JP2004006757A - 半導体内蔵ミリ波帯モジュール - Google Patents

半導体内蔵ミリ波帯モジュール Download PDF

Info

Publication number
JP2004006757A
JP2004006757A JP2003086254A JP2003086254A JP2004006757A JP 2004006757 A JP2004006757 A JP 2004006757A JP 2003086254 A JP2003086254 A JP 2003086254A JP 2003086254 A JP2003086254 A JP 2003086254A JP 2004006757 A JP2004006757 A JP 2004006757A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
built
wave band
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003086254A
Other languages
English (en)
Other versions
JP2004006757A5 (ja
JP4018575B2 (ja
Inventor
Hideki Iwaki
岩城 秀樹
Yutaka Taguchi
田口 豊
Tetsuyoshi Ogura
小掠 哲義
Yasuhiro Sugaya
菅谷 康博
Toshiyuki Asahi
朝日 俊行
Tosaku Nishiyama
西山 東作
Yoshinobu Idokawa
井戸川 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003086254A priority Critical patent/JP4018575B2/ja
Publication of JP2004006757A publication Critical patent/JP2004006757A/ja
Publication of JP2004006757A5 publication Critical patent/JP2004006757A5/ja
Application granted granted Critical
Publication of JP4018575B2 publication Critical patent/JP4018575B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】ミリ波帯で動作する半導体素子からの熱を効率的に放熱し、高密度で半導体素子や回路部品を実装できる半導体内蔵ミリ波帯モジュールを提供する。
【解決手段】無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板(105)と、これよりも高熱伝導率の誘電体材料からなり、電気絶縁性基板(105)の一方の面に積層された高熱伝導基板(103)と、前記両基板に形成された複数の配線パターン(119)と、電気絶縁性基板(105)の内部に配置され、高熱伝導基板(103)にフェイスアップ実装され、配線パターン(119)に電気的に接続されたミリ波帯域で動作する半導体素子(101)と、この上に設けられた分布定数回路素子(121)及び能動素子(124)とを含み、電気絶縁性基板(105)の内部であって、分布定数回路素子(121)及び能動素子(124)の表面外側に空隙(107)を設ける。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体内蔵モジュールに関し、特に、マイクロ波帯又はミリ波帯において動作する半導体素子(以下、「ミリ波帯で動作する半導体素子」という。)が電気絶縁性基板の内部に配置される半導体内蔵モジュールに関する。
【0002】
【従来の技術】
近年、電子機器の高性能化、小型化の要求に伴い、回路部品の高密度、高機能化が一層望まれている。そのため、回路部品の高密度、高機能化に対応した回路基板が要求されている。特に半導体素子を含めた回路部品を高密度化する方法として、無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板を用いることによって、半導体素子を内蔵できる回路部品内蔵モジュールが提案されている(特許文献1,2)。
【0003】
一方、ミリ波帯で動作する半導体素子からの発熱を、外部に効率的に熱伝達して放熱できるパッケージとしては、内部に多層の配線層が設けられた凹型のセラミックパッケージの凹部に半導体を搭載して板状の蓋を用いてキャビティを設けた構成、または平坦な多層基板に半導体素子を搭載して凹部が設けられた蓋を用いて平坦な多層基板との間にキャビティを設ける構成が一般的である。さらに、放熱効率が高い例として、半導体素子に高熱伝導率材料を面接触することによる方法が提案されている(特許文献3)。
【0004】
【特許文献1】
特開平11−220262号公報
【0005】
【特許文献2】
特許第3051700号
【0006】
【特許文献3】
特許第2856192号明細書
【0007】
【発明が解決しようとする課題】
しかし、従来の高熱伝導率材料を半導体素子に面接触する構成では、半導体素子を配線基板にフェイスアップで実装した場合、半導体素子の能動面に高熱伝導率材料が接触して覆われているため、能動面における実効誘電率が空気に比べて高くなる。それにより、半導体素子の特性が変化してしまうという問題がある。
【0008】
また、ミリ波帯で動作する半導体素子の小型化を行おうとすると、効率的に放熱できないため、従来の構成では、十分に放熱をすることができず、素子を内蔵したモジュールでの信頼性が低下するという問題があり、放熱効率高めるとともにミリ波帯で動作する半導体素子や回路部品の小型化を同時に実現することは困難であった。
【0009】
本発明は、上記従来の問題を解決するため、ミリ波帯で動作する半導体素子からの熱を効率的に放熱して放熱効果を高め、同時に高密度で半導体素子や回路部品を実装することができる半導体内蔵ミリ波帯モジュールを提供することを目的とする。
【0010】
【課題を解決するための手段】
前記目的を達成するため、本発明の半導体内蔵ミリ波帯モジュールは、
無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板と、
前記電気絶縁性基板よりも高熱伝導率の誘電体材料からなり、前記電気絶縁性基板の一方の面に積層された高熱伝導基板と、
前記高熱伝導基板及び前記電気絶縁性基板に形成された複数の配線パターンと、
前記電気絶縁性基板の内部に配置され、前記高熱伝導基板にフェイスアップ実装され、且つ前記配線パターンに電気的に接続されたミリ波帯域で動作する半導体素子と、
前記半導体素子上に設けられた分布定数回路素子及び能動素子とを含み、
前記電気絶縁性基板の内部であって、且つ前記分布定数回路素子及び前記能動素子の表面外側に空隙が設けられていることを特徴とする。
【0011】
【発明の実施の形態】
本発明は、無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板と、前記電気絶縁性基板よりも高熱伝導率の誘電体材料からなる高熱伝導基板と、前記高熱伝導基板及び前記電気絶縁性基板に形成された複数の配線パターンと、前記電気絶縁性基板の内部に配置され且つ前記高熱伝導基板にフェイスアップ実装され且つ前記配線パターンに電気的に接続されたマイクロ波または、ミリ波により動作する半導体素子と、前記電気絶縁性基板の内部で且つ前記半導体素子上の配線パターンによる受動回路素子及び能動素子の周辺に空隙が設けたものである。これにより、ミリ波帯で動作する半導体素子からの熱を効率的に放熱して放熱効果を高め、同時に高密度で半導体素子や回路部品を実装することができ、小型化することができる。
【0012】
本発明の半導体内蔵ミリ波帯モジュールによると、半導体素子とヒートシンクを最短で接続でき、電気的な配線と熱的な放熱経路を別方向に設けることができる。このため、従来の金属ベースプレート上に半導体素子をダイボンディングした場合に比べて、高効率に放熱することができる。また、電気的な配線を自由に配置することができる。また、半導体素子上の分布定数回路素子が設けられた面の周辺に空洞が形成されていることから、半導体素子を内蔵することによって電気絶縁性基板を形成する樹脂組成物の影響を受けることなく、半導体素子の高周波特性がベアチップ状態の特性と同等の特性を得ることができる。また、半導体素子は外気から遮断されているため、信頼性の高い半導体内蔵ミリ波帯モジュールが得られる。
【0013】
なお、電気絶縁性基板を構成する混合物に含まれる無機フィラーは、Al、BeO、BN、SiC、AlN及びSiOから選ばれる少なくとも一つの無機フィラーを含むことが望ましい。これらの無機フィラーを用いることにより放熱性に優れた電気絶縁性基板が得られる。また、無機フィラーを選ぶことで電気絶縁性基板の熱膨張係数を調節して、半導体素子の熱膨張係数に整合させることができるため、信頼性の高い半導体内蔵ミリ波帯モジュールが得られる。ここで、電気絶縁性基板の抵抗値は、室温(25℃)で1×1010Ω・m以上である。
【0014】
また、高熱伝導基板は、Al、BeO、BN、AlN及びSiCから選ばれる少なくとも1種類のセラミックスより構成されていることが望ましい。これらの材料を用いることにより放熱性に優れた高熱伝導基板が得られる。ここで、高熱伝導基板は、電気絶縁性基板の熱伝導率よりも高い熱伝導率を有する誘電体材料で形成される基板あり、例えばAl(18〜33W/m・K)、BeO(260W/m・K)、BN(600W/m・K)、AlN(150〜210W/m・K)、SiC(200〜280W/m・K)である。
【0015】
また、半導体素子は、Si,GaAs,SiGe,InP及びSiCを含む物質から選ばれる少なくとも一つの半導体により構成されていることが望ましい。これらの半導体素子を用いることにより周波数の高い領域において周波数特性に優れた半導体内蔵ミリ波帯モジュールが得られる。
【0016】
また、半導体素子は、前記電気絶縁性基板によって外気から遮断されていることが望ましい。半導体素子が外気から遮断されることにより湿度による半導体素子の信頼性低下を防止できる。
【0017】
本発明のモジュールにおいては、電気絶縁性基板の他方の面に第2の高熱伝導基板が積層されていてもよい。このようにすると、電気絶縁性基板の両側に高熱伝導基板を備えたことで、使用時の温度変化に対してモジュール全体の反りの影響を防ぐことができる。さらに、高熱伝導基板を薄くした場合においても反りの影響を防ぐことができる。また、フィルム状の樹脂材料を用いた場合においても反りを防ぐことができ、モジュールの全高もしくは総厚を薄くすることができる。その結果、半導体素子とヒートシンクの間の物理的な距離を短くできるため、半導体素子直下の高熱伝導基板内に放熱用のサーマルビアホールを設けた場合さらに効率的に半導体素子を放熱することができる。
【0018】
前記モジュールにおいては、空隙が前記第2の高熱伝導基板の周辺に形成されていてもよい。このようにすると、半導体内蔵ミリ波帯モジュールを製造する工程において、後述する第1の実施の形態の製造方法で説明する、空洞を形成するための第1の貫通孔と第2の貫通孔に導電性樹脂組成物が充填された板状体を作製する場合、1枚の混合物に第2の貫通孔を形成した後に導電性樹脂組成物を充填し、次に空洞を形成するための第1の貫通孔を形成して板状体を作製することができ、より効率よく半導体内蔵ミリ波帯モジュールを製造することができる。
【0019】
