JP2007305934A - Surge protection device - Google Patents

Surge protection device Download PDF

Info

Publication number
JP2007305934A
JP2007305934A JP2006135530A JP2006135530A JP2007305934A JP 2007305934 A JP2007305934 A JP 2007305934A JP 2006135530 A JP2006135530 A JP 2006135530A JP 2006135530 A JP2006135530 A JP 2006135530A JP 2007305934 A JP2007305934 A JP 2007305934A
Authority
JP
Japan
Prior art keywords
voltage
electrodes
surge protection
protection device
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006135530A
Other languages
Japanese (ja)
Inventor
Kenshichiro Mishima
健七郎 三島
Naoyuki Tsukamoto
直之 塚本
Katsuyuki Miura
克之 三浦
Seiki Mishina
誠喜 三品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Original Assignee
Otowa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP2006135530A priority Critical patent/JP2007305934A/en
Publication of JP2007305934A publication Critical patent/JP2007305934A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and reliable surge protection device. <P>SOLUTION: Two plate-like voltage nonlinear resistance substrates 7 and 11 one of which is twice as thick as the other are used. Common electrodes 8 and 12 are formed on one of the main surfaces of each, and two or more electrodes 9 and 10 and electrodes 13 and 14 are formed separately from each other on the other. The substrates 7 and 11 are arranged so that the two or more electrodes 9 and 13 and the electrodes 10 and 14 may oppose each other, and draw-out terminals 4 and 5 are interposed between each of them to be connected and integrated. Moreover, on the common electrode 12 of a thick substrate 11, a common draw-out terminal 6 is arranged and connected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、サージ防護デバイス、特に交流配電線路に接続された機器を雷サージ等から防護するためのサージ防護デバイスに関するものである。   The present invention relates to a surge protection device, and more particularly to a surge protection device for protecting a device connected to an AC distribution line from a lightning surge or the like.

単相二線式交流配電線路や、直流配電線路や単相二線式交流配電線路等の電源線路に設置されるサージ防護デバイスは、通常、線路間、ならびに各線路とアースとの間に接続されるよう、電圧非直線性抵抗素子等の独立した部品をプリント配線基板上にそれぞれ半田付け等の方法で実装されている。   Surge protection devices installed on power lines such as single-phase two-wire AC distribution lines, DC distribution lines, and single-phase two-wire AC distribution lines are usually connected between lines and between each line and ground. As described above, independent components such as a voltage nonlinear resistance element are mounted on a printed wiring board by a method such as soldering.

このデバイスでは、個別の電圧非直線性抵抗素子を使用して構成するため、それらの間の特性のばらつきがかなり大きく、結果としてデバイスとしての特性のばらつきを軽減することが非常に困難なものとなっている。さらに、複数個の電圧非直線性抵抗素子をプリント配線基板の所定位置にそれぞれ半田付けしなければならないことから、実装作業および実装状態の検査作業等が煩雑となり、実装と検査に長時間を必要としている。また、実装面積も広くなってプリント配線基板が大形化し、デバイスが大形なものとなる。さらには実装基板を絶縁ケースに収納すると、デバイスが一段と大形化し、それを電気機器や電子機器に内蔵させる場合にあっては機器の小形化が非常に困難なものとしている。   Since this device is configured using individual voltage nonlinear resistance elements, the variation in characteristics between them is quite large, and as a result, it is very difficult to reduce the variation in characteristics as a device. It has become. In addition, a plurality of voltage nonlinear resistance elements must be soldered to the printed circuit board at predetermined positions, which complicates the mounting operation and inspection of the mounting state, and requires a long time for mounting and inspection. It is said. Further, the mounting area is increased, the printed wiring board is increased in size, and the device is increased in size. Furthermore, when the mounting substrate is housed in an insulating case, the device is further increased in size, and it is extremely difficult to reduce the size of the device when it is built in an electric device or an electronic device.

ところで、取付け工数を低減する方法として、3個の電圧非直線性抵抗素子を、良導体からなる電極引出し端子板を介在させて重ね合わせ、さらに両外側の電圧非直線性抵抗素子の外側電極を引出し端子板で接続することが提案されている(例:特許文献1)。   By the way, as a method for reducing the mounting man-hours, three voltage non-linear resistance elements are overlapped with an electrode lead terminal plate made of a good conductor, and the outer electrodes of the voltage non-linear resistance elements on both outer sides are drawn out. It has been proposed to connect with a terminal board (eg, Patent Document 1).

この方法によれば、デバイス組立時の接続箇所数を減少させ、また小形化できるという利点が得られるものの、個別の電圧非直線性抵抗素子を必要個数使用して組み立てるものであることから、デバイス特性が素子間の特性のばらつきに直接的に影響され、デバイスとしての信頼性を向上させることが非常に困難であった。   According to this method, although the advantage that the number of connection points at the time of device assembly can be reduced and the size can be reduced is obtained, the device is assembled by using a necessary number of individual voltage nonlinear resistance elements. The characteristics are directly affected by variations in characteristics between elements, and it has been very difficult to improve the reliability of the device.

一方、平板状の電圧非直線性抵抗基体上に複数の電極を形成し、所定の回路構成としたデバイスが提案されている(例:特許文献2,3)。   On the other hand, devices having a predetermined circuit configuration in which a plurality of electrodes are formed on a flat voltage nonlinear resistance base have been proposed (eg, Patent Documents 2 and 3).

これらデバイスは、接続箇所が少なくてすみ、その製造がきわめて容易であり、また、共通の基体を使用して構成しているため、特性要素間の特性が実質的に同じであることから、信頼性においても上述のデバイスに比べて優れている。
実開昭57−150906号公報 特開2003−9387号公報 特開2003−22883号公報
These devices require few connection points, are extremely easy to manufacture, and are constructed using a common substrate, so that the characteristics between the characteristic elements are substantially the same. In terms of performance, it is superior to the above devices.
Japanese Utility Model Publication No. 57-150906 JP 2003-9387 A JP 2003-22883 A

しかしながら、このデバイスにおいては、電極が電圧非直線性抵抗基体上にそれを挟んで対をなす電極同士を対向させて二次元的に配置していることから、主面面積の広い基体が必要となり、デバイス自体が非常に大形化なものとなってしまう。このため、デバイス取付けスペースに制約のある用途に使用するためには、その小形化が強く望まれる。   However, in this device, since the electrodes are two-dimensionally arranged on the voltage non-linear resistance substrate with the pair of electrodes facing each other, a substrate having a large main surface area is required. The device itself becomes very large. For this reason, in order to use it for an application in which a device mounting space is limited, it is strongly desired to reduce the size.

本発明は、このような課題を解決した、小形で、なおかつ信頼性の高いサージ防護デバイスを提供しようとするものである。   The present invention seeks to provide a small and highly reliable surge protection device that solves these problems.

本発明のサージ防護デバイスは、平行な二つの主面を有し、これら主面の一方の上に共通電極が形成され、またその他方の上に複数の電極が離隔して形成された板状の第1,第2の電圧非直線性抵抗基体を、複数の電極同士を対向させて配置し接続するとともに、対向する電極間に引出し端子をそれぞれ介在させ、さらに第1、第2の電圧非直線性抵抗基体のいずれか一方の共通電極上に共通引出し端子を配置し接続したものである。   The surge protection device of the present invention has two parallel principal surfaces, a common electrode formed on one of the principal surfaces, and a plurality of electrodes spaced apart on the other. The first and second voltage non-linear resistance bases are arranged and connected so that a plurality of electrodes are opposed to each other, an extraction terminal is interposed between the opposed electrodes, and the first and second voltage non-linear resistance bases are further provided. A common lead-out terminal is arranged and connected on any one common electrode of the linear resistance base.

このデバイスは、第1、第2の電圧非直線性抵抗基体を、一つの面上に設けた複数の電極を対向させ、それぞれの間に引出し端子を配置して接続し、さらに電圧非直線性抵抗基体の一方の共通電極を配置し接続したので、実装時の接続箇所数が低減され、かつその量産も容易となる。さらに、電圧非直線性抵抗基体それぞれにおいて共通電極と複数の電極との間に形成される非直線性要素は、基体が共通であることから、電流−電圧非直線性が実質的に同じであり、個別素子で構成したデバイスにあった特性のばらつきが解消される。   In this device, the first and second voltage non-linear resistance bases are connected with a plurality of electrodes provided on one surface facing each other, and lead terminals are arranged between them, and further, voltage non-linearity Since one common electrode of the resistance base is arranged and connected, the number of connection points at the time of mounting is reduced, and mass production becomes easy. Furthermore, since the non-linear element formed between the common electrode and the plurality of electrodes in each voltage non-linear resistance base is the same base, the current-voltage non-linearity is substantially the same. This eliminates the variation in characteristics suitable for a device composed of individual elements.

さらに、本発明のサージ防護デバイスにおいて、その電圧非直線性抵抗基体のそれぞれにおける他方主面上の複数の電極の離隔距離を、電圧非直線性抵抗基体の厚さのいずれよりも大きくした。   Furthermore, in the surge protection device of the present invention, the separation distance of the plurality of electrodes on the other main surface of each of the voltage nonlinear resistance bases is made larger than any of the thicknesses of the voltage nonlinear resistance bases.

これによれば、電極間の電圧非直線性が基体の厚さ方向に依存し、サージ電圧に対して基体を介して対向する電極間の領域で導通するので、基体の面内方向すなわち同一主面上に配置された電極間での導通が抑制される。   According to this, since the voltage nonlinearity between the electrodes depends on the thickness direction of the substrate and conducts in the region between the electrodes facing the surge voltage through the substrate, the in-plane direction of the substrate, that is, the same main The conduction between the electrodes arranged on the surface is suppressed.

さらにまた、本発明のサージ防護デバイスにおいて、共通引出し端子を有する電圧非直線性抵抗基体の、共通引出し端子と基体を介して対向する複数の電極の離隔距離を、この基体の厚さの少なくとも2倍とした。   Furthermore, in the surge protection device of the present invention, the voltage non-linear resistance base having a common lead terminal has a separation distance between a plurality of electrodes facing the common lead terminal via the base, and is at least 2 of the thickness of the base. Doubled.

このデバイスにおいては、サージ電圧の印加時、基体を介して対向する電極間の領域で導通し、基体の面内方向すなわち同一主面上に配置された電極間での導通が防止される。   In this device, when a surge voltage is applied, conduction is made in a region between electrodes facing each other through the substrate, and conduction between electrodes arranged in the in-plane direction of the substrate, that is, on the same main surface is prevented.

さらにまた、本発明のサージ防護デバイスにおいて、第1、第2の電圧非直線性抵抗基体の電流−電圧非直線特性の単位厚さ当りの立ち上がり電圧が等しく、かつ第2の電圧非直線性抵抗基体の厚さが第1の電圧非直線性抵抗基体の2倍であって、第2の電圧非直線性抵抗基体の共通電極上に共通引出し端子を配置した。   Furthermore, in the surge protection device of the present invention, the rising voltages per unit thickness of the current-voltage nonlinear characteristics of the first and second voltage nonlinear resistance substrates are equal, and the second voltage nonlinear resistance The thickness of the substrate is twice that of the first voltage nonlinear resistance substrate, and a common lead terminal is disposed on the common electrode of the second voltage nonlinear resistance substrate.

このデバイスにおいては、第1の電圧非直線性抵抗基体における共通電極が、この基体を介して対向する電極間に形成された二つの特性要素を、直列に接続する導電体としての役割を有する。そして、共通引出し端子をアースに接続し、複数の電極同士の間に配置された引出し端子を配電線それぞれに接続することによって、単一デバイスで単相二線配電線のサージ防護を可能とする。また、両基体における電流−電圧非直線特性の単位厚さ当りの立ち上がり電圧を等しくしたことで、同一原料を使用して製造することが可能となり、その原料や製造条件等の管理が容易となる。   In this device, the common electrode in the first voltage nonlinear resistance substrate serves as a conductor that connects two characteristic elements formed between the electrodes facing each other through the substrate in series. And, by connecting the common lead terminal to the ground and connecting the lead terminals arranged between a plurality of electrodes to each distribution line, it is possible to provide surge protection for single-phase two-wire distribution lines with a single device. . In addition, since the rising voltage per unit thickness of the current-voltage nonlinear characteristics in both substrates is made equal, it becomes possible to manufacture using the same raw material, and management of the raw material and manufacturing conditions becomes easy. .

さらにまた、本発明のサージ防護デバイスにおいて、第2の電圧非直線性抵抗基体の厚さ方向の電流−電圧非直線特性の立ち上がり電圧を、第1の電圧非直線性抵抗基体における厚さ方向の電流−電圧非直線性の立ち上がり電圧の2倍とし、第2の電圧非直線性抵抗基体の共通電極上に共通引出し端子を配置した。   Furthermore, in the surge protection device of the present invention, the rising voltage of the current-voltage nonlinear characteristic in the thickness direction of the second voltage nonlinear resistance substrate is changed in the thickness direction of the first voltage nonlinear resistance substrate. A common lead-out terminal was arranged on the common electrode of the second voltage non-linear resistance base, and the current-voltage non-linear rising voltage was doubled.

このデバイスにおいては、第1の電圧非直線性抵抗基体における共通電極が、この基体を介して対向する電極間に形成された二つの特性要素を、直列に接続する導電体としての役割を有する。そして、共通引出し端子をアースに接続し、複数の電極同士の間に配置された引出し端子を配電線それぞれに接続することによって、単一デバイスで単相二線配電線のサージ防護を可能とする。また、第1、第2の基体における電流−電圧非直線特性の立ち上がり電圧の比を1対2としたことで、両基体の原料を異なるものから選択することが可能となり、原材料選択での制約が軽減される。   In this device, the common electrode in the first voltage nonlinear resistance substrate serves as a conductor that connects two characteristic elements formed between the electrodes facing each other through the substrate in series. And, by connecting the common lead terminal to the ground and connecting the lead terminals arranged between a plurality of electrodes to each distribution line, it is possible to provide surge protection for single-phase two-wire distribution lines with a single device. . Further, since the ratio of the rising voltage of the current-voltage nonlinear characteristics in the first and second substrates is set to 1: 2, it is possible to select different materials for both substrates, and there are restrictions on the selection of raw materials. Is reduced.

さらにまた、本発明のサージ防護デバイスにおいて、第1、第2の電圧非直線性抵抗基体の主面上に形成された電極それぞれと引出し端子とを、はんだおよび導電性樹脂のいずれか一方を用いて電気的に接続することで、これら基体を一体化することで、構造的に強固なデバイスの量産が可能となる。   Furthermore, in the surge protection device of the present invention, each of the electrodes formed on the main surface of the first and second voltage nonlinear resistance bases and the lead terminal is made of either solder or conductive resin. By electrically connecting the bases, it is possible to mass-produce structurally strong devices by integrating these bases.

