JP2004006517A - Multi-terminal varistor - Google Patents

Multi-terminal varistor Download PDF

Info

Publication number
JP2004006517A
JP2004006517A JP2002159939A JP2002159939A JP2004006517A JP 2004006517 A JP2004006517 A JP 2004006517A JP 2002159939 A JP2002159939 A JP 2002159939A JP 2002159939 A JP2002159939 A JP 2002159939A JP 2004006517 A JP2004006517 A JP 2004006517A
Authority
JP
Japan
Prior art keywords
sintered body
electrode
varistor
terminal
electrode plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002159939A
Other languages
Japanese (ja)
Inventor
Koji Ishii
石井 孝治
Yasuo Wakahata
若畑 康男
Kazuo Yamaguchi
山口 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Original Assignee
Otowa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP2002159939A priority Critical patent/JP2004006517A/en
Publication of JP2004006517A publication Critical patent/JP2004006517A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of minute cracks in a sintered body due to the difference between the coefficients of thermal expansion of electrode plates and the sintered body in cooling the electrode plates after soldering. <P>SOLUTION: In a multi-terminal varistor, a plurality of electrode plates 7a and 7b are respectively joined to the front and rear surfaces 2a and 2b of the sintered body 1 composed mainly of a zinc oxide and having a varistor characteristic by changing the numbers of the joined electrodes 7a and 7b between the front and rear surfaces 2a and 2b sides. The electrode plates 7a and 7b are constituted of electrode sections 8a and 8b having the outer frame-like shapes of rectangular band plates and terminal sections 9a and 9b integrally extended from the electrode sections 8a and 8b. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は多端子バリスタに関し、例えば、避雷器、サージ吸収素子、電圧安定化素子などを組み込んだ電気機器に用いられ、雷サージ、開閉サージなどの異常電圧から電気機器を保護する多端子バリスタに関する。
【0002】
【従来の技術】
近年、家電機器、産業機器の電気回路の半導体化が著しく進行し、その主要な構成要素である半導体電子部品のサージ対策が不可欠なものになっている。一般的に、非直線抵抗体からなるバリスタは、印加電圧によってその抵抗値が変化する特性、つまり、正常な電圧が印加された時には高抵抗値であって絶縁特性を示し、異常な高電圧が印加された時には低抵抗値を示す非直線性の電圧−電流特性を具備する。
【0003】
このような特性を有するバリスタは、例えば避雷器、サージ吸収素子、電圧安定化素子などの半導体電子部品のサージ対策に広く利用されている。各種のバリスタの中でも、酸化亜鉛を主成分とする酸化亜鉛バリスタは優れた非直線性の電圧−電流特性とサージ吸収能力を有する。一方、半導体電子部品の駆動電圧は低下傾向にあり、低電圧回路用でサージ電圧の抑制効果の高いバリスタが要望されている。
【0004】
酸化亜鉛バリスタは、主成分の酸化亜鉛に非直線性の電圧−電流特性を発現させる基本添加物である酸化ビスマス、酸化アンチモン、酸化コバルトと、さらに性能向上のために添加される各種の酸化物とを含む酸化亜鉛原料粉末を成形して焼成させた焼結体からなる。その焼結体には、例えば矩形板状の形状を有するものがある。図7(a)(b)に示すようにこの焼結体1の表裏面2a,2bに、銀ペーストを焼き付け処理することにより下地電極層3a,3bを形成し、図8(a)(b)に示すようにその下地電極層3a,3bの上に、銅や黄銅などの電気的良導体からなる金属製の電極板4a,4bを半田付けにより接合する。
【0005】
図8(a)(b)は多端子バリスタの一例であり、三端子を有する酸化亜鉛バリスタを示す。電極板4a,4bは、矩形平板状の電極部5a,5bと、その電極部5a,5bから一体的に延びる端子部6a,6bとで構成される。この多端子バリスタは、焼結体1および電極板4a,4bの電極部5a,5bをエポキシ樹脂などでモールドすることにより、焼結体1の裏面2bに一つの電極板4bから延びる一つの端子部6bをモールド部から導出し、焼結体1の表面2aに二つの電極板4aから延びる二つの端子部aをモールド部から導出した構造を具備する。焼結体1の表面2aおよび裏面2bには、電極板4a,4bの電極部5a,5bとほぼ同一の大きさを有する下地電極層3a,3bが接合されている。なお、焼結体1の表面2a側では、二つの下地電極層3a間で焼結体1が露呈した構造となっている。
【0006】
【発明が解決しようとする課題】
ところで、銅や黄銅などの電気的良導体からなる金属製の電極板4a,4bは、酸化亜鉛を主成分とする焼結体1と比べてその熱膨張係数が大きい。また、焼結体1の表面2a側と裏面2b側とで電極板4a,4bの数が異なり、その形状が非対称である。このように、電極板4a,4bと焼結体1の熱膨張係数に差があることと、電極板4a,4bの形状が焼結体1の表裏面2a,2bで非対称であることから、電極板4a,4bを焼結体1の下地電極層3a,3b上に半田付けした後で冷却する際に、焼結体1に微小なクラックが発生し易い。このように焼結体1にクラックが発生すると、バリスタの静特性の低下、高温課電試験時のワットロス上昇、放電耐量特性の低下を招来するという問題があった。
【0007】
この焼結体1でのクラック発生を防止するため、電極板4a,4bの半田付け後の冷却スピードを遅くする対策も考えられるが、半田付け後の冷却スピードを遅くすると、製造リードタイムが長くなり、半田に銀ペーストが溶け込んでしまって銀ペーストと半田が合金化する銀食われと称される現象が発生し、電極板4a,4bが剥離し易くなる等の他の問題が生じることになる。
【0008】