また、前記電気絶縁性基板の他方の面に、前記電気絶縁性基板よりも低誘電損失の材料からなる低損失基板を備え、前記低損失基板に形成された複数の配線パターンと、前記電気絶縁性基板の内部に配置され且つ前記低損失基板上に設けられたフィルタ素子と、前記フィルタ素子の表面に接する領域に空隙を設けてもよい。このようにすると、高効率に放熱することができると同時に電気的な配線を自由に配置することができる。また、半導体素子の高周波特性がベアチップ状態の特性と同等の特性を得ることができる。さらに、フィルタ素子を内蔵しても、フィルタ素子の周辺に空隙が形成されているため、フィルタ素子を内蔵しても電気絶縁性基板を形成する樹脂組成物の影響を受けることない。このため、低損失のフィルタ素子を内蔵することができ、半導体素子と最短で接続することができる。その結果、接続による損失を低減することができる。
【0020】
なお、前記低損失基板は、Al、BeO、BN、AlN及びSiCから選ばれる少なくとも1種類のセラミックス材料であることが好ましい。また、前記低損失基板は、熱変形温度が180℃以上、好ましくは200℃以上である。熱変形温度を180℃以上以上としたのは、本発明のモジュールを形成する際の積層工程で175℃までの温度がかかる場合があるからである。本発明で使用できる耐熱性樹脂としては、フッ素樹脂、ポリイミド(PI)樹脂、アラミド樹脂(メタ系及びパラ系を含む)、ポリエステル樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリスルホン(PS)樹脂、ビスマレイミドトリアジン樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリベンゾイミダゾール、液晶ポリマー及びポリベンゾシクロブテンから選ばれる少なくとも1種類の樹脂を挙げることができる。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、ポリ弗化ビニリデン(PVDF)、ポリ弗化ビニル(PVF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(PETFE)等がある。前記の材料であれば、低損失基板上に作製するフィルタ素子の挿入損失を低減して高性能なフィルタを得ることができる。
【0021】
前記において、例えば平均粒径12μmのアルミナ粉末90重量%と、ビスフェノールA型エポキシ樹脂8重量%と、硬化剤2重量%を配合して形成した電気絶縁性基板の誘電率は約0.02であるが、前記のような低損失基板の誘電率は、約0.002程度である。
【0022】
また、本発明の半導体内蔵ミリ波帯モジュールは、半導体素子上に設けられた分布定数回路素子及び能動素子と、前記低誘電損失基板上に設けられたフィルタ素子とが、同一空隙内に設けられていてもよい。このようにすると、効率よく半導体素子とフィルタ素子を内蔵した半導体内蔵ミリ波帯モジュールを製造することができる。
【0023】
また、前記空隙内の分布定数回路素子と対向する面にシールド導体を設けてもよい。これにより、シールド導体により半導体素子とフィルタ素子間等の信号の漏洩を防ぐことができることに加えて、半導体内蔵ミリ波帯モジュールを製造する際における空隙形成時の樹脂の軟化による空隙形状の変形を低減することができる。
【0024】
また、前記シールド電極は複数の空隙で共有されていてもよい。これにより、電気絶縁体基板の層数低減し、効率よく製造できる。
【0025】
また、前記電気絶縁性基板の内部に配置され前記配線パターンに電気的に接続された回路部品を備えていてもよい。これにより、回路部品を内蔵していても、半導体素子と回路部品間の接続距離を短くすることができることにより電気信号のノイズを低減でき、高周波特性に優れた半導体内蔵ミリ波帯モジュールを得ることができる。さらに、あらかじめ特性が保証された回路部品を内蔵するため、モジュールにした場合、製造時の歩留まりが高く、信頼性の高いモジュールを実現できる。
【0026】
なお、回路部品は、前記電気絶縁性基板によって外気から遮断されていることが望ましい。回路部品が外気から遮断されることにより湿度による回路部品の信頼性低下を防止できる。
【0027】
本発明のさらに別の半導体内蔵ミリ波帯モジュールは、無機フィラーと熱硬化性樹脂とを含む混合物からなる第1及び第2の電気絶縁性基板と、前記第1の電気絶縁性基板よりも高熱伝導率の誘電体材料からなり、前記第1の電気絶縁性基板の一方の面に積層された高熱伝導基板と、前記1の電気絶縁性基板よりも低誘電損失の材料からなる第1及び第2の低損失基板と、前記高熱伝導基板、前記第1及び第2の電気絶縁性基板、第1及び第2の低損失基板に形成された複数の配線パターンと、前記第1の電気絶縁性基板の内部に配置され且つ前記高熱伝導基板にフェイスアップ実装され且つ前記配線パターンに電気的に接続されたミリ波帯で動作する半導体素子と、前記半導体素子上に設けられた分布定数回路素子及び能動素子と、前記第1の電気絶縁性基板の内部で且つ前記半導体素子上の分布定数回路素子及び能動素子の周辺に空隙と、前記第2の電気絶縁性基板の内部に配置され前記第2の低損失基板の配線パターンに電気的に接続された回路部品とを備え、前記第1の低損失基板は前記第1の電気絶縁性基板の他方の面に積層され、前記第2の電気絶縁性基板は前記第1の低損失基板及び前記第2の低損失基板の間に積層されたものである。
【0028】
この半導体内蔵ミリ波帯モジュールによると、半導体素子を効率的に放熱し、ベアチップ状態の特性と同等の特性が得られる。また、低損失のフィルタと短配線で接続でき、高周波特性に優れる。さらに、製造時の歩留まりと信頼性が高いことに加えて、複数の低誘電損失基板上に搭載される回路部品と半導体素子もしくはフィルタ素子等の間の配線長を、低誘電損失基板を多層に積層せず2次元上に配置したときに比べて極めて短く接続することができる。このため、配線による信号の損失を低減することができるとともに、同じ機能を持つモジュールの実装面積を低減して小型化して高密度に回路部品を実装することができる。
【0029】
本発明のさらに別の半導体内蔵ミリ波帯モジュールは、無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板と、前記電気絶縁性基板よりも高熱伝導率の誘電体材料からなり、前記電気絶縁性基板の一方の面に積層された高熱伝導基板と、前記電気絶縁性基板よりも低誘電損失の材料からなり、前記電気絶縁性基板の他方の面に積層された低損失基板と、前記高熱伝導基板及び前記電気絶縁性基板及び低損失基板に形成された複数の配線パターンと、前記高熱伝導基板もしくは前記低損失基板上に設けられた高周波信号出力端子及び外部信号入力端子と、前記電気絶縁性基板の内部に配置され且つ前記高熱伝導基板にフェイスアップ実装され且つ前記配線パターンに電気的に接続されたミリ波帯で動作する半導体素子と、前記半導体素子上に設けられた分布定数回路素子及び能動素子と、前記電気絶縁性基板の内部に配置され且つ前記低損失基板上に設けられたフィルタ素子と、前記電気絶縁性基板の内部で且つ前記半導体素子上の分布定数回路素子及び能動素子及び前記フィルタ素子の周辺に空隙が設けられており、前記外部信号入力端子と前記フィルタ素子の入力端子とが電気的に接続されており、前記フィルタ素子の出力端子と前記半導体素子の入力端子が電気的に接続されており、前記半導体素子の出力端子と高周波信号出力端子が電気的に接続されたものである。
【0030】
この半導体内蔵ミリ波帯モジュールによると、半導体素子が高出力用のパワーアンプの場合、1つの半導体内蔵ミリ波帯モジュールで送信機能を1つにまとめた送信モジュールが得られ、ミリ波帯信号の通信機を構成する場合において部品点数を削減することができる。また、半導体素子が低雑音増幅器の場合、受信モジュールが得られる。さらに、複数の半導体素子を用いた半導体内蔵ミリ波帯モジュールでは、送受信機能を一体にしたミリ波帯フロントエンドモジュールを得ることができる。
【0031】
以下、本発明に関する半導体内蔵ミリ波帯モジュールの具体的な実施の形態について、図面を使用して具体的に説明する。なお、下記の実施例においては、同一の符号を付与した部品は同一部品を示すので、説明を省略する場合がある。
【0032】
(第1の実施の形態)
図1は、本発明の第1の実施の形態における半導体内蔵ミリ波帯モジュールの構成の概略を示す断面図である。
【0033】
以下に本実施の形態における半導体内蔵ミリ波帯モジュールについて、図1を参照しながら説明する。図1において、半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサは、ワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0034】
半導体素子101は、ミリ波帯域で動作する半導体素子であり、ミリ波帯としては、一般的には30GHz以上であり、例えば32GHz、60GHz、72GHzなどである。特殊なものとしては、26GHzもある。
【0035】
半導体素子101上には能動素子124と、その能動素子間を接続するための配線やスタブを用いた整合回路,結合線路、フィルタ、バイアス用スタブなど、パターンを用いた受動回路素子(以下、「分布定数回路素子」と称す。)121が形成されている。前記においてスタブとは、配線のインピーダンスを調整するための分岐部が設けられた配線で、端部が開放終端もしくはビアホール等を用いて接地層に電気的に接続されている。例えば、分岐部からの配線長を、伝播する信号の波長の1/4の長さに調整し、配線端を開放もしくは短絡させることで、分岐部がそれぞれ短絡または開放の状態になる。これらは特にトランジスタの入力端子や出力端子に接続され、入出力インピーダンスの調整用に用いられる。また、能動素子124としては、バイポーラトランジスタ、FET(Field Effect Transistor)またはダイオードなどである。
【0036】
無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105と半導体素子101上に設けられた分布定数回路素子121や能動素子124と接する領域には空隙107が形成されている。
【0037】
この空隙107は、少なくとも半導体素子上の分布定数回路121や能動素子124が電気絶縁性基板105と接触しないようにするためのものであり、空隙の大きさや形は特に限定されない。好ましくは、空隙107の壁と各素子との最小の隙間は約100μm以上のスペースである。分布定数回路や能動素子は、通常空気(誘電率1)に接することを前提に設計され作成されていることから、空隙を設けることが必要である。ただし、空隙の形状は一定しているのが好ましい。更にコンパクトにモジュールを製造するためには、必要最小限の空隙で一定のスペースであることが好ましい。
【0038】
空隙の形状は、半導体素子上に設けられた配線や能動素子が配置された部分に設けられるため、それらの配置によって任意に変更してもよい。例えば、GaAs製26GHz帯高出力増幅半導体素子(消費電力5W、1dB利得圧縮点における出力が30dBm)では、1つのチップに複数の増幅器が内蔵され、それぞれの増幅器の出力電力を合成するための分布定数線路(図14参照)も同一のチップ内に形成されたMMIC(Monolithic Microwave Integrated Circuits)となっている。図14は分布定数線路を用いたウィルキンソン型分配合成器の例の回路図を模式的に示す。入力ポート161から波長がλの信号を入力し、第1の出力ポート162及び、第2の出力ポート163からそれぞれ信号が分配されて出力される。第1の出力ポートと第2の出力ポートにそれぞれ50Ωの負荷が接続された系の場合、入力ポートと出力ポートの間には特性インピーダンスがそれぞれ70.7Ωでしかも入力される信号の波長の1/4の長さを持つ第1の分布定数線路171と第2の分布定数線路172が設けられている。また第1の出力ポートと第2の出力ポート間には100Ωの抵抗173が接続される。このような構成とすることで、入力した信号の半分の電力が同位相で第1の出力ポート及び第2の出力ポートからそれぞれ出力される。このような第1の分布定数線路や第2の分布定数線路は半導体素子上に設ける場合、通常マイクロストリップ線路の構成がとられる。この場合、信号が伝搬する線路は空気層と接する状態でインピーダンスを所望の値になるよう作製する。マイクロストリップ線路と接する領域に樹脂層が形成された場合、空気層が設けられた状態に比べて実効誘電率が変化するため、特性インピーダンスが所望の値からずれてしまう。また、電磁波は媒質中において媒質の誘電率に依存して波長が変化する性質を有していることから、マイクロストリップ線路の表面に樹脂層が設けられた場合には空気層が設けられた場合に比べて波長が短くなる。このため、第1の分布定数線路及び第2の分布定数線路は波長の1/4の長さでなくなってしまう。それにより、入力した信号の一部が入力ポートに出力し残りが出力ポートへ出力されるため、効率的に分配できなくなる。よって、半導体素子内に設けられた能動素子及び分布定数線路の形成されている領域に空隙を設ける。