そして、引出し端子を一つまたは複数の透孔が形成された板状導電体で構成することで、これら基体の一体化がさらに強固なものとなる。   Then, by configuring the lead terminal with a plate-like conductor in which one or a plurality of through holes are formed, the integration of these bases is further strengthened.

本発明のサージ防護デバイスによれば、接続箇所数を低減でき、実装基板への取付け工数をさ削減することができる。また、同一電圧非直線性抵抗基体で複数の特性要素を構成し、それぞれ基体における要素の特性が実質的に同じであることから、個別素子で構成したデバイスに比べて特性のばらつきを大幅に低減でき、信頼性の高いデバイスを提供することができる。   According to the surge protection device of the present invention, the number of connection points can be reduced, and the number of mounting steps on the mounting board can be reduced. In addition, multiple characteristic elements are composed of the same voltage nonlinear resistance base, and the characteristics of the elements in the base are substantially the same, so the variation in characteristics is greatly reduced compared to devices composed of individual elements. And a highly reliable device can be provided.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は単相二線式配電線路に使用されるサージ防護デバイスの外観を示す図であり、図2はその要部の構造を示す図である。   FIG. 1 is a view showing an appearance of a surge protection device used in a single-phase two-wire distribution line, and FIG. 2 is a view showing a structure of a main part thereof.

このデバイスは、図1(a)の側面図に示すように、主面がほぼ長方形で、平板状の二個の電圧非直線性抵抗素子1,2と、これらを気密に封止する、エポキシ樹脂等からなる絶縁被覆体3と、図1(b)の上面図、同図(c)の下面図に示すように、この被覆体3の長辺間に位置する端面の一つから突出する舌片状部が一体的に形成された三個の板状引出し端子4,5,6とを有する。端子4,5は、二相単線式配電線の各線にそれぞれ接続される端子であり、また端子6はアースに接続される端子である。   As shown in the side view of FIG. 1A, this device has two voltage non-linear resistance elements 1 and 2 having a substantially rectangular main surface and a plate shape, and an epoxy that hermetically seals them. As shown in the top view of FIG. 1B and the bottom view of FIG. 1C, the insulating cover 3 made of resin or the like protrudes from one of the end faces located between the long sides. It has three plate-like lead terminals 4, 5, and 6 in which tongue-like portions are integrally formed. The terminals 4 and 5 are terminals connected to the respective lines of the two-phase single-wire distribution line, and the terminal 6 is a terminal connected to the ground.

電圧非直線性抵抗素子1は、図2(a)の素子断面図に示すように、ほぼ長方形で平板状の電圧非直線性抵抗基体7を特性要素とする。この基体7の角部は、直交する二つの端面と連続した曲面とされる。素子1の一方の主面上には、図2(b)に示すように、周縁に沿った所定の幅の領域を除いた領域内全域にわたって、面内方向の導電体としての共通電極8が形成されている。また、他方の主面上には、図2(c)に示すように、二つの電極9,10が、主面長手方向に離隔させ、かつ基体1の縁部から所定の間隔をおいて主面内に形成されている。   As shown in the element cross-sectional view of FIG. 2A, the voltage nonlinear resistance element 1 has a substantially rectangular and flat voltage nonlinear resistance base 7 as a characteristic element. The corners of the base 7 are curved surfaces that are continuous with two orthogonal end faces. On one main surface of the element 1, as shown in FIG. 2B, a common electrode 8 serving as a conductor in the in-plane direction is formed over the entire region excluding the region having a predetermined width along the periphery. Is formed. On the other main surface, as shown in FIG. 2 (c), two electrodes 9 and 10 are separated from each other in the longitudinal direction of the main surface and at a predetermined interval from the edge of the substrate 1. It is formed in the plane.

電圧非直線性抵抗素子2は、電圧非直線性抵抗基体11、共通電極12、および、この電極12と基体11を挟んで対向するよう形成された二つの電極13,14からなる。なお、電極13,14は、素子1における電極9,10の間隔と等しくなるよう配置される。   The voltage non-linear resistance element 2 includes a voltage non-linear resistance base 11, a common electrode 12, and two electrodes 13 and 14 formed so as to face each other across the base 12. The electrodes 13 and 14 are arranged to be equal to the distance between the electrodes 9 and 10 in the element 1.

基体7,11は、酸化亜鉛を主成分とし、電流−電圧非直線特性を発現させるための成分を含むセラミックスからななる。これら基体7,11は、酸化亜鉛(ZnO)を主成分原料とし、得られたセラミックスに電流−電圧非直線特性を発現させるための成分たとえば酸化ビスマス(Bi23)、酸化アンチモン(Sb23)、酸化コバルト(Co34)、酸化マンガン(MnO2)、酸化ニッケル(NiO)、硝酸アルミニウム9水和物(Al(NO33・9H2O)、および酸化ホウ素(B23)等を所定比率で添加し、板状に成形してから、大気中において870〜1050℃の範囲内の温度で焼成することによって得られる。無論、上述の添加成分に限られるものでなく、ビスマスに代えてプラセオジウム(Pr)等の希土類元素等を用いても、電流−電圧非直線性を発現させることができる。 The substrates 7 and 11 are made of ceramics containing zinc oxide as a main component and a component for expressing current-voltage nonlinear characteristics. These substrates 7 and 11 are made of zinc oxide (ZnO) as a main component, and components for causing the obtained ceramic to exhibit current-voltage nonlinear characteristics such as bismuth oxide (Bi 2 O 3 ), antimony oxide (Sb 2 ). O 3 ), cobalt oxide (Co 3 O 4 ), manganese oxide (MnO 2 ), nickel oxide (NiO), aluminum nitrate nonahydrate (Al (NO 3 ) 3 .9H 2 O), and boron oxide (B 2 O 3 ) and the like are added at a predetermined ratio, formed into a plate shape, and then fired at a temperature in the range of 870 to 1050 ° C. in the atmosphere. Needless to say, the present invention is not limited to the above-described additive components, and current-voltage nonlinearity can also be expressed by using rare earth elements such as praseodymium (Pr) instead of bismuth.

基体7,11は、その単位厚さ当りの電流−電圧非直線特性の立ち上がり電圧が等しい場合には、基体7における厚さ方向の立ち上がり電圧が基体11のそれの1/2となるよう、基体7,11の厚さや、焼成条件等を制御して作製する。単位厚さ当りの立ち上がり電圧が等しい場合には、基体7,11の厚さの関係を1:2とする。無論、単位厚さ当りの立ち上がり電圧をそろえることなく、基体7の厚さ方向の電流−電圧非直線特性の立ち上がり電圧と基体11のそれとの比を1:2とすることによってもよく、これによれば原材料を選択する上での制約をいちじるしく緩和することが可能となる。   When the rising voltages of the current-voltage non-linear characteristics per unit thickness of the substrates 7 and 11 are equal, the substrates 7 and 11 have a rising voltage in the thickness direction of the substrate 7 that is ½ that of the substrate 11. It is manufactured by controlling the thickness of 7, 11 and the firing conditions. When the rising voltages per unit thickness are equal, the relationship between the thicknesses of the substrates 7 and 11 is 1: 2. Needless to say, the ratio of the rising voltage of the current-voltage nonlinear characteristic in the thickness direction of the substrate 7 to that of the substrate 11 may be set to 1: 2 without making the rising voltages per unit thickness uniform. According to this, it is possible to relieve the restrictions on selecting raw materials.

電極8〜10および電極12〜14は、基体7,11の主面上にそれぞれスクリーン印刷法で所定のパターンに銀ペーストを塗布し、焼付け処理することによって形成する。   The electrodes 8 to 10 and the electrodes 12 to 14 are formed by applying a silver paste in a predetermined pattern on the main surfaces of the substrates 7 and 11 by a screen printing method and baking the same.

そして、電極9と同13、ならびに電極10と同14とをそれぞれ向かい合わせ、それらの間に、配電線に接続するための引出し端子4,5を配置し、さらに導電性接着剤または半田付けにより接続する。これによって、電圧非直線性抵抗素子1,2が強固に一体化される。そして、素子2の電極12には、図2(d)に示すように、アース端子に接続すべき共通引出し端子6を導電性接着剤または半田付けを使用して接続する。   Then, the electrodes 9 and 13 and the electrodes 10 and 14 face each other, and lead terminals 4 and 5 for connecting to the distribution lines are arranged between them, and further by conductive adhesive or soldering. Connecting. Thereby, the voltage non-linear resistance elements 1 and 2 are firmly integrated. As shown in FIG. 2D, the common lead terminal 6 to be connected to the ground terminal is connected to the electrode 12 of the element 2 using a conductive adhesive or soldering.

ここで、素子1,2において、基体7,11のそれぞれの同一表面に形成される電極9,10、同13,14の離隔距離を、それぞれ基体7,11の厚さよりも大とする。これによって、サージ電圧が印加されたとき、基体7においては電極8,9間または同8,10間の基体部分の特性要素が、また基体11においては電極13,12間または同14,12間の基体部分でもっぱら導通し、同一面内に配置された電極9,10間および同13,14間での導通の発生が防止される。実験によれば、電極4,5および同13,14の間隔は、それぞれ基体7,11の厚さの少なくとも2倍とすることが推奨される。この例では、電極9と同13,電極10と同14とを対向させて接続した構造であるので、電極9,10の間隔が同13,14間のそれと等しいことから、電圧非直線性基体の厚み方向の立ち上がり電圧が高い方の素子2の電極13,14の間隔と基体11の厚さを上述の寸法関係とすればよい。   Here, in the elements 1 and 2, the separation distance between the electrodes 9, 10, 13, and 14 formed on the same surface of each of the base bodies 7 and 11 is larger than the thickness of the base bodies 7 and 11, respectively. Thus, when a surge voltage is applied, the characteristic element of the substrate portion between the electrodes 8 and 9 or between the electrodes 8 and 10 in the substrate 7, and between the electrodes 13 and 12 or between the electrodes 14 and 12 in the substrate 11. Thus, the base portion is electrically conducted, and the occurrence of conduction between the electrodes 9 and 10 and the electrodes 13 and 14 arranged in the same plane is prevented. According to experiments, it is recommended that the distance between the electrodes 4 and 5 and 13 and 14 be at least twice the thickness of the substrates 7 and 11, respectively. In this example, since the electrodes 9 and 13 and the electrodes 10 and 14 are connected to face each other, the distance between the electrodes 9 and 10 is equal to that between the electrodes 13 and 14, so that the voltage nonlinear substrate The distance between the electrodes 13 and 14 of the element 2 having the higher rising voltage in the thickness direction and the thickness of the substrate 11 may be in the above-described dimensional relationship.

図4の等価回路図に示すように、このデバイスでは、電圧非直線性抵抗基体7と電極9,8とによって特性要素15が、また、基体7と電極10,8とによって特性要素16がそれぞれ形成される。そして、これら要素15,16が共通電極8によって直列に接続されるとともに、その両端部が引出し端子4,5に接続される。また、電圧非直線性抵抗基体11と電極12,13とによって特性要素17が、また基体11と電極12,14とによって特性要素18がそれぞれ形成され、それぞれが共通の引出し端子6と互いに独立した引出し端子4,5との間にそれぞれ接続される。   As shown in the equivalent circuit diagram of FIG. 4, in this device, the characteristic element 15 is formed by the voltage nonlinear resistance base 7 and the electrodes 9 and 8, and the characteristic element 16 is formed by the base 7 and the electrodes 10 and 8, respectively. It is formed. These elements 15 and 16 are connected in series by the common electrode 8 and both ends thereof are connected to the lead terminals 4 and 5. Further, a characteristic element 17 is formed by the voltage non-linear resistance base 11 and the electrodes 12 and 13, and a characteristic element 18 is formed by the base 11 and the electrodes 12 and 14, respectively, which are independent of the common lead terminal 6. Connected between the lead terminals 4 and 5, respectively.

そして、引出し端子4,5が配電線路用端子19,20にそれぞれ接続され、また引出し端子6がアース用端子21に接続される。   The lead terminals 4 and 5 are connected to the distribution line terminals 19 and 20, respectively, and the lead terminal 6 is connected to the ground terminal 21.

上述のサージ防護デバイスは、二つの電圧非直線性抵抗基体1,2の厚さ方向の非直線特性の立ち上がり電圧を1:2の関係とし、複数個の電極を形成した主面同士を対向させ、導電性接着剤または半田を用いて、対応する電極9,13、同10,14同士をそれぞれ引出し端子4,5を介在させて接合した構造であるので、電極を同一面内に二次元的に配置する場合に比べて、いちじるしく小形化することができる。また、立ち上がり電圧の高い基体2の共通電極12に共通の引出し端子16を同様の方法で接合するとともに、基体1の共通電極8を二つの特性要素の接続体としたので、接続に要する工数が大幅に減少させることができ、また特性要素間の特性のばらつきが小さいデバイスとすることができる。そして、引出し端子4,5,6をその舌片状部分が一方向へ突出するよう配置して、素子1,2を絶縁性樹脂たとえばエポキシ樹脂による封止が容易となり、信頼性の高いデバイスを低コストで容易に量産することができる。   In the above-described surge protection device, the rising voltages of the nonlinear characteristics in the thickness direction of the two voltage nonlinear resistance bases 1 and 2 have a 1: 2 relationship, and the main surfaces on which a plurality of electrodes are formed are opposed to each other. Since the corresponding electrodes 9, 13, 10, 14 are joined with the lead terminals 4, 5 using conductive adhesive or solder, the electrodes are two-dimensionally arranged in the same plane. Compared with the case where it arrange | positions in, it can be remarkably miniaturized. In addition, since the common lead terminal 16 is joined to the common electrode 12 of the base 2 having a high rising voltage by the same method and the common electrode 8 of the base 1 is connected to two characteristic elements, the number of man-hours required for connection is reduced. The device can be greatly reduced, and the characteristic variation between the characteristic elements is small. The lead terminals 4, 5 and 6 are arranged so that the tongue-like portions protrude in one direction, so that the elements 1 and 2 can be easily sealed with an insulating resin, for example, an epoxy resin. It can be easily mass-produced at low cost.

さらに、引出し端子4,5に、図4(a)(b)に示すように、円形や多角形等、種々の形状の透孔22,23を、一つまたは複数個穿設しけた端子を使用することで、電圧非直線性抵抗基体1,2と引出し端子4,5との間の導電性ペーストまたは半田が透孔22,23を通して一体化するため、これらの接合強度を高めることができる。無論、共通引出し端子6についても、同様な構造の端子とすることで、共通電極12を介しての基体11との接合強度を高めることができる。また、引出し端子3,4,6の表面を粗面化することによっても、導電ペーストまたは半田が接触する面積を増大させ、接合強度を高めることができる。   Further, as shown in FIGS. 4 (a) and 4 (b), the lead terminals 4 and 5 are provided with terminals in which one or a plurality of through holes 22 and 23 having various shapes such as a circle and a polygon are formed. By using the conductive paste or solder between the voltage non-linear resistance bases 1 and 2 and the lead terminals 4 and 5 through the through holes 22 and 23, the joint strength can be increased. . Of course, the joint lead terminal 6 can also be increased in bonding strength with the base body 11 through the common electrode 12 by using a terminal having a similar structure. Also, by roughening the surfaces of the lead terminals 3, 4 and 6, it is possible to increase the area where the conductive paste or solder contacts, and to increase the bonding strength.

さらにまた、上述の例においては電圧非直線性抵抗基体7,11の対向面側にそれぞれ2個の電極9,10、電極13,14を設けているが、これら電極を等間隔に3個づつ設け、上述の例と同様に対応する電極同士の間に引出し端子を配置し、一体化することで、三相交流配電系統におけるサージ防護対策に有用なデバイスを提供することができる。   Furthermore, in the above example, two electrodes 9 and 10 and electrodes 13 and 14 are provided on the opposing surface side of the voltage nonlinear resistance bases 7 and 11, respectively. A device useful for surge protection measures in a three-phase AC distribution system can be provided by arranging and integrating the lead terminals between corresponding electrodes as in the above example.

(a)は本発明のサージ防護デバイスにおける実施の形態の一例の側面図、(b)はその上面図、(c)はその下面図である。(A) is a side view of an example of an embodiment of the surge protection device of the present invention, (b) is a top view thereof, and (c) is a bottom view thereof. (a)は図1に示した実施の形態におけるサージ防護素子の断面図、(b)は(a)のb−b断面図、(c)は(a)のc−c断面図である。(A) is sectional drawing of the surge protection element in embodiment shown in FIG. 1, (b) is bb sectional drawing of (a), (c) is cc sectional drawing of (a). 図1に示した実施の形態の等価回路図である。FIG. 2 is an equivalent circuit diagram of the embodiment shown in FIG. 1. (a),(b)はそれぞれ引出し端子の他の構造例を示す平面図である。(A), (b) is a top view which shows the other structural example of an extraction terminal, respectively.

符号の説明Explanation of symbols

1,2 電圧非直線性抵抗素子
3 絶縁被覆体
4,5 板状引出し端子
7 電圧非直線性抵抗基体
8 共通電極
9,10 電極
11 電圧非直線性抵抗基体
12 共通電極
13,14 電極
15,16,17,18 特性要素
19,20 配電線路用端子
22,23 透孔
DESCRIPTION OF SYMBOLS 1, 2 Voltage non-linear resistance element 3 Insulation coating body 4,5 Plate-like extraction terminal 7 Voltage non-linear resistance base | substrate 8 Common electrode 9,10 electrode 11 Voltage non-linear resistance base | substrate 12 Common electrode 13,14 Electrode 15, 16, 17, 18 Characteristic element 19, 20 Distribution line terminal 22, 23 Through hole

Claims (9)

平行な二つの主面を有し、前記主面の一方の上に共通電極が形成され、また前記主面の他方の上に複数の電極が離隔して形成された板状の第1、第2の電圧非直線性抵抗基体を、前記複数の電極同士を対向させて配置し、かつ対向する電極間に引出し端子をそれぞれ介在させて接続するとともに、前記第1、第2の電圧非直線性抵抗基体のいずれか一方の共通電極上に共通引出し端子を配置し接続したサージ防護デバイス。   A plate-like first and second plate having two parallel principal surfaces, a common electrode formed on one of the principal surfaces, and a plurality of electrodes spaced apart on the other of the principal surfaces; The two voltage nonlinear resistance bases are arranged with the plurality of electrodes facing each other, and connected with each other with an extraction terminal interposed between the opposing electrodes, and the first and second voltage nonlinearities are connected. A surge protection device in which a common lead-out terminal is placed and connected on either common electrode of the resistor base. 前記第1、第2の電圧非直線性抵抗基体のそれぞれにおける他方主面上の複数の電極の離隔距離が前記第1、第2の電圧非直線性抵抗基体の厚さのいずれよりも大きい請求項1に記載のサージ防護デバイス。   A separation distance between a plurality of electrodes on the other main surface of each of the first and second voltage nonlinear resistance bases is larger than any of the thicknesses of the first and second voltage nonlinear resistance bases. The surge protection device according to Item 1. 前記第2の電圧非直線性抵抗基体上に共通引出し端子を有し、前記第2の電圧非直線性抵抗基体上における前記複数の電極の離隔距離が、前記第2の電圧非直線性抵抗基体の厚さの少なくとも2倍である請求項1または2に記載のサージ防護デバイス。   A common lead terminal is provided on the second voltage non-linear resistance base, and a separation distance between the plurality of electrodes on the second voltage non-linear resistance base is the second voltage non-linear resistance base. The surge protection device according to claim 1 or 2, wherein the surge protection device is at least twice the thickness of the device. 前記第1、第2の電圧非直線性抵抗基体の電流−電圧非直線特性の単位厚さ当りの立ち上がり電圧が等しく、かつ前記第2の電圧非直線性抵抗基体の厚さが前記第1の電圧非直線性抵抗基体の2倍であって、前記第2の電圧非直線性抵抗基体の共通電極上に前記共通引出し端子が配置された請求項1、2または3に記載のサージ防護デバイス。   The rising voltages per unit thickness of the current-voltage nonlinear characteristics of the first and second voltage nonlinear resistance substrates are equal, and the thickness of the second voltage nonlinear resistance substrate is the first voltage nonlinear resistance substrate. The surge protection device according to claim 1, 2 or 3, wherein the common lead-out terminal is arranged on a common electrode of the second voltage non-linear resistance base, which is twice the voltage non-linear resistance base. 前記第2の電圧非直線性抵抗基体における一方の主面上の共通電極と他方の主面上の電極との間の電流−電圧非直線特性の立ち上がり電圧が、前記第1の電圧非直線性抵抗基体における一方の主面上の共通電極と他方の主面上の電極との間の電流−電圧非直線性の立ち上がり電圧の2倍であって、前記第2の電圧非直線性抵抗基体の共通電極上に前記共通引出し端子が配置された請求項1、2または3に記載のサージ防護デバイス。   The rising voltage of the current-voltage nonlinear characteristic between the common electrode on one main surface and the electrode on the other main surface in the second voltage nonlinear resistance base is the first voltage nonlinearity. 2 times the rising voltage of current-voltage nonlinearity between the common electrode on one main surface and the electrode on the other main surface of the resistive substrate, the second voltage nonlinear resistive substrate The surge protection device according to claim 1, wherein the common lead terminal is disposed on a common electrode. 前記第1、第2の電圧非直線性抵抗基体の主面上に形成された電極それぞれと前記引出し端子とを、はんだおよび導電性樹脂のいずれか一方で電気的に接続した請求項1から5のいずれかに記載のサージ防護デバイス。   6. Each of the electrodes formed on the main surface of the first and second voltage nonlinear resistance bases and the lead terminal are electrically connected with either solder or conductive resin. The surge protection device according to any one of the above. 前記引出し端子が、一つまたは複数の透孔が形成された板状導電体からなる請求項1から6のいずれかに記載のサージ防護デバイス。   The surge protection device according to any one of claims 1 to 6, wherein the lead terminal is made of a plate-like conductor in which one or a plurality of through holes are formed. 前記電圧非直線性抵抗基体が酸化亜鉛を主成分とするセラミックスからなる請求項1から7のいずれかに記載のサージ防護デバイス。   The surge protection device according to any one of claims 1 to 7, wherein the voltage non-linear resistance base is made of a ceramic mainly composed of zinc oxide. 前記第1、第2の電圧非直線性抵抗基体、前記電極および前記電極に接続された引出し端子が絶縁性材料からなる封止体で被覆された請求項1から8のいずれかに記載のサージ防護デバイス。   The surge according to any one of claims 1 to 8, wherein the first and second voltage non-linear resistance bases, the electrode, and an extraction terminal connected to the electrode are covered with a sealing body made of an insulating material. Protective device.
JP2006135530A 2006-05-15 2006-05-15 Surge protection device Withdrawn JP2007305934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135530A JP2007305934A (en) 2006-05-15 2006-05-15 Surge protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006135530A JP2007305934A (en) 2006-05-15 2006-05-15 Surge protection device

Publications (1)

Publication Number Publication Date
JP2007305934A true JP2007305934A (en) 2007-11-22

Family

ID=38839579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135530A Withdrawn JP2007305934A (en) 2006-05-15 2006-05-15 Surge protection device

Country Status (1)

Country Link
JP (1) JP2007305934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168986A1 (en) * 2021-02-08 2022-08-11 パナソニックIpマネジメント株式会社 Varistor component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168986A1 (en) * 2021-02-08 2022-08-11 パナソニックIpマネジメント株式会社 Varistor component

Similar Documents

Publication Publication Date Title
US5523645A (en) Electrostrictive effect element and methods of producing the same
US8902039B2 (en) Non-linear resistive element
CN109585105B (en) Electronic component
TWI386957B (en) Electrical multilayer component
JP4074299B2 (en) Multilayer chip varistor
JP2007305934A (en) Surge protection device
JP4449999B2 (en) Electronic component and its mounting structure, and inverter device
JP4836506B2 (en) Electrical device having a resistive heat generating element
JP2004006519A (en) Multi-terminal varistor
US5920242A (en) Multielement-type piezoelectric filter with through-hole connection of resonators to a base substrate circuit
JPH10199709A (en) Multilayer type varistor
JP2004040023A (en) Voltage nonlinear resistor element
JP2004014437A (en) Chip type surge absorber and its manufacturing method
US11791070B2 (en) NTC thermistor element
JPH01152704A (en) Composite electronic component
JPH02220406A (en) Multipolar varistor
JPS61202402A (en) Surge absorber
JPH0416013A (en) Noise filter
JPH07130508A (en) Surge absorbing element
JP2000331805A (en) Laminated ceramic array
JPS60240085A (en) Arrester
JPH0138884Y2 (en)
JPH0138883Y2 (en)
JP3419305B2 (en) Composite element
JPS593559Y2 (en) surge absorber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804