そこで、本発明は前記問題点に鑑みて提案されたもので、その目的とするところは、電極板の半田付け後の冷却時に、電極板と焼結体との熱膨張係数の差により焼結体に微小クラックが発生することを未然に防止し得る多端子バリスタを提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するための技術的手段として、本発明は、酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏対向面に、複数の電極部材を焼結体の表面側と裏面側とで異数配置させて接合した多端子バリスタにおいて、前記電極部材は平板形状を有し、かつ、その電極部材を中抜き形状としたことを特徴とする。また、本発明は、前記構成の多端子バリスタにおいて、前記電極部材は、面状に屈曲成形されたリード線からなることを特徴とする。
【0010】
ここで、前述した「異数配置」とは、焼結体の表面側に設けた電極部材の数と焼結体の裏面側に設けた電極部材の数とを異ならせることを意味する。また、「中抜き形状」とは、平板形状の中央部分を中抜きした帯板の外枠形状を意味する。さらに、「面状に屈曲成形」とは、例えば平面内で渦巻状に成形することを意味する。
【0011】
本発明では、電極部材を中抜き形状としたり、あるいは、電極部材を面状に屈曲成形されたリード線としたりすることにより、電極部材と焼結体との接触面積を従来品よりも小さくすることができることから、電極部材の半田付け後の冷却時、電極部材と焼結体の熱膨張係数の差により生じる焼結体への応力を軽減できるので、焼結体でのクラック発生を抑制することが容易となる。
【0012】
本発明では、前記電極部材を中抜き形状とするか、あるいは、電極部材を面状に屈曲成形されたリード線とすることに加えて、焼結体の表面側の電極部材と裏面側の電極部材とをほぼ対称な形状とすれば、電極部材の半田付け後の冷却時、電極部材と焼結体の熱膨張係数の差により生じる焼結体への応力を軽減できて焼結体でのクラック発生を抑制できるだけでなく、大電流注入時に焼結体全体に電流が流れ易くなり、放電耐量特性の向上が図れる。
【0013】
本発明では、前記構成において、前記焼結体と電極部材との間に介装した下地電極層の接合材を、焼結体の表裏面で下地電極層が形成されていない部位に塗布すれば、焼結体の表裏面全体に接合材が存在することになり、焼結体全体での熱膨張係数が均等になることから、焼結体の機械的強度および絶縁強度を向上させることができ、電極板の半田付け後の冷却時に焼結体でのクラック発生を抑制でき、さらに、静特性、課電特性、放電耐量特性の向上が図れる。
【0014】
【発明の実施の形態】
図1(a)(b)および図2は本発明に係る多端子バリスタの実施形態として、酸化亜鉛を主成分とする酸化亜鉛バリスタを示す。この実施形態の酸化亜鉛バリスタは、その主成分である酸化亜鉛(ZnO)原料と、酸化ビスマス(Bi)、酸化コバルト(Co)、酸化アンチモン(Sb)、酸化アルミニウム(Al)等からなる添加物の所定量を、ポリビニルアルコール水溶液などのバインダや分散剤などと共に湿式混合してスラリーを製作する。
【0015】
その後、湿式混合により得られたスラリーをスプレードライヤー等の噴霧乾燥装置に供給して造粒粉を製作する。この造粒粉である酸化亜鉛原料粉末としては、前述した酸化亜鉛(ZnO)原料と、酸化ビスマス(Bi)、酸化コバルト(Co)、酸化アンチモン(Sb)、酸化アルミニウム(Al)等からなるZnO−Bi−Sb系以外に、酸化亜鉛(ZnO)原料と、酸化プラセオジム(Pr)、酸化コバルト(Co)、酸化アンチモン(Sb)、酸化アルミニウム(Al)等からなるZnO−Pr−Co系も使用可能である。
【0016】
この造粒粉を成形工程において所定の金型を用いて、例えば矩形平板状に成形圧力300〜1000kg/cmで成形し、その成形体を1000〜1300℃の空気中で焼成することにより焼結体1を得る。この焼結体1の表裏面2a,2bに、銀ペーストをスクリーン印刷などの適宜の手段により塗布し、500〜800℃で焼き付け処理することにより下地電極層3a,3bを形成する。この下地電極層3a,3bは、銀ペースト中に含有されるガラスを接合材として焼結体1に接着される。さらに、下地電極層3a,3bの上にSn−Pb半田ペーストを塗布し、銅や黄銅などの電気的良導体からなる電極部材である金属製の電極板7a,7bを載置して約200℃以上で半田付けすることにより、下地電極層3a,3bに電極板7a,7bを接合する。
【0017】
この実施形態の酸化亜鉛バリスタは、焼結体1の裏面2bに一つの電極板7bを接合してその電極部8bから延びる一つの端子部9bを導出し、焼結体1の表面2aに二つの電極板7aを接合してそれぞれの電極部8aから延びる二つの端子部9aを導出した三端子構造を具備する。なお、焼結体1の表面2a側では、二つの下地電極層3a間で焼結体1が露呈した構造となっている。電極板7a,7bの接合後、焼結体1および電極板7a,7bの電極部8a,8bをエポキシ樹脂などでモールドすることにより、そのモールド部から電極板7a,7bの端子部9a,9bを導出した製品が得られる。この酸化亜鉛バリスタは、モールド部から導出した端子部9a,9bを利用することにより、例えば配線基板などに実装される。
【0018】
この実施形態の酸化亜鉛バリスタにおける電極板7a,7bを帯板外枠形状の中抜き形状とする。つまり、電極板7a,7bは、矩形帯板の外枠形状を有する電極部8a,8bと、その電極部8a,8bから一体的に延びる端子部9a,9bとで構成される。このように電極板7a,7bを中抜き形状としたことにより、電極板7a,7bと焼結体1との接触面積を従来品よりも小さくすることができることから、電極板7a,7bの半田付け後の冷却時、電極板7a,7bと焼結体1の熱膨張係数の差により生じる焼結体1への応力を軽減できるので、焼結体1でのクラック発生を抑制することが容易となる。
【0019】
電極板7a,7bと焼結体1との接触面積を小さくする他の電極部材として、図3(a)(b)に示す実施形態のようにリード線を用いることも可能である。この実施形態の電極部材10a,10bは、平面内で渦巻き状に成形されたリード線からなり、渦巻き状をなす電極部11a,11bとその電極部11a,11bから導出されたリード線の端部である端子部12a,12bとで構成される。なお、前述したリード線は、渦巻状に成形する以外に蛇行状に成形することも可能で、面状に屈曲成形させた他の形状であってもよい。
【0020】
このように電極部材10a,10bとして、渦巻き状に成形されたリード線を用いたことにより、電極部材10a,10bと焼結体1との接触面積を従来品よりも小さくすることができることから、電極部材10a,10bの半田付け後の冷却時、電極部材10a,10bと焼結体1の熱膨張係数の差により生じる焼結体1への応力を軽減できるので、焼結体1でのクラック発生を抑制することが容易となる。
【0021】
図4(a)(b)の実施形態は、図1(a)(b)の実施形態と同様、電極板7a,7b’を帯板外枠形状の中抜き形状とし、さらに、焼結体1の表面2a側の電極板7aと裏面2b側の電極板7b’とをほぼ対称な形状とする。つまり、焼結体1の表面2a側の二つの電極板7aに対して、焼結体1の裏面2b側に配置された一つの電極板7b’を、表面2a側の電極板7aの内側部分13aと対応する二つの連結部13bが形成された形状とする。なお、焼結体1の裏面2b側の電極板は、焼結体1の表面2a側の電極板7aと対称な形状になるものであれば、図示以外の形状であってもよい。
【0022】
このように電極板7a,7b’を中抜き形状としたことにより、電極板7a,7b’の半田付け後の冷却時、電極板7a,7b’と焼結体1の熱膨張係数の差により生じる焼結体1への応力を軽減できて焼結体1でのクラック発生を抑制できるだけでなく、さらに、焼結体1の表面2a側の電極板7aと裏面2b側の電極板7b’とをほぼ対称な形状としたことにより、表裏面2a,2bの電極部8a,8b’間で大電流注入時に焼結体全体に電流が流れ易くなり、放電耐量特性の向上が図れる。
【0023】
前述したように焼結体1と電極板7a,7b’との間には下地電極層3a,3bが形成されているが、この下地電極層3a,3bの形成時、銀ペーストを焼結体1に塗布して焼き付け処理することにより、銀ペースト中に含有されているガラスが焼結体1に拡散して、その結果、下地電極層3a,3bが焼結体1に接着される。
【0024】
そこで、下地電極層3aの形成時、図5(a)(b)に示すように焼結体1の下地電極層3aが形成されていない部位m、例えば、焼結体1の表面2aに設けられた二つの電極板7a間にも、銀ペースト中に含有されているガラスと同一成分のガラスフリットを塗布して銀ペーストと共に焼き付け処理する。この処理は、図1(a)(b)および図3(a)(b)に示す実施形態においても採用することが可能である。なお、下地電極層3a,3bが形成されていない部位として、焼結体1の表裏面2a,2bの外周縁部にもガラスフリットを塗布することは有効である。
【0025】
このようにすれば、焼結体1の下地電極層3aが形成された部位とその下地電極層3aが形成されていない部位mからなる焼結体1の表面全体に拡散したガラスが存在することになり、焼結体全体での熱膨張係数が均等になる。その結果、焼結体1の機械的強度および絶縁強度を向上させることができ、電極板7aの半田付け後の冷却時に焼結体1でのクラック発生を抑制でき、さらに、静特性、課電特性、放電耐量特性の向上が図れる。
【0026】
【実施例】
本出願人は、縦26mm、横30mm、厚み1.8mmの矩形板状の焼結体1を用いて、図8(a)(b)に示すような電極形状を有する従来例と、前述した実施形態のような電極形状を有する本発明の実施例について、酸化亜鉛バリスタの静特性、高温課電特性、放電耐量特性を測定した。
【0027】
なお、本発明の実施例では、電極板7a,7bを中抜き形状としたもの〔図1(a)(b)参照〕を実施例1とし、電極部材10a,10bをリード線としたもの〔図3(a)(b)参照〕を実施例2とし、焼結体1の表裏面2a,2bで電極板7a,7b’をほぼ対称な中抜き形状としたもの〔図4(a)(b)参照〕を実施例3とし、焼結体1の表裏面2a,2bで電極板7a,7b’をほぼ対称な中抜き形状にすると共に焼結体1の下地電極層3aが形成されていない部位mにもガラスを拡散させたもの〔図5(a)(b)参照〕を実施例4としている。
【0028】
まず、酸化亜鉛バリスタの静特性に関しては、例えば1mAの電流を流した時の端子間電圧V1mAと、10μAの電流を流した時の端子間電圧V10μとの比V10μ/V1mAを、バリスタの非直線性の程度を示すパラメータとして、電極板7a,7b(7b’)の半田付け前と半田付け後で測定した。その測定結果を表1に示す。なお、測定結果において、前述の電圧比V10μ/V1mAが1に近いほど、静特性が良好であることを示す。
【0029】
【表1】

Figure 2004006517
【0030】
表1の結果から明らかなように従来例と比べて、実施例1〜4の値が高くなっており、酸化亜鉛バリスタの静特性が良好であることを示している。特に、焼結体1の電極板7aが形成されていない部位mにもガラスを拡散させた実施例4が高い値を示している。
【0031】
次に、図6は酸化亜鉛バリスタの高温課電特性を示す。この高温課電特性については、周囲温度115℃、課電率85%(25℃において交流1mAを流すのに必要な電圧と同じ電圧ピーク値)で交流連続課電した時のワットロスを、試験開始直後のワットロスで割った値の時間変化(ワットロス変化率)を測定した。
【0032】
なお、この特性図において、○は矩形平板状の電極板4a,4bを有する従来例、△は矩形平板状の電極板7a,7bを中抜き形状とした実施例1、□は電極部材10a,10bをリード線とした実施例2、×は焼結体1の表裏面2a,2bで電極板7a,7b’をほぼ対称な中抜き形状とした実施例3、*は焼結体1の表裏面2a,2bで電極板7a,7b’をほぼ対称な中抜き形状にすると共に焼結体1の電極板7aが形成されていない部位mにもガラスを拡散させた実施例4を示す。
【0033】
同図に示すように従来例ではワットロス変化率が上昇傾向にあるのに対して、実施例1〜4ではワットロス変化率がほぼ横ばい状態であり、その値も小さい。特に、実施例1から実施例4にかけて徐々にワットロス変化率の値が小さくなっている。
【0034】
最後に、酸化亜鉛バリスタの放電耐量特性に関して、例えば600Aから100Aずつステップアップさせ、印加回数を1000回、印加間隔を30秒間で測定した。その測定結果を表2に示す。なお、表中で、○はバリスタが正常に動作したことを示し、×はバリスタが破壊したことを示す。
【0035】
【表2】
Figure 2004006517
【0036】
表2の結果から明らかなように従来例では1000Aでバリスタが破壊したのに対して、実施例1と実施例2では1200A、実施例3では1300A、実施例4では1400Aまで放電耐量が向上した。
【0037】
以上のように従来例に比べて、実施例1〜4は静特性、高温課電特性、放電耐量特性のいずれについても良好な測定結果が得られ、それら静特性、高温課電特性および放電耐量特性の向上が明らかとなった。なお、特性測定を終了したバリスタについて、電極板を剥離して焼結体の表面を研磨し、観察したところ、従来例のバリスタではその表面に微小クラックが確認されたが、実施例1〜4のいずれもその表面に微小クラックが確認されなかった。
【0038】
【発明の効果】
本発明によれば、電極部材を中抜き形状としたり、あるいは、電極部材を面状に屈曲成形されたリード線としたりすることにより、電極部材と焼結体との接触面積を従来品よりも小さくすることができることから、電極部材の半田付け後の冷却時、電極部材と焼結体の熱膨張係数の差により生じる焼結体への応力を軽減できるので、焼結体でのクラック発生を未然に防止することができて信頼性の高い高品質の多端子バリスタを提供できる。
【0039】
また、焼結体の表面側の電極部材と裏面側の電極部材とをほぼ対称な形状とすれば、電極部材の半田付け後の冷却時、焼結体でのクラック発生を抑制できるだけでなく、大電流注入時に焼結体全体に電流が流れ易くなり、放電耐量特性の向上が図れる。
【0040】
さらに、焼結体と電極部材との間に介装した下地電極層の接合材を、焼結体の表裏面で下地電極層が形成されていない部位に塗布すれば、焼結体全体での熱膨張係数が均等になることから、焼結体の機械的強度および絶縁強度を向上させることができ、電極板の半田付け後の冷却時に焼結体でのクラック発生を抑制でき、さらに、静特性、課電特性、放電耐量特性の向上が図れる。
【図面の簡単な説明】
【図1】本発明に係る多端子バリスタの実施形態において、電極板を中抜き形状としたもので、(a)は焼結体の表面側を示す斜視図、(b)は焼結体の裏面側を示す斜視図である。
【図2】図1(a)のA−A線に沿う断面図である。
【図3】本発明の他の実施形態において、電極部材をリード線としたもので、(a)は焼結体の表面側を示す斜視図、(b)は焼結体の裏面側を示す斜視図である。
【図4】本発明の他の実施形態において、中抜き形状の電極板を表裏面でほぼ対称な形状としたもので、(a)は焼結体の表面側を示す斜視図、(b)は焼結体の裏面側を示す斜視図である。
【図5】本発明の他の実施形態において、焼結体の電極板が形成されていない部位にガラスを焼き付けたもので、(a)は焼結体の表面側を示す斜視図、(b)は焼結体の裏面側を示す斜視図である。
【図6】本発明の実施例において、従来例と実施例とを比較するためのバリスタの高温課電特性を示すグラフである。
【図7】多端子バリスタの従来例において、焼結体に下地電極層を形成したもので、(a)は焼結体の表面側を示す斜視図、(b)は焼結体の裏面側を示す斜視図である。
【図8】多端子バリスタの従来例において、矩形平板状の電極板を取り付けたもので、(a)は焼結体の表面側を示す斜視図、(b)は焼結体の裏面側を示す斜視図である。
【符号の説明】
1 焼結体
2a,2b 焼結体の表裏面
3a,3b 下地電極層
7a,7b 電極部材
10a,10b 電極部材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-terminal varistor, and more particularly, to a multi-terminal varistor used for electric equipment incorporating a lightning arrester, a surge absorbing element, a voltage stabilizing element, and the like, and protecting the electric equipment from abnormal voltages such as lightning surge and switching surge.
[0002]
[Prior art]
2. Description of the Related Art In recent years, semiconductor circuits of electric circuits of home electric appliances and industrial equipment have been remarkably advanced, and it has become indispensable to take measures against surges of semiconductor electronic components, which are main components thereof. In general, a varistor composed of a non-linear resistor has a characteristic that its resistance value changes according to an applied voltage, that is, when a normal voltage is applied, the varistor has a high resistance value and exhibits an insulating characteristic, and an abnormal high voltage is It has a non-linear voltage-current characteristic showing a low resistance value when applied.
[0003]
Varistors having such characteristics are widely used as surge countermeasures for semiconductor electronic components such as lightning arresters, surge absorbing elements, and voltage stabilizing elements. Among various varistors, zinc oxide varistors containing zinc oxide as a main component have excellent non-linear voltage-current characteristics and surge absorbing ability. On the other hand, the drive voltage of semiconductor electronic components tends to decrease, and there is a demand for a varistor for a low voltage circuit having a high surge voltage suppressing effect.
[0004]
Zinc oxide varistors are bismuth oxide, antimony oxide, and cobalt oxide, which are basic additives that exhibit nonlinear voltage-current characteristics to zinc oxide as the main component, and various oxides that are added to further improve performance. And a sintered body obtained by molding and firing a zinc oxide raw material powder containing Some of the sintered bodies have a rectangular plate shape, for example. As shown in FIGS. 7 (a) and 7 (b), silver electrodes are baked on the front and back surfaces 2a and 2b of the sintered body 1 to form base electrode layers 3a and 3b. As shown in (1), metal electrode plates 4a and 4b made of a good electrical conductor such as copper or brass are joined to the base electrode layers 3a and 3b by soldering.
[0005]
FIGS. 8A and 8B show an example of a multi-terminal varistor, showing a zinc oxide varistor having three terminals. The electrode plates 4a and 4b are composed of rectangular flat plate-like electrode portions 5a and 5b and terminal portions 6a and 6b extending integrally from the electrode portions 5a and 5b. This multi-terminal varistor has one terminal extending from one electrode plate 4b on the back surface 2b of the sintered body 1 by molding the sintered body 1 and the electrode portions 5a, 5b of the electrode plates 4a, 4b with epoxy resin or the like. The structure has a structure in which the portion 6b is led out from the mold portion, and two terminal portions a extending from the two electrode plates 4a are led out from the mold portion on the surface 2a of the sintered body 1. On the front surface 2a and the back surface 2b of the sintered body 1, base electrode layers 3a and 3b having substantially the same size as the electrode portions 5a and 5b of the electrode plates 4a and 4b are joined. The sintered body 1 has a structure in which the sintered body 1 is exposed between the two base electrode layers 3a on the surface 2a side.
[0006]
[Problems to be solved by the invention]
Incidentally, the metal electrode plates 4a and 4b made of a good electrical conductor such as copper or brass have a larger thermal expansion coefficient than the sintered body 1 containing zinc oxide as a main component. The number of the electrode plates 4a and 4b is different between the front surface 2a side and the back surface 2b side of the sintered body 1, and the shape is asymmetric. As described above, since there is a difference in the thermal expansion coefficient between the electrode plates 4a and 4b and the sintered body 1, and since the shapes of the electrode plates 4a and 4b are asymmetric on the front and back surfaces 2a and 2b of the sintered body 1, When the electrode plates 4a and 4b are cooled after being soldered on the base electrode layers 3a and 3b of the sintered body 1, minute cracks are easily generated in the sintered body 1. When cracks occur in the sintered body 1 as described above, there is a problem that the static characteristics of the varistor are reduced, the watt loss is increased at the time of the high-temperature power application test, and the discharge withstand characteristics are reduced.
[0007]
In order to prevent the occurrence of cracks in the sintered body 1, measures to reduce the cooling speed after soldering the electrode plates 4a and 4b can be considered. However, if the cooling speed after soldering is reduced, the manufacturing lead time becomes longer. In other words, a phenomenon called silver erosion occurs in which the silver paste dissolves into the solder and the silver paste and the solder are alloyed, and other problems such as easy peeling of the electrode plates 4a and 4b occur. Become.
[0008]
Therefore, the present invention has been proposed in view of the above-mentioned problems, and an object of the present invention is to provide a method for cooling an electrode plate by means of a difference in the coefficient of thermal expansion between the electrode plate and the sintered body during cooling after soldering. An object of the present invention is to provide a multi-terminal varistor capable of preventing the occurrence of minute cracks in the body.
[0009]
[Means for Solving the Problems]
As a technical means for achieving the object, the present invention is based on zinc oxide, and, on the front and back facing surfaces of the sintered body having varistor characteristics, a plurality of electrode members and the front side of the sintered body. In a multi-terminal varistor which is joined by disposing a different number of members on the back side, the electrode member has a flat plate shape, and the electrode member has a hollow shape. Further, according to the present invention, in the multi-terminal varistor having the above configuration, the electrode member is formed of a lead wire bent in a planar shape.
[0010]
Here, the above-described “arranged number” means that the number of electrode members provided on the front surface side of the sintered body is different from the number of electrode members provided on the back surface side of the sintered body. Further, the “hollow shape” means an outer frame shape of a band plate with a hollow central portion of a flat plate shape. Further, “bending in a planar shape” means, for example, spiral forming in a plane.
[0011]
In the present invention, the contact area between the electrode member and the sintered body is made smaller than that of a conventional product by forming the electrode member into a hollow shape or by forming the electrode member into a lead wire bent and formed into a planar shape. Therefore, during cooling after soldering of the electrode member, the stress on the sintered body caused by the difference in the thermal expansion coefficient between the electrode member and the sintered body can be reduced, so that the occurrence of cracks in the sintered body is suppressed. It becomes easier.
[0012]
In the present invention, in addition to forming the electrode member into a hollow shape or forming the electrode member into a lead wire bent and formed into a planar shape, the electrode member on the front surface side and the electrode on the back surface side of the sintered body are formed. If the member and the member have a substantially symmetrical shape, the stress on the sintered body caused by the difference in the coefficient of thermal expansion between the electrode member and the sintered body can be reduced during cooling after the soldering of the electrode member. Not only can cracks be suppressed, but also a current can easily flow through the entire sintered body when a large current is injected, and discharge withstand characteristics can be improved.
[0013]
In the present invention, in the above configuration, the bonding material of the base electrode layer interposed between the sintered body and the electrode member may be applied to a portion where the base electrode layer is not formed on the front and back surfaces of the sintered body. Since the bonding material is present on the entire front and back surfaces of the sintered body, and the thermal expansion coefficient of the entire sintered body becomes uniform, the mechanical strength and insulation strength of the sintered body can be improved. In addition, the occurrence of cracks in the sintered body during cooling after soldering of the electrode plate can be suppressed, and the static characteristics, power application characteristics, and discharge withstand characteristics can be improved.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1A, 1B and 2 show a zinc oxide varistor mainly composed of zinc oxide as an embodiment of a multi-terminal varistor according to the present invention. The zinc oxide varistor of this embodiment includes a zinc oxide (ZnO) raw material as its main component, bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), antimony oxide (Sb 2 O 3 ), and oxide A slurry is prepared by wet mixing a predetermined amount of an additive such as aluminum (Al 2 O 3 ) with a binder such as an aqueous solution of polyvinyl alcohol, a dispersant, and the like.
[0015]
Thereafter, the slurry obtained by wet mixing is supplied to a spray drying device such as a spray dryer to produce granulated powder. As the zinc oxide raw material powder as the granulated powder, the above-described zinc oxide (ZnO) raw material, bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), antimony oxide (Sb 2 O 3 ), besides ZnO-Bi-Sb system consisting of aluminum oxide (Al 2 O 3) or the like, and zinc oxide (ZnO) material, praseodymium oxide (Pr 2 O 3), cobalt oxide (Co 2 O 3), antimony oxide (Sb 2 O 3), ZnO-Pr -Co system consisting of aluminum oxide (Al 2 O 3) or the like can be used.
[0016]
The granulated powder is formed into a rectangular plate at a forming pressure of 300 to 1000 kg / cm 2 by using a predetermined mold in a forming step, and the formed body is fired in air at 1000 to 1300 ° C. Obtain the union 1. A silver paste is applied to the front and back surfaces 2a and 2b of the sintered body 1 by an appropriate means such as screen printing or the like, and is baked at 500 to 800 ° C. to form the base electrode layers 3a and 3b. The base electrode layers 3a and 3b are bonded to the sintered body 1 using glass contained in the silver paste as a bonding material. Further, a Sn-Pb solder paste is applied on the base electrode layers 3a and 3b, and metal electrode plates 7a and 7b, which are electrode members made of an electrically good conductor such as copper or brass, are placed on the base electrode layers 3a and 3b. The electrode plates 7a and 7b are joined to the base electrode layers 3a and 3b by soldering as described above.
[0017]
In the zinc oxide varistor of this embodiment, one electrode plate 7b is joined to the back surface 2b of the sintered body 1 and one terminal portion 9b extending from the electrode portion 8b is led out. It has a three-terminal structure in which two electrode plates 7a are joined and two terminal portions 9a extending from the respective electrode portions 8a are led out. The sintered body 1 has a structure in which the sintered body 1 is exposed between the two base electrode layers 3a on the surface 2a side. After joining the electrode plates 7a and 7b, the sintered body 1 and the electrode portions 8a and 8b of the electrode plates 7a and 7b are molded with an epoxy resin or the like, and the terminal portions 9a and 9b of the electrode plates 7a and 7b are removed from the molded portions. Is obtained. The zinc oxide varistor is mounted on, for example, a wiring board by using the terminal portions 9a and 9b derived from the mold portion.
[0018]
The electrode plates 7a and 7b in the zinc oxide varistor of this embodiment have a hollow shape in the outer shape of the band plate. That is, the electrode plates 7a and 7b are composed of the electrode portions 8a and 8b having the outer frame shape of the rectangular strip, and the terminal portions 9a and 9b extending integrally from the electrode portions 8a and 8b. Since the electrode plates 7a and 7b are formed in a hollow shape as described above, the contact area between the electrode plates 7a and 7b and the sintered body 1 can be made smaller than that of a conventional product. At the time of cooling after the attachment, the stress on the sintered body 1 caused by the difference in the coefficient of thermal expansion between the electrode plates 7a and 7b and the sintered body 1 can be reduced, so that cracks in the sintered body 1 can be easily suppressed. It becomes.
[0019]
As another electrode member for reducing the contact area between the electrode plates 7a and 7b and the sintered body 1, it is possible to use a lead wire as in the embodiment shown in FIGS. The electrode members 10a and 10b of this embodiment are formed of spirally shaped lead wires in a plane, and the spirally wound electrode portions 11a and 11b and the ends of the lead wires derived from the electrode portions 11a and 11b. And the terminal portions 12a and 12b. The above-mentioned lead wire may be formed in a meandering shape instead of being formed in a spiral shape, and may have another shape bent and formed in a planar shape.
[0020]
Since the spirally shaped lead wires are used as the electrode members 10a and 10b, the contact area between the electrode members 10a and 10b and the sintered body 1 can be made smaller than that of a conventional product. During cooling after the soldering of the electrode members 10a, 10b, stress on the sintered body 1 caused by the difference in the thermal expansion coefficient between the electrode members 10a, 10b and the sintered body 1 can be reduced. It is easy to suppress the occurrence.
[0021]
In the embodiment of FIGS. 4 (a) and 4 (b), similarly to the embodiment of FIGS. 1 (a) and 1 (b), the electrode plates 7a and 7b 'are hollowed out in the shape of a band plate outer frame, and further, a sintered body is formed. The electrode plate 7a on the front surface 2a side and the electrode plate 7b 'on the back surface 2b side are formed to have substantially symmetric shapes. That is, with respect to the two electrode plates 7a on the front surface 2a side of the sintered body 1, one electrode plate 7b 'arranged on the back surface 2b side of the sintered body 1 is connected to the inner part of the electrode plate 7a on the front surface 2a side. 13a and a shape in which two connecting portions 13b corresponding to 13a are formed. The electrode plate on the back surface 2b side of the sintered body 1 may have a shape other than that shown, as long as it has a shape symmetrical to the electrode plate 7a on the front surface 2a side of the sintered body 1.
[0022]
Since the electrode plates 7a and 7b 'are hollowed out as described above, the difference between the thermal expansion coefficients of the electrode plates 7a and 7b' and the sintered body 1 during cooling after the soldering of the electrode plates 7a and 7b '. Not only can the generated stress on the sintered body 1 be reduced and crack generation in the sintered body 1 can be suppressed, but also the electrode plate 7a on the front surface 2a side and the electrode plate 7b 'on the back surface 2b side of the sintered body 1 Has a substantially symmetrical shape, the current easily flows through the entire sintered body when a large current is injected between the electrode portions 8a and 8b 'on the front and back surfaces 2a and 2b, and the discharge withstand characteristics can be improved.
[0023]
As described above, the base electrode layers 3a and 3b are formed between the sintered body 1 and the electrode plates 7a and 7b '. When forming the base electrode layers 3a and 3b, the silver paste is By applying and baking the substrate 1, the glass contained in the silver paste diffuses into the sintered body 1, and as a result, the base electrode layers 3 a and 3 b are bonded to the sintered body 1.
[0024]
Therefore, when the base electrode layer 3a is formed, as shown in FIGS. 5A and 5B, the base electrode layer 3a is provided on a portion m of the sintered body 1 where the base electrode layer 3a is not formed, for example, on the surface 2a of the sintered body 1. A glass frit having the same component as that of the glass contained in the silver paste is applied between the two electrode plates 7a and baked together with the silver paste. This processing can be adopted in the embodiments shown in FIGS. 1A and 3B and FIGS. 3A and 3B. It is effective to apply a glass frit also to the outer peripheral edges of the front and back surfaces 2a and 2b of the sintered body 1 as a portion where the base electrode layers 3a and 3b are not formed.
[0025]
In this way, the diffused glass is present on the entire surface of the sintered body 1 including the portion where the base electrode layer 3a is formed and the portion m where the base electrode layer 3a is not formed. And the thermal expansion coefficient of the entire sintered body becomes uniform. As a result, the mechanical strength and the insulation strength of the sintered body 1 can be improved, the occurrence of cracks in the sintered body 1 at the time of cooling after the soldering of the electrode plate 7a can be suppressed, and further, the static characteristics and power application can be reduced. The characteristics and discharge withstand characteristics can be improved.
[0026]
【Example】
The present applicant has described a conventional example having an electrode shape as shown in FIGS. 8A and 8B using a rectangular plate-shaped sintered body 1 having a length of 26 mm, a width of 30 mm, and a thickness of 1.8 mm. With respect to the example of the present invention having the electrode shape as in the embodiment, the static characteristics, high-temperature charging characteristics, and discharge withstand characteristics of the zinc oxide varistor were measured.
[0027]
In the embodiment of the present invention, the electrode plates 7a and 7b have hollow shapes (see FIGS. 1A and 1B) as the first embodiment, and the electrode members 10a and 10b have lead wires [ FIG. 3 (a) and FIG. 3 (b)] as Example 2, in which the electrode plates 7a and 7b ′ are formed in a substantially symmetric hollow shape on the front and back surfaces 2a and 2b of the sintered body 1 [FIG. b)] in Example 3, in which the electrode plates 7a and 7b 'are formed in a substantially symmetric hollow shape on the front and back surfaces 2a and 2b of the sintered body 1 and the base electrode layer 3a of the sintered body 1 is formed. Example 4 in which the glass was diffused even in the part m which is not present (see FIGS. 5A and 5B).
[0028]
First, regarding the static characteristics of the zinc oxide varistor, for example, a voltage V 1mA between terminals of that which causes 1mA current, the ratio V 10 of the terminal voltage V 10 mu A upon applying a 10μA current mu A / V 1 mA was measured as a parameter indicating the degree of nonlinearity of the varistor before and after soldering the electrode plates 7a and 7b (7b '). Table 1 shows the measurement results. Incidentally, in the measurement results, the closer the voltage ratio V 10 μ A / V 1mA of the aforementioned 1, indicates that the static characteristics are good.
[0029]
[Table 1]
Figure 2004006517
[0030]
As is clear from the results in Table 1, the values of Examples 1 to 4 are higher than those of the conventional example, indicating that the static characteristics of the zinc oxide varistor are good. In particular, Example 4 in which the glass was diffused also to a portion m of the sintered body 1 where the electrode plate 7a was not formed showed a high value.
[0031]
Next, FIG. 6 shows the high-temperature charging characteristics of the zinc oxide varistor. Regarding the high-temperature power application characteristics, the watt loss when the AC was continuously applied at an ambient temperature of 115 ° C. and a power application rate of 85% (the same voltage peak value as that required to supply 1 mA AC at 25 ° C.) was measured. The time change (the rate of change in watt loss) of the value divided by the watt loss immediately after was measured.
[0032]
In this characteristic diagram, .largecircle. Represents a conventional example having rectangular flat electrode plates 4a and 4b, .quadrature. Represents an embodiment 1 in which rectangular flat plate electrode plates 7a and 7b are hollow, and .quadrature. Example 2 in which 10b was a lead wire, X: Example 3 in which the electrode plates 7a, 7b 'were formed in a substantially symmetric hollow shape on the front and back surfaces 2a, 2b of the sintered body 1, and * indicates the surface of the sintered body 1. Example 4 shows an example 4 in which the electrode plates 7a and 7b 'are formed into substantially symmetrical hollow shapes on the back surfaces 2a and 2b, and the glass is diffused also into a portion m of the sintered body 1 where the electrode plate 7a is not formed.
[0033]
As shown in the drawing, the watt loss change rate is increasing in the conventional example, whereas the watt loss change rate is almost flat in the first to fourth embodiments, and the value is small. In particular, the value of the rate of change in watt loss gradually decreases from Example 1 to Example 4.
[0034]
Finally, the discharge withstand characteristics of the zinc oxide varistor were measured, for example, by stepping up from 600 A to 100 A, applying 1,000 times, and applying 30 seconds. Table 2 shows the measurement results. In the table, ○ indicates that the varistor operated normally, and X indicates that the varistor was broken.
[0035]
[Table 2]
Figure 2004006517
[0036]
As is clear from the results in Table 2, the varistor was destroyed at 1000 A in the conventional example, whereas the discharge withstand capability was improved to 1200 A in Examples 1 and 2, 1300 A in Example 3, and 1400 A in Example 4. .
[0037]
As described above, in Examples 1-4, better measurement results were obtained for each of the static characteristics, the high-temperature charging characteristics, and the discharge withstand characteristics as compared with the conventional example. The improvement of characteristics became clear. The varistor after the characteristic measurement was completed, the electrode plate was peeled off, and the surface of the sintered body was polished and observed. As a result, fine cracks were confirmed on the surface of the varistor of the conventional example. No microcracks were observed on the surface of any of them.
[0038]
【The invention's effect】
According to the present invention, the contact area between the electrode member and the sintered body is made larger than that of the conventional product by forming the electrode member into a hollow shape or by forming the electrode member into a lead wire bent and formed into a planar shape. Since it is possible to reduce the stress on the sintered body caused by the difference in the coefficient of thermal expansion between the electrode member and the sintered body during cooling after soldering the electrode member, the occurrence of cracks in the sintered body can be reduced. A high-quality multi-terminal varistor that can be prevented beforehand and has high reliability can be provided.
[0039]
Further, if the electrode member on the front side and the electrode member on the back side of the sintered body are formed to be substantially symmetrical, not only can the cracking of the sintered body be suppressed at the time of cooling after soldering the electrode member, When a large current is injected, the current easily flows through the entire sintered body, and the discharge withstand capability can be improved.
[0040]
Furthermore, if the bonding material of the base electrode layer interposed between the sintered body and the electrode member is applied to portions of the front and back surfaces of the sintered body where the base electrode layer is not formed, the entire sintered body can be formed. Since the coefficient of thermal expansion becomes uniform, the mechanical strength and insulation strength of the sintered body can be improved, and the occurrence of cracks in the sintered body during cooling after soldering of the electrode plate can be suppressed. The characteristics, power application characteristics, and discharge withstand characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a surface side of a sintered body in which a multi-terminal varistor according to an embodiment of the present invention has an electrode plate in a hollow shape, and FIG. It is a perspective view which shows a back side.
FIG. 2 is a cross-sectional view taken along line AA of FIG.
3A and 3B are perspective views showing a front surface side of a sintered body, and FIG. 3B is a perspective view showing a rear surface side of the sintered body, in another embodiment of the present invention in which an electrode member is a lead wire. It is a perspective view.
FIG. 4 is a perspective view showing a front side of a sintered body, in which a hollow electrode plate has a substantially symmetrical shape on the front and back surfaces in another embodiment of the present invention. FIG. 3 is a perspective view showing the back side of the sintered body.
FIG. 5 is a perspective view showing a front side of the sintered body, in which glass is baked on a portion of the sintered body where no electrode plate is formed, in another embodiment of the present invention. () Is a perspective view showing the back side of the sintered body.
FIG. 6 is a graph showing high-temperature charging characteristics of a varistor for comparison between a conventional example and an example in the example of the present invention.
FIGS. 7A and 7B show a conventional multi-terminal varistor in which a base electrode layer is formed on a sintered body. FIG. 7A is a perspective view showing the front side of the sintered body, and FIG. FIG.
8A and 8B show a conventional example of a multi-terminal varistor in which a rectangular flat plate-shaped electrode plate is attached. FIG. 8A is a perspective view showing the front side of a sintered body, and FIG. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sintered body 2a, 2b Front and back surfaces 3a, 3b of sintered body Base electrode layers 7a, 7b Electrode members 10a, 10b Electrode members

Claims (4)

酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面に、複数の電極部材を焼結体の表面側と裏面側とで異数配置させて接合した多端子バリスタにおいて、前記電極部材は平板形状を有し、かつ、その電極部材を中抜き形状としたことを特徴とする多端子バリスタ。A multi-terminal varistor in which zinc oxide is a main component and a plurality of electrode members are arranged and joined on the front and back surfaces of a sintered body having varistor characteristics on the front side and the back side of the sintered body. A multi-terminal varistor, wherein the electrode member has a flat plate shape and the electrode member has a hollow shape. 酸化亜鉛を主成分とし、かつ、バリスタ特性を有する焼結体の表裏面に、複数の電極部材を焼結体の表面側と裏面側とで異数配置させて接合した多端子バリスタにおいて、前記電極部材は、面状に屈曲成形されたリード線からなることを特徴とする多端子バリスタ。A multi-terminal varistor in which zinc oxide is a main component and a plurality of electrode members are arranged and joined on the front and back surfaces of a sintered body having varistor characteristics on the front side and the back side of the sintered body. A multi-terminal varistor, wherein the electrode member is formed of a lead wire bent into a planar shape. 前記焼結体の表面側の電極部材と裏面側の電極部材とをほぼ対称な形状としたことを特徴とする請求項1又は2に記載の多端子バリスタ。3. The multi-terminal varistor according to claim 1, wherein the electrode member on the front surface side and the electrode member on the rear surface side of the sintered body have substantially symmetric shapes. 4. 前記焼結体と電極部材との間に介装した下地電極層の接合材を、焼結体の表裏面で下地電極層が形成されていない部位に塗布したことを特徴とする請求項1乃至3のいずれかに記載の多端子バリスタ。The bonding material for a base electrode layer interposed between the sintered body and the electrode member is applied to a portion where the base electrode layer is not formed on the front and back surfaces of the sintered body. 3. The multi-terminal varistor according to any one of 3.
JP2002159939A 2002-05-31 2002-05-31 Multi-terminal varistor Pending JP2004006517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159939A JP2004006517A (en) 2002-05-31 2002-05-31 Multi-terminal varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159939A JP2004006517A (en) 2002-05-31 2002-05-31 Multi-terminal varistor

Publications (1)

Publication Number Publication Date
JP2004006517A true JP2004006517A (en) 2004-01-08

Family

ID=30429516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159939A Pending JP2004006517A (en) 2002-05-31 2002-05-31 Multi-terminal varistor

Country Status (1)

Country Link
JP (1) JP2004006517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088287A (en) * 2005-09-22 2007-04-05 Tdk Corp Ring varistor and manufacturing method thereof
CN114113835A (en) * 2021-11-10 2022-03-01 西南交通大学 Method for evaluating energy absorption performance of porcelain-sheathed lightning arrester under multiple lightning strike discharge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088287A (en) * 2005-09-22 2007-04-05 Tdk Corp Ring varistor and manufacturing method thereof
JP4711064B2 (en) * 2005-09-22 2011-06-29 Tdk株式会社 Ring varistor and manufacturing method thereof
CN114113835A (en) * 2021-11-10 2022-03-01 西南交通大学 Method for evaluating energy absorption performance of porcelain-sheathed lightning arrester under multiple lightning strike discharge
CN114113835B (en) * 2021-11-10 2022-08-26 西南交通大学 Method for evaluating energy absorption performance of porcelain-sheathed lightning arrester under multiple lightning strike discharge

Similar Documents

Publication Publication Date Title
JP5264484B2 (en) Circuit protection device having thermally coupled MOV overvoltage element and PPTC overcurrent element
EP3109868B1 (en) Preparation method for electronic components with an alloy electrode layer
WO2011162181A1 (en) Surface mounting varistor
JP3449599B2 (en) Multilayer chip varistor
JP2000294403A (en) Chip thermistor
JP2004006519A (en) Multi-terminal varistor
JP2004006517A (en) Multi-terminal varistor
JPH10116707A (en) Chip type thermistor and its manufacturing method
JP2004014437A (en) Chip type surge absorber and its manufacturing method
CN2332040Y (en) Perforated multilayer electrod piezoresistor
CN217847574U (en) Metal oxide varistor device
JPH08198674A (en) Semiconductor ceramic material having negative resistance-temperature characteristic and semiconductor ceramic parts using that
JPS637601A (en) Network resistor for surface mount
JP3785961B2 (en) Ceramic electronic components
JP2002289451A (en) Method for manufacturing chip-type impedance element
JP4687503B2 (en) surge absorber
JP3000670B2 (en) Thermistor device
JP3390674B2 (en) Positive characteristic thermistor for degaussing
JPH0834138B2 (en) Surge absorber
JP2011258490A (en) Overvoltage protection component and method of manufacturing the same
JP2000323304A (en) Negative temperature coefficient thermistor
JP2011114187A (en) Overvoltage protective component
JP2007026780A (en) Conductor paste, electronic parts, and method of manufacturing same
JP2007305934A (en) Surge protection device
JPH09134807A (en) Voltage-dependent nonlinear resistor ceramic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080107