【0039】
図15は半導体素子と半導体素子上に設けられた能動素子及び分布定数回路素子と空隙との関係を模式的に示した上面図である。半導体素子101は高熱伝導基板103上にフェイスアップで実装されている。高熱伝導基板103上に設けられた入力側配線パターン181及び出力側配線パターン182は、半導体素子101上のパッド191a,191bとワイヤ131a,131bを介してワイヤボンディングされている。また、配線パターン119上に搭載されているバイパスコンデンサ133とパッド191cもワイヤ131cを介して接続されている。半導体素子101上には複数の能動素子124及び複数の分布定数回路素子121が設けられている。能動素子124同士は例えばFETであり、FETで増幅された信号の電力を効率的に分配及び合成するために分布定数回路素子121を介して電気的に接続されている。点線Aで囲った部分の内部には空隙が設けられている。能動素子124及び能動素子間を接続する分布定数回路素子121は必ず空隙内に形成される。
【0040】
さらに、半導体素子上の一部の領域に接するように電気絶縁性基板を設け、空隙の寸法の最小幅を半導体素子よりも小さくすることで、空隙を安定して形成することができる。その結果、半導体素子上に設けられている能動素子及び分布定数線路の実効誘電率が安定する。この場合、半導体素子の一部が電気絶縁性基板に埋設された状態となる。空隙の寸法が変形すると、能動素子及び分布定数線路の電磁界分布が変化するため実効的な誘電率が変化する。そのため、空隙部分に形成された配線が分布定数線路の場合、特性インピーダンスが変わるため信号特性が変化する。
【0041】
なお、半導体素子上で分布定数回路121や能動素子124が存在していない領域では、図1に示すように電気絶縁性基板105が半導体素子101の表面と接触していても構わない。
【0042】
また、ビア導体111を介して高熱伝導基板103に形成された配線パターン119は、電気絶縁性基板105上に設けられた外部電極113と電気的に接続されている。高熱伝導基板103の半導体素子101に対向する面には、放熱用のヒートシンク115が接着剤層104によって一体化されて搭載されている。ヒートシンクはアルミダイカストなどを用い、表面積を増加させて熱を逃がしやすいようにフィン等が設けられている。フィンの形状は発熱素子の発熱量、使用時の周囲温度、発熱素子からヒートシンク接続部までの熱抵抗によって任意に用いられる。例えば、フィンの形状として、厚さが0.5〜2mmで高さが2mm〜90mmまで必要に応じて使われる。高熱伝導基板とヒートシンクの接合は、信越化学工業製高熱伝導性シリコーンオイルコンパウンド(商品名)”G765”を印刷などの方法により、高熱伝導基板上のヒートシンクと接合する領域に、厚さ200μm以下で供給し、その後ヒートシンクを重ね、例えば1×10Paの圧力で加圧する。これによってヒートシンクを高熱伝導基板に接合できる。また、ヒートシンクは、半導体内蔵ミリ波帯モジュールの熱が伝達されるアルミなどの金属を用いた筐体で共用することもできる(図17)。このヒートシンク115は、必要に応じて取りつければ良い。これは、以下の実施の形態でも同様である。
【0043】
図1において、電気絶縁性基板105は、無機フィラーと熱硬化性樹脂とを含む混合物からなる。無機フィラーには、たとえば、Al、BeO、BN、SiC、AlN及びSiOなどから選ばれる少なくとも一つを用いることができる。無機フィラーは、混合物に対して70重量%以上95重量%以下の範囲であることが好ましい。また、無機フィラーの平均粒子径は、0.1μm〜100μm以下であることが好ましい。熱硬化性樹脂には、たとえば、耐熱性が高いエポキシ樹脂、フェノール樹脂またはシアネート樹脂を選ぶことができる。エポキシ樹脂は、耐熱性が特に高いため特に好ましい。混合物は、さらに分散剤、着色剤、カップリング剤または離型剤を含んでいてもよい。
【0044】
具体的には平均粒径12μmのアルミナ粉末90重量%とビスフェノールA型エポキシ樹脂8重量%と硬化剤2重量%を配合した厚み200μmの電気絶縁性基板を作製した。
【0045】
配線パターン119は、電気導電性を有する物質からなり、たとえば、銅箔や導電性樹脂組成物で形成する。配線パターンとして薄膜導体を用いた場合、熱伝導性基板103にスパッタリング法等によりNi/Cr,Auによる導体を形成する。
【0046】
また、高周波信号を伝送する熱伝導性基板103上の配線パターン119はマイクロストリップ線路やコプレーナ線路などの高周波用伝送線路が用いられる。
【0047】
半導体素子101は金属フィラーもしくは無機フィラーと熱硬化性樹脂とを含む混合物からなる樹脂組成物や、はんだなどを用いて高熱伝導基板103にダイボンドされる。はんだは、鉛スズ系の共晶はんだ、高温はんだ、または金スズはんだなどを用いることができ、樹脂組成物としては、たとえば、耐熱性が高いエポキシ樹脂、フェノール樹脂またはシアネート樹脂を選ぶことができる、フィラーとしてたとえば、銀、銀パラジウム、銅、Al、BeO、BN、SiC、AlN及びSiOなどを用いることができる。金スズはんだ等は半導体素子101と高熱伝導基板103の間の熱抵抗が低できるため特に好ましい。具体的には、厚さ500μmのAlN製基板に、厚さ30μmのリボン状のAnSnハンダ(Au80重量%)を用いて、GaAs製半導体素子をダイボンドした。
【0048】
図1に示した半導体内蔵ミリ波帯モジュールでは、半導体素子101に設けられた能動素子やパターンを用いた受動回路素子121の周辺に空隙107が形成されているため、半導体素子101単体での高周波特性に比べて半導体内蔵ミリ波帯モジュールにした場合においても特性が変化することがない。
【0049】
同時に、半導体素子101の裏面は高熱伝導基板103に低熱抵抗率の材料を用いて接合されているため効率的に放熱して放熱効果を高めることができる。
【0050】
また、半導体内蔵ミリ波帯モジュールでは、電気絶縁性基板105に用いる無機フィラーを選択することによって、電気絶縁性基板105の線膨張係数、熱伝導度、誘電率などを容易に制御することができる。電気絶縁性基板105の線膨張係数を熱伝導性基板103と略等しくすると、温度変化によるクラックの発生等を防止することができるため、信頼性の高い半導体内蔵ミリ波帯モジュールが得られる。
【0051】
また、半導体内蔵ミリ波帯モジュールでは、電気絶縁性基板105によって半導体素子101を外気から遮断することができるため、湿度による信頼性低下を防止することができる。また、本実施形態の半導体内蔵ミリ波帯モジュールは、電気絶縁性基板105の材料として、無機フィラーと熱硬化性樹脂との混合物を用いているため、セラミック基板と異なり、高温で焼成する必要がない。
【0052】
次に、本発明の半導体内蔵ミリ波帯モジュールの作製方法の一例について図2A〜図2Gを用いて説明する。図2A〜図2Gは半導体内蔵ミリ波帯モジュールの製造工程の実施形態を示す断面図である。
【0053】
まず、図2Aに示すように、無機フィラーと熱硬化性樹脂とを含む混合物を加工することによって板状の混合物シート150aを形成した。板状の混合物シート150aは、無機フィラーと未硬化状態の熱硬化性樹脂とを混合してペースト状混練物とし、そのペースト状混練物を一定厚みに成型することによって形成できる。なお、板状の混合物シート150aを、熱硬化性樹脂の硬化温度で熱処理をしてもよい。例えば熱硬化性エポキシ樹脂を使用したときには熱処理条件は、温度が120℃で15分間保持であった。前記熱硬化性エポキシ樹脂は、硬化開始温度が130℃であるため、前記熱処理条件下では、半硬化又は部分硬化状態(Bステージ)であり、以降の工程で加熱により再度溶融させることができる。前記のように熱処理をすることによって、混合物シート150aの可撓性を維持しながら粘着性を除去することができるため、その後の処理が容易になる。また、溶剤によって熱硬化性樹脂を溶解させた混合物では、熱処理をすることによって、溶剤の一部を除去することができる。
【0054】
その後、図2Bに示すように、混合物シート150bの所望の位置に第1の貫通孔140を形成した。第1の貫通孔140は、たとえば、レーザ加工、ドリルによる加工または金型による加工で形成することができる。レーザ加工は、微細なピッチで第1の貫通孔140を形成することができ、削り屑が発生しないため好ましい。レーザ加工では、炭酸ガスレーザやエキシマレーザを用いると加工が容易である。
【0055】
第1の貫通孔140は、後に説明する半導体素子が設けられた高熱伝導基板と重ね合わせの後積層する際、半導体素子上の能動素子と配線パターンを用いた分布定数回路素子と接する領域に形成することが望ましい。
【0056】
次に、第1の貫通孔140が設けられた混合物シート150bと、貫通孔が設けられていない混合物シート150aを位置合わせして重ね、9.8×10Paで加圧することにより一体化した。
【0057】
その後、図2Cに示すように、一体化された混合物シート150cの所望の位置に第2の貫通孔141を形成した。第2の貫通孔141は第1の孔140と同様の方法を用いて形成した。なお、第2の貫通孔141は、ペースト状混練物を成型して板状の混合物シート150cを形成する際に、同時に形成してもよい。
【0058】
その後、図2Dに示すように、第2の貫通孔141に導電性樹脂組成物142を充填することによって、第2の貫通孔141に導電性樹脂組成物142が充填された板状体を形成した。
【0059】
図2A〜図2Dの工程と平行して、図2Eに示すように高熱伝導基板103を準備した。その材料としてAl、BeO、BN、SiC、AlN及びSiOなどを用いることができる。AlNやSiCなどが放熱効果が高いことから好ましい。このような高熱伝導基板103にGaAsやInPなどからなる半導体素子101をダイボンディングした後、ワイヤ131により配線パターン119にワイヤボンディングした。
【0060】
半導体素子101は例えば寸法が縦:4mm、横:2.5mm、厚さ50μmで、消費電力が5WのGaAs製半導体素子を用いた。厚さ500μmのAlN製基板に厚さ30μmのリボン状のAnSnハンダ(Au80重量%)を用いてダイボンドした。ダイボンドする際は、窒素雰囲気中においてカーボン製治具により半導体素子を位置決めし、320℃で10秒保持する条件で行った。半導体素子をダイボンドする際、合金系のハンダで接合すると、熱膨張係数の違いにより接合部に応力が発生する。そのため、半導体素子とダイボンド用基板との熱膨張係数を合わせた材料系を選択することができる。その後、エポキシテクノロジー社製導電性エポキシ接着剤(商品名)”H20E”をディスペンス法によりAlN基板上に供給した後、0.5mm角のバイパスコンデンサを搭載し、温度150℃で15分間保持により硬化し、バイパスコンデンサ133をAlN基板上に実装した。その後、半導体素子とAlN基板上の配線119及びバイパスコンデンサ133を線径25μmのAuワイヤを用いて温度が150℃のヒーターステージ上でワイヤボンディングを行った。ダイボンディングは銀等の金属が分散された樹脂組成物を用いることができるが、放熱効果を高めるために、金スズはんだや鉛スズはんだ等を用いることができる。分布定数回路素子121と能動素子124も同様にダイボンディングによりAlN基板上に実装した。
【0061】
その後、半導体素子101を実装した高放熱基板103と、図2Dに示す板状体の混合物シート150c及び銅箔143を位置合わせして重ねた。
【0062】
次に図2Fに示すように、熱プレスを用いてプレス温度120℃、圧力9.8×10Paで5分間加熱加圧した。これにより、混合物シート150c中の熱硬化樹脂が加熱により溶融軟化するため、半導体素子101が埋設された板状体105が形成でき、導電性樹脂組成物142も圧縮されてビア導体111が形成された。その後、これを加熱することによって、板状体105及びビア導体111中の熱硬化性樹脂を硬化させた。これにより、半導体素子が埋設され半導体素子上の能動素子124と、分布定数回路素子121と接する領域にそれぞれ空洞107が形成された。
【0063】
前記の加熱温度は、混合物シート150c及び導電性樹脂組成物142中の熱硬化性樹脂が硬化する温度以上の温度(たとえば150℃〜260℃)で行う。この工程によって、銅箔143と熱伝導性基板103と電気絶縁性基板105とが機械的に強固に接着する。また、ビア導体111によって、銅箔143が電気的に接続される。なお、加熱によって混合物シート150c及び導電性樹脂組成物142中の熱硬化性樹脂を硬化させる際に、加熱しながら9.8×10Pa(best)〜1.96×10Paの圧力で加圧することによって、半導体内蔵ミリ波帯モジュールの機械的強度をさらに向上させることができる。加熱条件は175℃で60分間保持した。これにより混合物シート150c中のエポキシ樹脂および、導電性樹脂組成物中のエポキシ樹脂が硬化する。これは以下の実施形態において同様である。
【0064】
その後、図2Gに示すように、銅箔143をエッチング加工することによって外部電極113を形成した。このようにして、半導体内蔵ミリ波帯モジュールを形成した。なお、本実施の形態では、貫通孔141に充填する導電性物質として導電性樹脂組成物142を用いたが、熱硬化性の導電性物質であれば特に限定されるものではない。
【0065】
上記のように構成された半導体内蔵ミリ波帯モジュールは、半導体素子と、ヒートシンクを最短で接続でき、電気的な配線と熱的な放熱経路を別方向に設けることができた。このため、従来の金属ベースプレート上に半導体素子をダイボンディングした場合に比べて高効率に放熱することができ、電気的な配線を自由に配置することができた。また、半導体素子上の分布定数回路素子が設けられた面の周辺に空洞が形成されていることから、半導体素子を内蔵することによって電気絶縁性基板を形成する樹脂組成物の影響を受けることなく、半導体素子の高周波特性がベアチップ状態の特性と同等の特性を得ることができた。また、半導体素子は外気から遮断されているため、信頼性の高い半導体内蔵ミリ波帯モジュールが得られた。
【0066】
(第2の実施の形態)
図3は本発明の第2の実施の形態における半導体内蔵ミリ波帯モジュールの構成の概略を示す断面図である。
【0067】
以下に本実施の形態における半導体内蔵ミリ波帯モジュールについて、図3を参照しながら説明する。図3において、半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサ133にワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0068】
無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105と半導体素子101上に形成された分布定数回路素子121や能動素子124と接する領域には空隙107が形成されている。電気絶縁性基板105の両側には高熱伝導基板103,103aが設けられており、高熱伝導基板103上に設けられた配線パターン119は、電気絶縁性基板105に設けられたビア導体111と、下側高熱伝導基板103aに設けられたビア導体を介して外部電極113に電気的に接続されている。高熱伝導基板103の外側の面には、熱伝導性接着剤104を介して放熱用のヒートシンク115が搭載されている。
【0069】
高熱伝導基板としては、第1の実施の形態において説明した材料に加えて、PTFE、ビスマレイミドトリアジン、PPO、PPE、液晶ポリマー、ポリベンゾシクロブテン、ポリイミド等から選ばれるフィルム状の樹脂材料を選ぶこともできる。
【0070】
セラミックス材料を用いた高熱伝導基板としては、半導体内蔵ミリ波帯モジュールの製造工程上、基板の取扱性から基板厚さを通常100μm以上で選定することが可能であるが、フィルム状の樹脂材料を用いる場合、100μm以下の厚さにすることが可能であるため、小型化するためにはフィルム状の樹脂材料を用いることが好ましい。
【0071】
上記のように構成された半導体内蔵ミリ波帯モジュールは、第1の実施の形態において説明した効果に加えて、電気絶縁性基板の両側に同一の材料を備えたことで、使用時の温度変化に対してモジュール全体の反りの影響を防ぐことができた。さらに、高熱伝導基板を薄くした場合においても、反りの影響を防ぐことができ、フィルム状の樹脂材料を用いた場合においても反りを防ぐことができた。また、モジュールの全高もしくは総厚を薄くすることができた。その結果、半導体素子とヒートシンクの間の物理的な距離を短くできるため、半導体素子直下の高熱伝導基板内に放熱用のサーマルビアホールを設けた場合さらに効率的に半導体素子を放熱することができた。ここで、サーマルビアホールとは、貫通孔に放熱用のフィラーを充填したものであり、用途によって、通常の電気的導通を図るためのビアホールと機能を兼用することもできる。
【0072】
(第3の実施の形態)
図4は本発明の第3の実施の形態における半導体内蔵ミリ波帯モジュールの構成の概略を示す断面図である。
【0073】
以下に本実施の形態における半導体内蔵ミリ波帯モジュールについて、図4を参照しながら説明する。図4において、半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサ133にワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0074】
電気絶縁性基板105の両側には第1及び第2の高熱伝導基板103,103aが設けられており、第1の高熱伝導基板103上に設けられた配線パターン119は、ビア導体111と、第2の高熱伝導基板である下側高熱伝導基板103aに設けられたビア導体を介して外部電極113に電気的に接続されている。第1の高熱伝導基板103の外側の面には放熱用のヒートシンク115が熱伝導性接着剤104を介して搭載されている。
【0075】
半導体素子101上に形成された分布定数回路素子121や能動素子124と接する領域には空隙107が形成されており、空隙形状の半導体素子101と対向する面は高熱伝導基板に接して形成されており、残りの側面は無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105と接するように形成されている。つまり、空隙107は電気絶縁性基板105を貫通するような形状となっている。
【0076】
(第4の実施の形態)
図5は、本発明の第4の実施の形態における半導体内蔵ミリ波帯モジュールの構成の概略を示す断面図である。
【0077】
以下に本実施の形態における半導体内蔵ミリ波帯モジュールについて、図5を参照しながら説明する。図5において、半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサ133にワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0078】
半導体素子101には能動素子124の他に分布定数回路素子121が形成されている。また、低誘電損失基板117上に配線パターンと配線パターンを用いたフィルタ素子125が形成されている。
【0079】
低誘電損失基板117と高熱伝導基板103との間は無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105を挟んで積層されており、低誘電損失基板117と高熱伝導基板103にそれぞれ設けられた配線は、電気絶縁性基板105に設けられたビア導体111を介して電気的に接続されている。
【0080】
半導体素子101上の配線パターンを用いた分布定数回路素子121や能動素子124と接する領域と低誘電損失基板117上に設けられたフィルタ素子125と接する領域には、空隙107が形成されている。高熱伝導基板103の外側の面には放熱用のヒートシンク115が熱伝導性接着剤104を介して搭載されている。
【0081】
次に、本発明の半導体内蔵ミリ波帯モジュールの作製方法の一例について図6A〜図6Fを用いて説明する。図6A〜図6Fは半導体内蔵ミリ波帯モジュールの製造工程の実施形態を示す断面図である。
【0082】
まず第1の実施の形態で説明した方法で、板状体150aを3層分作製した(図6A)。そのうち1層分の第1の板状体150bには、半導体素子上の能動素子と配線パターンを用いた分布定数回路素子と接する領域に第1の貫通孔140を形成した。
【0083】
次に、もう1層分の第2の板状体150dには、積層時に低誘電損失基板上に設けられたフィルタ素子の周辺に第3の貫通孔144を形成した。次に、残りの貫通孔を形成していない第3の板状体150cを中心にして両側から第1の板状体と第2の板状体を位置あわせして重ね、更にその外側にポリエチレンテレフタレートなどからなる樹脂フィルム145を重ね、加圧することによりそれらを一体化した(図6B)。
【0084】
その後、図6Cに示すように、一体化された板状体150eの所望の位置に第2の貫通孔141を形成することによって、第2の貫通孔141が形成された板状体を形成した。第2の貫通孔は第1の貫通孔と同様の方法を用いて形成した。
【0085】
その後、図6Dに示すように、第2の貫通孔141に導電性樹脂組成物142を充填することによって、第2の貫通孔141に導電性樹脂組成物142が充填された板状体150eを形成した。
【0086】
図6A〜図6Dの工程と平行して、図6Eに示すように、AlN等からなる高熱伝導基板103に、配線パターン119を形成し、その上にGaAsやInPなどからなる半導体素子101をダイボンディングした後、ワイヤ131によりワイヤボンディングした。半導体素子101とバイパスコンデンサ133ともワイヤ131を介してワイヤボンディングにより電気的に接続した。さらに半導体素子101上に分布定数回路素子121と能動素子124をダイボンディングした。
【0087】
その後、半導体素子101を実装した高放熱基板103と、図6Dの板状体と、フィルタ素子125と配線113とビア導体が形成された低誘電損失基板117とを位置合わせして重ねた。
【0088】
低損失基板117は、前記したセラミックス材料または耐熱性樹脂で形成し、好ましい厚みは、0.1mm〜1mmの範囲である。
【0089】
その後、図6Fに示すように、位置合わせして重ねて熱プレスを用いてプレス温度120℃、圧力9.8×10Paで5分間加熱加圧した。これにより、半導体素子101が埋設された板状体を形成した。その後、これを加熱することによって、板状体及び導電性樹脂組成物中の熱硬化性樹脂を硬化させた。これにより、半導体素子101が埋設され半導体素子101上の能動素子124と分布定数回路素子121と接する領域と低誘電損失基板117上のフィルタ素子125が形成された領域と接する領域に空隙107が形成された板状体105を形成した。加熱は、板状体150a〜150e及び導電性樹脂組成物142中の熱硬化性エポキシ樹脂が硬化する温度以上の温度(たとえば150℃〜260℃)で行い、板状体は電気絶縁性基板105となり、導電性樹脂組成物はビア導体111となる。この工程によって、低誘電損失基板と熱伝導性基板103と電気絶縁性基板105とが機械的に強固に接着する。
【0090】
上記のように構成された半導体内蔵ミリ波帯モジュールの半導体素子表面の能動素子からの発熱は、半導体素子からダイボンド用接合材及び高熱伝導性基板を経由して放熱される。半導体素子を電気絶縁性基板の熱伝導率よりも高い熱伝導率の高熱伝導性基板に接合することにより平面方向に放熱経路を拡大することができ、実質的な熱抵抗を低減できる。そしてこの場合、半導体素子の裏面がダイボンドされた高熱伝導性基板にヒートシンクを接合することにより、高熱伝導性基板をマザー基板に搭載してマザー基板とヒートシンクを接合する構成に比べて熱経路を短縮し、ひいては熱抵抗を低減することになるため、高効率に放熱することができる。
【0091】
また、さらに、ヒートシンクは、半導体内蔵ミリ波帯モジュールが搭載される筐体と一体化することにより部品コスト及び組立コストを低減できる。
【0092】
また、電気的な配線を自由に配置することができ、半導体素子の高周波特性がベアチップ状態の特性と同等の特性を得ることができる。加えて、フィルタ素子を内蔵しても、フィルタ素子に接する領域に空隙が形成されているため、半導体素子とフィルタ素子を内蔵しても電気絶縁性基板を形成する樹脂組成物の影響を受けない。このため、低損失のフィルタ素子を内蔵することができ、半導体素子と最短で接続することができるため、接続による損失を低減することができる。
【0093】
(第5の実施の形態)
図7は本発明の第5の実施の形態における半導体内蔵ミリ波帯モジュールの構成の概略を示す断面図である。
【0094】
以下に本実施の形態における半導体内蔵ミリ波帯モジュールについて、図7を参照しながら説明する。図7において、半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサ133にワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0095】
半導体素子101には能動素子124の他に分布定数回路素子121が形成されている。また、低誘電損失基板117上に配線パターンと配線パターンを用いたフィルタ素子125が形成されている。低誘電損失基板117の外側には、導体ビアと接続する外部電極113が形成されている。
【0096】
低誘電損失基板117と高熱伝導基板103との間は無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105を挟んで積層されており、低誘電損失基板117と高熱伝導基板103にそれぞれ設けられた配線は、電気絶縁性基板105に設けられたビア導体111を介して電気的に接続されている。高熱伝導基板103の外側の面には熱伝導性接着剤104を介して放熱用のヒートシンク115が搭載されている。
【0097】
半導体素子101上の配線パターンを用いた分布定数回路素子121や能動素子124と接する領域と低誘電損失基板117上に設けられたフィルタ素子125と接する領域には空隙107が形成されており、1つの空隙内に半導体素子101上に形成された分布定数回路素子121や能動素子124と異なる層である低誘電損失基板117上に設けられたフィルタ素子125が設けられており、分布定数回路素子121や能動素子124とフィルタ素子125が設けられた空隙107は単一の貫通孔が形成された電気絶縁性基板内に設けられている。つまり、図5に示した構造とは違って、分布定数回路素子の周辺の空隙とフィルタ素子の周辺の空隙とが共有されている。
【0098】
上記のように形成された半導体内蔵ミリ波帯モジュールでは、本実施の形態における半導体内蔵ミリ波帯モジュールを製造する工程において、第4の実施の形態の製造方法で説明した、図6Dに示す空洞を形成する第1の貫通孔と第2の貫通孔に導電性樹脂組成物が充填された板状体を作製する場合、1枚の混合物150に第2の貫通孔を形成した後に導電性樹脂組成物を充填し、次に空洞を形成するための第1の貫通孔を形成して板状体を作製することができ、より容易に半導体素子とフィルタ素子を内蔵した半導体内蔵ミリ波帯モジュールを製造することができる。
【0099】
(第6の実施の形態)
図8は本発明の第6の実施の形態における半導体内蔵ミリ波帯モジュールの構成の概略を示す断面図である。
【0100】
以下に本実施の形態における半導体内蔵ミリ波帯モジュールについて、図8を参照しながら説明する。図8において、半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサ133にワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0101】
半導体素子101には能動素子124の他に能動素子間を接続するための配線やスタブを用いた整合回路,結合線路、フィルタ、バイアス用スタブ、キャパシタ、インダクタなどパターンを用いた分布定数回路素子121が形成されている。また、低誘電損失基板117上に配線パターンと配線パターンを用いたフィルタ素子125が形成されている。低誘電損失基板117の外側には、導体ビアと接続する外部電極113が形成されている。低誘電損失基板117と高熱伝導基板103との間は無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105を挟んで、積層されており、低誘電損失基板117と高熱伝導基板103にそれぞれ設けられた配線は、電気絶縁性基板105に設けられたビア導体111を介して電気的に接続されている。高熱伝導基板103の外側の面には熱伝導性接着剤104を介して放熱用のヒートシンク115が搭載されている。
【0102】
半導体素子101上の配線パターンを用いた分布定数回路素子121や能動素子124の周辺と低誘電損失基板117上に設けられたフィルタ素子125の周辺には、それぞれ空隙107が形成されている。空隙107の分布定数回路素子121や能動素子124やフィルタ素子125と接する面に対向する面はシールド導体126が形成されている。
【0103】
ここでシールド導体126には金属を用いることができ、特に金属箔が好ましい。なお、本実施の形態においては、シールド導体として銅箔を用いた。
【0104】
なお、前述のシールド導体を用いることは本実施の形態に限られるものではなく、前述の各実施の形態や後述の実施の形態など他の実施の形態に用いることも可能である。
【0105】
上記のように形成された半導体内蔵ミリ波帯モジュールでは、第4の実施の形態で説明した効果に加えて、シールド導体により半導体素子とフィルタ素子間等の信号の漏洩を防ぐことができることに加えて、半導体内蔵ミリ波帯モジュールを製造する際における空隙形成時の樹脂の軟化による空隙形状の変形を低減することができる。また、シールド導体を接地端子と電気的に接続することで、フィルタ素子の特性を向上させることができる。例えば、急峻な減衰特性を持つフィルタ特性を得ることができる。
【0106】
(第7の実施の形態)
図9は本発明の第7の実施の形態における半導体内蔵ミリ波帯モジュールの構成の概略を示す断面図である。
【0107】
以下に本実施の形態における半導体内蔵ミリ波帯モジュールについて、図9を参照しながら説明する。図9において、半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサ133にワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0108】
半導体素子101には能動素子124の他に分布定数回路素子121が形成されている。また、低誘電損失基板117上に配線パターンと配線パターンを用いたフィルタ素子125が形成されている。低誘電損失基板117と高熱伝導基板103との間は無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105を挟んで積層されており、低誘電損失基板117の配線113と高熱伝導基板103の配線119は、電気絶縁性基板105に設けられたビア導体111及び低誘電損失基板117に設けられたビア導体を介して電気的に接続されている。高熱伝導基板103の外側の面には放熱用のヒートシンク115が熱伝導性接着剤104を介して搭載されている。
【0109】
半導体素子101上の配線パターンを用いた分布定数回路素子121や能動素子124の周辺と低誘電損失基板上に設けられたフィルタ素子125の周辺には空隙107が形成されている。空隙107の分布定数回路素子121や能動素子124やフィルタ素子125と接する面に対向する面は、共通のシールド導体126が形成されており、異なる層に形成された空隙107が同一のシールド導体126の表裏に接している。このようにして、各空隙においてシールド導体を共有している。
【0110】
上記のように構成された半導体内蔵ミリ波帯モジュールは、第6の実施の形態に比べて電気絶縁体基板の層数低減し、製造を容易にすることができる。
【0111】
(第8の実施の形態)
図10は、本発明の第8の実施の形態における半導体内蔵ミリ波帯モジュールの構成の概略を示す断面図である。
【0112】
以下に本実施の形態における半導体内蔵ミリ波帯モジュールについて、図10を参照しながら説明する。図10において、半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサ133が、ワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0113】
半導体素子101には能動素子124の他に分布定数回路素子121が形成されている。また、低誘電損失基板117上に配線パターンと配線パターンを用いたフィルタ素子125が形成され、低誘電損失基板117上の配線パターンと電気的に接続され電気絶縁性基板105内部に回路部品123a,123bが配置されている。
【0114】
低誘電損失基板117と高熱伝導基板103との間は無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105を挟んで積層されており、低誘電損失基板117の配線113と高熱伝導基板103の配線119は、電気絶縁性基板105に設けられたビア導体111及び低誘電損失基板117に設けられたビア導体を介して電気的に接続されている。高熱伝導基板103の外側の面には放熱用のヒートシンク115が熱伝導性接着剤104を介して搭載されている。
【0115】
半導体素子101上の配線パターンを用いた分布定数回路素子121や能動素子124と接する領域と、低誘電損失基板117上に設けられたフィルタ素子125に接する領域には空隙107が形成されている。
【0116】
一方、低誘電損失基板117上に実装されている回路部品123a,123bは電気絶縁性基板105に接して埋設されている。
【0117】
回路部品は、たとえば、能動部品123a及び受動部品123bを含む。能動部品123aとしては、たとえば、トランジスタ、IC、LSIなどの半導体素子が用いられる。半導体素子は、半導体ベアーチップであってもよい。受動部品123bとしては、チップ状の抵抗、チップ状のコンデンサまたはチップ状インダクタなどが用いられる。なお、回路部品は、受動部品123bを含まない場合であってもよい。
【0118】
配線パターンと能動部品123aとの接続には、公知のフリップチップボンディングなどを用いることができる。ビア導体111は、たとえば、熱硬化性の導電性物質からなる。熱硬化性の導電性物質としては、たとえば、金属粒子と熱硬化性樹脂とを混合した導電性樹脂組成物を用いることができる。金属粒子としては、金、銀、銅またはニッケルなどを用いることができる。金、銀、銅またはニッケルは導電性が高いため好ましく、銅は導電性が高くマイグレーションも少ないため特に好ましい。熱硬化性樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂またはシアネート樹脂を用いることができる。エポキシ樹脂は、耐熱性が高いため特に好ましい。
【0119】
なお、低誘電損失基板117に実装した回路部品と低誘電損失基板117との間に封止樹脂を注入してもよい。以下の実施形態において、回路部品と銅箔との間あるいは回路部品と配線パターンとの間に封止樹脂を注入してもよいことは同様である。封止樹脂には通常のフリップチップボンディングに使用されるアンダーフィル樹脂を用いることができる。
【0120】
上記のように構成された半導体内蔵ミリ波帯モジュールでは、さらに別の回路部品を内蔵しているため、半導体素子と回路部品間の接続距離を短くすることができることにより電気信号のノイズを低減できるなど高周波特性に優れた半導体内蔵ミリ波帯モジュールを得ることができる。さらに、あらかじめ特性が保証された回路部品を内蔵するため、モジュールにした場合、製造時の歩留まりが高く、信頼性の高いモジュールを実現できる。
【0121】
なお、本実施の形態において、さらに別の回路部品を電気絶縁性基板に内蔵した一例を示したが、他の実施の形態に用いることも可能である。
【0122】
(第9の実施の形態)
本実施の形態では、本発明の多層構造を有する半導体内蔵ミリ波帯モジュールの一実施の形態を説明する。
【0123】
図11は、第9の実施の形態の半導体内蔵ミリ波帯モジュールの断面図である。
【0124】
本実施の形態の半導体内蔵ミリ波帯モジュールは、高熱伝導基板103と、高熱伝導基板103上にフェイスアップ実装された半導体素子101と、複数層の低損失基板(第1の低損失基板117a及び第2の低損失基板117b)を含む。低損失基板117a上には回路部品123が実装され、低損失基板117b上には回路部品123a,123bが実装されている。高熱伝導基板103と複数層の低損失基板117a,117bとの間には、第1の電気絶縁性基板105a及び第2の電気絶縁性基板105bが積層されている。第1の電気絶縁性基板105a内の高熱伝導基板103上の半導体素子101上には分布定数回路素子121が実装され、高熱伝導基板103上には能動素子124が実装され、それぞれその外周囲には空隙107が形成されている。同様に、低損失基板117a上にはフィルタ素子125が形成され、その外周囲は空隙107が形成されており、低損失基板117b上には回路部品123bが実装され、その外周囲は空隙107が形成されている。
【0125】
電気絶縁性基板105a、105bは、無機フィラーと熱硬化性樹脂とを含む混合物からなる。無機フィラーには、たとえば、Al、BeO、BN、AlNまたはSiOなどを用いることができる。無機フィラーは、混合物に対して70重量%〜95重量%であることが好ましい。無機フィラーの平均粒子径は、0.1μm〜100μmであることが好ましい。熱硬化性樹脂には、たとえば、耐熱性が高いエポキシ樹脂、フェノール樹脂またはシアネート樹脂が好ましい。エポキシ樹脂は、耐熱性が特に高いため特に好ましい。なお、混合物は、さらに分散剤、着色剤、カップリング剤または離型剤を含んでいてもよい。
【0126】
回路部品123は、たとえば、能動部品123aや受動部品123bを含む。能動部品123aとしては、たとえば、トランジスタ、IC、LSIなどの半導体素子が用いられる。半導体素子は、半導体ベアチップであってもよい。受動部品123bとしては、チップ状の抵抗、チップ状のコンデンサまたはチップ状インダクタなどが用いられる。なお、回路部品123は、受動部品123bを含まない場合であってもよい。
【0127】
低損失基板117上への能動部品123aの実装には、たとえばフリップチップボンディングが用いられる。図11に示した半導体内蔵ミリ波帯モジュールは、3層構造を示したが、設計に応じた多層構造とすることができる。
【0128】
本実施の形態においては、少なくとも第2の電気絶縁性基板に回路部品が埋めこまれていれば良く、さらに第1の電気絶縁性基板に回路部品が埋め込まれていてもよい。
【0129】
上記のように構成された半導体内蔵ミリ波帯モジュールでは、半導体素子を効率的に放熱し、ベアチップ状態の特性と同等の特性が得られ、低損失のフィルタと短配線で接続でき、高周波特性に優れ、製造時の歩留まりと信頼性が高いことに加えて、複数の低誘電損失基板上に搭載される回路部品と半導体素子もしくはフィルタ素子等の間の配線長を、低誘電損失基板を多層に積層せず2次元上に配置したときに比べて極めて短く接続することができるため、配線による信号の損失を低減することができるとともに、同じ機能を持つモジュールの実装面積を低減して小型化して高密度に回路部品を実装することができる。
【0130】
(第10の実施の形態)
本実施の形態では、本発明の多層構造を有する半導体内蔵ミリ波帯モジュールの一実施の形態を説明する。
【0131】
図12は、第10の実施の形態の半導体内蔵ミリ波帯モジュールの断面図であり、図13は、その回路構成を示す模式図である。
【0132】
半導体素子101は高熱伝導基板103にフェイスアップ実装されており、高熱伝導基板103に形成された配線パターン119や配線パターン119上に搭載されているバイパスコンデンサ133にワイヤ131を介してワイヤボンディングにより電気的に接続されている。
【0133】
半導体素子101には能動素子124の他に分布定数回路素子121が形成されている。
【0134】
また、低誘電損失基板117上に配線パターンと配線パターンを用いたフィルタ素子125が形成されている。低誘電損失基板117と高熱伝導基板103との間は無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板105を挟んで、積層されており、低誘電損失基板117と高熱伝導基板103にそれぞれ設けられた配線は、電気絶縁性基板105に設けられたビア導体111を介して電気的に接続されている。
【0135】
半導体素子101上の配線パターンを用いた分布定数回路素子121や能動素子124と接する領域と低誘電損失基板上に設けられたフィルタ素子125と接する領域には空隙107が形成されている。高熱伝導基板103の外側には放熱用のヒートシンク115が熱伝導性接着剤104を介して搭載されている。
【0136】
高周波信号出力端子127及び外部信号入力端子128は、それぞれ配線パターンの一部であり、低損失基板117の表面上に設けられている。なお、この高周波信号出力端子127及び外部信号入力端子128は、高熱伝導基板103に設けられていても良い。
【0137】
外部信号入力端子128はフィルタ素子125の入力端子125aと配線ターンやビア導体などを介して電気的に接続されており、さらにフィルタ素子125の出力端子125bと半導体素子101の入力端子101aが電気的に接続されている。そして半導体素子101の出力端子101bは高周波信号出力端子127に電気的に接続されている。これらの電気的な接続関係を図13に示す。図13に示したようにそれぞれのデバイスは半導体内蔵ミリ波帯モジュール内部で電気的に接続されており、一つのモジュールとして動作するように設計されている。
【0138】
上記のように構成された半導体内蔵ミリ波帯モジュールでは、半導体素子が高出力用のパワーアンプの場合、1つの半導体内蔵ミリ波帯モジュールで送信機能を1つにまとめた送信モジュールが得られ、ミリ波帯信号の通信機を構成する場合において部品点数を削減することができる。
【0139】
また、半導体素子が低雑音増幅器の場合は、同様に受信モジュールが得られる。さらに、複数の半導体素子を用いた半導体内蔵ミリ波帯モジュールでは、送受信機能を一体にしたミリ波帯フロントエンドモジュールを得ることができる。
【0140】
例えば、半導体内蔵ミリ波帯モジュールの他の回路構成の一例の模式図を図16に示したように、外部接続用接地端子160はフィルタ素子125のフィルタ素子用接地端子160aと配線パターンとビア導体を介して電気的に接続されており、さらにフィルタ素子用接地端子160aと半導体素子101の半導体素子用接地端子160bにビア導体111bと配線パターンなどを介して電気的に接続されている。フィルタ素子として例えば、結合線路を用いたマイクロストリップバンドパスフィルタを使うことができる。その際、低損失基板上にフィルタを構成する配線が形成されており、それと対向する低損失基板の裏面の電極がフィルタ素子用の接地層となりその一部がフィルタ素子用の接地端子となる。フィルタ素子用の接地端子は低損失基板に設けられたスルーホール及び電気絶縁性基板に設けられたビア導体と高熱伝導基板に設けられた配線パターンを介して半導体素子用接地端子に接続される。
【0141】
このようにフィルタ素子用接地端子160aと半導体素子用接地端子160bを電気絶縁性基板105中に設けられた複数のビア導体111bを用いて最短で接続することによりフィルタ素子125と半導体素子101の接地端子が高周波帯においても安定して接地端子として機能するため、安定した動作を実現することができる。
【0142】
なお、前記各実施の形態において、各基板については単層の基板に限られるものではなく、多層配線基板であっても構わない。
【0143】
(第11の実施の形態)
本実施の形態では、本発明の半導体内蔵ミリ波帯モジュールの実装体の一実施の形態を説明する。
【0144】
図17は、本発明の第11の実施の形態における半導体内蔵ミリ波帯モジュールの実装体の構成の概略を示す断面図である。
【0145】
本実施の形態における半導体内蔵ミリ波帯モジュールの実装体は、第1の実施の形態で説明した半導体内蔵ミリ波帯モジュールの外部電極113が、鉛スズ系のハンダなどを用いてマザー基板用端子161に接続されている。外部電極113のうちの接地電極は、マザー基板用接地端子162に接続されている。マザー基板としては、フッ素樹脂を用いたプリント配線板を用いることができる。マザー基板用接地端子162は、マザー基板160の半導体内蔵ミリ波帯モジュール100が搭載されている面と対向する側にスルーホール165を用いて電気的に接続されている。さらにマザー基板用接地端子162は導電性接着剤104aを用いて下側筐体171に電気的に接続されている。下側筐体171はアルミダイカストなどの金属を用い、ヒートシンクとしての機能も兼ねる。下側筐体171は上側筐体172及び側面筐体173とネジなどにより固定され一体となっており、電気的にも同電位である。さらに、上側筐体172は、接着剤層104を介して裏面に接地層が形成された高熱伝導基板103に電気的に接続される。接着剤層は導電性接着剤104aと同様の材料を使うことができる。導電性接着剤104,104aとして例えば、導電率が1×10−4Ωcmのニホンハンダ社製商品名“ドーデント”を用いることができる。なお、図17中、前記と同一の符号は共通する部品であるので説明を省略する。
【0146】
この半導体内蔵ミリ波帯モジュールの実装体によると、放熱板と筐体とを一体にすることができ部品点数を削減することができると同時に、半導体内蔵ミリ波帯モジュールの接地電極とマザー基板の接地電極を筐体を介して共通化することができ、接地電位を安定に共通化することができる。これにより、内蔵される半導体素子を安定して動作させることができる。
【0147】
次に、本発明の半導体内蔵ミリ波帯モジュールの実装体の製造方法の一例について説明する。半導体内蔵ミリ波帯モジュールの外部電極113はマザー基板用端子161にクリームハンダを印刷後、リフローなどを用いてマザー基板に実装され、その後、下側筐体の所定の位置にディスペンサーを用いて導電性接着剤を塗布し、その上に、半導体内蔵ミリ波帯モジュールが実装されたマザー基板を搭載する。その後、上側筐体の所定の位置にディスペンスサーを用いて接着剤層を塗布形成し、下側筐体と上側筐体とを側面筐体を介してネジ止めする。このとき、同時に上側筐体は接着剤層を介して高熱伝導基板と接合される。この際、接着剤層をフィルム状で被圧縮性を有する熱可塑性シート、例えば、フィルム状で被圧縮性を有する熱可塑性シートとしては、常温付近でゴム状弾性を示す熱可塑性エラスティックポリマーを用いることができる。シート中には熱伝導性を高めるために、電気伝導性及び熱伝導性のフィラーが分散されている。フィラーとして、銀、カーボンブラック、グラファイトなどを用いることができ、銀をフィラーとして用いた場合、熱可塑性エラスティックポリマーの比重は約3〜4で体積抵抗率は約10−3Ω・cm以下となる。この場合、上側筐体と下側筐体を固定する前の状態において、マザー基板に実装された半導体内蔵ミリ波帯モジュール全体のマザー基板を含めた厚さと導電性接着剤層と熱可塑性シートの接着剤層を合わせた合計の厚さを、側面筐体の厚さよりも厚くしておき、上側筐体と下側筐体を側面筐体を介して固定したときに、接着剤層が圧縮される被圧縮性を有するシートを使うと、接着剤層のフィルム内のフィラーが圧縮され、フィラーの充填量密度が増加するため圧縮される前の状態に比べて導電率が上昇し、同時に熱伝導性も向上する。
【0148】
次に、低損失基板上に配線パターンを用いて形成されたフィルタ素子を内蔵した半導体内蔵ミリ波帯モジュールがマザー基板へ実装された実装体と筐体とを電気的に接続した場合の回路構成について図18を用いて説明する。
【0149】
高周波信号出力端子127及び外部信号入力端子128はそれぞれ配線パターンの一部であり、低損失基板117上に設けられている。外部信号入力端子128はフィルタ素子125の入力端子125aと配線パターンやビア導体などを介して電気的に接続されており、さらにフィルタ素子125の出力端子125bと半導体素子101の入力端子101aが電気絶縁性基板に設けられたビア導体と配線パターンを介して電気的に接続されている。そして半導体素子101の出力端子101bは高周波信号出力端子127に電気的に接続されている。
【0150】
一方、外部接続用接地端子160はフィルタ素子125のフィルタ素子用接地端子160aと配線パターンとビア導体を介して電気的に接続されており、さらにフィルタ素子用接地端子160aと半導体素子101の半導体素子用接地端子160bにビア導体111bと配線パターンなどを介して電気的に接続されている。フィルタ素子として例えば、低損失基板の裏面に接地層を設け、他方の面にリング上の配線パターンを形成したリング共振器を用いたマイクロストリップバンドパスフィルタを使うことができる。その際、低損失基板上にフィルタを構成する配線が形成されており、それと対向する低損失基板の裏面の電極がフィルタ素子用の接地層となりその一部がフィルタ素子用の接地端子となる。フィルタ素子用の接地端子は金属製の例えばアルミダイカストを用いた筐体を介して高熱伝導基板に設けられた接地用配線パターンに電気的に接続され、さらに半導体素子用接地端子に接続される。
【0151】
このようにフィルタ素子用接地端子160aと半導体素子用接地端子160bを筐体を介して接続することで、接地電位を安定にすることができ、モジュールを安定して動作させることができる。
【0152】
【発明の効果】
以上説明したように、本発明の半導体内蔵ミリ波帯モジュールでは、半導体素子と、ヒートシンクを最短で接続でき、電気的な配線と熱的な放熱経路を別方向に設けることができるため、高効率に放熱することができ、電気的な配線を自由に配置することができる。また、半導体素子上の分布定数回路素子が設けられた面の周辺に空洞が形成されていることから、半導体素子を内蔵することによって電気絶縁性基板を形成する樹脂組成物の影響を受けることなく、半導体素子の高周波特性がベアチップ状態の特性と同等の特性を得ることができる。
【0153】
また、本発明の半導体内蔵ミリ波帯モジュールでは、フィルタ素子や回路部品を内蔵できるため、半導体素子と回路部品間の接続距離を短くすることができることにより電気信号のノイズを低減できるなど高周波特性に優れた半導体内蔵ミリ波帯モジュールを得ることができる。さらに、あらかじめ特性が保証された回路部品を内蔵するため、モジュールにした場合、製造時の歩留まりが高く、信頼性の高いモジュールを実現できる。
【0154】
さらに、本発明の半導体内蔵ミリ波帯モジュールでは、多層構造とすることによって、半導体素子と回路部品とを短距離で接続できるため、配線による信号の損失を低減することができるとともに、同じ機能を持つモジュールの実装面積を低減して小型化して高密度に回路部品を実装することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図2】A〜Gは本発明の第1実施形態における半導体内蔵ミリ波帯モジュールの製造方法の概略を示す工程断面図。
【図3】本発明の第2実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図4】本発明の第3実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図5】本発明の第4実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図6】本発明の第4実施形態における半導体内蔵ミリ波帯モジュールの製造方法の概略を示す工程断面図。
【図7】本発明の第5実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図8】本発明の第6実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図9】本発明の第7実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図10】本発明の第8実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図11】本発明の第9実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図12】本発明の第10実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図13】本発明の第10実施形態における半導体内蔵ミリ波帯モジュールの回路の概略模式図。
【図14】本発明の第1実施形態における半導体内蔵ミリ波帯モジュールの増幅器の出力電力を合成するための分布定数線路図。
【図15】本発明の第1実施形態における半導体内蔵ミリ波帯モジュールの要部平面図。
【図16】本発明の第10実施形態における半導体内蔵ミリ波帯モジュールの回路の概略模式図。
【図17】本発明の第11実施形態における半導体内蔵ミリ波帯モジュールの概略断面図。
【図18】本発明の第11実施形態における半導体内蔵ミリ波帯モジュールの回路の概略模式図。
【符号の説明】
101 半導体素子
101a 半導体素子の入力端子
101b 半導体素子の出力端子
103 高熱伝導基板
103a 第2の高熱伝導基板
104 接着剤層
105 電気絶縁性基板
107 空隙
111 ビア導体
113 外部電極
115 ヒートシンク
117 低損失基板
119 配線パターン
121 分布定数回路素子
123 回路部品
123a 能動部品
123b 受動部品
124 能動素子
125 フィルタ素子
125a フィルタ素子の入力端子
125b フィルタ素子の出力端子
126 シールド導体
127 高周波信号出力端子
128 外部信号入力端子
131 ワイヤ
133 バイパスコンデンサ
140 第1の貫通孔
141 第2の貫通孔
142 導電性樹脂組成物
143 銅箔
144 第3の貫通孔
145 樹脂フィルム
150,150a〜150e 無機フィラーと熱硬化性樹脂とを含む混合物シート層

Claims (23)

  1. 無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板と、
    前記電気絶縁性基板よりも高熱伝導率の誘電体材料からなり、前記電気絶縁性基板の一方の面に積層された高熱伝導基板と、
    前記高熱伝導基板及び前記電気絶縁性基板に形成された複数の配線パターンと、
    前記電気絶縁性基板の内部に配置され、前記高熱伝導基板にフェイスアップ実装され、且つ前記配線パターンに電気的に接続されたミリ波帯域で動作する半導体素子と、
    前記半導体素子上に設けられた分布定数回路素子及び能動素子とを含み、
    前記電気絶縁性基板の内部であって、且つ前記分布定数回路素子及び前記能動素子の表面外側に空隙が設けられていることを特徴とする半導体内蔵ミリ波帯モジュール。
  2. 前記電気絶縁性基板の他方の面に、さらに第2の高熱伝導基板が積層されている請求項1に記載の半導体内蔵ミリ波帯モジュール。
  3. 前記空隙が前記第2の高熱伝導基板に接して形成されている請求項2に記載の半導体内蔵ミリ波帯モジュール。
  4. 前記空隙内の分布定数回路素子と対向する面に、さらにシールド電極が設けられている請求項1に記載の半導体内蔵ミリ波帯モジュール。
  5. 前記シールド電極は複数の空隙で共有されている請求項4に記載の半導体内蔵ミリ波帯モジュール。
  6. 前記電気絶縁性基板の内部に配置され前記配線パターンに、さらに電気的に接続された回路部品を備えている請求項1に記載の半導体内蔵ミリ波帯モジュール。
  7. 前記回路部品は、前記電気絶縁性基板によって外気から遮断されている請求項6に記載の半導体内蔵ミリ波帯モジュール。
  8. 電気絶縁性基板を構成する混合物に含まれる無機フィラーは、Al、BeO、BN、SiC、AlN及びSiOから選ばれる少なくとも一つの無機フィラーを含む請求項1に記載の半導体内蔵ミリ波帯モジュール。
  9. 前記高熱伝導基板は、Al、BeO、BN、AlN及びSiCから選ばれる少なくとも1種類のセラミックより構成されている請求項1に記載の半導体内蔵ミリ波帯モジュール。
  10. 前記半導体素子は、Si,GaAs,SiGe,InP及びSiCを含む物質から選ばれる少なくとも一つの半導体により構成されている請求項1に記載の半導体内蔵ミリ波帯モジュール。
  11. 前記電気絶縁性基板の他方の面に、前記電気絶縁性基板よりも低誘電損失の材料からなる低損失基板をさらに備えている請求項1に記載の半導体内蔵ミリ波帯モジュール。
  12. 前記低損失基板には、複数の配線パターンが形成されている請求項11に記載の半導体内蔵ミリ波帯モジュール。
  13. 前記低損失基板上であって、且つ前記電気絶縁性基板の内部にフィルタ素子が設けられ、前記フィルタ素子の表面外側に空隙が設けられている請求項11に記載の半導体内蔵ミリ波帯モジュール。
  14. 前記低誘電損失基板上に設けられたフィルタ素子と、前記半導体素子上に設けられた分布定数回路素子及び能動素子とが、同一空隙内に設けられている請求項13に記載の半導体内蔵ミリ波帯モジュール。
  15. 前記高熱伝導基板もしくは前記低損失基板上に、高周波信号出力端子及び外部信号入力端子を備え、
    前記外部信号入力端子と前記フィルタ素子の入力端子とが電気的に接続されており、前記フィルタ素子の出力端子と前記半導体素子の入力端子が電気的に接続されており、前記半導体素子の出力端子と高周波信号出力端子が電気的に接続されている請求項13に記載の半導体内蔵ミリ波帯モジュール。
  16. 前記低損失基板は、Al、BeO、BN、AlN及びSiCから選ばれる少なくとも1種類のセラミックス材料を含む請求項11に記載の半導体内蔵ミリ波帯モジュール。
  17. 前記低損失基板は、熱変形温度が180℃以上である耐熱性樹脂である請求項11に記載の半導体内蔵ミリ波帯モジュール。
  18. 耐熱性樹脂が、フッ素樹脂、ポリイミド(PI)樹脂、メタ系及びパラ系を含むアラミド樹脂、ポリエステル樹脂、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリスルホン(PS)樹脂、ビスマレイミドトリアジン樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリベンゾイミダゾール樹脂、液晶ポリマー及びポリベンゾシクロブテンから選ばれる少なくとも1種類の樹脂である請求項17に記載の半導体内蔵ミリ波帯モジュール。
  19. 前記電気絶縁性基板が、第1及び第2の電気絶縁性基板で構成され、前記第1の電気絶縁性基板よりも高熱伝導率の誘電体材料からなり、
    前記第1の電気絶縁性基板の一方の面に積層された高熱伝導基板と、
    前記1の電気絶縁性基板よりも低誘電損失の材料からなる第1及び第2の低損失基板と、
    前記高熱伝導基板、前記第1及び第2の電気絶縁性基板、第1及び第2の低損失基板に形成された複数の配線パターンと、
    前記第1の電気絶縁性基板の内部に配置され且つ前記高熱伝導基板にフェイスアップ実装され且つ前記配線パターンに電気的に接続されたミリ波帯で動作する半導体素子と、
    前記半導体素子上に設けられた分布定数回路素子及び能動素子と、
    前記第1の電気絶縁性基板の内部で且つ前記半導体素子上の分布定数回路素子及び能動素子の表面外側に空隙と、前記第2の電気絶縁性基板の内部に配置され前記第2の低損失基板の配線パターンに電気的に接続された回路部品とを備え、
    前記第1の低損失基板は前記第1の電気絶縁性基板の他方の面に積層され、前記第2の電気絶縁性基板は前記第1の低損失基板及び前記第2の低損失基板の間に積層されている請求項1に記載の半導体内蔵ミリ波帯モジュール。
  20. 前記高熱伝導基板の外側には放熱機能を有するヒートシンクをさらに備えた請求項1に記載の半導体内蔵ミリ波帯モジュール。
  21. 前記高熱伝導基板は筐体内に配置され、前記高熱伝導基板と前記筐体は熱伝導性樹脂で接合され、前記接合面に対向する面に裏側が実装されたミリ波帯域で動作する半導体素子と、前記半導体素子の接地端子が接続されたマザー基板をさらに備え、前記マザー基板の接地端子が前記筐体と電気的に接続されている請求項1に記載の半導体内蔵ミリ波帯モジュール。
  22. 前記熱伝導性樹脂は被圧縮性を有する請求項21に記載の半導体内蔵ミリ波帯モジュール。
  23. 前記筐体内に、さらに低損失基板と、前記低損失基板上にフィルタ素子とを備え、前記半導体素子は前記高熱伝導基板に搭載され、
    前記高熱伝導基板または前記低損失基板上に高周波信号出力端子と外部信号入力端子と外部接続用接地端子を備え、
    前記外部信号入力端子と前記フィルタ素子の入力端子とが電気的に接続され、
    前記フィルタ素子の出力端子と前記半導体素子の入力端子が第1のビア導体を介して電気的に接続され、
    前記半導体素子の出力端子と前記高周波信号出力端子が第2のビア導体を介して電気的に接続され、
    前記外部接続用接地端子と前記フィルタ素子のフィルタ素子用接地端子とが電気的に接続され、
    前記半導体素子の半導体素子用接地端子とフィルタ素子用接地端子及び外部接続用接地端子が前記筐体を介して電気的に接続されている請求項21に記載の半導体内蔵ミリ波帯モジュール。
JP2003086254A 2002-04-03 2003-03-26 半導体内蔵ミリ波帯モジュール Expired - Fee Related JP4018575B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086254A JP4018575B2 (ja) 2002-04-03 2003-03-26 半導体内蔵ミリ波帯モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002100959 2002-04-03
JP2003086254A JP4018575B2 (ja) 2002-04-03 2003-03-26 半導体内蔵ミリ波帯モジュール

Publications (3)

Publication Number Publication Date
JP2004006757A true JP2004006757A (ja) 2004-01-08
JP2004006757A5 JP2004006757A5 (ja) 2005-05-19
JP4018575B2 JP4018575B2 (ja) 2007-12-05

Family

ID=30446588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086254A Expired - Fee Related JP4018575B2 (ja) 2002-04-03 2003-03-26 半導体内蔵ミリ波帯モジュール

Country Status (1)

Country Link
JP (1) JP4018575B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324646A (ja) * 2005-04-19 2006-11-30 Matsushita Electric Ind Co Ltd モジュール基板
JP2012525065A (ja) * 2009-04-21 2012-10-18 モレックス インコーポレイテド 3次元アンテナ
US9741635B2 (en) 2014-01-21 2017-08-22 Infineon Technologies Austria Ag Electronic component
WO2023209926A1 (ja) * 2022-04-28 2023-11-02 三菱電機株式会社 半導体装置
JP7411642B2 (ja) 2018-09-18 2024-01-11 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 高出力表面実装フィルタ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324646A (ja) * 2005-04-19 2006-11-30 Matsushita Electric Ind Co Ltd モジュール基板
JP2012525065A (ja) * 2009-04-21 2012-10-18 モレックス インコーポレイテド 3次元アンテナ
US9741635B2 (en) 2014-01-21 2017-08-22 Infineon Technologies Austria Ag Electronic component
US20170317005A1 (en) 2014-01-21 2017-11-02 Infineon Technologies Austria Ag Electronic Component Having a Heat-Sink Thermally Coupled to a Heat-Spreader
US10249551B2 (en) 2014-01-21 2019-04-02 Infineon Technologies Austria Ag Electronic component having a heat-sink thermally coupled to a heat-spreader
JP7411642B2 (ja) 2018-09-18 2024-01-11 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 高出力表面実装フィルタ
WO2023209926A1 (ja) * 2022-04-28 2023-11-02 三菱電機株式会社 半導体装置
JP7471538B2 (ja) 2022-04-28 2024-04-19 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP4018575B2 (ja) 2007-12-05

Similar Documents

Publication Publication Date Title
US7061100B2 (en) Semiconductor built-in millimeter-wave band module
US11205623B2 (en) Microwave device and antenna for improving heat dissipation
US6828663B2 (en) Method of packaging a device with a lead frame, and an apparatus formed therefrom
US6815810B2 (en) High-frequency semiconductor device
EP0933816B1 (en) Hybrid module
WO2020054004A1 (ja) マイクロ波デバイス及び空中線
JP2010205772A (ja) Ic搭載基板、プリント配線板、及び製造方法
EP3053187B1 (en) High power rf circuit
US5616517A (en) Flip chip high power monolithic integrated circuit thermal bumps and fabrication method
KR100495219B1 (ko) Ic칩 내장형 파워 엠프 모듈
US11799198B2 (en) Component carrier-based device with antenna coupling of electronic component and thermal coupling on opposing sides
JP4018575B2 (ja) 半導体内蔵ミリ波帯モジュール
JP2002231974A (ja) 光受信装置及びその実装構造及びその製造方法
US9520368B1 (en) Integrated circuit system having stripline structure
EP4099379A2 (en) Thermal interface structure and electrical system with thermal interface structure
US6933603B2 (en) Multi-substrate layer semiconductor packages and method for making same
JP2004071597A (ja) 半導体モジュール
JP2004288949A (ja) 半導体素子収納用パッケージおよび半導体装置
CN114902401B (zh) 热管理封装件和方法
JP4050186B2 (ja) 電子部品実装基板の製造方法
JP2003332517A (ja) マイクロ波集積回路及びその製造方法並びに無線装置
JP2004047866A (ja) 半導体装置
JP3842887B2 (ja) ハイブリッドモジュール
US20230420395A1 (en) Electronic devices
KR100822662B1 (ko) 프론트 엔드 모듈 기판 및 그 제조방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Ref document number: 4018575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees