにフェルール59dを介してレンズ59aが固定されている。ここで、半導体レーザ素子54から出射され光取り出し窓52bを通過したレーザ光がレンズ59aで光ファイバ59cに効率よく入射するように光軸調整した後、スリーブ59bのA,B部でYAGレーザ溶接固定している。これにより、半導体レーザ素子54から出射された光はレンズLと59aとによって光ファイバ59cに効率良く結合される。このような半導体レーザモジュール50が高出力可能なのはペルチェ素子からなる熱電モジュール51で半導体レーザ素子54を常時冷却し、半導体レーザ素子54の発熱を低減しているとともに、熱電モジュール51の高温側(ペルチェ素子の発熱側)が放熱体10(20,30,40)により効率よく外部に放出するためである。
【0048】
【発明の効果】
上述したように、本発明の放熱体10(20,30,40)は、低熱膨張係数を有する材料からなる基板11(21,31,41)に貫通孔12(22,32,42)を備えるとともに、この貫通孔12(22,32,42)内に高熱伝導性材料13(23,33,43)が充填されているので、高熱伝導性材料13(23,33,43)が存在する部分に沿って熱伝導がなされるようになる。
【0049】
このため、熱伝導方向は貫通孔12(22,32,42)の軸方向になるとともに、低熱膨張係数の基板11(21,31,41)で熱膨張が抑制されるようになる。これにより、電子デバイスで発生した熱は電子デバイスを搭載する回路基板あるいは電子デバイスを収容する容器から素早く系外に放熱されるようになるとともに、この放熱体の熱膨張も抑制することが可能となる。
なお、上述した実施の形態においては、本発明の放熱体を半導体レーザモジュールに適用する例について説明したが、本発明の放熱体はこれに限らず、IC、LSI、VLSI、ダイオード等の種々の電子デバイスに適用できる。
【図面の簡単な説明】
【図1】本発明の放熱体の製造工程を模式的に示す斜視図であり、図1(a)は第1工程を模式的に示す斜視図であり、図1(b)は第2工程を模式的に示す斜視図であり、図1(c)はこれらの工程を経て作製された複合焼結体を模式的に示す斜視図であり、図1(d)は得られた複合焼結体を切断した状態を模式的に示す斜視図である。
【図2】銅の含有量が20vol%で孔径が0.50mmの貫通孔を備えた母材成形体の貫通孔の体積比率を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図3】銅の含有量が20vol%で貫通孔の体積比率を30vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図4】銅の含有量が20vol%で貫通孔の体積比率を45vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図5】銅の含有量が20vol%で貫通孔の体積比率を10vol%とした母材成形体の貫通孔の径を変化させた場合の熱膨張係数と熱伝導率の関係を示す図である。
【図6】放熱体の放熱特性の実験を模式的に示す斜視図である。
【図7】発熱体の消費電力と発熱体の温度との関係を示す図である。
【図8】貫通孔の平面形状およびその配置構造の変形例を示す図であって、図8(a)は貫通孔の平面形状を変形させた第1変形例の放熱体を模式的に示す図であり、図8(b)は貫通孔の配置構造を変形させた第2変形例の放熱体を模式的に示す図であり、図8(c)は貫通孔の平面形状および配置構造を変形させた第3変形例の放熱体を模式的に示す図である。
【図9】本発明の放熱体を用いた半導体レーザモジュールを模式的に示す断面図である。
【符号の説明】
10…放熱体、11…基板、12…貫通孔、13…充填材(高熱伝導性材料)、14…断熱材、H…発熱体、20…放熱体、21…基板、22…貫通孔、23…充填材(高熱伝導性材料)、30…放熱体、31…基板、32…貫通孔、33…充填材(高熱伝導性材料)、40…放熱体、41…基板、42…貫通孔、43…充填材(高熱伝導性材料)、50…半導体レーザモジュール、51…熱電モジュール、52…枠体、52a…側壁、52b…光取り出し窓、53…レンズホルダ、54…半導体レーザ素子、55…ヒートシンク、56…ヘッダ、57…受光素子、58…ベース板、L…レンズ
Claims (2)
- 低熱膨張係数を有する材料からなる基板に高熱伝導性材料を充填して形成する電子デバイス用放熱体の製造方法であって、
タングステンあるいはモリブデンの含有量が銅よりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物を形成する第1成形用組成物作製工程と、
前記第1成形用組成物を成形型に充填して所定形状で貫通孔を備えた母材成形体を成形する第1成形工程と、
銅の含有量がタングステンあるいはモリブデンよりも多くなるような所定の比率でタングステン粉末あるいはモリブデン粉末と銅粉末とバインダーとを混合、混練して成形用組成物とする第2成形用組成物作製工程と、
前記母材成形体の貫通孔内に前記第2成形用組成物を充填して一体成形体とする第2成形工程と、
前記一体成形体を加熱して一体成形体に含有されたバインダーを燃焼除去する脱バインダ処理工程と、
前記バインダーが除去された一体成形体を焼結して複合焼結体とする焼結工程とを備えたことを特徴とする電子デバイス用放熱体の製造方法。 - 前記貫通孔の平均孔径は0.05mm〜1.00mmであることを特徴とする請求項1に記載の電子デバイス用放熱体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003208567A JP3867690B2 (ja) | 2003-08-25 | 2003-08-25 | 電子デバイス用放熱体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003208567A JP3867690B2 (ja) | 2003-08-25 | 2003-08-25 | 電子デバイス用放熱体の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000314981A Division JP3841633B2 (ja) | 2000-10-16 | 2000-10-16 | 半導体レーザモジュール |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004006946A true JP2004006946A (ja) | 2004-01-08 |
JP3867690B2 JP3867690B2 (ja) | 2007-01-10 |
Family
ID=30438569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003208567A Expired - Fee Related JP3867690B2 (ja) | 2003-08-25 | 2003-08-25 | 電子デバイス用放熱体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3867690B2 (ja) |
-
2003
- 2003-08-25 JP JP2003208567A patent/JP3867690B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3867690B2 (ja) | 2007-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3841633B2 (ja) | 半導体レーザモジュール | |
US10269678B1 (en) | Microelectronic components having integrated heat dissipation posts, systems including the same, and methods for the fabrication thereof | |
JP4770533B2 (ja) | 半導体装置の製造方法および半導体装置 | |
KR100883725B1 (ko) | 복합재료와 웨이퍼 유지부재 및 이들의 제조방법 | |
JP2004200346A (ja) | 半導体素子収納用パッケージ、その製造方法及び半導体装置 | |
JP2011096994A (ja) | 冷却器、配線基板、および発光体 | |
JP3867690B2 (ja) | 電子デバイス用放熱体の製造方法 | |
JP2001332773A (ja) | 熱電モジュール用多層基板およびその製造方法ならびにこの多層基板を用いた熱電モジュール | |
JP2005005528A (ja) | 半導体素子搭載用モジュール | |
KR20190038554A (ko) | SiC 히터 | |
CN112863972A (zh) | 快热阴极热子组件及其制备方法 | |
JP5941006B2 (ja) | 接合材、接合構造体およびその製造方法、並びに半導体モジュール | |
JP4265247B2 (ja) | 高放熱性合金、放熱板、半導体素子用パッケージ、およびこれらの製造方法 | |
KR100413848B1 (ko) | 광모듈용 밀폐형 패키지 | |
KR20180059419A (ko) | 방열기의 제조방법과 이 방법에 의해 제조된 방열기 | |
JP4197113B2 (ja) | 半導体キャリヤおよびその製造方法 | |
CN1497716A (zh) | 用于装载半导体芯片的封装及半导体器件 | |
JP2003188295A (ja) | 半導体素子収納パッケージ用放熱板及び光通信モジュールパッケージ用放熱板 | |
KR20160145968A (ko) | 방열기의 제조방법과 이 방법에 의해 제조된 방열기 | |
JP2004022885A (ja) | Al−SiC系複合体および放熱部品 | |
CN115724665A (zh) | 一种氮化铝基板及其制备方法 | |
JP3815455B2 (ja) | 半導体キャリヤ | |
JPH09181230A (ja) | 半導体装置用金属ケースおよびその製造方法 | |
JP2001158933A (ja) | Al−SiC系複合材料とその製造方法及びそれを用いた半導体装置 | |
JPH11339929A (ja) | 接触加熱用ヒータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061002 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |