JP2004002776A - Thermally shrinkable polylactic acid film - Google Patents

Thermally shrinkable polylactic acid film Download PDF

Info

Publication number
JP2004002776A
JP2004002776A JP2003093526A JP2003093526A JP2004002776A JP 2004002776 A JP2004002776 A JP 2004002776A JP 2003093526 A JP2003093526 A JP 2003093526A JP 2003093526 A JP2003093526 A JP 2003093526A JP 2004002776 A JP2004002776 A JP 2004002776A
Authority
JP
Japan
Prior art keywords
polylactic acid
heat
acid
film
aliphatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003093526A
Other languages
Japanese (ja)
Other versions
JP3655619B2 (en
Inventor
Takashi Hiruma
比留間 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2003093526A priority Critical patent/JP3655619B2/en
Publication of JP2004002776A publication Critical patent/JP2004002776A/en
Application granted granted Critical
Publication of JP3655619B2 publication Critical patent/JP3655619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid film that is biodegradable and has an excellent appearance after shrinkage. <P>SOLUTION: The thermally shrinkable polylactic acid film has at least one layer that mainly comprises a resin composition including a polylactic acid polymer and an aliphatic polyester resin (A) having a melting point of 100°C-170°C and a glass transition point of ≤ 0°C and is at least uniaxially oriented. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ポリ乳酸系フィルムに関し、特に、収縮包装、収縮結束包装、収縮ラベル等に用いられるポリ乳酸系フィルムに関する。
【0002】
【従来の技術】
収縮包装や収縮結束包装、収縮ラベル等に利用される熱収縮性フィルムの材料として、ポリ塩化ビニル(PVC)、スチレン−ブタジエンブロック共重合体(SBS)、ポリエステル系樹脂等が用いられてきた。これらプラスチック材料からなる熱収縮性フィルムは、使用後、収縮包装等した製品と共に使い捨てされるものであり、使用後、廃棄する際に、焼却又は埋立等の処分が問題となっている。例えば、ポリ塩化ビニルは焼却時に有害なガスを発生する。また、埋立処分においても、これらのプラスチック製品は化学的安定性が高いので自然環境下でほとんど分解されず半永久的に土中に残留し、ゴミ処理用地の能力を短期間で飽和させてしまう。また、自然環境中に投棄されると、景観を損なったり海洋生物等の生活環境を破壊する。
そこで、環境保護の観点から、近年においては、生分解性の材料の研究、開発が活発に行われている。その注目されている生分解性の材料の1つとして、ポリ乳酸がある。ポリ乳酸は生分解性であるので土中や水中で自然に加水分解が進行し、微生物により無害な分解物となる。また、燃焼熱量が小さいので焼却処分を行ったとしても炉をいためない。さらに、出発原料が植物由来であるため、枯渇する石油資源から脱却できる等の特長も有している。
【0003】
例えば、ポリ乳酸からなる熱収縮性フィルムが特開平5−212790号公報に開示されているが、この熱収縮性フィルムは収縮温度が140℃〜150℃と高いので、特殊な用途にしか用いることができない。
また、ポリ乳酸は本来有する脆性のために、これをシート状やフィルム状にしても充分な強度が得られず、実用に供し難い。特に一軸延伸した収縮性フィルムは、未延伸方向の脆性が改良されないので、その方向に衝撃を受けると裂けやすい。耐破断性を付与するために、ポリ乳酸系重合体に脂肪族ポリエステルをブレンドすることが検討されている。
しかし、ポリ乳酸系重合体と脂肪族ポリエステルとを混合して形成したフィルムを一軸延伸した場合には、非延伸方向への収縮が発生する。例えば横方向に一軸延伸したフィルムを用いてPETボトル等の熱収縮ラベル等を形成すると、横方向に収縮するのみならず、その垂直方向(以後、このような収縮を「縦収縮」と称す)にも収縮が発生し、ラベルの外観が損なわれる。そのため、一軸延伸した場合には、その非延伸方向の収縮を抑制することができる熱収縮性ポリ乳酸系フィルムの開発が望まれていた。
【0004】
【特許文献1】
特開平5−212790号公報
【0005】
【発明が解決しようとする課題】
本発明は上記問題点を解決すべくなされたものであり、本発明の目的は、生分解性を有し、かつ、収縮後の外観が良好である熱収縮性ポリ乳酸系フィルムを提供することにある。
【0006】
【課題を解決するための手段】
本発明の熱収縮性ポリ乳酸系フィルムは、ポリ乳酸系重合体と、融点が100℃〜170℃であり、ガラス転移温度が0℃以下である脂肪族ポリエステル樹脂Aとの樹脂組成物を主成分とする層を少なくとも一層以上有し、かつ、少なくとも1軸に延伸したフィルムであることを特徴とする。
ここで、樹脂組成物は、融点が50℃〜100℃である脂肪族ポリエステル樹脂Bをさらに含むことができる。
また、樹脂組成物は、D−乳酸とL−乳酸の構成割合が質量比で98:2〜85:15または2:98〜15:85の範囲内であるポリ乳酸系重合体を50質量%〜90質量%含み、前記脂肪族ポリエステル樹脂Aを10質量%〜40質量%含むことができる。
また、樹脂組成物を主成分とする層を中間層とし、ポリ乳酸を90質量%以上含む層を外層として少なくとも1層有することができる。
【0007】
【発明の実施の形態】
本発明の熱収縮性ポリ乳酸系フィルムは、ポリ乳酸系重合体と、融点が100℃〜170℃であり、かつ、ガラス転移温度が0℃以下である脂肪族ポリエステル(以下「脂肪族ポリエステルA」と称すこともある)との混合物を主成分とする層を少なくとも1層有する。
【0008】
本発明において使用されるポリ乳酸系重合体は、構造単位がL−乳酸であるポリ(L−乳酸)、構造単位がD−乳酸であるポリ(D−乳酸)、構造単位がL−乳酸及びD−乳酸であるポリ(DL−乳酸)やこれらの混合体を主成分とするものをいう。本発明においては、さらには、後述する他のヒドロキシカルボン酸単位との共重合体であってもよく、また少量の鎖延長剤残基を含んでも良い。
ポリ乳酸系重合体は、D体とL体との構成割合が質量比で、D−乳酸:L−乳酸=98:2〜85:15または2:98〜15:85の範囲内であることが好ましい。
D−乳酸とL−乳酸の構成割合が100:0もしくは0:100であるポリ乳酸系重合体は、結晶性が非常に高く、耐熱性、機械的物性に優れるが、熱収縮性フィルムを形成するために延伸すると、延伸配向による結晶化が進行し、熱収縮率を調整することが難しい。また、非結晶状態のフィルムが得られても、収縮時の熱によって結晶化が進行し、収縮仕上がり性が低下する。したがって、ポリ乳酸系重合体を用いて熱収縮性フィルムを得るためには、結晶性を適度に低下させることが好ましい。一般に、D−乳酸とL−乳酸との共重合体の場合には、その光学異性体の割合が増えるにつれて結晶性が低下することが知られており、その割合を調整することにより結晶性を低下させることができる。また、光学異性体の割合を調整する目的で、D−乳酸とL−乳酸の構成割合が異なる2種類以上のポリ乳酸をブレンドしても良い。
【0009】
ポリ乳酸に共重合される上記他のヒドロキシカルボン酸単位としては、乳酸の光学異性体(L−乳酸に対してはD−乳酸、D−乳酸に対してはL−乳酸)、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等の2官能脂肪族ヒドロキシカルボン酸やカプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類が挙げられる。
【0010】
ポリ乳酸系重合体の重合方法としては、縮合重合法、開環重合法等公知の方法を採用することができる。例えば、縮合重合法では、L−乳酸またはD−乳酸、あるいはこれらの混合物等を直接脱水縮合重合して任意の組成を有するポリ乳酸系重合体を得ることができる。
また、開環重合法(ラクチド法)では、乳酸の環状2量体であるラクチドを、必要に応じて重合調節剤等を用いながら、適当な触媒を使用してポリ乳酸系重合体を得ることができる。
【0011】
本発明において使用されるポリ乳酸系重合体は、重量平均分子量が6万〜70万であることが好ましく、より好ましくは8万〜40万、特に好ましくは10万〜30万である。分子量が小さすぎると機械物性や耐熱性等の実用物性がほとんど発現されず、大きすぎると溶融粘度が高すぎて成形加工性に劣る。
【0012】
次に脂肪族ポリエステルについて説明する。
本発明において脂肪族ポリエステルとは、脂肪族ジカルボン酸またはその誘導体と脂肪族多価アルコールとを主成分とする脂肪族ポリエステルであり、生分解性を有することが好ましい。
脂肪族ポリエステルを構成する脂肪族ジカルボン酸成分としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等が挙げられ、脂肪族多価アルコールとしては、エチレングリコール、1,4ブタンジオール、1,4−シクロヘキサンジメタノール等の脂肪族ジオールが挙げられる。本発明において最も好適に用いられる脂肪族ジカルボン酸成分はコハク酸およびアジピン酸であり、脂肪族多価アルコール成分は1,4−ブタンジオールである。
【0013】
融点が100℃以上、170℃以下である脂肪族ポリエステルAは、生分解性であることが好ましく、また、融点が100℃以上、140℃以下であることが好ましい。融点が100℃未満では、熱収縮時に脂肪族ポリエステルAが融解し始めるので縦収縮が大きくなる。脂肪族ポリエステルAの融点が100℃以上であれば、蒸気シュリンカー等において設定される通常の温度領域、すなわちポリ乳酸系重合体が収縮する温度領域である60℃〜100℃の範囲で、脂肪族ポリエステルAは結晶状態を保つので、柱のような役割を果たし縦収縮を抑えることができるのである。
ポリ乳酸系重合体の融点は、D−乳酸とL−乳酸との構成割合によっても多少変動するが一般的に170℃付近であり、押出時の熱分解を抑えるためには約170℃〜約200℃の範囲で押出温度を設定する必要がある。そのため脂肪族ポリエステルAの融点が170℃以上では、ポリ乳酸系重合体及び脂肪族ポリエステルAを含む樹脂組成物を押出成形する際に、樹脂組成物全てを十分に溶融することができなくなる。
【0014】
脂肪族ポリエステルAは、ガラス転移温度が0℃以下であることが好ましく、さらに耐破断性を付与する場合には、−20℃以下であることがより好ましい。ガラス転移温度が0℃以下であれば特に限定されないが、最も好適に用いられる脂肪族ポリエステルAとしては脂肪族ジカルボン酸またはその誘導体と脂肪族多価アルコールを主成分とする脂肪族ポリエステルである。
脂肪族ポリエステルAや後述する脂肪族ポリエステルBを構成する脂肪族ジカルボン酸成分としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸、またはこれらの無水物や誘導体が挙げられる。一方、脂肪族多価アルコール成分としては、エチレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール等の脂肪族ジオール、またはこれらの誘導体が挙げられる。中でも好適に用いられる脂肪族ポリエステルAは、脂肪族ジカルボン酸成分としてコハク酸と、脂肪族多価アルコール成分として1,4−ブタンジオールとから重合されるポリブチレンサクシネートである。
脂肪族ポリエステルAは、その重合工程において、分子量増大を目的として少量の鎖延長剤、例えば、ジイソシアネート化合物、エポキシ化合物、ジフェニル化合物、酸無水物などを使用しても構わない。重量平均分子量の好ましい範囲としては6万〜30万であることが好ましく、より好ましくは9万〜20万である。
脂肪族ポリエステルAの溶融粘度の好ましい範囲はMFR(190℃)値が1〜40程度が好ましく、より好ましくは、1〜20程度である。40以上では、ポリ乳酸系重合体との混練性の低下、耐破断性の低下を招きやすくなるからである。
【0015】
本発明において脂肪族ポリエステルAは、融点が100℃〜170℃であり、ガラス転移温度が0℃以下であれば他の成分との共重合体であっても良い。例えば芳香族ジカルボン酸成分を含む芳香族脂肪族ポリエステルやカーボネート基を有する脂肪族ポリエステルカーボネート(例えば、1,4−ブタンジオール/コハク酸共重合体にカーボネート基を有する構造)等の生分解性樹脂を用いることができる。また、乳酸と脂肪族ジカルボン酸、脂肪族ジオールの共重合系、例えばポリ乳酸ブチレンサクシネート等の生分解性樹脂を用いることも可能である。
【0016】
本発明においては、ポリ乳酸系重合体および脂肪族ポリエステルAをそれぞれ所定量の範囲内で混合することが好ましい。例えば、樹脂組成物中、ポリ乳酸系重合体が50質量%以上、90質量%以下の範囲内であり、脂肪族ポリエステルAが10質量%以上、40質量%以下の範囲内で混合することが好ましい。
【0017】
本発明においては、ポリ乳酸系重合体と脂肪族ポリエステルAの他に、融点が50℃以上、100℃以下の脂肪族ポリエステル樹脂(以下、「脂肪族ポリエステルB」と称すこともある)を混合することができる。脂肪族ポリエステルBは、生分解性であることが好ましく、例えば、ポリブチレンサクシネートアジペート(融点94℃)、ポリカプロラクトン(融点61℃)等が挙げられる。脂肪族ポリエステル樹脂Bをブレンドすることにより、フィルムの透明性や耐破断性を向上させることができる。ただし、脂肪族ポリエステルBの混合量は、樹脂組成物中、5質量%以上、20質量%以下の範囲内であることが好ましい。混合量が5質量%以上であれば、透明性や耐破断性を十分に向上させることができ、20質量%以下であれば、大きな縦収縮が生じず、収縮後の外観も良好に仕上がるからである。
また、融点が同一の脂肪族ポリエステル樹脂Bの中では、溶融粘度が低いもの、すなわちメルトフローレート(MFR)が高い脂肪族ポリエステル樹脂Bを選択することが透明性向上の点から好ましい。
脂肪族ポリエステルBは、その重合工程において、分子量増大を目的として少量の鎖延長剤、たとえば、ジイソシアネート化合物、エポキシ化合物、ジフェニル化合物、酸無水物等を使用しても構わない。
本発明に係る脂肪族ポリエステルBにおいて好ましく用いられるポリブチレンサクシネートアジペートの重量平均分子量は、6万〜30万が好ましく、より好ましくは9万〜20万である。脂肪族ポリエステルBの溶融粘度の好ましいMFR(190℃)値が1〜40であり、より好ましくは1〜20程度である。40を越すとポリ乳酸系重合体との混練性の低下、耐破断性の低下を招きやすくなる。また、ポリカプロラクトンの好ましい溶融粘度のMFR(190℃)値の範囲は1〜20であり、より好ましくは1〜10程度である。
【0018】
本発明においては、ポリ乳酸系重合体および脂肪族ポリエステルを含む樹脂組成物からなる層に他の層を1層以上積層することができる。例えば、ポリ乳酸系重合体を90質量%以上含有する層を外層として設けることにより、透明性を向上させることができる。
ポリ乳酸系重合体と脂肪族ポリエステルとは延伸時の変形挙動が異なるので、両者を含むフィルムを延伸すると平面荒れが起こることがあり、透明性が大幅に低下する。この場合、ポリ乳酸系重合体の含有量が少なくなるほど平面荒れが起こり易くなり、透過光の拡散が起きてヘーズが上昇し、透明性が低下する。ポリ乳酸系重合体を90質量%以上含有する外層を設けることにより、表面荒れを抑えることができるので、フィルム表面での透過光の拡散を防ぐことができる。外層を構成するポリ乳酸系重合体の混合量は90質量%以上であり、好ましくは95質量%であり、さらに好ましくは100質量%である。ポリ乳酸系重合体の混合量が90質量%未満の外層では、フィルム延伸時の表面荒れを抑えることができず外層としての機能を果たさないからである。
【0019】
外層に用いられるポリ乳酸系重合体は、上述した樹脂組成物に用いられるポリ乳酸系重合体と同一でも異なっていても良く、特に限定されない。PETボトルや瓶ボトルに使用される熱収縮性ポリ乳酸系フィルムには、ラベリング後、ボトル等が擦れ合って、熱い状態のフィルムが融着し、穴があくことを回避するために、結晶性をある程度付与することが好ましい。
【0020】
外層は、表面荒れの凹凸の高さを上回る程度の厚みであることが必要であり、例えば1μm以上であることが好ましく、さらに好ましくは2μm以上である。外層は両面に設けられていても良く、その厚みは同一でも異なっていても良い。また2つの外層は、同一組成でも異なっていても良い。両面の外層が同一厚み、同一組成であると、良好な収縮特性やカール防止性等が得られるので好ましい。本発明においては、本発明の効果を阻害しない範囲で他の層を設けても良い。
【0021】
本発明の熱収縮性ポリ乳酸系フィルムの各層を構成する樹脂組成物には、諸物性を調整する目的で、熱安定剤、光安定剤、光吸収剤、滑剤、可塑剤、無機充填剤、着色剤、顔料等を添加することができる。
【0022】
次に、本発明の熱収縮性ポリ乳酸系フィルムを製造する方法について説明するが、これらに限定されるものではない。
ポリ乳酸系重合体と脂肪族ポリエステルAとを主成分とし、必要に応じて脂肪族ポリエステルBを含有する樹脂組成物を押出機によって溶融、押出ししてフィルムを形成することができる。押出しに際しては、公知のTダイ法、チューブラ法等を適用することができる。ただし、分解による分子量の低下を考慮して押出し温度を設定する必要がある。溶融押出しされた樹脂は、冷却ロール、空気、水等で冷却され、その後、熱風、温水、赤外線、マイクロウエーブ等の適当な方法で再加熱され、ロール法、テンター法、チューブラ法等によって、1軸または2軸に延伸される。
【0023】
延伸温度は、ポリ乳酸系重合体のL体とD体との混合比等によって、また熱収縮性フィルムに要求される用途等に応じて適宜選択されるが、概ね70℃〜95℃の範囲内である。
延伸倍率も混合比や用途等に応じて適宜選択されるが、主収縮方向においては1.5〜6倍の範囲内で適宜決定されることが好ましい。また、縦収縮率を低く抑えつつ耐破断性を発現するためには、縦方向の延伸倍率を約1.01〜1.20とすることが好ましい。ここで、主収縮方向とは、フィルムにおける長手方向と直角な方向(横方向)を意味し、縦方向とは、フィルムの流れ方向、すなわちフィルムの長手方向を意味する。
また、1軸延伸にするか2軸延伸にするかは製品の用途等によって決定される。
例えばPETボトル等のラベルに使用する熱収縮性ポリ乳酸系フィルムは、横方向の一軸延伸を行うことが好ましいが、縦方向の収縮を完全に防止するためには、縦方向にわずかに延伸しておくことがさらに好ましい。脂肪族ポリエステルBを添加しても耐破断性が十分に付与されない場合や、縦収縮率と縦方向の耐破断性との両立が困難な場合でも、縦方向にわずかに延伸しておくことにより、縦収縮を防ぐことができる。これは脂肪族ポリエステルの融点を規定することによって、縦延伸をかけながら縦収縮を抑えることが可能となったためである。
【0024】
熱収縮性ポリ乳酸系フィルムの主収縮方向の収縮率は、用途に応じて適宜決定されるが、PETボトル等のラベルに使用する場合には、主収縮方向において、80℃の温水によって10秒間処理を行った場合の収縮率が30%以上であることが好ましい。内容物の保護、ラベリング工程の高速化に対応するためには収縮率が40%以上であることがさらに好ましい。
本発明において縦収縮率は、80℃の温水によって10秒間処理した場合の収縮率が7%以下であることが好ましく、さらに好ましくは5%以下である。縦収縮率が7%以上ではラベルの縦方向の収縮が目立ち、収縮仕上がり性を悪化させてしまうからである。縦収縮率は小さい方が好ましいが、収縮時の横シワ等を解消するためには少し縦収縮する方が好ましい場合もある。
【0025】
本発明の熱収縮性ポリ乳酸系フィルムが積層体である場合には、他の層の樹脂組成物との共押出しを行うことにより積層体を形成することができる。例えば、ポリ乳酸系重合体と脂肪族ポリエステルAを主成分として含む樹脂組成物を中間層用樹脂組成物とし、ポリ乳酸系重合体を90質量%以上含む樹脂組成物を外層用樹脂組成物として、共押出しを行うことにより積層体を形成することができる。
【0026】
【実施例】
以下、実施例を用いて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例において、フィルムの流れ方向(縦方向)をMD、その直交する方向(横方向)をTDと記す。
各実施例及び比較例で使用したポリ乳酸系重合体は以下のようにして製造した。
【0027】
ポリ乳酸系重合体I(D体含有量:5.2%)の製造
ピューラックジャパン(株)製のL−ラクチド(商品名:PURASORB L)90kgおよび同社製のDL−ラクチド(商品名:PURASORB DL)10kgに、オクチル酸スズ15ppmを添加し、攪拌機と加熱装置を備えた500Lのバッチ式重合槽に入れた。次いで窒素置換を行い、温度185℃、攪拌速度100rpmで攪拌しつつ、60分間重合を行った。得られた溶融物を、真空ベントを3段備えた三菱重工(株)製の40mmφ同方向2軸押出機に供給し、ベント圧4トル(Torr)で脱揮しながら、200℃でストランド状に押し出し、ポリ乳酸系重合体のペレットを得た。得られたポリ乳酸系重合体の重量平均分子量は20万であり、L体含有量は94.8%であった。なお、ポリマーの重量平均分子量はポリスチレンを標準としてゲルパーミエーションクロマトグラフィーにより測定した。
【0028】
ポリ乳酸系重合体II(D体含有量:10.3%)の製造
ピューラックジャパン(株)製のL−ラクチド(商品名:PURASORB L)80kgおよび同社製のDL−ラクチド(商品名:PURASORB DL)20kgに、オクチル酸スズ15ppmを添加し、攪拌機と加熱装置を備えた500Lのバッチ式重合槽に入れた。次いで窒素置換を行い、温度185℃、攪拌速度100rpmで攪拌しつつ、60分間重合を行った。得られた溶融物を、真空ベントを3段備えた三菱重工(株)製の40mmφ同方向2軸押出機に供給し、ベント圧4torrで脱揮しながら、200℃でストランド状に押し出し、ポリ乳酸系重合体のペレットを得た。得られたポリ乳酸系重合体の重量平均分子量は20万であり、L体含有量は89.7%であった。
【0029】
(実施例1)
ポリ乳酸系重合体Iを35質量%、ポリ乳酸系重合体IIを35質量%、ポリブチレンサクシネート(昭和高分子(株)製の商品名:ビオノーレ#1003、融点114℃、ガラス転移温度−32℃)を30質量%混合して樹脂組成物を作製した。この樹脂組成物を押出機を用いて、200℃で溶融混練し、Tダイを介して押出した後、約43℃のキャスティングロールにて急冷し、未延伸シートを得た。この未延伸シートを長手方向(縦方向)に65℃で1.08倍にロール延伸し、次いで、幅方向(横方向)に73℃で4倍に延伸し、約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、下記に示す評価を行った。その結果を表1に示す。
【0030】
(評価及び測定方法)
(1)熱収縮率
フィルムを、MD100mm、TD100mmの大きさに切り取り、80℃の温水バスに10秒間浸漬して収縮量を測定した。熱収縮率は、収縮前のフィルムの原寸に対する収縮量の比率を%値で表示した。
(2)引張破断伸度(耐破断性の評価)
日本工業規格JISK7127に準拠し、引張速度200mm/分で、雰囲気温度23℃におけるフィルムのMD方向の引張破断伸度を測定した。
(3)ヘ−ズ
日本工業規格JISK7105に準拠して、フィルムのヘーズを測定した。
(4)収縮仕上がり性
フィルムに10mm間隔の格子目を印刷し、このフィルムをMD100mm×TD298mmの大きさに切り取った。フィルムのTDの両端を10mm重ねて溶剤等で接着し、円筒状にした。この円筒状フィルムを、容量1.5リットルの円筒型ペットボトルに装着し、蒸気加熱方式の長さ3.2m(3ゾーン)の収縮トンネル中を回転させずに約4秒間で通過させた。ただし、各ゾーンでのトンネル内雰囲気温度は蒸気量を蒸気バルブによって調整し、80℃〜90℃の範囲とした。フイルム被覆後、下記基準に基づいて評価を行った。
評価基準:
○  収縮が十分で、シワ、アバタ、格子目の歪みがなく密着性が良好。
△  収縮は十分だが、シワ、アバタ、格子目の歪みが僅かにあるか、もしくは
縦方向の収縮率が僅かに目立つ。但し、実用上問題なし。
×  横方向の収縮不足もしくは縦方向の収縮が目立ち、実用上問題である。
【0031】
(実施例2)
ポリ乳酸系重合体Iを35質量%、ポリ乳酸系重合体IIを35質量%、ポリブチレンサクシネート(昭和高分子(株)製の商品名:ビオノーレ#1003、融点114℃、ガラス転移温度−32℃)を30質量%混合して中間層用樹脂組成物を作製した。
次に、中間層用樹脂組成物と、外層用樹脂としてポリ乳酸系重合体Iとをそれぞれ所定温度で乾燥させた後押出機に投入し、溶融混合した。これを温度200℃でTダイを介して溶融押出しし、ダイ内で合流させて3層構成の溶融体を形成した後、約43℃のキャスティングロールにて急冷し、外層/中間層/外層の2種3層構成の未延伸積層シートを得た。この未延伸シートを長手方向に65℃で1.08倍にロール延伸し、次いで、幅方向に73℃で4倍に延伸して約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、実施例1と同様の評価を行った。その結果を表1に示す。
【0032】
(実施例3)
実施例2において、中間層用樹脂組成物として混合されるポリブチレンサクシネートを昭和高分子(株)製の商品名:ビオノーレ#1010(融点115℃、ガラス転移温度−32℃)に変更した以外は実施例2と同様にして、2種3層構成(外層/中間層/外層)の未延伸積層シートを得た。この未延伸積層シートを長手方向に65℃で1.08倍にロール延伸し、次いで、幅方向に73℃で4倍に延伸して、約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、実施例1と同様の評価を行った。その結果を表1に示す。
【0033】
(実施例4)
実施例2において、中間層用樹脂組成物として配合されるポリブチレンサクシネートを昭和高分子(株)製の商品名:ビオノーレ#1003(融点114℃、ガラス転移温度−32℃)20質量%に変更し、さらにポリカプロラクトン(ダイセル化学工業(株)製の商品名:セルグリーンP−H7、融点61℃、ガラス転移温度、−58℃)10質量%混合して中間層用樹脂組成物とした以外は実施例2と同様にして、2種3層構成(外層/中間層/外層)の未延伸積層シートを得た。この未延伸積層シートを長手方向に65℃で1.08倍にロール延伸し、次いで、幅方向に73℃で4倍に延伸して、約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、実施例1と同様の評価を行った。その結果を表1に示す。
【0034】
(実施例5)
実施例2において、中間層用樹脂組成物として混合されるポリブチレンサクシネートを三菱化学(株)製の商品名:PBSL(融点108℃、ガラス転移温度−30℃)30質量%に変更した以外は実施例2と同様にして、2種3層構成(外層/中間層/外層)の未延伸積層シートを得た。この未延伸シートを長手方向に65℃で1.15倍にロール延伸し、次いで、幅方向に70℃で4倍延伸し、約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、実施例1と同様の評価を行った。その結果を表1に示す。
【0035】
(実施例6)
実施例2において、中間層用樹脂組成物として、ポリ乳酸系重合体Iを35質量%、ポリ乳酸系重合体IIを35質量%、ポリブチレンサクシネート(昭和高分子(株)製の商品名:ビオノーレ#1003、融点114℃、ガラス転移温度−32℃)を20質量%、ポリブチレンサクシネートアジペート(昭和高分子(株)製の商品名:ビオノーレ#3003、融点94℃、ガラス転移温度−45℃)を10質量%混合したものに変更した以外は実施例2と同様にして、2種3層構成(外層/中間層/外層)の未延伸積層シートを得た。この未延伸積層シートを長手方向に65℃で1.08倍にロール延伸し、次いで、幅方向に73℃で4倍に延伸して、約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、実施例1と同様の評価を行った。その結果を表1に示す。
【0036】
(比較例1)
実施例2において、中間層用樹脂組成物として混合されるポリブチレンサクシネートをビオノーレポリブチレンサクシネートアジペート(昭和高分子(株)製の商品名:ビオノーレ#3003、融点94℃、ガラス転移温度−45℃)30質量%に変更した以外は実施例2と同様にして、2種3層構成(表層/中間層/裏層)の未延伸積層シートを得た。この未延伸積層シートを長手方向に65℃で1.08倍にロール延伸し、次いで、幅方向に70℃で4倍に延伸して、約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、実施例1と同様の評価を行った。その結果を表1に示す。
【0037】
(比較例2)
比較例1と同様にして、2種3層構成の未延伸積層シートを得た。比較例1と同様の未延伸積層シートを、長手方向に65℃で1.02倍にロール延伸し、次いで、幅方向に72℃で4倍に延伸して、約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、実施例1と同様の評価を行った。その結果を表1に示す。
【0038】
(比較例3)
比較例1において、中間層用樹脂組成物として混合されるポリブチレンサクシネートアジペートの替わりに、ダイセル化学工業(株)製の商品名:セルグリーンP−H7(融点61℃、ガラス転移温度−58℃)30質量%に変更した以外は比較例1と同様にして、2種3層構成(外層/中間層/外層)の未延伸積層シートを得た。この未延伸シートを長手方向に65℃で1.01倍にロール延伸し、次いで、幅方向に71℃で4倍延伸し、約50μm厚の熱収縮性フィルムを得た。
得られた熱収縮性フィルムについて、実施例1と同様の評価を行った。その結果を表1に示す。
【0039】
【表1】

Figure 2004002776
【0040】
表1から明らかなように、実施例1〜6の熱収縮性フィルムは、熱収縮率、引張破断伸度、ヘーズおよび収縮仕上がり性の全てにおいて、良好な結果が得られた。特に、外層としてポリ乳酸系重合体Iを90質量%以上含む層を積層した場合には、ヘーズの値が小さく、特に優れた透明性を有するものであることが分かった。
一方、比較例1〜3の熱収縮性フィルムは、縦方向の収縮が大きく、収縮仕上がり性に問題があることが分かった。
【0041】
【発明の効果】
本発明によれば、生分解性を有し、かつ、収縮後の外観が良好である熱収縮性ポリ乳酸系フィルムを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polylactic acid-based film, and more particularly to a polylactic acid-based film used for shrink wrapping, shrink bundling wrapping, shrink label, and the like.
[0002]
[Prior art]
Polyvinyl chloride (PVC), styrene-butadiene block copolymer (SBS), polyester resin, and the like have been used as materials for heat-shrinkable films used for shrink wrapping, shrink wrapping, shrink labels, and the like. The heat-shrinkable film made of such a plastic material is disposable together with the shrink-wrapped product or the like after use, and disposal such as incineration or landfill is a problem when disposing after use. For example, polyvinyl chloride generates harmful gases when incinerated. Even in landfills, these plastic products have high chemical stability, are hardly decomposed in the natural environment, and remain semi-permanently in the soil, saturating the capacity of the land for garbage disposal in a short period of time. In addition, when dumped into the natural environment, the landscape is damaged or the living environment such as marine life is destroyed.
Therefore, from the viewpoint of environmental protection, research and development of biodegradable materials have been actively performed in recent years. Polylactic acid is one of the biodegradable materials that has attracted attention. Since polylactic acid is biodegradable, hydrolysis proceeds naturally in soil or water, and becomes a harmless degradation product by microorganisms. Further, since the amount of heat of combustion is small, even if incineration is performed, the furnace is not damaged. Furthermore, since the starting material is derived from a plant, it has such features that it can escape from depleting petroleum resources.
[0003]
For example, a heat-shrinkable film made of polylactic acid is disclosed in Japanese Patent Application Laid-Open No. 5-221790, but since this heat-shrinkable film has a high shrinkage temperature of 140 ° C to 150 ° C, it can be used only for special applications. Can not.
Further, since polylactic acid is inherently brittle, sufficient strength cannot be obtained even if it is made into a sheet or film, and it is difficult to put to practical use. In particular, a uniaxially stretched shrinkable film is not easily improved in brittleness in the unstretched direction, and thus is easily torn when subjected to an impact in that direction. In order to impart rupture resistance, blending an aliphatic polyester with a polylactic acid-based polymer has been studied.
However, when a film formed by mixing a polylactic acid-based polymer and an aliphatic polyester is uniaxially stretched, shrinkage in a non-stretching direction occurs. For example, when a heat-shrinkable label such as a PET bottle is formed using a film uniaxially stretched in the transverse direction, not only does it shrink in the transverse direction, but also in the vertical direction (hereinafter, such shrinkage is referred to as "longitudinal shrinkage"). Also causes shrinkage, which impairs the appearance of the label. Therefore, development of a heat-shrinkable polylactic acid-based film that can suppress shrinkage in the non-stretching direction when uniaxially stretched has been desired.
[0004]
[Patent Document 1]
JP-A-5-221790
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a heat-shrinkable polylactic acid-based film having biodegradability and having a good appearance after shrinkage. It is in.
[0006]
[Means for Solving the Problems]
The heat-shrinkable polylactic acid-based film of the present invention mainly comprises a resin composition of a polylactic acid-based polymer and an aliphatic polyester resin A having a melting point of 100 ° C to 170 ° C and a glass transition temperature of 0 ° C or less. It is a film having at least one layer as a component and being at least uniaxially stretched.
Here, the resin composition may further include an aliphatic polyester resin B having a melting point of 50C to 100C.
Further, the resin composition contains 50% by mass of a polylactic acid-based polymer in which the composition ratio of D-lactic acid and L-lactic acid is in the range of 98: 2 to 85:15 or 2:98 to 15:85 by mass ratio. To 90% by mass, and 10% to 40% by mass of the aliphatic polyester resin A.
In addition, at least one layer can be provided as a layer containing a resin composition as a main component as an intermediate layer and a layer containing 90% by mass or more of polylactic acid as an outer layer.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat-shrinkable polylactic acid-based film of the present invention comprises a polylactic acid-based polymer and an aliphatic polyester having a melting point of 100 ° C to 170 ° C and a glass transition temperature of 0 ° C or less (hereinafter referred to as “aliphatic polyester A”). ) May be at least one layer containing a mixture as a main component.
[0008]
The polylactic acid-based polymer used in the present invention includes poly (L-lactic acid) having a structural unit of L-lactic acid, poly (D-lactic acid) having a structural unit of D-lactic acid, L-lactic acid having a structural unit of L-lactic acid, and It refers to poly (DL-lactic acid) which is D-lactic acid or a mixture containing these as a main component. In the present invention, the copolymer may further be a copolymer with another hydroxycarboxylic acid unit described below, or may contain a small amount of a chain extender residue.
In the polylactic acid-based polymer, the composition ratio of the D-form and the L-form is in a mass ratio and D-lactic acid: L-lactic acid = 98: 2 to 85:15 or 2:98 to 15:85. Is preferred.
A polylactic acid-based polymer in which the composition ratio of D-lactic acid and L-lactic acid is 100: 0 or 0: 100 has extremely high crystallinity and excellent heat resistance and mechanical properties, but forms a heat-shrinkable film. When the film is stretched for crystallization, crystallization due to the stretching orientation proceeds, and it is difficult to adjust the heat shrinkage. In addition, even if a film in an amorphous state is obtained, crystallization proceeds due to heat at the time of shrinkage, and the shrink finish is reduced. Therefore, in order to obtain a heat-shrinkable film using a polylactic acid-based polymer, it is preferable to appropriately lower the crystallinity. Generally, in the case of a copolymer of D-lactic acid and L-lactic acid, it is known that the crystallinity decreases as the ratio of the optical isomer increases, and the crystallinity is adjusted by adjusting the ratio. Can be reduced. Further, for the purpose of adjusting the ratio of the optical isomers, two or more kinds of polylactic acids having different constitutional ratios of D-lactic acid and L-lactic acid may be blended.
[0009]
Examples of the other hydroxycarboxylic acid units copolymerized with polylactic acid include optical isomers of lactic acid (D-lactic acid for L-lactic acid, L-lactic acid for D-lactic acid), glycolic acid, 2-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaproic acid, etc. Examples include functional aliphatic hydroxycarboxylic acids and lactones such as caprolactone, butyrolactone, and valerolactone.
[0010]
As a polymerization method of the polylactic acid-based polymer, a known method such as a condensation polymerization method or a ring-opening polymerization method can be employed. For example, in the condensation polymerization method, L-lactic acid or D-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain a polylactic acid-based polymer having an arbitrary composition.
In the ring-opening polymerization method (lactide method), lactide, which is a cyclic dimer of lactic acid, is obtained by using a suitable catalyst and a suitable catalyst while obtaining a polylactic acid-based polymer. Can be.
[0011]
The polylactic acid-based polymer used in the present invention preferably has a weight average molecular weight of 60,000 to 700,000, more preferably 80,000 to 400,000, and particularly preferably 100,000 to 300,000. If the molecular weight is too small, practical physical properties such as mechanical properties and heat resistance are hardly exhibited, and if it is too large, the melt viscosity is too high and molding processability is poor.
[0012]
Next, the aliphatic polyester will be described.
In the present invention, the aliphatic polyester is an aliphatic polyester containing an aliphatic dicarboxylic acid or a derivative thereof and an aliphatic polyhydric alcohol as main components, and preferably has biodegradability.
Examples of the aliphatic dicarboxylic acid component constituting the aliphatic polyester include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecane diacid. Examples of the aliphatic polyhydric alcohol include ethylene glycol and 1,4-butanediol. And aliphatic diols such as 1,4-cyclohexanedimethanol. The aliphatic dicarboxylic acid component most preferably used in the present invention is succinic acid and adipic acid, and the aliphatic polyhydric alcohol component is 1,4-butanediol.
[0013]
The aliphatic polyester A having a melting point of 100 ° C. or more and 170 ° C. or less is preferably biodegradable, and preferably has a melting point of 100 ° C. or more and 140 ° C. or less. When the melting point is less than 100 ° C., the aliphatic polyester A starts to melt at the time of heat shrinkage, so that the longitudinal shrinkage becomes large. If the melting point of the aliphatic polyester A is 100 ° C. or more, the fat is set in a normal temperature range set by steam shrinker or the like, that is, in a temperature range of 60 ° C. to 100 ° C. which is a temperature range in which the polylactic acid-based polymer shrinks. The group polyester A keeps a crystalline state, and thus plays a role as a pillar and can suppress longitudinal shrinkage.
The melting point of the polylactic acid-based polymer slightly varies depending on the composition ratio of D-lactic acid and L-lactic acid, but is generally around 170 ° C., and is preferably about 170 ° C. to about 170 ° C. It is necessary to set the extrusion temperature in the range of 200 ° C. Therefore, when the melting point of the aliphatic polyester A is 170 ° C. or higher, when extruding the resin composition containing the polylactic acid-based polymer and the aliphatic polyester A, it is not possible to sufficiently melt all of the resin composition.
[0014]
The aliphatic polyester A preferably has a glass transition temperature of 0 ° C. or lower, and more preferably −20 ° C. or lower when imparting rupture resistance. There is no particular limitation as long as the glass transition temperature is 0 ° C. or lower, but the aliphatic polyester A most preferably used is an aliphatic polyester containing an aliphatic dicarboxylic acid or a derivative thereof and an aliphatic polyhydric alcohol as main components.
As the aliphatic dicarboxylic acid component constituting the aliphatic polyester A or the aliphatic polyester B described later, succinic acid, adipic acid, suberic acid, sebacic acid, aliphatic dicarboxylic acids such as dodecane diacid, or anhydrides thereof. Derivatives. On the other hand, examples of the aliphatic polyhydric alcohol component include aliphatic diols such as ethylene glycol, butanediol, hexanediol, octanediol, cyclopentanediol, cyclohexanediol, and cyclohexanedimethanol, and derivatives thereof. Among them, the aliphatic polyester A preferably used is a polybutylene succinate polymerized from succinic acid as an aliphatic dicarboxylic acid component and 1,4-butanediol as an aliphatic polyhydric alcohol component.
In the polymerization step of the aliphatic polyester A, a small amount of a chain extender, for example, a diisocyanate compound, an epoxy compound, a diphenyl compound, an acid anhydride or the like may be used for the purpose of increasing the molecular weight. The preferred range of the weight average molecular weight is preferably 60,000 to 300,000, and more preferably 90,000 to 200,000.
The preferred range of the melt viscosity of the aliphatic polyester A is such that the MFR (190 ° C.) value is preferably about 1 to 40, and more preferably about 1 to 20. If it is 40 or more, the kneadability with the polylactic acid-based polymer and the rupture resistance tend to be reduced.
[0015]
In the present invention, the aliphatic polyester A may have a melting point of 100 ° C. to 170 ° C., and may be a copolymer with other components as long as the glass transition temperature is 0 ° C. or less. For example, a biodegradable resin such as an aromatic aliphatic polyester containing an aromatic dicarboxylic acid component or an aliphatic polyester carbonate having a carbonate group (for example, a structure having a carbonate group in a 1,4-butanediol / succinic acid copolymer). Can be used. It is also possible to use a copolymer of lactic acid, an aliphatic dicarboxylic acid and an aliphatic diol, for example, a biodegradable resin such as polylactic acid butylene succinate.
[0016]
In the present invention, it is preferable to mix the polylactic acid-based polymer and the aliphatic polyester A within a predetermined amount range. For example, in the resin composition, the polylactic acid-based polymer may be mixed in a range of 50% by mass or more and 90% by mass or less, and the aliphatic polyester A may be mixed in a range of 10% by mass or more and 40% by mass or less. preferable.
[0017]
In the present invention, in addition to the polylactic acid-based polymer and the aliphatic polyester A, an aliphatic polyester resin having a melting point of 50 ° C. or more and 100 ° C. or less (hereinafter sometimes referred to as “aliphatic polyester B”) is mixed. can do. The aliphatic polyester B is preferably biodegradable, and includes, for example, polybutylene succinate adipate (melting point 94 ° C.), polycaprolactone (melting point 61 ° C.), and the like. By blending the aliphatic polyester resin B, the transparency and rupture resistance of the film can be improved. However, the mixing amount of the aliphatic polyester B is preferably in the range of 5% by mass or more and 20% by mass or less in the resin composition. When the mixing amount is 5% by mass or more, transparency and rupture resistance can be sufficiently improved. When the mixing amount is 20% by mass or less, large longitudinal shrinkage does not occur, and the appearance after shrinkage is also excellent. It is.
In addition, among aliphatic polyester resins B having the same melting point, it is preferable to select an aliphatic polyester resin B having a low melt viscosity, that is, an aliphatic polyester resin B having a high melt flow rate (MFR) from the viewpoint of improving transparency.
The aliphatic polyester B may use a small amount of a chain extender, for example, a diisocyanate compound, an epoxy compound, a diphenyl compound, an acid anhydride, for the purpose of increasing the molecular weight in the polymerization step.
The weight average molecular weight of the polybutylene succinate adipate preferably used in the aliphatic polyester B according to the present invention is preferably from 60,000 to 300,000, and more preferably from 90,000 to 200,000. The MFR (190 ° C.) value of the melt viscosity of the aliphatic polyester B is preferably 1 to 40, and more preferably about 1 to 20. If it exceeds 40, the kneadability with the polylactic acid-based polymer and the rupture resistance tend to be reduced. Further, the preferable range of the MFR (190 ° C.) of the melt viscosity of polycaprolactone is 1 to 20, more preferably about 1 to 10.
[0018]
In the present invention, one or more other layers can be laminated on a layer composed of a resin composition containing a polylactic acid-based polymer and an aliphatic polyester. For example, transparency can be improved by providing a layer containing a polylactic acid-based polymer at 90% by mass or more as an outer layer.
Since the polylactic acid-based polymer and the aliphatic polyester have different deformation behaviors at the time of stretching, when a film containing both is stretched, planar roughening may occur and the transparency is greatly reduced. In this case, the lower the content of the polylactic acid-based polymer, the more easily the surface becomes rough, the more the transmitted light is diffused, the haze increases, and the transparency decreases. By providing an outer layer containing a polylactic acid-based polymer in an amount of 90% by mass or more, surface roughness can be suppressed, so that diffusion of transmitted light on the film surface can be prevented. The mixing amount of the polylactic acid-based polymer constituting the outer layer is 90% by mass or more, preferably 95% by mass, and more preferably 100% by mass. This is because the outer layer in which the mixing amount of the polylactic acid-based polymer is less than 90% by mass cannot suppress the surface roughness during film stretching and does not function as the outer layer.
[0019]
The polylactic acid-based polymer used for the outer layer may be the same as or different from the polylactic acid-based polymer used for the resin composition described above, and is not particularly limited. After labeling, heat-shrinkable polylactic acid-based films used for PET bottles and bottles are rubbed with bottles, etc., to prevent the hot film from fusing and forming holes in the film. Is preferably imparted to some extent.
[0020]
The outer layer needs to have a thickness that exceeds the height of the unevenness of the surface roughness, and is preferably, for example, 1 μm or more, and more preferably 2 μm or more. The outer layer may be provided on both sides, and the thickness may be the same or different. The two outer layers may have the same composition or different compositions. It is preferable that the outer layers on both sides have the same thickness and the same composition, because good shrinkage characteristics and curl prevention properties can be obtained. In the present invention, other layers may be provided as long as the effects of the present invention are not impaired.
[0021]
In the resin composition constituting each layer of the heat-shrinkable polylactic acid-based film of the present invention, for the purpose of adjusting various physical properties, a heat stabilizer, a light stabilizer, a light absorber, a lubricant, a plasticizer, an inorganic filler, Colorants, pigments and the like can be added.
[0022]
Next, a method for producing the heat-shrinkable polylactic acid-based film of the present invention will be described, but the method is not limited thereto.
A resin composition containing a polylactic acid-based polymer and an aliphatic polyester A as main components and, if necessary, an aliphatic polyester B can be melted and extruded by an extruder to form a film. At the time of extrusion, a known T-die method, tubular method, or the like can be applied. However, it is necessary to set the extrusion temperature in consideration of a decrease in molecular weight due to decomposition. The melt-extruded resin is cooled by a cooling roll, air, water, or the like, and then reheated by a suitable method such as hot air, hot water, infrared rays, or a microwave. Stretched biaxially or biaxially.
[0023]
The stretching temperature is appropriately selected depending on the mixing ratio of the L-form and the D-form of the polylactic acid-based polymer, and according to the application required for the heat-shrinkable film, but generally ranges from 70 ° C to 95 ° C. Is within.
The stretching ratio is also appropriately selected according to the mixing ratio, the application, and the like, but is preferably appropriately determined within the range of 1.5 to 6 times in the main shrinkage direction. Further, in order to exhibit rupture resistance while keeping the longitudinal shrinkage ratio low, it is preferable to set the longitudinal stretching ratio to about 1.01 to 1.20. Here, the main shrinkage direction means a direction (horizontal direction) perpendicular to the longitudinal direction of the film, and the longitudinal direction means the flow direction of the film, that is, the longitudinal direction of the film.
Whether to use uniaxial stretching or biaxial stretching is determined depending on the use of the product.
For example, the heat-shrinkable polylactic acid-based film used for labels such as PET bottles is preferably uniaxially stretched in the transverse direction, but in order to completely prevent shrinkage in the longitudinal direction, it is stretched slightly in the longitudinal direction. It is more preferable to keep them. Even when the aliphatic polyester B is added, even when the rupture resistance is not sufficiently imparted, or when it is difficult to achieve both the longitudinal shrinkage and the rupture resistance in the longitudinal direction, by stretching slightly in the longitudinal direction, , Longitudinal shrinkage can be prevented. This is because by defining the melting point of the aliphatic polyester, it was possible to suppress longitudinal shrinkage while applying longitudinal stretching.
[0024]
The shrinkage rate of the heat-shrinkable polylactic acid-based film in the main shrinkage direction is appropriately determined according to the application. However, when used for a label such as a PET bottle, in the main shrinkage direction, hot water of 80 ° C. is used for 10 seconds. It is preferable that the shrinkage ratio after the treatment is 30% or more. The shrinkage ratio is more preferably 40% or more in order to protect the contents and cope with an increase in the speed of the labeling step.
In the present invention, the longitudinal shrinkage is preferably 7% or less, more preferably 5% or less when treated with warm water at 80 ° C. for 10 seconds. If the longitudinal shrinkage is 7% or more, the shrinkage of the label in the vertical direction is conspicuous, and the shrinkage finish is deteriorated. It is preferable that the vertical contraction rate is small, but in some cases, it is preferable to slightly contract the vertical direction in order to eliminate horizontal wrinkles and the like during contraction.
[0025]
When the heat-shrinkable polylactic acid-based film of the present invention is a laminate, the laminate can be formed by co-extrusion with another layer of the resin composition. For example, a resin composition containing a polylactic acid-based polymer and an aliphatic polyester A as main components is used as an intermediate layer resin composition, and a resin composition containing a polylactic acid-based polymer at 90% by mass or more is used as an outer layer resin composition. By performing co-extrusion, a laminate can be formed.
[0026]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. In the examples, the flow direction (vertical direction) of the film is referred to as MD, and the direction perpendicular to the film direction (lateral direction) is referred to as TD.
The polylactic acid-based polymer used in each Example and Comparative Example was produced as follows.
[0027]
Production of polylactic acid-based polymer I (D-form content: 5.2%)
Add 15 ppm of tin octylate to 90 kg of L-lactide (trade name: PURASORB @ L) manufactured by Purak Japan Co., Ltd. and 10 kg of DL-lactide (trade name: PURASORB @ DL) manufactured by the company, and have a stirrer and a heating device. Into a 500 L batch polymerization tank. Subsequently, nitrogen substitution was performed, and polymerization was carried out for 60 minutes while stirring at a temperature of 185 ° C. and a stirring speed of 100 rpm. The obtained melt is supplied to a 40 mmφ coaxial twin screw extruder manufactured by Mitsubishi Heavy Industries, Ltd. equipped with three stages of vacuum vents, and devolatilized at a vent pressure of 4 Torr (Torr) while forming a strand at 200 ° C. To obtain pellets of a polylactic acid-based polymer. The weight average molecular weight of the obtained polylactic acid-based polymer was 200,000, and the L-form content was 94.8%. The weight average molecular weight of the polymer was measured by gel permeation chromatography using polystyrene as a standard.
[0028]
Production of polylactic acid-based polymer II (D-form content: 10.3%)
15 ppm of tin octylate was added to 80 kg of L-lactide (trade name: PURASORB @ L) manufactured by Purak Japan Co., Ltd. and 20 kg of DL-lactide (trade name: PURASORB @ DL) manufactured by the company, and a stirrer and a heating device were provided. Into a 500 L batch polymerization tank. Subsequently, the atmosphere was replaced with nitrogen, and polymerization was carried out for 60 minutes while stirring at a temperature of 185 ° C. and a stirring speed of 100 rpm. The obtained melt is supplied to a 40 mmφ co-axial twin screw extruder manufactured by Mitsubishi Heavy Industries, Ltd. equipped with three stages of vacuum vents, extruded into strands at 200 ° C. while devolatilizing at a vent pressure of 4 torr, and A lactic acid polymer pellet was obtained. The weight average molecular weight of the obtained polylactic acid-based polymer was 200,000, and the L-form content was 89.7%.
[0029]
(Example 1)
35% by mass of polylactic acid-based polymer I, 35% by mass of polylactic acid-based polymer II, polybutylene succinate (trade name: Bionore # 1003, manufactured by Showa Polymer Co., Ltd., melting point 114 ° C., glass transition temperature−) 32 ° C.) was mixed at 30% by mass to prepare a resin composition. This resin composition was melt-kneaded at 200 ° C. using an extruder, extruded through a T-die, and quenched with a casting roll at about 43 ° C. to obtain an unstretched sheet. This unstretched sheet is roll-stretched 1.06 times at 65 ° C. in the longitudinal direction (longitudinal direction), and then stretched 4 times at 73 ° C. in the width direction (transverse direction) to obtain a heat-shrinkable film having a thickness of about 50 μm. Got.
The following evaluation was performed about the obtained heat-shrinkable film. Table 1 shows the results.
[0030]
(Evaluation and measurement method)
(1) Heat shrinkage
The film was cut into a size of 100 mm in MD and 100 mm in TD, immersed in a hot water bath at 80 ° C. for 10 seconds, and the amount of shrinkage was measured. As the heat shrinkage, the ratio of the amount of shrinkage to the original size of the film before shrinkage was expressed as a percentage value.
(2) Tensile elongation at break (evaluation of break resistance)
Based on Japanese Industrial Standard JISK7127, the tensile elongation at break in the MD direction of the film at an ambient temperature of 23 ° C. was measured at a tensile speed of 200 mm / min.
(3) Haze
The haze of the film was measured according to Japanese Industrial Standard JISK7105.
(4) Shrink finish
Grids were printed on the film at intervals of 10 mm, and the film was cut into a size of MD100 mm × TD298 mm. Both ends of the TD of the film were overlapped by 10 mm and bonded with a solvent or the like to form a cylinder. This cylindrical film was mounted on a 1.5-liter cylindrical plastic bottle and passed through a 3.2 m (3 zone) shrink tunnel of a steam heating system for about 4 seconds without rotating. However, the atmosphere temperature in the tunnel in each zone was adjusted in the range of 80 ° C. to 90 ° C. by adjusting the amount of steam with a steam valve. After the film was coated, evaluation was performed based on the following criteria.
Evaluation criteria:
○ Sufficient shrinkage, good adhesion without wrinkles, avatars, or lattice distortion.
△ Shrinkage is enough, but wrinkles, avatars, lattice distortions are slight, or
The shrinkage in the vertical direction is slightly noticeable. However, there is no problem in practical use.
X: Insufficient contraction in the horizontal direction or contraction in the vertical direction is noticeable, which is a practical problem.
[0031]
(Example 2)
35% by mass of polylactic acid-based polymer I, 35% by mass of polylactic acid-based polymer II, polybutylene succinate (trade name: Bionore # 1003, manufactured by Showa Polymer Co., Ltd., melting point 114 ° C., glass transition temperature−) 32 ° C.) to prepare a resin composition for an intermediate layer.
Next, the resin composition for the intermediate layer and the polylactic acid-based polymer I as the resin for the outer layer were each dried at a predetermined temperature and then charged into an extruder and melt-mixed. This is melt-extruded through a T-die at a temperature of 200 ° C., merged in the die to form a three-layer melt, and then rapidly cooled with a casting roll at about 43 ° C. to form an outer layer / intermediate layer / outer layer. An unstretched laminated sheet having two and three layers was obtained. The unstretched sheet was roll-stretched 1.06 times at 65 ° C. in the longitudinal direction, and then stretched 4 times at 73 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of about 50 μm.
About the obtained heat-shrinkable film, the same evaluation as Example 1 was performed. Table 1 shows the results.
[0032]
(Example 3)
In Example 2, except that the polybutylene succinate to be mixed as the resin composition for the intermediate layer was changed to a trade name: Vionore # 1010 (melting point 115 ° C, glass transition temperature -32 ° C) manufactured by Showa Polymer Co., Ltd. In the same manner as in Example 2, an unstretched laminated sheet having a two-layer, three-layer configuration (outer layer / intermediate layer / outer layer) was obtained. The unstretched laminated sheet was roll-stretched 1.06 times at 65 ° C. in the longitudinal direction, and then stretched 4 times at 73 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of about 50 μm.
About the obtained heat-shrinkable film, the same evaluation as Example 1 was performed. Table 1 shows the results.
[0033]
(Example 4)
In Example 2, the polybutylene succinate blended as the resin composition for the intermediate layer was changed to 20% by mass of Bionore # 1003 (manufactured by Showa Polymer Co., Ltd.) (melting point: 114 ° C, glass transition temperature -32 ° C). 10% by mass of polycaprolactone (trade name: Cell Green P-H7, manufactured by Daicel Chemical Industries, Ltd., melting point 61 ° C., glass transition temperature, −58 ° C.) to obtain a resin composition for an intermediate layer. Except for the above, an unstretched laminated sheet having two types and three layers (outer layer / intermediate layer / outer layer) was obtained in the same manner as in Example 2. The unstretched laminated sheet was roll-stretched 1.06 times at 65 ° C. in the longitudinal direction, and then stretched 4 times at 73 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of about 50 μm.
About the obtained heat-shrinkable film, the same evaluation as Example 1 was performed. Table 1 shows the results.
[0034]
(Example 5)
In Example 2, except that the polybutylene succinate mixed as the resin composition for the intermediate layer was changed to 30% by mass of PBSL (melting point: 108 ° C., glass transition temperature: −30 ° C.) manufactured by Mitsubishi Chemical Corporation. In the same manner as in Example 2, an unstretched laminated sheet having a two-layer, three-layer configuration (outer layer / intermediate layer / outer layer) was obtained. This unstretched sheet was roll-stretched 1.65 times at 65 ° C. in the longitudinal direction, and then stretched 4 times at 70 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of about 50 μm.
About the obtained heat-shrinkable film, the same evaluation as Example 1 was performed. Table 1 shows the results.
[0035]
(Example 6)
In Example 2, as the resin composition for the intermediate layer, 35% by mass of polylactic acid-based polymer I, 35% by mass of polylactic acid-based polymer II, and polybutylene succinate (trade name of Showa Kogaku KK) : Bionole # 1003, melting point 114 ° C., glass transition temperature −32 ° C.), 20% by mass, polybutylene succinate adipate (trade name, manufactured by Showa Polymer Co., Ltd .: Bionole # 3003, melting point 94 ° C., glass transition temperature −) (45 ° C.) was changed to a mixture containing 10% by mass, and an unstretched laminated sheet having a two-layer three-layer structure (outer layer / intermediate layer / outer layer) was obtained in the same manner as in Example 2. The unstretched laminated sheet was roll-stretched 1.06 times at 65 ° C. in the longitudinal direction, and then stretched 4 times at 73 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of about 50 μm.
About the obtained heat-shrinkable film, the same evaluation as Example 1 was performed. Table 1 shows the results.
[0036]
(Comparative Example 1)
In Example 2, the polybutylene succinate mixed as the resin composition for the intermediate layer was a bionole polybutylene succinate adipate (trade name: Bionole # 3003, manufactured by Showa Kogyo KK, melting point 94 ° C., glass transition temperature) An unstretched laminated sheet having two types and three layers (surface layer / intermediate layer / back layer) was obtained in the same manner as in Example 2 except that the mass was changed to −45 ° C.) 30% by mass. The unstretched laminated sheet was roll-stretched 1.06 times at 65 ° C. in the longitudinal direction, and then stretched 4 times at 70 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of about 50 μm.
About the obtained heat-shrinkable film, the same evaluation as Example 1 was performed. Table 1 shows the results.
[0037]
(Comparative Example 2)
In the same manner as in Comparative Example 1, an unstretched laminated sheet having two types and three layers was obtained. The same unstretched laminated sheet as in Comparative Example 1 was roll-stretched 1.02 times at 65 ° C. in the longitudinal direction, and then stretched 4 times at 72 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of about 50 μm. Got.
About the obtained heat-shrinkable film, the same evaluation as Example 1 was performed. Table 1 shows the results.
[0038]
(Comparative Example 3)
In Comparative Example 1, instead of the polybutylene succinate adipate mixed as the resin composition for the intermediate layer, a trade name: Cell Green P-H7 (melting point 61 ° C., glass transition temperature −58) manufactured by Daicel Chemical Industries, Ltd. ° C) An unstretched laminated sheet having two types and three layers (outer layer / intermediate layer / outer layer) was obtained in the same manner as in Comparative Example 1 except that the mass was changed to 30% by mass. The unstretched sheet was roll-stretched 1.01 times at 65 ° C. in the longitudinal direction, and then stretched 4 times at 71 ° C. in the width direction to obtain a heat-shrinkable film having a thickness of about 50 μm.
About the obtained heat-shrinkable film, the same evaluation as Example 1 was performed. Table 1 shows the results.
[0039]
[Table 1]
Figure 2004002776
[0040]
As is clear from Table 1, the heat-shrinkable films of Examples 1 to 6 exhibited good results in all of the heat shrinkage, tensile elongation at break, haze, and shrink finish. In particular, when a layer containing 90% by mass or more of the polylactic acid-based polymer I was laminated as the outer layer, the haze value was small, and it was found that the layer had particularly excellent transparency.
On the other hand, it was found that the heat-shrinkable films of Comparative Examples 1 to 3 had large shrinkage in the longitudinal direction, and had a problem in shrinkage finish.
[0041]
【The invention's effect】
According to the present invention, a heat-shrinkable polylactic acid-based film having biodegradability and having a good appearance after shrinkage can be provided.

Claims (4)

ポリ乳酸系重合体と、融点が100℃〜170℃であり、ガラス転移温度が0℃以下である脂肪族ポリエステル樹脂Aとの樹脂組成物を主成分とする層を少なくとも一層有し、かつ、少なくとも1軸に延伸したフィルムであることを特徴とする熱収縮性ポリ乳酸系フィルム。A polylactic acid-based polymer, having at least one layer mainly composed of a resin composition of an aliphatic polyester resin A having a melting point of 100 ° C to 170 ° C and a glass transition temperature of 0 ° C or lower, and A heat-shrinkable polylactic acid-based film, which is a film stretched at least uniaxially. 前記樹脂組成物が、融点が50℃〜100℃である脂肪族ポリエステル樹脂Bをさらに含むことを特徴とする請求項1記載の熱収縮性ポリ乳酸系フィルム。The heat-shrinkable polylactic acid-based film according to claim 1, wherein the resin composition further includes an aliphatic polyester resin B having a melting point of 50C to 100C. 前記樹脂組成物が、D−乳酸とL−乳酸の構成割合が質量比で98:2〜85:15または2:98〜15:85の範囲内であるポリ乳酸系重合体を50質量%〜90質量%含み、前記脂肪族ポリエステル樹脂Aを10質量%〜40質量%含むことを特徴とする請求項1又は2記載の熱収縮性ポリ乳酸系フィルム。The resin composition contains 50% by mass of a polylactic acid-based polymer having a composition ratio of D-lactic acid and L-lactic acid within a range of 98: 2 to 85:15 or 2:98 to 15:85 by mass ratio. The heat-shrinkable polylactic acid-based film according to claim 1 or 2, wherein the heat-shrinkable polylactic acid-based film contains 90% by mass and 10 to 40% by mass of the aliphatic polyester resin A. 前記樹脂組成物を主成分とする層を中間層とし、ポリ乳酸を90質量%以上含む層を外層として少なくとも1層有することを特徴とする請求項1から3のいずれか1項記載の熱収縮性ポリ乳酸系フィルム。The heat shrink according to any one of claims 1 to 3, wherein the intermediate layer is a layer containing the resin composition as a main component, and the outer layer is a layer containing 90% by mass or more of polylactic acid. Polylactic acid based film.
JP2003093526A 2002-04-02 2003-03-31 Heat-shrinkable polylactic acid film Expired - Fee Related JP3655619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093526A JP3655619B2 (en) 2002-04-02 2003-03-31 Heat-shrinkable polylactic acid film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002099541 2002-04-02
JP2003093526A JP3655619B2 (en) 2002-04-02 2003-03-31 Heat-shrinkable polylactic acid film

Publications (2)

Publication Number Publication Date
JP2004002776A true JP2004002776A (en) 2004-01-08
JP3655619B2 JP3655619B2 (en) 2005-06-02

Family

ID=30446538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093526A Expired - Fee Related JP3655619B2 (en) 2002-04-02 2003-03-31 Heat-shrinkable polylactic acid film

Country Status (1)

Country Link
JP (1) JP3655619B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075634A1 (en) * 2005-01-11 2006-07-20 Mitsubishi Plastics, Inc. Heat-shrinkable layered film, molded article comprising the film, and heat-shrinkable label and container
WO2006121118A1 (en) 2005-05-11 2006-11-16 Mitsubishi Plastics, Inc. Heat-shrinkable film, moldings and heat-shrinkable labels made by using the film, and containers made by using the moldings or fitted with the labels
JP2006316137A (en) * 2005-05-11 2006-11-24 Mitsubishi Plastics Ind Ltd Heat-shrinkable film and molded article and container using the same film
JP2006326952A (en) * 2005-05-25 2006-12-07 Mitsubishi Plastics Ind Ltd Heat shrinkable laminated film and molding, heat shrinkable label, and container using the film
JP2007161826A (en) * 2005-12-12 2007-06-28 Mitsubishi Plastics Ind Ltd Heat-shrinkable film, heat-shrinkable label and molded article using the film, and container
JP2007177140A (en) * 2005-12-28 2007-07-12 Mitsubishi Plastics Ind Ltd Heat-shrinkable film, molded product using the heat-shrinkable film, heat-shrinkable label and container using the molded product or having the label
JP2007176083A (en) * 2005-12-28 2007-07-12 Mitsubishi Plastics Ind Ltd Heat-shrinkable film, molded object/heat-shrinkable label using heat-shrinkable film, and container using molded object or provided with heat-shrinkable label
JP2007320290A (en) * 2006-06-05 2007-12-13 Kohjin Co Ltd Biodegradable heat-shrinkable laminated film
WO2008096798A1 (en) * 2007-02-06 2008-08-14 Mitsubishi Plastics, Inc. Thermally shrinkable film, molded article and thermally shrinkable label both using the thermally shrinkable film, and container using the molded article or having the label attached thereon
JP2008214624A (en) * 2007-02-06 2008-09-18 Mitsubishi Plastics Ind Ltd Thermally shrinkable film, molded article and thermally shrinkable label using thermally shrinkable film, and container using this molded article or having label attached thereon
WO2010103915A1 (en) 2009-03-12 2010-09-16 東レ株式会社 Polylactic acid-based multilayer sheet
JP2013535353A (en) * 2010-06-29 2013-09-12 コーロン インダストリーズ インク Shrink film and manufacturing method thereof
JP2014051570A (en) * 2012-09-06 2014-03-20 Teijin Ltd Resin composition for hot bending
WO2020256090A1 (en) * 2019-06-21 2020-12-24 大倉工業株式会社 Resin composition for heat-shrinkable film and heat-shrinkable film using same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075634A1 (en) * 2005-01-11 2006-07-20 Mitsubishi Plastics, Inc. Heat-shrinkable layered film, molded article comprising the film, and heat-shrinkable label and container
US8227058B2 (en) 2005-01-11 2012-07-24 Mitsubishi Plastics, Inc. Heat-shrinkable laminated film, molded product and heat-shrinkable label employing the film, and container
CN101102895B (en) * 2005-01-11 2012-05-30 三菱树脂株式会社 Heat-shrinkable laminated film, molded article using the film, heat-shrinkable label and container
KR100967336B1 (en) 2005-05-11 2010-07-05 미쓰비시 쥬시 가부시끼가이샤 Heat-shrinkable film, moldings and heat-shrinkable labels made by using the film, and containers made by using the moldings or fitted with the labels
WO2006121118A1 (en) 2005-05-11 2006-11-16 Mitsubishi Plastics, Inc. Heat-shrinkable film, moldings and heat-shrinkable labels made by using the film, and containers made by using the moldings or fitted with the labels
JP2006316137A (en) * 2005-05-11 2006-11-24 Mitsubishi Plastics Ind Ltd Heat-shrinkable film and molded article and container using the same film
US8470420B2 (en) 2005-05-11 2013-06-25 Mitsubishi Plastics, Inc. Heat-shrinkable film, moldings and heat-shrinkable labels made using the heat-shrinkable film, and containers made by using the moldings or fitted with the labels
JP2006326952A (en) * 2005-05-25 2006-12-07 Mitsubishi Plastics Ind Ltd Heat shrinkable laminated film and molding, heat shrinkable label, and container using the film
JP4632866B2 (en) * 2005-05-25 2011-02-16 三菱樹脂株式会社 Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP2007161826A (en) * 2005-12-12 2007-06-28 Mitsubishi Plastics Ind Ltd Heat-shrinkable film, heat-shrinkable label and molded article using the film, and container
JP2007176083A (en) * 2005-12-28 2007-07-12 Mitsubishi Plastics Ind Ltd Heat-shrinkable film, molded object/heat-shrinkable label using heat-shrinkable film, and container using molded object or provided with heat-shrinkable label
JP2007177140A (en) * 2005-12-28 2007-07-12 Mitsubishi Plastics Ind Ltd Heat-shrinkable film, molded product using the heat-shrinkable film, heat-shrinkable label and container using the molded product or having the label
JP2007320290A (en) * 2006-06-05 2007-12-13 Kohjin Co Ltd Biodegradable heat-shrinkable laminated film
JP4731407B2 (en) * 2006-06-05 2011-07-27 株式会社興人 Biodegradable heat shrinkable laminated film
WO2008096798A1 (en) * 2007-02-06 2008-08-14 Mitsubishi Plastics, Inc. Thermally shrinkable film, molded article and thermally shrinkable label both using the thermally shrinkable film, and container using the molded article or having the label attached thereon
US8420193B2 (en) 2007-02-06 2013-04-16 Mitsubishi Plastics, Inc. Heat-shrinkable film, molded product and heat-shrinkable label employing the film, and container employing the molded product or having the label fitted thereon
JP2008214624A (en) * 2007-02-06 2008-09-18 Mitsubishi Plastics Ind Ltd Thermally shrinkable film, molded article and thermally shrinkable label using thermally shrinkable film, and container using this molded article or having label attached thereon
US9206312B2 (en) 2007-02-06 2015-12-08 Mitsubishi Plastics, Inc. Heat-shrinkable film, molded product and heat-shrinkable label employing the film, and container employing the molded product or having the label fitted thereon
WO2010103915A1 (en) 2009-03-12 2010-09-16 東レ株式会社 Polylactic acid-based multilayer sheet
JP2013535353A (en) * 2010-06-29 2013-09-12 コーロン インダストリーズ インク Shrink film and manufacturing method thereof
US9416268B2 (en) 2010-06-29 2016-08-16 Kolon Industries, Inc. Shrinkable film and method for manufacturing same
JP2014051570A (en) * 2012-09-06 2014-03-20 Teijin Ltd Resin composition for hot bending
WO2020256090A1 (en) * 2019-06-21 2020-12-24 大倉工業株式会社 Resin composition for heat-shrinkable film and heat-shrinkable film using same
CN113993949A (en) * 2019-06-21 2022-01-28 大仓工业株式会社 Resin composition for heat shrinkable film and heat shrinkable film using same

Also Published As

Publication number Publication date
JP3655619B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
KR100898443B1 (en) Heat-shrinkable polylactic acid film
WO1999025758A1 (en) Biodegradable film and process for producing the same
JP2004204128A (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet, and thermoformed product using the sheet
JP3655619B2 (en) Heat-shrinkable polylactic acid film
JPH11222528A (en) Biodegradable film and its production
WO2013021772A1 (en) Biodegradable film
JP2003170560A (en) Polylactate biaxially stretched laminated film having heat sealability
JP4949604B2 (en) Heat-shrinkable polylactic acid-based laminated film
JP2003181919A (en) Biodegradable heat-shrinkable film and shrink package using the same
JP3182077B2 (en) Biodegradable film
JPH10147653A (en) Biodegradable oriented film
JP3797868B2 (en) Biodegradable thermoforming sheet and container
JP3718636B2 (en) Heat-shrinkable film
JP2004090522A (en) Polylactic acid resin film and polylactic acid resin fusion-cut sealing bag
JP3664969B2 (en) Heat-shrinkable polylactic acid polymer film
JP2003231798A (en) Lactic acid resin composition and sheet product of the same, and bag product
JP2003221499A (en) Polylactic acid heat-shrinkable material
JP2006160788A (en) Heat-shrinking film
JP2005193620A (en) Co-extruded, multilayered, biodegradable and shrinkable film
JP4246523B2 (en) Lactic acid resin composition
CN113993949A (en) Resin composition for heat shrinkable film and heat shrinkable film using same
JP2005219487A (en) Laminated film
JP4318440B2 (en) Biodegradable film and method for producing the same
JP4518933B2 (en) Biaxially stretched biodegradable film
JP2005144726A (en) Laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050120

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050303

R150 Certificate of patent or registration of utility model

Ref document number: 3655619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees