WO2013021772A1 - Biodegradable film - Google Patents

Biodegradable film Download PDF

Info

Publication number
WO2013021772A1
WO2013021772A1 PCT/JP2012/067650 JP2012067650W WO2013021772A1 WO 2013021772 A1 WO2013021772 A1 WO 2013021772A1 JP 2012067650 W JP2012067650 W JP 2012067650W WO 2013021772 A1 WO2013021772 A1 WO 2013021772A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
biodegradable
lactic acid
mass
Prior art date
Application number
PCT/JP2012/067650
Other languages
French (fr)
Japanese (ja)
Inventor
山村剛平
坂本純
廣田真之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47668292&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013021772(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147004536A priority Critical patent/KR101970847B1/en
Priority to JP2012538894A priority patent/JP5867406B2/en
Priority to CN201280038185.4A priority patent/CN103732657B/en
Publication of WO2013021772A1 publication Critical patent/WO2013021772A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and particularly exhibits a good effect by an inflation film-forming method.
  • Patent Document 1 discloses a resin comprising polylactic acid, a copolymer of a biodegradable aliphatic polyester having a glass transition temperature of 0 ° C. or lower and an aromatic copolymer polyester, a plasticizer, and an inorganic filler as constituent components.
  • a film comprising the composition is disclosed.
  • Patent Document 2 discloses a film comprising a composition containing a polylactic acid-based resin and a plasticizer and defining elongation, thickness, and heat shrinkage rate.
  • Patent Document 3 discloses a biodegradable resin composition and film in which diisocyanate is added to a mixture of a polyester composed of adipic acid, terephthalic acid and butanediol and polylactic acid.
  • Patent Document 1 describes the improvement of the flexibility and impact resistance of the film, it does not disclose any technique for improving tear resistance and transparency. The tear resistance and transparency were insufficient.
  • Patent Document 2 describes the improvement of the flexibility and impact resistance of the film, it does not disclose any technique for improving the tear resistance. The tearability was insufficient.
  • Patent Document 3 Although it is described in Patent Document 3 that it is possible to optimize both biodegradability and mechanical properties according to the application, the disclosed technique is not transparent. The tearability was insufficient.
  • the present invention provides a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and that exhibits particularly good effects by the inflation film-forming method.
  • the task is to do.
  • the biodegradable film of the present invention has the following configuration. That is, A biodegradable film comprising a lactic acid resin (A) and a biodegradable resin (B) other than the lactic acid resin (A) (hereinafter simply referred to as “biodegradable resin (B)”), In the cross section in the length direction and the thickness direction, the continuous phase composed of the biodegradable resin (B) has an elliptical shape in which the dispersed phase composed of the lactic acid resin (A) is long in the length direction of the film or the length of the film.
  • W A / W B ⁇ 2.0 ⁇ P A / P B Biodegradable film of the present invention preferably has a thickness W A of the disperse phase is 5 ⁇ 100 nm.
  • the biodegradable film of the present invention preferably has a tear strength of the film by the trouser tear method defined in JIS K7128-1 (1998) of 5 N / mm or more in both the length direction and the width direction.
  • Biodegradable film of the present invention the temperature 200 ° C., a melt viscosity eta A, temperature 200 ° C. of the lactic acid resin (A) at a shear rate of 100 sec -1, biodegradable resin at a shear rate 100 sec -1 of (B)
  • the melt viscosity is ⁇ B , it is preferable to satisfy the following formula.
  • the biodegradable film of the present invention preferably contains a compatibilizer.
  • the lactic acid resin (A) is composed of a block copolymer having a polyether segment and a polylactic acid segment, and a block copolymer having a polyester segment and a polylactic acid segment. It is preferable to consist of at least one selected from homopolylactic acid.
  • the biodegradable resin (B) is at least one selected from the group consisting of polybutylene succinate, polybutylene succinate adipate, and polybutylene adipate terephthalate. preferable.
  • a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and particularly exhibits a good effect by an inflation film-forming method.
  • the biodegradable film of the present invention is mainly required for flexibility, tear resistance, transparency in addition to biodegradability and biomass.
  • Agricultural multi-film, sheet for pine fumigation, compost bag, etc. It can be preferably used for agricultural and forestry applications, food packaging applications such as vegetables and fruits, individual packaging for clothing, handbags for shopping, garbage bags, bags for various industrial products, and the like.
  • the present invention as a result of diligent research on a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, in particular, exhibits a good effect by the inflation film formation method.
  • biodegradable resins other than lactic acid resins and biodegradable resins other than lactic acid resins For the first time to solve such a problem by containing biodegradable resins other than lactic acid resins and biodegradable resins other than lactic acid resins, and by keeping the relationship between the content ratio of these resins and the dispersion state within certain conditions Is.
  • the present invention is a biodegradable film containing a lactic acid-based resin (A) and a biodegradable resin (B), wherein the biodegradable resin (B ) In a continuous phase composed of a lactic acid resin (A) dispersed in an elliptical shape long in the length direction of the film or in a layer shape long in the length direction of the film. ) And the biodegradable resin (B) in a total of 100% by mass, the content (% by mass) of the lactic acid resin (A) is P A and the content (% by mass) of the biodegradable resin (B) is P B. the thickness of the dispersion phase (nm) W a, when the thickness of the continuous phase (nm) was W B, a biodegradable film which satisfies the following equation.
  • the biodegradable film of the present invention contains a lactic acid resin (A).
  • the lactic acid-based resin (A) as used in the present invention refers to those having 5 to 100% by mass of a lactic acid unit component based on 100% by mass of the whole polymer.
  • the component composed of lactic acid units is biomass (plant-derived raw material).
  • the lactic acid-based resin (A) in the present invention is composed of a polylactic acid-based resin in which the constituent component consisting of lactic acid units is 60% by mass or more and 100% by mass or less, and the constituent component consisting of lactic acid units is 5% by mass to 60% by mass.
  • % Other lactic acid-based resin (in the lactic acid-based resin (A), a polymer having a lactic acid unit component content of 5 mass% or more and less than 60 mass% is simply referred to as “other lactic acid resin” hereinafter. Classified).
  • the film of the present invention is not particularly limited as long as it contains the lactic acid-based resin (A), and it contains any of the polylactic acid-based resin or other lactic acid-based resins.
  • the film preferably contains both a polylactic acid resin and another lactic acid resin as the lactic acid resin (A).
  • the poly-L-lactic acid referred to in the present invention refers to those in which the content of L-lactic acid units is more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the lactic acid resin (A).
  • the poly-D-lactic acid referred to in the present invention refers to those having a D-lactic acid unit content of more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the lactic acid resin (A).
  • Poly L-lactic acid changes in the crystallinity of the resin itself depending on the content ratio of the D-lactic acid unit. That is, if the content ratio of D-lactic acid units in poly-L-lactic acid increases, the crystallinity of poly-L-lactic acid decreases and approaches amorphous, and conversely the content ratio of D-lactic acid units in poly-L-lactic acid. As the amount decreases, the crystallinity of poly-L-lactic acid increases. Similarly, the crystallinity of the resin itself of poly D-lactic acid varies depending on the content ratio of L-lactic acid units.
  • the content ratio of the L-lactic acid unit in the poly L-lactic acid used in the present invention, or the content ratio of the D-lactic acid unit in the poly D-lactic acid used in the present invention is a viewpoint for maintaining the mechanical strength of the composition. From 100 to 100 mol% of all lactic acid units, 80 to 100 mol% is preferable, and 85 to 100 mol% is more preferable.
  • the crystalline polylactic acid resin referred to in the present invention is a case where the polylactic acid resin is sufficiently crystallized under heating and then measured with a differential scanning calorimeter (DSC) in an appropriate temperature range.
  • DSC differential scanning calorimeter
  • the amorphous polylactic acid resin referred to in the present invention refers to a polylactic acid resin that does not exhibit a clear melting point when measured in the same manner.
  • the main component of the lactic acid resin (A) used in the present invention is poly L-lactic acid
  • poly D-lactic acid is used.
  • the main component of the lactic acid resin (A) is poly D-lactic acid
  • poly D-lactic acid is used. It is also preferable to mix a small amount of L-lactic acid. This is because a stereocomplex crystal formed from poly L-lactic acid and poly D-lactic acid has a higher melting point than normal crystals and improves heat resistance.
  • the mass average molecular weight Mw of the polylactic acid to be mixed in a small amount is smaller than the mass average molecular weight Mw of the main component polylactic acid, from the viewpoint of maintaining the mechanical strength of the film, and from the viewpoint of efficiently forming a stereocomplex crystal.
  • the mass average molecular weight Mw of the polylactic acid mixed in a small amount is preferably 0.5 to 50%, more preferably 1 to 40%, more preferably 2 to 30% of the mass average molecular weight Mw of the main component polylactic acid. More preferably.
  • the lactic acid resin (A) used in the present invention is a polylactic acid block copolymer composed of a segment composed of L-lactic acid units and a segment composed of D-lactic acid units.
  • the polylactic acid block copolymer forms a stereocomplex crystal in the molecule, the melting point is higher than that of a normal crystal.
  • the segment length satisfying Mw Y ⁇ Mw X / 2 for the mass average molecular weight Mw X of the polylactic acid block copolymer and the maximum mass average molecular weight Mw Y of one unit of segment. It is preferable that
  • the polylactic acid resin used in the present invention may be either a homopolylactic acid composed only of lactic acid units or a polylactic acid resin copolymerized with other monomer units other than lactic acid.
  • Other monomers include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, pentane Glycol compounds such as erythritol, bisphenol A, polyethylene glycol, polypropylene glycol and polytetramethylene glycol, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxy
  • the copolymerization amount of the other monomer units is preferably 0 to 30 mol%, preferably 0 to 10 mol%, based on 100 mol% of the whole monomer units in the polymer of the polylactic acid resin. Is more preferable. In addition, it is preferable to select the component which has biodegradability among the above-mentioned monomer units according to a use.
  • the mass average molecular weight Mw of the polylactic acid resin used in the present invention is preferably 50,000 to 500,000, more preferably 80,000 to 400,000 in order to satisfy practical mechanical properties. More preferably, it is 10,000 to 300,000.
  • the biodegradable film of the present invention preferably uses a polylactic acid resin and another lactic acid resin simultaneously as the lactic acid resin (A) in order to exhibit flexibility, tear resistance, and transparency.
  • homopolylactic acid is more preferably used as the polylactic acid resin.
  • the other lactic acid resin is particularly preferably a block copolymer having a polyether segment and a polylactic acid segment and / or a block copolymer having a polyester segment and a polylactic acid segment ( These block copolymers are hereinafter referred to as “block copolymer plasticizers”).
  • the plasticizing component is a polyether segment or a polyester segment. That is, the lactic acid resin (A) is more preferably used in combination with homopolylactic acid and a block copolymer plasticizer.
  • the “block copolymer plasticizer” will be described.
  • the block copolymer plasticizer develops flexibility by plasticizing the polylactic acid resin, plays a role as a compatibilizer between the polylactic acid resin and the biodegradable resin (B), and melts the polylactic acid resin. Tear resistance and transparency are exhibited by the role of forming a dispersion structure to be described later by adjusting the viscosity.
  • the mass ratio of the polylactic acid segment in the block copolymer plasticizer is preferably 50% by mass or less based on the total of the block copolymer plasticizer, since a desired flexibility can be imparted with a smaller amount of addition, preferably 5 mass. % Or more is preferable from the viewpoint of suppressing bleed-out.
  • the number average molecular weight Mn of the polylactic acid segment in one molecule of the block copolymer plasticizer is preferably 1,200 to 10,000.
  • the number average molecular weight Mn of the polylactic acid segment in the block copolymer plasticizer is 1,200 or more, sufficient affinity is produced between the block copolymer plasticizer and the polylactic acid resin, A part of the segment is incorporated into a crystal formed from a polylactic acid-based resin and forms a so-called eutectic, thereby causing the block copolymer plasticizer to bind to the polylactic acid-based resin.
  • the number average molecular weight Mn of the polylactic acid segment in the block copolymer plasticizer is more preferably 1,500 to 6,000, and further preferably 2,000 to 5,000.
  • the polylactic acid segment in the block copolymer plasticizer is such that L-lactic acid is 95 to 100% by mass or D-lactic acid is 95 to 100% by mass. Therefore, it is preferable.
  • the block copolymer plasticizer has at least one selected from the group consisting of polyether-based segments and polyester-based segments, but a smaller amount is a block copolymer of a polyether-based segment and a polylactic acid segment. From the viewpoint of adding desired flexibility, it is preferable. Furthermore, in the block copolymer of a polyether segment and a polylactic acid segment, the polyether segment is more preferably a segment composed of a polyalkylene ether from the viewpoint of imparting desired flexibility with a smaller amount of addition. .
  • examples of the polyether-based segment include a segment made of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol / polypropylene glycol copolymer, etc., and in particular, a segment made of polyethylene glycol is a polylactic acid-based segment. Since the affinity with the resin is high, the reforming efficiency is excellent, and a desired flexibility can be imparted with a small amount of addition, which is preferable.
  • the block copolymer plasticizer has a segment made of polyalkylene ether
  • the polyalkylene ether segment tends to be oxidized and easily decomposed when heated at the time of molding or the like. It is preferable to use an antioxidant such as a hindered amine or a heat stabilizer such as a phosphorus.
  • polyester-based segment polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-3hydroxyvalerate), polycaprolactone, or ethylene glycol
  • Polyesters composed of aliphatic diols such as propanediol and butanediol and aliphatic dicarboxylic acids such as succinic acid, sebacic acid and adipic acid are preferably used as the polyester segment.
  • the block copolymer plasticizer may contain both the polyether segment and the polyester segment in one molecule, or may be either one of the components. From the viewpoint of plasticizer productivity, cost, and the like, when using any one component, it is preferable to use a polyether-based segment from the viewpoint that desired flexibility can be imparted by adding a smaller amount of the plasticizer. That is, a preferred embodiment as a block copolymer plasticizer is a block copolymer of a polyether segment and a polylactic acid segment.
  • the number average molecular weight Mn of the polyether segment or the polyester segment in one molecule of the block copolymer plasticizer is preferably 7,000 to 20,000.
  • the composition which comprises the biodegradable film of this invention has sufficient softness
  • each segment block of the polylactic acid segment and at least one selected from the group consisting of the polyether segment and the polyester segment, but from the viewpoint of more effectively suppressing bleed out, at least 1 It is preferred that the polylactic acid segment of the block is at the end of the block copolymer plasticizer molecule.
  • PEG polyethylene glycol having a hydroxyl terminal at both ends
  • the number average molecular weight of PEG having hydroxyl groups at both ends (hereinafter, the number average molecular weight of PEG is Mn PEG ) is usually calculated from the hydroxyl value determined by a neutralization method or the like in the case of a commercially available product.
  • lactide w L parts by mass are added to w E parts by mass of PEG having hydroxyl groups at both ends, lactide is subjected to ring-opening addition polymerization at both hydroxyl groups of PEG and sufficiently reacted, so that PLA is substantially obtained.
  • a block copolymer of the type -PEG-PLA can be obtained (where PLA stands for polylactic acid).
  • the number average molecular weight Mn of one polylactic acid segment of this block copolymer plasticizer can be determined by (1/2) ⁇ (w L / w E ) ⁇ Mn PEG .
  • the mass percentage of the total block copolymer plasticizer of the polylactic acid segment component can be determined by 100 ⁇ w L / (w L + w E).
  • the mass ratio of the plasticizer component excluding the polylactic acid segment component to the entire block copolymer plasticizer can be obtained by 100 ⁇ w E / (w L + w E ).
  • a block copolymer plasticizer is used.
  • a biodegradable film is uniformly dissolved in an appropriate good solvent such as chloroform and then dropped into an appropriate poor solvent such as water or a water / methanol mixed solution, followed by filtration to obtain a polylactic acid resin.
  • an appropriate good solvent such as chloroform
  • an appropriate poor solvent such as water or a water / methanol mixed solution
  • Examples include a reprecipitation method in which a precipitate mainly containing the degradable resin (B) is removed, and a solvent of the filtrate is volatilized to obtain a block copolymer plasticizer.
  • the number average molecular weight Mn is measured using gel permeation chromatography (GPC), and the polylactic acid segment, the polyether-based segment and / or the polyester are measured by 1 H-NMR measurement. Identify system segments. And the molecular weight of one polylactic acid segment which the block copolymer has is Mn ⁇ ⁇ 1 / (number of polylactic acid segments) ⁇ ⁇ (I PLA ⁇ 72) / ⁇ (I PE ⁇ UM PE / N PE ) + (I PLA ⁇ 72) ⁇ is calculated.
  • I PLA is the signal integral intensity in 1 H-NMR measurement derived from hydrogen of the methine group in the PLA main chain
  • I PE is 1 H-NMR measurement derived from the polyether-based segment and / or the polyester-based segment.
  • UM PE is the molecular weight of the monomer unit of the polyether-based segment and / or the polyester-based segment
  • N PE is a chemical that gives the signal integrated strength of the polyether-based segment and / or the polyester-based segment.
  • the number of equivalent protons The number average molecular weight of the polyether segment and / or polyester segment can be calculated by Mn ⁇ (number average molecular weight of polylactic acid segment) ⁇ (number of polylactic acid segments).
  • Mn represents the number average molecular weight of the block copolymer plasticizer measured by GPC.
  • the block copolymer plasticizer contained in the composition constituting the biodegradable film of the present invention is preferably 1 to 30% by mass in 100% by mass of the lactic acid resin (A).
  • the content of the block copolymer plasticizer is preferably 5 to 25% by mass, more preferably 10 to 20% by mass in 100% by mass of the lactic acid resin (A).
  • the content of the block copolymer plasticizer in 100% by mass of the lactic acid resin (A) is preferably 1 to 30% by mass, but the remaining 70 to 99% by mass is a polylactic acid resin. It is preferable.
  • the production method of the lactic acid-based resin (A) will be described in detail later, but a known polymerization method can be used, and examples thereof include a direct polymerization method from lactic acid and a ring-opening polymerization method via lactide.
  • the biodegradable film of the present invention preferably contains 5 to 60% by mass of the lactic acid resin (A) in 100% by mass of the entire composition constituting the biodegradable film.
  • the lactic acid resin (A) By setting the lactic acid resin (A) to 5% by mass or more in 100% by mass of the entire composition constituting the biodegradable film, the lactic acid resin (A) becomes 60%. By setting it as the mass% or less, it becomes what was excellent in the softness
  • the lactic acid resin (A) is more preferably 20 to 55% by mass, and further preferably 35 to 50% by mass.
  • Biodegradable resin (B) In order for the biodegradable film of the present invention to exhibit flexibility and tear resistance, it is important to contain a biodegradable resin (B) other than the lactic acid resin (A).
  • the biodegradable resin (B) also plays a role of adjusting the biodegradation rate and adjusting the melt viscosity of the entire composition constituting the biodegradable film to form stable bubbles, particularly in the inflation film forming method.
  • biodegradable resin (B) examples include, for example, polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-3hydroxyvalerate), polycaprolactone, polyethylene succinate, Aliphatic polyesters such as polybutylene succinate, polybutylene succinate and adipate, aliphatic polyesters represented by polyethylene succinate and terephthalate, polybutylene succinate and terephthalate, polybutylene adipate and terephthalate, etc.
  • Plastic starch, a resin composed of starch and aliphatic (aromatic) polyester, cellulose ester and the like are preferably used.
  • the biodegradable resin (B) is selected from the group consisting of polybutylene succinate, polybutylene succinate adipate and polybutylene adipate terephthalate because it has a great effect of improving flexibility and tear resistance. More preferably, at least one of these is used. Polybutylene adipate terephthalate has the highest effect of improving flexibility and tear resistance.
  • the biodegradable resin (B) contained in the biodegradable film of the present invention is preferably 40 to 95% by mass in 100% by mass of the entire composition constituting the biodegradable film. When it is 40% by mass or more, an effect of improving flexibility and tear resistance is easily obtained, and when it is 95% by mass or less, transparency and appropriate biodegradability can be imparted. In 100% by mass of the entire composition constituting the biodegradable film, the biodegradable resin (B) is more preferably 45 to 80% by mass, and further preferably 50 to 65% by mass. (Plasticizer)
  • the biodegradable film of the present invention may contain a plasticizer as long as it does not hinder biodegradability, mainly to impart flexibility.
  • plasticizer examples include phthalate esters such as diethyl phthalate, dioctyl phthalate and dicyclohexyl phthalate, di-1-butyl adipate, di-n-octyl adipate, di-n-butyl sebacate, and azelain.
  • phthalate esters such as diethyl phthalate, dioctyl phthalate and dicyclohexyl phthalate, di-1-butyl adipate, di-n-octyl adipate, di-n-butyl sebacate, and azelain.
  • Aliphatic dibasic acid esters such as di-2-ethylhexyl acid, phosphoric acid ester systems such as diphenyl-2-ethylhexyl phosphate, diphenyloctyl phosphate, tributyl acetylcitrate, tri-2-ethylhexyl acetylcitrate, acetyl Hydroxy polyvalent carboxylic acid esters such as tributyl citrate, fatty acid esters such as methyl acetylricinoleate and amyl stearate, polyhydric alcohol esters such as glycerol triacetate and triethylene glycol dicaprylate, epoxidized soybean oil, Examples include epoxy-based plasticizers such as oxypropylated linseed oil butyl ester and octyl epoxy stearate, polyester-based plasticizers such as polypropylene glycol sebacate, polyalkylene ethers such as polyethylene glycol
  • polyethylene glycol having a number average molecular weight Mn of 1,000 or more it is solid at ordinary temperature (20 ° C. ⁇ 15 ° C.), that is, the melting point is 35 ° C. Is preferably exceeded.
  • the polylactic acid resin which is one of the lactic acid resins (A) contained in the composition constituting the biodegradable film of the present invention is a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin. There may be. By using a mixture, the advantages of both crystalline and amorphous polylactic acid resins can be achieved.
  • the crystalline polylactic acid resin was measured with a differential scanning calorimeter (DSC) in an appropriate temperature range after the polylactic acid resin was sufficiently crystallized under heating.
  • DSC differential scanning calorimeter
  • it refers to a polylactic acid resin in which a melting point derived from a polylactic acid component is observed.
  • the amorphous polylactic acid resin refers to a polylactic acid resin that does not exhibit a clear melting point when the same measurement is performed.
  • the inclusion of the crystalline polylactic acid resin is suitable for improving the tear resistance, heat resistance, and blocking resistance of the film.
  • the crystalline polylactic acid resin has a great effect on bleed-out resistance by forming a eutectic with the polylactic acid segment of the block copolymer plasticizer. To do.
  • an amorphous polylactic acid resin is suitable for improving the flexibility and bleed-out resistance of the film. This has an effect of providing an amorphous part in which the plasticizer can be dispersed.
  • the crystalline polylactic acid-based resin used in the biodegradable film of the present invention is obtained from the viewpoint of improving tear resistance, heat resistance, and blocking resistance, the content of L-lactic acid units in poly L-lactic acid, or poly
  • the content ratio of D-lactic acid units in D-lactic acid is preferably 94 to 100 mol%, more preferably 96 to 100 mol%, and still more preferably 98 to 100 mol% in 100 mol% of all lactic acid units.
  • the ratio of the crystalline polylactic acid resin is preferably 5 to 80% by mass.
  • the amount is more preferably 60% by mass, and further preferably 20 to 40% by mass.
  • (Compatibilizer) In the biodegradable film of the present invention, it is preferable to contain a compatibilizing agent for polylactic acid resin and biodegradable resin (B) for the purpose of improving tear resistance and transparency.
  • the kind of compatibilizer is not particularly limited, it is mainly classified into the following three types.
  • the first is the structure of the polylactic acid resin itself, a structure similar to the polylactic acid resin, at least one structure selected from structures having good compatibility with the polylactic acid resin, and the biodegradable resin (B). It has a structure having at least one structure selected from the structure itself, a structure similar to the biodegradable resin (B), and a structure compatible with the biodegradable resin (B).
  • Second, it can be chemically bonded to the terminal group (carboxyl group or hydroxyl group) of either or both of the lactic acid resin (A) and the biodegradable resin (B) by addition reaction or condensation reaction. It has a functional group.
  • the third one has a catalytic ability for a condensation reaction or a transesterification reaction between the lactic acid resin (A) and the biodegradable resin (B).
  • polylactic acid has good compatibility with acrylic resins, and examples thereof include polyolefin / acrylic resin copolymers, polyester / acrylic resin copolymers, and the like. It is done.
  • the functional group contains at least one functional group selected from a glycidyl group, an acid anhydride group, a carbodiimide group, an isocyanate group, an oxazoline group, and an amino group.
  • Examples of the compound containing a glycidyl group include glycidyl ether compounds, glycidyl ester compounds, glycidyl amine compounds, glycidyl imide compounds, glycidyl (meth) acrylate compounds, and alicyclic epoxy compounds.
  • Examples of the compound containing an acid anhydride group include compounds containing succinic anhydride, maleic anhydride, phthalic anhydride, and the like.
  • Commercially available products include the “BONDINE” ® (registered trademark) series of Arkema, which is a copolymer of ethylene and acrylic acid ester and maleic anhydride, and “OREVAC” ® (registered) of Arkema, a maleic anhydride graft polymer.
  • a compound having a carbodiimide group is a compound having at least one carbodiimide group represented by (—N ⁇ C ⁇ N—) in the molecule, and those commercially available are those manufactured by Nisshinbo Industries, Ltd. Examples include “Carbodilite” (registered trademark) series and “STABAXOL” (registered trademark) series of Rhein Chemie.
  • Examples of the compound containing an isocyanate group include hexamethylene diisocyanate.
  • organometallic compounds and sulfur acid compounds examples include organometallic compounds and sulfur acid compounds.
  • organometallic compound examples include carboxylic acid metal salt compounds such as zinc stearate, zinc acetate, magnesium acetate and manganese acetate, organotitanium compounds such as titanium tetraisopropoxide, and organoaluminum compounds.
  • sulfur acid compound examples include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, sodium p-toluenesulfonate, sodium dodecylbenzenesulfonate, and the like.
  • the blending amount of the compatibilizing agent in the biodegradable film of the present invention is 100 in total for the lactic acid-based resin (A) and the biodegradable resin (B) for the first and second classifications.
  • the amount is preferably 0.01 to 30 parts by mass, more preferably 0.05 to 20 parts by mass, still more preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 3 parts by mass with respect to parts by mass.
  • the above-mentioned third classification is preferably 0.01 to 3 parts by mass with respect to 100 parts by mass in total of the lactic acid resin (A) and the biodegradable resin (B), and 0.05 ⁇ 2 parts by mass is more preferable, and 0.1 to 1 part by mass is more preferable.
  • the compounding amount of the compatibilizing agent 0.01 parts by mass or more, there is a tendency that the effect of improving transparency and tear resistance can be sufficiently expressed, and by making it 3 parts by mass or less, the melt viscosity is lowered. Can be suppressed.
  • the biodegradable film of the present invention has a dispersed phase composed of a lactic acid resin (A) in a continuous phase composed of a biodegradable resin (B) other than a lactic acid resin, in a cross section in the length direction and the thickness direction of the film.
  • the content (% by mass) of the resin (A) is P A
  • the content (% by mass) of the biodegradable resin (B) is P B
  • the thickness (nm) of the dispersed phase is W A
  • the continuous phase the thickness (nm) of when the W B
  • the continuous phase and the disperse phase are a so-called sea-island structure sea and a discontinuous phase.
  • the dispersed phase is long in the length direction of the film, it may be difficult to determine either the continuous phase or the dispersed phase. In that case, when confirming the dispersion structure with a transmission electron microscope (TEM), which will be described later, the observation range is shifted in the length direction of the film, and it is determined that the tip of the island structure is the dispersed phase. To do.
  • TEM transmission electron microscope
  • the inventors have made the biodegradable film flexible and tear resistant by the lactic acid resin (A) and the biodegradable resin (B) constituting the biodegradable film having the above-described dispersion structure. It was found that transparency and biomass can be imparted.
  • polylactic acid-based resin is a resin that has both biomass and biodegradability, but among the biodegradable resins, the tear resistance is low, so the following three factors (i) to (iii) are adjusted. I found out that the problem was solved.
  • lactic acid resin (A) is a dispersed phase and the biodegradable resin (B) is a continuous phase, the flexibility and tear resistance of the film can be improved.
  • Methods for such a phase structure is of (a) or to the preferred range described later the ratio of P A and P B, (b) lactic acid resin (A) and biodegradable resin (B) It is mentioned to make the relationship of melt viscosity into a preferable range described later.
  • the dispersed phase of the lactic acid-based resin (A) means that the lactic acid-based resin (A) is the largest component in mass among all the components in the dispersed phase. Therefore, the dispersed phase comprising the lactic acid resin (A) includes components other than the lactic acid resin (A), for example, various additives, organic lubricants, particles, and other components other than the lactic acid resin (A). But you can.
  • the continuous phase of the biodegradable resin (B) means that the biodegradable resin (B) is the largest component in mass in all the components in the continuous phase. Therefore, the dispersed phase made of the biodegradable resin (B) may contain components other than the biodegradable resin (B).
  • the case where it is formed is “elliptical”, and the case where at least one end in the length direction is not observed is “layered”.
  • Examples of the method for obtaining such a dispersion structure include the above-described method (b) and (c) when the film is formed by inflation, the blow ratio and the draw ratio are set in the preferred ranges described later.
  • the thickness W A of the disperse phase is 5 ⁇ 100 nm. More preferably, it is 10 to 60 nm, further preferably 20 to 50 nm, and particularly preferably 20 to 40 nm.
  • the thickness W B of the dispersed phase is preferably 10 ⁇ 100 nm. The thickness is more preferably 30 to 80 nm, further preferably 30 to 70 nm, and particularly preferably 30 to 60 nm.
  • the thickness W A of the dispersed phase to the 5 ⁇ 100 nm there can be mentioned the method of the method and said (b) (c).
  • the lactic acid resin (A) which is relatively weak in tear resistance, is finely dispersed to express the tear resistance of the entire film. Also, the lactic acid resin (A), This is because the thickness of both phases of the biodegradable resin (B) is made smaller than the wavelength of visible light so as to exhibit transparency.
  • the unit of P A and P B are by weight.
  • melt viscosity of the biodegradable resin (B) in 1 is ⁇ B
  • the melt viscosity ⁇ A of the lactic acid-based resin (A) is measured as a resin obtained by melt-kneading both when the lactic acid-based resin (A) is composed of a polylactic acid-based resin and another lactic acid-based resin.
  • the preferred range of the melt viscosity ⁇ A of the lactic acid resin (A) is 400 to 1,300 Pa ⁇ s, more preferably 400 to 1,000 Pa ⁇ s, and still more preferably 700 to 1,000 Pa ⁇ s. s.
  • the preferable range of the melt viscosity ⁇ B of the biodegradable resin (B) is 700 to 1,300 Pa ⁇ s, more preferably 1,100 to 1,300 Pa ⁇ s, and still more preferably 1,100 to 1 250 Pa ⁇ s, particularly preferably 1,200 to 1,250 Pa ⁇ s.
  • the biodegradable film of the present invention preferably has a tear strength of 5 N / mm or more in the length direction and width direction of the film by the trouser tear method defined in JIS K7128-1 (1998). . More preferably, it is 11 N / mm or more, More preferably, it is 19 N / mm or more. The higher the tear strength, the better.
  • the upper limit is considered to be about 200 N / mm as a practically achievable numerical value. If the tear strength in the length direction and width direction of the film is 5 N / mm or more, it is used for agricultural multi-film for agriculture, sheet for fumigation of pine worms, compost bags, food packaging for vegetables and fruits, clothing When used for individual packaging, shopping handbags, garbage bags, or other industrial products, sufficient tear resistance can be obtained, and it is difficult to break, improving practicality.
  • the biodegradable film of the present invention preferably has an elongation in the length direction and width direction (direction perpendicular to the length direction) of 200% or more and 700% or less.
  • the elongation is 200% or more, the tear resistance becomes high, and in addition, various uses such as agricultural / forestry use, food packaging use, individual packaging for clothing, handbags for shopping, garbage bags, and bags for various industrial products. It is difficult to break when used for applications such as, and the practicality improves.
  • the elongation in the length direction and the width direction is more preferably from 250% to 600%, and even more preferably from 300% to 500%.
  • the blending amounts of the lactic acid resin (A) and the biodegradable resin (B) are within the above-mentioned preferred ranges, respectively.
  • a method is mentioned.
  • the biodegradable film of the present invention preferably has a tensile modulus in the length direction and the width direction of 100 to 1,500 MPa in order to impart sufficient flexibility.
  • the tensile modulus is more preferably 200 to 1,200 MPa, and further preferably 300 to 1,000 MPa.
  • the biodegradable film of the present invention preferably has a film thickness of 5 to 200 ⁇ m. By setting the film thickness to 5 ⁇ m or more, the firmness of the film becomes strong, the handleability is excellent, and the roll winding shape and unwinding property are good. Flexibility is improved by setting the film thickness to 200 ⁇ m or less.
  • the film thickness is more preferably 7 to 150 ⁇ m, further preferably 10 to 100 ⁇ m, and particularly preferably 12 to 50 ⁇ m.
  • the composition constituting the biodegradable film of the present invention preferably contains 0.1 to 5% by mass of an organic lubricant in 100% by mass of the whole composition. In this case, blocking after winding can be favorably suppressed. In addition, problems such as a decrease in melt viscosity and deterioration of workability due to excessive addition of an organic lubricant, or poor appearance such as bleed out and haze up when formed into a film are less likely to occur.
  • the organic lubricant is not particularly limited, and various materials can be used.
  • fatty acid amide organic lubricants can be used.
  • an organic lubricant having a relatively high melting point such as ethylene bis stearic acid amide, ethylene bis oleic acid amide, and ethylene bis lauric acid amide, is preferable from the viewpoint of expressing better blocking resistance.
  • the biodegradable film of the present invention preferably has a haze of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less.
  • the contents may be formed when processed into food packaging applications, individual packaging for clothing, handbags for shopping, garbage bags, or bags for various industrial products. In many cases, it is preferable due to its high design properties such as easy confirmation and good appearance as a product. Since the haze of the biodegradable film is difficult to be less than 1% from the general characteristics of the lactic acid resin (A) and the biodegradable resin (B), the lower limit is about 1%. is there. (Additive)
  • the composition constituting the biodegradable film of the present invention may contain additives other than those described above as long as the effects of the present invention are not impaired.
  • crystal nucleating agents antioxidants, UV stabilizers, anti-coloring agents, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, antioxidants, ion exchange agents, and tackifying Agents, antifoaming agents, color pigments, dyes, end-capping agents and the like can be contained.
  • an organic crystal nucleating agent is a melamine compound, phenylphosphonic acid metal salt, benzenecarboxamide derivative, aliphatic carboxylic acid hydrazide, aromatic carboxylic acid hydrazide, sorbitol compound, amino acid, polypeptide, metal Phthalocyanine and the like can be preferably used.
  • silicate minerals such as talc, clay, mica and kaolinite, carbon black and the like can be preferably used.
  • antioxidant hindered phenols, hindered amines and the like can be preferably used.
  • Color pigments include inorganic pigments such as carbon black, titanium oxide, zinc oxide, iron oxide, cyanine, styrene, phthalocyanine, anthraquinone, perinone, isoindolinone, quinophthalone, and quinocridone.
  • Organic pigments such as thioindigo can be preferably used.
  • end capping agent examples include addition reaction type compounds such as carbodiimide compounds, epoxy compounds, and oxazoline compounds.
  • End-capping the lactic acid-based resin (A) and the biodegradable resin (B) is preferable from the viewpoint of reducing strength reduction due to hydrolysis and imparting good durability by lowering the carboxyl group terminal concentration.
  • particle Particles may be added to the composition constituting the biodegradable film of the present invention for the purpose of improving the slipperiness and blocking resistance of the processed product.
  • Such particles are not particularly limited, whether they are inorganic particles or organic particles.
  • examples thereof include silicon oxide such as silica, various carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, calcium sulfate, and barium sulfate.
  • Various sulfates such as Wollastonite, Potassium titanate, Aluminum boride, Sepiolite, etc.
  • Various phosphates such as Lithium phosphate, Calcium phosphate, Magnesium phosphate, Aluminum oxide, Titanium oxide, Zirconium oxide
  • particles composed of various oxides such as zinc oxide, hydroxides such as aluminum hydroxide and magnesium hydroxide, various salts such as lithium fluoride, and the like can be used. (Production method) Next, the method for producing the biodegradable film of the present invention will be specifically described, but the present invention is not limited thereto.
  • the polylactic acid resin in the present invention can be obtained, for example, by the following method.
  • a lactic acid component of L-lactic acid or D-lactic acid is mainly used, and a hydroxycarboxylic acid other than the lactic acid component described above can be used in combination.
  • a cyclic ester intermediate of hydroxycarboxylic acid for example, lactide, glycolide, etc. can be used as a raw material.
  • dicarboxylic acids and glycols can also be used.
  • the polylactic acid resin can be obtained by a method of directly dehydrating and condensing the raw materials or a method of ring-opening polymerization of the cyclic ester intermediate.
  • lactic acid or lactic acid and hydroxycarboxylic acid are preferably subjected to azeotropic dehydration condensation in the presence of an organic solvent, particularly a phenyl ether solvent, and particularly preferably a solvent distilled by azeotropic distillation.
  • a polymer having a high molecular weight can be obtained by polymerizing by a method in which water is removed from the solvent and the solvent is brought into a substantially anhydrous state and returned to the reaction system.
  • a high molecular weight polymer can be obtained by subjecting a cyclic ester intermediate such as lactide to ring-opening polymerization under reduced pressure using a catalyst such as tin octylate.
  • a method for adjusting the conditions for removing moisture and low molecular weight compounds during heating and refluxing in an organic solvent, a method for suppressing the depolymerization reaction by deactivating the catalyst after completion of the polymerization reaction, and a method for heat-treating the produced polymer Can be used to obtain a polymer with a small amount of lactide.
  • each component is used as a solvent. It is possible to produce a composition by removing the solvent after uniformly mixing the dissolved solution, but steps such as dissolution of the raw material in the solvent, removal of the solvent, etc. are unnecessary, and each is a practical production method. It is preferable to employ a melt-kneading method for producing a composition by melt-kneading the components.
  • the melt kneading method is not particularly limited, and a commonly used known mixer such as a kneader, roll mill, Banbury mixer, single-screw or twin-screw extruder can be used. Among these, from the viewpoint of productivity, it is preferable to use a single screw or twin screw extruder.
  • the temperature at the time of melt kneading is preferably in the range of 150 ° C. to 240 ° C., and more preferably in the range of 180 ° C. to 210 ° C. from the viewpoint of preventing deterioration of the lactic acid resin (A).
  • the biodegradable film of the present invention can be obtained, for example, by a known film production method such as a known inflation method, a tubular method, or a T-die cast method, using the composition obtained by the above-described method.
  • a known film production method such as a known inflation method, a tubular method, or a T-die cast method, using the composition obtained by the above-described method.
  • the inflation method is preferred.
  • the pellet is heated at 60 to 100 ° C. It is preferable to use a composition containing a polylactic acid resin or the like having a moisture content of 1,200 ppm or less, preferably 500 ppm or less, more preferably 200 ppm or less by drying for 6 hours or more. Furthermore, it is preferable to reduce the lactide content in the composition containing a polylactic acid resin or the like by vacuum drying under a high vacuum with a degree of vacuum of 10 Torr or less.
  • the water content of the composition containing a polylactic acid resin or the like is 1,200 ppm or less, and further, by reducing the lactide content, hydrolysis during melt-kneading can be prevented, thereby preventing a decrease in molecular weight. It is also preferable because the melt viscosity at the time of preparing a composition containing a polylactic acid resin or the like can be set to an appropriate level and the film forming process can be stabilized. From the same point of view, when pelletizing or melt-extrusion / film formation, a twin-screw extruder with a vent hole is used and melt extrusion is performed while removing volatiles such as moisture and low molecular weight substances. It is preferable.
  • the composition prepared by the method as described above is melt-extruded by a twin-screw extruder with a vent hole, led to an annular die, and extruded from the annular die. Then, dry air is supplied inside and formed into a balloon shape (bubble), further air-cooled and solidified uniformly by an air ring, and taken up at a predetermined take-up speed while being folded flat with a nip roll, then both ends as necessary. Alternatively, one end may be cut open and wound.
  • the blow ratio is the stretch ratio in the width direction of the film, (the length in the width direction of the film when one end is cut open and wound) / (the length of the circumference of the annular die) Ask for.
  • the draw ratio is the draw ratio in the length direction of the film and is expressed by (winding speed) / (discharge speed from the annular die). ) / ⁇ (Film thickness after film formation) ⁇ (blow ratio) ⁇ .
  • the blow ratio is preferably 1.6 to 4.0 and the draw ratio is preferably 10 to 50 in order to form the dispersion structure described above.
  • the blow ratio is more preferably 2.2 to 3.4, still more preferably 2.8 to 3.4.
  • the draw ratio is more preferably 15 to 45, still more preferably 20 to 35.
  • the lip gap of the annular die may be adjusted so as to have a desired film thickness when the film is formed with the above-mentioned preferable blow ratio and draw ratio, but is usually 0.6 to 1.8, preferably 1.2 to 1.6.
  • the annular die is preferably a spiral type from the viewpoint of thickness accuracy and uniformity, and from the same viewpoint, the annular die is preferably a rotary type.
  • the extrusion temperature when the biodegradable film of the present invention is formed into a film is usually in the range of 150 to 240 ° C., preferably 180 to 210 ° C., and the temperature of the annular die is usually in the range of 150 to 190 ° C. 155 to 170 ° C is preferable.
  • heat treatment may be performed in a heating roll or an oven in order to suppress thermal shrinkage of the film.
  • Various surface treatments may be applied for the purpose of improving printability, laminate suitability, coating suitability, and the like. Examples of the surface treatment include corona discharge treatment, plasma treatment, flame treatment, acid treatment, etc., and any method can be used, but continuous treatment is possible, and equipment for existing film forming equipment is used. Corona discharge treatment can be exemplified as the most preferable because of its easy installation and simple processing.
  • the thickness of the dispersed phase and the continuous phase is measured, and after calculating the average value of all of the dispersed phase and the continuous phase, 1 mm of actual measurement is converted to 20 nm, and W A and W B (Nm) (the first decimal place was rounded off).
  • the length of the film is confirmed in the confirmation of the dispersed structure with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 1 shows an example of a cross-sectional photograph of the film (magnification: 50,000 times).
  • (2) Tensile modulus (MPa) A sample was cut into a strip shape having a length of 150 mm in the measurement direction and a width of 10 mm, and stress-strain measurement was performed as follows in an atmosphere at a temperature of 23 ° C. and a humidity of 65% RH. Using Tensilon UCT-100 manufactured by Orientec Co., Ltd., a tensile test was performed at an initial length between chucks of 50 mm and a tensile speed of 300 mm / min.
  • Mass average molecular weight Mw, number average molecular weight Mn It is a value in terms of standard polymethyl methacrylate measured by gel permeation chromatography (GPC). GPC measurement uses a WATERS differential refractometer WATERS410 as a detector, WATERS MODEL510 high performance liquid chromatography as a pump, and Shodex GPC HFIP-806M and Shodex GPC HFIP-LG connected in series as a column. I went.
  • the measurement conditions were a flow rate of 0.5 mL / min, hexafluoroisopropanol was used as the solvent, and 0.1 mL of a solution having a sample concentration of 1 mg / mL was injected.
  • [Lactic acid resin (A)] (A1) Poly L-lactic acid, mass average molecular weight Mw 200,000, D-form content 1.4 mol%, melting point 166 ° C., temperature 200 ° C., melt viscosity 1,400 Pa ⁇ s at a shear rate of 100 sec ⁇ 1 , biomass degree 100%.
  • A2 Poly L-lactic acid, mass average molecular weight Mw 200,000, D-form content 12.0 mol%, no melting point, temperature 200 ° C., melt viscosity 1,250 Pa ⁇ s at a shear rate of 100 sec ⁇ 1 , biomass degree 100%.
  • A3 62 parts by mass of polyethylene glycol having a number average molecular weight Mn of 8,000, 38 parts by mass of L-lactide and 0.05 parts by mass of tin octylate are mixed and polymerized in a reaction vessel equipped with a stirrer at 160 ° C. for 3 hours in a nitrogen atmosphere.
  • a polylactic acid resin A3 having polylactic acid segments having a number average molecular weight Mn of 2,500 at both ends of polyethylene glycol having a number average molecular weight Mn of 8,000 was obtained.
  • the biomass degree was 39%.
  • a mixture of 30 parts by weight of the above (A1) and 70 parts by weight of the above (A2) was subjected to a twin screw extruder with a vacuum vent with a cylinder diameter of 200 ° C. and a screw diameter of 44 mm, and melted and kneaded while degassing the vacuum vent. And then pelletized to obtain a polylactic acid resin A4.
  • a mixture of 27 parts by mass of (A1), 63 parts by mass of (A2) and 10 parts by mass of (A3) was subjected to a twin screw extruder equipped with a vacuum vent with a cylinder diameter of 200 ° C. and a screw diameter of 44 mm, and the vacuum vent part was removed. It melt-kneaded with air, homogenized, and then pelletized to obtain polylactic acid resin A5. The melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec ⁇ 1 was 1,000 Pa ⁇ s. The degree of biomass was 94%.
  • a mixture of 24 parts by mass of (A1), 56 parts by mass of (A2) and 20 parts by mass of (A3) is subjected to a twin screw extruder with a vacuum diameter of 44 mm and a cylinder temperature of 200 ° C., and the vacuum vent is removed.
  • the mixture was melt-kneaded with air, homogenized, and pelletized to obtain a polylactic acid resin A6.
  • the melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec ⁇ 1 was 700 Pa ⁇ s.
  • the degree of biomass was 88%.
  • a mixture of 21 parts by mass of (A1), 49 parts by mass of (A2) and 30 parts by mass of (A3) was supplied to a twin screw extruder with a vacuum vent with a cylinder diameter of 200 ° C. and a screw diameter of 44 mm, and the vacuum vent part was removed. It melt-kneaded with air, homogenized, and then pelletized to obtain polylactic acid resin A7.
  • the melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec ⁇ 1 was 400 Pa ⁇ s.
  • the degree of biomass was 82%.
  • B2 Polybutylene succinate resin (trade name “GS Pla” (registered trademark) AZ91T, manufactured by Mitsubishi Chemical Corporation), melt viscosity of 1,050 Pa ⁇ s at a temperature of 200 ° C. and a shear rate of 100 sec ⁇ 1 .
  • B3 Polybutylene succinate-adipate resin (manufactured by Showa Polymer Co., Ltd., trade name “Bionore” (registered trademark) # 3001), melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec ⁇ 1, 1,250 Pa ⁇ s.
  • (B4) Polybutylene adipate terephthalate resin (trade name “Ecoflex” FBX7020, manufactured by BASF), melt viscosity 650 Pa ⁇ s at a temperature of 200 ° C. and a shear rate of 100 sec ⁇ 1 .
  • [Compatibilizer (C)] (C1) Ethylene / acrylic acid ester / glycidyl acrylate copolymer (“BIOMAX” (registered trademark) Strong 120 manufactured by DuPont).
  • (C2) Ethylene / acrylic acid ester / glycidyl methacrylate copolymer (“LOTADER” (registered trademark) AX8900 manufactured by Arkema).
  • the pellets of this composition were vacuum-dried at a temperature of 60 ° C. for 12 hours using a rotary drum type vacuum dryer.
  • Pellets of this composition were supplied to a single screw extruder with a screw diameter of 65 mm at an extruder cylinder temperature of 190 ° C., and a blow ratio of 2.8 from a spiral annular die with a diameter of 250 mm, a lip clearance of 1.4 mm, and a temperature of 160 ° C. Then, it was extruded upward in a bubble shape, air-cooled with a cooling ring, taken up while being folded with a nip roll above the die, cut at both ends with an edge cutter and cut into two pieces, and each film was wound with a winder. By adjusting the discharge amount and the take-off speed, a film having a draw ratio of 25 and a final thickness of 20 ⁇ m was obtained. Table 1 shows the physical properties of the obtained film.
  • Example 1 to 26 and Comparative Examples 2 to 5 the final thickness was 20 ⁇ m in the same manner as in Comparative Example 1, except that the film raw materials and film forming conditions were changed as shown in Tables 1, 2 and 3. A film was obtained. The physical properties of the obtained film are shown in Table 1, Table 2, Table 3, and Table 4.
  • the biodegradable film of the present invention is a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and in particular, exhibits a good effect by an inflation film forming method.
  • Agricultural and forestry applications such as agricultural multi-films, pine worm fumigation sheets, compost bags, food packaging applications such as vegetables and fruits, which mainly require flexibility, tear resistance and transparency It can be preferably used for individual uses such as individual packaging for clothing, handbags for shopping, garbage bags, bags for various industrial products, and the like.

Abstract

This biodegradable film contains a lactic acid resin (A) and a biodegradable resin (B) other than the lactic acid resin (A). The biodegradable film has a structure wherein, in a cross section along the length direction and the thickness direction of the film, a disperse phase comprising the lactic acid resin (A) is dispersed in a continuous phase comprising the biodegradable resin (B), the disperse phase being dispersed in the form of ellipses elongated in the length direction of the film or in the form of layers elongated in the length direction of the film. The biodegradable film satisfies the formula WA/WB ≤ 2.0PA/PB, wherein PA is the content (mass%) of the lactic acid resin (A) and PB is the content (mass%) of the biodegradable resin (B) in a total of 100 mass% of the lactic acid resin (A) and the biodegradable resin (B), WA is the thickness (nm) of the disperse phase, and WB is the thickness (nm) of the continuous phase. The present invention provides a biodegradable film that has excellent flexibility, tear resistance, transparency, and biomass characteristics, and that achieves excellent effects particularly in inflation film-forming methods.

Description

生分解性フィルムBiodegradable film
 本発明は、柔軟性、耐引裂性、透明性に優れ、かつバイオマス性に優れた、特にインフレーション製膜法で良好な効果が発現する生分解性フィルムに関する。 The present invention relates to a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and particularly exhibits a good effect by an inflation film-forming method.
 近年、環境意識の高まりのもと、プラスチック製品の廃棄による土壌汚染問題、また、焼却による二酸化炭素増大に起因する地球温暖化問題が注目されている。前者への対策として、種々の生分解樹脂、後者への対策として、焼却しても大気中に新たな二酸化炭素の負荷を与えないバイオマス(植物由来原料)からなる樹脂がさかんに研究、開発されている。その両者を満足し、かつ、コスト面でも比較的有利なポリ乳酸が注目されている。ポリ乳酸を、ポリエチレンなどのポリオレフィンに代表される軟質フィルム用途に適用しようとすると柔軟性や耐衝撃性に欠けるため、これらの特性を改善し実用化するために各種の試みがなされている。 In recent years, with increasing environmental awareness, attention has been focused on soil pollution problems caused by the disposal of plastic products and global warming problems caused by increased carbon dioxide caused by incineration. As a measure against the former, various biodegradable resins, and as a measure against the latter, a resin made of biomass (plant-derived raw material) that does not give a new carbon dioxide load to the atmosphere even if it is incinerated has been extensively researched and developed. ing. Attention has been focused on polylactic acid that satisfies both requirements and is relatively advantageous in terms of cost. When polylactic acid is applied to soft film applications typified by polyolefins such as polyethylene, it lacks flexibility and impact resistance. Therefore, various attempts have been made to improve these properties and put them into practical use.
 例えば、特許文献1には、ポリ乳酸とガラス転移温度が0℃以下の生分解性脂肪族ポリエステルと芳香族共重合ポリエステルとの共重合体、可塑剤、無機質充填材とを構成成分とする樹脂組成物からなるフィルムが開示されている。また、特許文献2には、ポリ乳酸系樹脂、可塑剤を含む組成物からなり、伸度、厚み、熱収縮率を規定したフィルムが開示されている。さらに、特許文献3には、アジピン酸、テレフタル酸、ブタンジオールからなるポリエステルと、ポリ乳酸の混合物に、ジイソシアネートを加えた生分解可能な樹脂組成物、フィルムが開示されている。
特開2002-327107号公報 特開2009-138085号公報 特許第3411289号公報
For example, Patent Document 1 discloses a resin comprising polylactic acid, a copolymer of a biodegradable aliphatic polyester having a glass transition temperature of 0 ° C. or lower and an aromatic copolymer polyester, a plasticizer, and an inorganic filler as constituent components. A film comprising the composition is disclosed. Patent Document 2 discloses a film comprising a composition containing a polylactic acid-based resin and a plasticizer and defining elongation, thickness, and heat shrinkage rate. Furthermore, Patent Document 3 discloses a biodegradable resin composition and film in which diisocyanate is added to a mixture of a polyester composed of adipic acid, terephthalic acid and butanediol and polylactic acid.
JP 2002-327107 A JP 2009-138085 A Japanese Patent No. 3411289
 前述の特許文献1には、フィルムの柔軟性や耐衝撃性の向上に関する記載はされているものの、耐引裂性、透明性を向上する技術については全く開示されておらず、実際、そのフィルムの耐引裂性、透明性は不十分なものであった。 Although the above-mentioned Patent Document 1 describes the improvement of the flexibility and impact resistance of the film, it does not disclose any technique for improving tear resistance and transparency. The tear resistance and transparency were insufficient.
 また、前述の特許文献2には、フィルムの柔軟性や耐衝撃性の向上に関する記載はされているものの、耐引裂性を向上する技術については全く開示されておらず、実際、そのフィルムの耐引裂性は不十分なものであった。 In addition, although the above-mentioned Patent Document 2 describes the improvement of the flexibility and impact resistance of the film, it does not disclose any technique for improving the tear resistance. The tearability was insufficient.
 さらに、前述の特許文献3には、生分解性と機械特性との双方を用途に応じ最適にすることが可能であると記載はされているものの、開示されている技術では、透明性、耐引裂性は不十分なものであった。 Furthermore, although it is described in Patent Document 3 that it is possible to optimize both biodegradability and mechanical properties according to the application, the disclosed technique is not transparent. The tearability was insufficient.
 以上のように、柔軟性、耐引裂性、透明性に優れ、かつバイオマス性に優れた、特にインフレーション製膜法で良好な効果が発現する生分解性フィルムに関連する技術について種々の検討がなされてきたが、未だに達成されていなかった。 As described above, various studies have been made on technologies related to biodegradable films that are excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and in particular, that exhibit good effects in the inflation film forming method. However, it has not been achieved yet.
 そこで本発明は、かかる従来技術の背景に鑑み、柔軟性、耐引裂性、透明性に優れ、かつバイオマス性に優れた、特にインフレーション製膜法で良好な効果が発現する生分解性フィルムを提供することを課題とする。 Therefore, in view of the background of such conventional technology, the present invention provides a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and that exhibits particularly good effects by the inflation film-forming method. The task is to do.
 上記課題を解決するために本発明の生分解性フィルムは、次の構成を有する。すなわち、
 乳酸系樹脂(A)と、乳酸系樹脂(A)以外の生分解性樹脂(B)(以下、単に「生分解性樹脂(B)」という)を含有する生分解性フィルムであって、フィルムの長さ方向と厚さ方向の断面において、生分解性樹脂(B)からなる連続相に、乳酸系樹脂(A)からなる分散相が、フィルムの長さ方向に長い楕円状またはフィルムの長さ方向に長い層状に分散した構造を有し、乳酸系樹脂(A)と生分解性樹脂(B)の合計100質量%における、乳酸系樹脂(A)の含有量(質量%)をP、生分解性樹脂(B)の含有量(質量%)をP、該分散相の厚さ(nm)をW、連続相の厚さ(nm)をWとしたときに、次式を満たす生分解性フィルム、である。
In order to solve the above problems, the biodegradable film of the present invention has the following configuration. That is,
A biodegradable film comprising a lactic acid resin (A) and a biodegradable resin (B) other than the lactic acid resin (A) (hereinafter simply referred to as “biodegradable resin (B)”), In the cross section in the length direction and the thickness direction, the continuous phase composed of the biodegradable resin (B) has an elliptical shape in which the dispersed phase composed of the lactic acid resin (A) is long in the length direction of the film or the length of the film. It has a dispersed structure in long layered directionally, in total 100 wt% of the lactic acid resin (a) and biodegradable resin (B), the content of the lactic acid resin (a) (mass%) P a When the content (mass%) of the biodegradable resin (B) is P B , the thickness (nm) of the dispersed phase is W A , and the thickness (nm) of the continuous phase is W B , A biodegradable film that meets the requirements.
   W/W≦2.0×P/P
 本発明の生分解性フィルムは、前記分散相の厚さWが5~100nmであることが好ましい。
W A / W B ≦ 2.0 × P A / P B
Biodegradable film of the present invention preferably has a thickness W A of the disperse phase is 5 ~ 100 nm.
 本発明の生分解性フィルムは、JIS K7128-1 (1998)で定められたトラウザー引裂法によるフィルムの引裂強度が、長さ方向、幅方向のいずれも5N/mm以上であることが好ましい。 The biodegradable film of the present invention preferably has a tear strength of the film by the trouser tear method defined in JIS K7128-1 (1998) of 5 N / mm or more in both the length direction and the width direction.
 本発明の生分解性フィルムは、P:P=5:95~60:40であることが好ましい。 The biodegradable film of the present invention preferably has P A : P B = 5: 95 to 60:40.
 本発明の生分解性フィルムは、温度200℃、剪断速度100sec-1における乳酸系樹脂(A)の溶融粘度をη、温度200℃、剪断速度100sec-1における生分解性樹脂(B)の溶融粘度をηとしたとき、次式を満たすことが好ましい。 Biodegradable film of the present invention, the temperature 200 ° C., a melt viscosity eta A, temperature 200 ° C. of the lactic acid resin (A) at a shear rate of 100 sec -1, biodegradable resin at a shear rate 100 sec -1 of (B) When the melt viscosity is η B , it is preferable to satisfy the following formula.
   0.3≦η≦1.1
 本発明の生分解性フィルムは、相溶化剤を含有することが好ましい。
0.3 ≦ η A / η B ≦ 1.1
The biodegradable film of the present invention preferably contains a compatibilizer.
 本発明の生分解性フィルムは、乳酸系樹脂(A)が、ポリエーテル系セグメントとポリ乳酸セグメントとを有するブロック共重合体及びポリエステル系セグメントとポリ乳酸セグメントとを有するブロック共重合体からなる群より選ばれる少なくとも1つとホモポリ乳酸とからなることが好ましい。 In the biodegradable film of the present invention, the lactic acid resin (A) is composed of a block copolymer having a polyether segment and a polylactic acid segment, and a block copolymer having a polyester segment and a polylactic acid segment. It is preferable to consist of at least one selected from homopolylactic acid.
 本発明の生分解性フィルムは、生分解性樹脂(B)が、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、および、ポリブチレンアジペート・テレフタレートからなる群より選ばれる少なくとも1つであることが好ましい。 In the biodegradable film of the present invention, the biodegradable resin (B) is at least one selected from the group consisting of polybutylene succinate, polybutylene succinate adipate, and polybutylene adipate terephthalate. preferable.
 本発明によれば、柔軟性、耐引裂性、透明性に優れ、かつバイオマス性に優れた、特にインフレーション製膜法で良好な効果が発現する生分解性フィルムが提供される。本発明の生分解性フィルムは、生分解性やバイオマス性に加え、主に、柔軟性、耐引裂性、透明性を必要とする、農業用マルチフィルムや松くい虫燻蒸用シート、堆肥袋などの農林業用途、野菜や果物など食品包装用途、衣料用個別包装、買い物用手提げバッグ、ゴミ袋などの各用途、あるいは各種工業製品の袋などに好ましく用いることができる。 According to the present invention, there is provided a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and particularly exhibits a good effect by an inflation film-forming method. The biodegradable film of the present invention is mainly required for flexibility, tear resistance, transparency in addition to biodegradability and biomass. Agricultural multi-film, sheet for pine fumigation, compost bag, etc. It can be preferably used for agricultural and forestry applications, food packaging applications such as vegetables and fruits, individual packaging for clothing, handbags for shopping, garbage bags, bags for various industrial products, and the like.
本発明の生分解フィルムの断面写真(倍率:5万倍)の例である。It is an example of the cross-sectional photograph (magnification: 50,000 times) of the biodegradable film of this invention.
 本発明は、前記課題、つまり柔軟性、耐引裂性、透明性に優れ、かつバイオマス性に優れた、特にインフレーション製膜法で良好な効果が発現する生分解性フィルムについて鋭意検討した結果、乳酸系樹脂と、乳酸系樹脂以外の生分解性樹脂を含有し、さらに、それらの樹脂の含有量比と分散状態の関係を、一定の条件内に納めることにより、かかる課題の解決に初めて成功したものである。すなわち本発明は、乳酸系樹脂(A)と、生分解性樹脂(B)を含有する生分解性フィルムであって、フィルムの長さ方向と厚さ方向の断面において、生分解性樹脂(B)からなる連続相に、乳酸系樹脂(A)からなる分散相が、フィルムの長さ方向に長い楕円状またはフィルムの長さ方向に長い層状に分散した構造を有し、乳酸系樹脂(A)と生分解性樹脂(B)の合計100質量%における、乳酸系樹脂(A)の含有量(質量%)をP、生分解性樹脂(B)の含有量(質量%)をP、該分散相の厚さ(nm)をW、連続相の厚さ(nm)をWとしたときに、次式を満たす生分解性フィルムである。 The present invention, as a result of diligent research on a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, in particular, exhibits a good effect by the inflation film formation method. For the first time to solve such a problem by containing biodegradable resins other than lactic acid resins and biodegradable resins other than lactic acid resins, and by keeping the relationship between the content ratio of these resins and the dispersion state within certain conditions Is. That is, the present invention is a biodegradable film containing a lactic acid-based resin (A) and a biodegradable resin (B), wherein the biodegradable resin (B ) In a continuous phase composed of a lactic acid resin (A) dispersed in an elliptical shape long in the length direction of the film or in a layer shape long in the length direction of the film. ) And the biodegradable resin (B) in a total of 100% by mass, the content (% by mass) of the lactic acid resin (A) is P A and the content (% by mass) of the biodegradable resin (B) is P B. the thickness of the dispersion phase (nm) W a, when the thickness of the continuous phase (nm) was W B, a biodegradable film which satisfies the following equation.
   W/W≦2.0×P/P
 以下、本発明の生分解性フィルムについて説明する。
(乳酸系樹脂(A))
 本発明の生分解性フィルムは、乳酸系樹脂(A)を含有することが重要である。本発明でいう乳酸系樹脂(A)とは、重合体全体100質量%に対して、乳酸ユニットからなる構成成分が、5~100質量%のものをいう。ここで乳酸ユニットからなる構成成分はバイオマス(植物由来原料)である。
W A / W B ≦ 2.0 × P A / P B
Hereinafter, the biodegradable film of the present invention will be described.
(Lactic acid resin (A))
It is important that the biodegradable film of the present invention contains a lactic acid resin (A). The lactic acid-based resin (A) as used in the present invention refers to those having 5 to 100% by mass of a lactic acid unit component based on 100% by mass of the whole polymer. Here, the component composed of lactic acid units is biomass (plant-derived raw material).
 本発明でいう乳酸系樹脂(A)は、乳酸ユニットからなる構成成分が、60質量%以上100質量%以下であるポリ乳酸系樹脂と、乳酸ユニットからなる構成成分が、5質量%以上60質量%未満である他の乳酸系樹脂(乳酸系樹脂(A)において、乳酸ユニットからなる構成成分が、5質量%以上60質量%未満である重合体を、以下、単に「他の乳酸系樹脂」という)に分類される。そして本発明のフィルムは、乳酸系樹脂(A)を含有しさえすれば、ポリ乳酸系樹脂又は他の乳酸系樹脂のいずれを含有していても特に限定されないが、後述するように本発明のフィルムは、乳酸系樹脂(A)として、ポリ乳酸系樹脂及び他の乳酸系樹脂の両方を含有することが好ましい。 The lactic acid-based resin (A) in the present invention is composed of a polylactic acid-based resin in which the constituent component consisting of lactic acid units is 60% by mass or more and 100% by mass or less, and the constituent component consisting of lactic acid units is 5% by mass to 60% by mass. % Other lactic acid-based resin (in the lactic acid-based resin (A), a polymer having a lactic acid unit component content of 5 mass% or more and less than 60 mass% is simply referred to as “other lactic acid resin” hereinafter. Classified). The film of the present invention is not particularly limited as long as it contains the lactic acid-based resin (A), and it contains any of the polylactic acid-based resin or other lactic acid-based resins. The film preferably contains both a polylactic acid resin and another lactic acid resin as the lactic acid resin (A).
 以下、まず、乳酸ユニットからなる構成成分が、60質量%以上100質量%以下であるポリ乳酸系樹脂について説明する。 Hereinafter, first, a polylactic acid resin in which a constituent component composed of a lactic acid unit is 60% by mass or more and 100% by mass or less will be described.
 本発明でいうポリL-乳酸とは、乳酸系樹脂(A)中の全乳酸ユニット100mol%中、L-乳酸ユニットの含有割合が50mol%を超え100mol%以下のものをいう。一方、本発明でいうポリD-乳酸とは、乳酸系樹脂(A)中の全乳酸ユニット100mol%中、D-乳酸ユニットの含有割合が50mol%を超え100mol%以下のものをいう。 The poly-L-lactic acid referred to in the present invention refers to those in which the content of L-lactic acid units is more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the lactic acid resin (A). On the other hand, the poly-D-lactic acid referred to in the present invention refers to those having a D-lactic acid unit content of more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the lactic acid resin (A).
 ポリL-乳酸は、D-乳酸ユニットの含有割合によって、樹脂自体の結晶性が変化する。つまり、ポリL-乳酸中のD-乳酸ユニットの含有割合が多くなれば、ポリL-乳酸の結晶性は低くなり非晶に近づき、逆にポリL-乳酸中のD-乳酸ユニットの含有割合が少なくなれば、ポリL-乳酸の結晶性は高くなっていく。同様に、ポリD-乳酸は、L-乳酸ユニットの含有割合によって、樹脂自体の結晶性が変化する。つまり、ポリD-乳酸中のL-乳酸ユニットの含有割合が多くなれば、ポリD-乳酸の結晶性は低くなり非晶に近づき、逆にポリD-乳酸中のL-乳酸ユニットの含有割合が少なくなれば、ポリD-乳酸の結晶性は高くなっていく。 Poly L-lactic acid changes in the crystallinity of the resin itself depending on the content ratio of the D-lactic acid unit. That is, if the content ratio of D-lactic acid units in poly-L-lactic acid increases, the crystallinity of poly-L-lactic acid decreases and approaches amorphous, and conversely the content ratio of D-lactic acid units in poly-L-lactic acid. As the amount decreases, the crystallinity of poly-L-lactic acid increases. Similarly, the crystallinity of the resin itself of poly D-lactic acid varies depending on the content ratio of L-lactic acid units. In other words, if the content ratio of L-lactic acid units in poly-D-lactic acid increases, the crystallinity of poly-D-lactic acid decreases and approaches amorphous, and conversely, the content ratio of L-lactic acid units in poly-D-lactic acid. As the amount decreases, the crystallinity of poly-D-lactic acid increases.
 本発明で用いられるポリL-乳酸中のL-乳酸ユニットの含有割合、あるいは、本発明で用いられるポリD-乳酸中のD-乳酸ユニットの含有割合は、組成物の機械強度を維持する観点から全乳酸ユニット100mol%中、80~100mol%が好ましく、より好ましくは85~100mol%である。 The content ratio of the L-lactic acid unit in the poly L-lactic acid used in the present invention, or the content ratio of the D-lactic acid unit in the poly D-lactic acid used in the present invention is a viewpoint for maintaining the mechanical strength of the composition. From 100 to 100 mol% of all lactic acid units, 80 to 100 mol% is preferable, and 85 to 100 mol% is more preferable.
 本発明でいう結晶性ポリ乳酸系樹脂とは、該ポリ乳酸系樹脂を加熱下で十分に結晶化させた後に、適当な温度範囲で示差走査熱量計(DSC)にて測定を行った場合、ポリ乳酸成分に由来する結晶融解熱が観測されるポリ乳酸系樹脂のことをいう。 The crystalline polylactic acid resin referred to in the present invention is a case where the polylactic acid resin is sufficiently crystallized under heating and then measured with a differential scanning calorimeter (DSC) in an appropriate temperature range. This refers to a polylactic acid resin in which the heat of crystal melting derived from the polylactic acid component is observed.
 一方、本発明でいう非晶性ポリ乳酸系樹脂とは、同様に測定を行った場合、明確な融点を示さないポリ乳酸系樹脂のことをいう。 On the other hand, the amorphous polylactic acid resin referred to in the present invention refers to a polylactic acid resin that does not exhibit a clear melting point when measured in the same manner.
 また、本発明で用いられる乳酸系樹脂(A)の主成分がポリL-乳酸の場合はポリD-乳酸を、また、乳酸系樹脂(A)の主成分がポリD-乳酸の場合はポリL-乳酸を、少量混合することも好ましい。その理由は、ポリL-乳酸とポリD-乳酸により形成されるステレオコンプレックス結晶は、通常の結晶よりも融点が高くなり、耐熱性が向上するためである。このとき、少量混合するポリ乳酸の質量平均分子量Mwは、主成分のポリ乳酸の質量平均分子量Mwよりも小さい方が、フィルムの機械強度を維持できる観点、ステレオコンプレックス結晶を効率的に形成できる観点で好ましい。少量混合するポリ乳酸の質量平均分子量Mwは、主成分のポリ乳酸の質量平均分子量Mwの0.5~50%であることが好ましく、1~40%であることがより好ましく、2~30%であることがさらに好ましい。 Also, when the main component of the lactic acid resin (A) used in the present invention is poly L-lactic acid, poly D-lactic acid is used. When the main component of the lactic acid resin (A) is poly D-lactic acid, poly D-lactic acid is used. It is also preferable to mix a small amount of L-lactic acid. This is because a stereocomplex crystal formed from poly L-lactic acid and poly D-lactic acid has a higher melting point than normal crystals and improves heat resistance. At this time, the mass average molecular weight Mw of the polylactic acid to be mixed in a small amount is smaller than the mass average molecular weight Mw of the main component polylactic acid, from the viewpoint of maintaining the mechanical strength of the film, and from the viewpoint of efficiently forming a stereocomplex crystal. Is preferable. The mass average molecular weight Mw of the polylactic acid mixed in a small amount is preferably 0.5 to 50%, more preferably 1 to 40%, more preferably 2 to 30% of the mass average molecular weight Mw of the main component polylactic acid. More preferably.
 さらに、本発明で用いられる乳酸系樹脂(A)は、L-乳酸ユニットからなるセグメントとD-乳酸ユニットからなるセグメントにより構成される、ポリ乳酸ブロック共重合体であることも耐熱性向上の点で好ましい。この場合、ポリ乳酸ブロック共重合体が分子内でステレオコンプレックス結晶を形成するため、通常の結晶よりも融点が高くなる。効率的なステレオコンプレックス結晶形成のためには、ポリ乳酸ブロック共重合体の質量平均分子量Mwおよびセグメント1単位の最大質量平均分子量Mwについて、Mw<Mw/2を満たすようなセグメント長であることが好ましい。 Further, the lactic acid resin (A) used in the present invention is a polylactic acid block copolymer composed of a segment composed of L-lactic acid units and a segment composed of D-lactic acid units. Is preferable. In this case, since the polylactic acid block copolymer forms a stereocomplex crystal in the molecule, the melting point is higher than that of a normal crystal. For efficient stereocomplex crystal formation, the segment length satisfying Mw Y <Mw X / 2 for the mass average molecular weight Mw X of the polylactic acid block copolymer and the maximum mass average molecular weight Mw Y of one unit of segment. It is preferable that
 本発明で用いられるポリ乳酸系樹脂は、乳酸ユニットのみからなるホモポリ乳酸、乳酸以外の他の単量体ユニットを共重合したポリ乳酸系樹脂のいずれを用いてもよい。他の単量体としては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ-ル、デカンジオール、1,4-シクロヘキサンジメタノ-ル、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ-ルA、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコールなどのグリコール化合物、シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸などのジカルボン酸、グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸、カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オンなどのラクトン類を挙げることができる。上記の他の単量体ユニットの共重合量は、ポリ乳酸系樹脂の重合体中の単量体ユニット全体100mol%に対し、0~30mol%であることが好ましく、0~10mol%であることがより好ましい。なお、上記した単量体ユニットの中でも、用途に応じて生分解性を有する成分を選択することが好ましい。 The polylactic acid resin used in the present invention may be either a homopolylactic acid composed only of lactic acid units or a polylactic acid resin copolymerized with other monomer units other than lactic acid. Other monomers include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, pentane Glycol compounds such as erythritol, bisphenol A, polyethylene glycol, polypropylene glycol and polytetramethylene glycol, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid , Terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dica Dicarboxylic acids such as boronic acid, 5-sodium sulfoisophthalic acid and 5-tetrabutylphosphonium isophthalic acid, glycolic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid and other hydroxycarboxylic acids, caprolactone And lactones such as valerolactone, propiolactone, undecalactone, and 1,5-oxepan-2-one. The copolymerization amount of the other monomer units is preferably 0 to 30 mol%, preferably 0 to 10 mol%, based on 100 mol% of the whole monomer units in the polymer of the polylactic acid resin. Is more preferable. In addition, it is preferable to select the component which has biodegradability among the above-mentioned monomer units according to a use.
 本発明で用いられるポリ乳酸系樹脂の質量平均分子量Mwは、実用的な機械特性を満足させるため、5万~50万であることが好ましく、8万~40万であることがより好ましく、10万~30万であることがさらに好ましい。 The mass average molecular weight Mw of the polylactic acid resin used in the present invention is preferably 50,000 to 500,000, more preferably 80,000 to 400,000 in order to satisfy practical mechanical properties. More preferably, it is 10,000 to 300,000.
 次に、乳酸ユニットからなる構成成分が、5質量%以上60質量%未満である他の乳酸系樹脂について説明する。 Next, another lactic acid resin in which the constituent component composed of lactic acid units is 5% by mass or more and less than 60% by mass will be described.
 本発明の生分解性フィルムは、柔軟性、耐引裂性、透明性を発現させるため、乳酸系樹脂(A)として、ポリ乳酸系樹脂、及び、他の乳酸系樹脂を同時に用いることが好ましい。ここで、ポリ乳酸系樹脂として、ホモポリ乳酸を用いることがより好ましい。また、他の乳酸系樹脂は、ポリエーテル系セグメントとポリ乳酸セグメントとを有するブロック共重合体、及び/又は、ポリエステル系セグメントとポリ乳酸セグメントとを有するブロック共重合体であることが特に好ましい(これらブロック共重合体を、以下、「ブロック共重合体可塑剤」という。)。ここで、可塑化成分は、ポリエーテル系セグメント、ポリエステル系セグメントとなる。つまり乳酸系樹脂(A)は、ホモポリ乳酸、及び、ブロック共重合体可塑剤を併用することがより好ましい。以下、「ブロック共重合体可塑剤」について次に説明する。 The biodegradable film of the present invention preferably uses a polylactic acid resin and another lactic acid resin simultaneously as the lactic acid resin (A) in order to exhibit flexibility, tear resistance, and transparency. Here, homopolylactic acid is more preferably used as the polylactic acid resin. The other lactic acid resin is particularly preferably a block copolymer having a polyether segment and a polylactic acid segment and / or a block copolymer having a polyester segment and a polylactic acid segment ( These block copolymers are hereinafter referred to as “block copolymer plasticizers”). Here, the plasticizing component is a polyether segment or a polyester segment. That is, the lactic acid resin (A) is more preferably used in combination with homopolylactic acid and a block copolymer plasticizer. Hereinafter, the “block copolymer plasticizer” will be described.
 ブロック共重合体可塑剤は、ポリ乳酸系樹脂を可塑化することにより柔軟性を発現し、ポリ乳酸系樹脂と生分解性樹脂(B)の相溶化剤としての役割、ポリ乳酸系樹脂の溶融粘度調整により後述する分散構造を形成させる役割により、耐引裂性、透明性を発現する。 The block copolymer plasticizer develops flexibility by plasticizing the polylactic acid resin, plays a role as a compatibilizer between the polylactic acid resin and the biodegradable resin (B), and melts the polylactic acid resin. Tear resistance and transparency are exhibited by the role of forming a dispersion structure to be described later by adjusting the viscosity.
 ブロック共重合体可塑剤中のポリ乳酸セグメントの質量割合は、ブロック共重合体可塑剤全体の50質量%以下であることが、より少量の添加で所望の柔軟性を付与できるため好ましく、5質量%以上であることが、ブリードアウト抑制の点から好ましい。また、ブロック共重合体可塑剤1分子中のポリ乳酸セグメントの数平均分子量Mnは1,200~10,000であることが好ましい。ブロック共重合体可塑剤中のポリ乳酸セグメントの数平均分子量Mnが、1,200以上であると、ブロック共重合体可塑剤とポリ乳酸系樹脂との間に十分な親和性が生じ、また、該セグメントの一部はポリ乳酸系樹脂から形成される結晶中に取り込まれ、いわゆる共晶を形成することで、ブロック共重合体可塑剤をポリ乳酸系樹脂につなぎ止める作用を生じ、ブロック共重合体可塑剤のブリードアウト抑制に大きな効果を発揮する。ブロック共重合体可塑剤中のポリ乳酸セグメントの数平均分子量Mnは、1,500~6,000であることがより好ましく、2,000~5,000であることがさらに好ましい。なお、ブロック共重合体可塑剤中のポリ乳酸セグメントは、L-乳酸が95~100質量%であるか、あるいはD-乳酸が95~100質量%であることが、特にブリードアウトが抑制されるため好ましい。 The mass ratio of the polylactic acid segment in the block copolymer plasticizer is preferably 50% by mass or less based on the total of the block copolymer plasticizer, since a desired flexibility can be imparted with a smaller amount of addition, preferably 5 mass. % Or more is preferable from the viewpoint of suppressing bleed-out. The number average molecular weight Mn of the polylactic acid segment in one molecule of the block copolymer plasticizer is preferably 1,200 to 10,000. When the number average molecular weight Mn of the polylactic acid segment in the block copolymer plasticizer is 1,200 or more, sufficient affinity is produced between the block copolymer plasticizer and the polylactic acid resin, A part of the segment is incorporated into a crystal formed from a polylactic acid-based resin and forms a so-called eutectic, thereby causing the block copolymer plasticizer to bind to the polylactic acid-based resin. Great effect in suppressing bleed-out of plasticizer. The number average molecular weight Mn of the polylactic acid segment in the block copolymer plasticizer is more preferably 1,500 to 6,000, and further preferably 2,000 to 5,000. The polylactic acid segment in the block copolymer plasticizer is such that L-lactic acid is 95 to 100% by mass or D-lactic acid is 95 to 100% by mass. Therefore, it is preferable.
 また、ブロック共重合体可塑剤はポリエーテル系セグメント及びポリエステル系セグメントからなる群より選ばれる少なくとも1つを有するが、ポリエーテル系セグメントとポリ乳酸セグメントとのブロック共重合体である方が、少量の添加で所望の柔軟性を付与できる観点から好ましい。さらにポリエーテル系セグメントとポリ乳酸セグメントとのブロック共重合体においては、より少量の添加で所望の柔軟性を付与できる観点から、ポリエーテル系セグメントはポリアルキレンエーテルからなるセグメントであることがより好ましい。具体的には、ポリエーテル系セグメントとして、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール・ポリプロピレングリコール共重合体などからなるセグメントが挙げられるが、特にポリエチレングリコールからなるセグメントは、ポリ乳酸系樹脂との親和性が高いために改質効率に優れ、特に少量の添加で所望の柔軟性を付与できるため好ましい。 Further, the block copolymer plasticizer has at least one selected from the group consisting of polyether-based segments and polyester-based segments, but a smaller amount is a block copolymer of a polyether-based segment and a polylactic acid segment. From the viewpoint of adding desired flexibility, it is preferable. Furthermore, in the block copolymer of a polyether segment and a polylactic acid segment, the polyether segment is more preferably a segment composed of a polyalkylene ether from the viewpoint of imparting desired flexibility with a smaller amount of addition. . Specifically, examples of the polyether-based segment include a segment made of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol / polypropylene glycol copolymer, etc., and in particular, a segment made of polyethylene glycol is a polylactic acid-based segment. Since the affinity with the resin is high, the reforming efficiency is excellent, and a desired flexibility can be imparted with a small amount of addition, which is preferable.
 なお、ブロック共重合体可塑剤がポリアルキレンエーテルからなるセグメントを有する場合、成形時などで加熱する際にポリアルキレンエーテルセグメントが酸化し易く、熱分解し易い傾向があるため、後述するヒンダードフェノール系、ヒンダードアミン系などの酸化防止剤やリン系などの熱安定剤を併用することが好ましい。 In addition, when the block copolymer plasticizer has a segment made of polyalkylene ether, the polyalkylene ether segment tends to be oxidized and easily decomposed when heated at the time of molding or the like. It is preferable to use an antioxidant such as a hindered amine or a heat stabilizer such as a phosphorus.
 ブロック共重合体可塑剤がポリエステル系セグメントを有する場合は、ポリグリコール酸、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート・3-ヒドロキシバリレート)、ポリカプロラクトン、あるいはエチレングリコール、プロパンジオール、ブタンジオールなどの脂肪族ジオールとコハク酸、セバシン酸、アジピン酸などの脂肪族ジカルボン酸よりなるポリエステルなどが、ポリエステル系セグメントとして好適に用いられる。 When the block copolymer plasticizer has a polyester-based segment, polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-3hydroxyvalerate), polycaprolactone, or ethylene glycol, Polyesters composed of aliphatic diols such as propanediol and butanediol and aliphatic dicarboxylic acids such as succinic acid, sebacic acid and adipic acid are preferably used as the polyester segment.
 なお、ブロック共重合体可塑剤は、その1分子中に、ポリエーテル系セグメントとポリエステル系セグメントの両方の成分を含有してもよいし、いずれか一方の成分でもよい。可塑剤の生産性やコスト等の理由から、いずれか一方の成分とする場合は、より少量の可塑剤の添加で所望の柔軟性を付与できる観点から、ポリエーテル系セグメントを用いる方が好ましい。つまりブロック共重合体可塑剤として好ましい態様は、ポリエーテル系セグメントとポリ乳酸セグメントとのブロック共重合体である。 The block copolymer plasticizer may contain both the polyether segment and the polyester segment in one molecule, or may be either one of the components. From the viewpoint of plasticizer productivity, cost, and the like, when using any one component, it is preferable to use a polyether-based segment from the viewpoint that desired flexibility can be imparted by adding a smaller amount of the plasticizer. That is, a preferred embodiment as a block copolymer plasticizer is a block copolymer of a polyether segment and a polylactic acid segment.
 さらにまた、ブロック共重合体可塑剤の1分子中のポリエーテル系セグメントやポリエステル系セグメントの数平均分子量Mnは、7,000~20,000であることが好ましい。上記範囲とすることで、本発明の生分解性フィルムを構成する組成物に十分な柔軟性を持たせ、なおかつ、乳酸系樹脂(A)、並びに生分解性樹脂(B)を含む組成物とした際に溶融粘度を適度なレベルとし、インフレーション製膜法などの製膜加工性を安定させることができる。 Furthermore, the number average molecular weight Mn of the polyether segment or the polyester segment in one molecule of the block copolymer plasticizer is preferably 7,000 to 20,000. By setting it as the said range, the composition which comprises the biodegradable film of this invention has sufficient softness | flexibility, and also the composition containing lactic acid-type resin (A) and biodegradable resin (B), In this case, the melt viscosity can be adjusted to an appropriate level, and the film forming processability such as the inflation film forming method can be stabilized.
 前記ポリエーテル系セグメント及びポリエステル系セグメントからなる群より選ばれる少なくとも1つと、ポリ乳酸セグメントの各セグメントブロックの順序構成に特に制限は無いが、より効果的にブリードアウトを抑制する観点から、少なくとも1ブロックのポリ乳酸セグメントがブロック共重合体可塑剤分子の端にあることが好ましい。 There is no particular limitation on the order configuration of each segment block of the polylactic acid segment and at least one selected from the group consisting of the polyether segment and the polyester segment, but from the viewpoint of more effectively suppressing bleed out, at least 1 It is preferred that the polylactic acid segment of the block is at the end of the block copolymer plasticizer molecule.
 次に、ポリエーテル系セグメントとして、両末端に水酸基末端を有するポリエチレングリコール(以下、PEG)を採用した場合について具体的に説明する。 Next, the case where polyethylene glycol having a hydroxyl terminal at both ends (hereinafter referred to as PEG) is employed as the polyether segment will be specifically described.
 両末端に水酸基末端を有するPEGの数平均分子量(以下、PEGの数平均分子量をMnPEG)は、通常、市販品などの場合、中和法などにより求めた水酸基価から計算される。両末端に水酸基末端を有するPEGのw質量部に対し、ラクチドw質量部を添加した系において、PEGの両水酸基末端にラクチドを開環付加重合させ十分に反応させると、実質的にPLA-PEG-PLA型のブロック共重合体を得ることができる(ここで、PLAはポリ乳酸を示す)。この反応は、必要に応じてオクチル酸錫などの触媒併存下でおこなわれる。このブロック共重合体可塑剤の一つのポリ乳酸セグメントの数平均分子量Mnは、(1/2)×(w/w)×MnPEGにより求めることができる。また、ポリ乳酸セグメント成分のブロック共重合体可塑剤全体に対する質量割合は、100×w/(w+w)により求めることができる。さらに、ポリ乳酸セグメント成分を除いた可塑剤成分のブロック共重合体可塑剤全体に対する質量割合は、100×w/(w+w)により求めることができる。 The number average molecular weight of PEG having hydroxyl groups at both ends (hereinafter, the number average molecular weight of PEG is Mn PEG ) is usually calculated from the hydroxyl value determined by a neutralization method or the like in the case of a commercially available product. In a system in which lactide w L parts by mass are added to w E parts by mass of PEG having hydroxyl groups at both ends, lactide is subjected to ring-opening addition polymerization at both hydroxyl groups of PEG and sufficiently reacted, so that PLA is substantially obtained. A block copolymer of the type -PEG-PLA can be obtained (where PLA stands for polylactic acid). This reaction is performed in the presence of a catalyst such as tin octylate as necessary. The number average molecular weight Mn of one polylactic acid segment of this block copolymer plasticizer can be determined by (1/2) × (w L / w E ) × Mn PEG . The mass percentage of the total block copolymer plasticizer of the polylactic acid segment component can be determined by 100 × w L / (w L + w E). Furthermore, the mass ratio of the plasticizer component excluding the polylactic acid segment component to the entire block copolymer plasticizer can be obtained by 100 × w E / (w L + w E ).
 なお、本発明における生分解性フィルムから、ブロック共重合体可塑剤中のポリエーテル系セグメント、ポリエステル系セグメント、ポリ乳酸セグメントの数平均分子量Mnの評価をするために、ブロック共重合体可塑剤を分離する方法としては、例えばクロロホルムなどの適当な良溶媒に生分解性フィルムを均一溶解した後、水や水/メタノール混合溶液など適当な貧溶媒に滴下して、ろ過によりポリ乳酸系樹脂、生分解性樹脂(B)を主に含む沈殿物を除去し、ろ液の溶媒を揮発させてブロック共重合体可塑剤を得る再沈殿法などが挙げられる。こうして分離されたブロック共重合体可塑剤について、ゲルパーミエーションクロマトグラフィー(GPC)を用いて数平均分子量Mnを測定し、H-NMR測定により、ポリ乳酸セグメント、ポリエーテル系セグメント及び/又はポリエステル系セグメントを特定する。そして、ブロック共重合体が有する一つのポリ乳酸セグメントの分子量は、Mn×{1/(ポリ乳酸セグメントの数)}×(IPLA×72)/{(IPE×UMPE/NPE)+(IPLA×72)}と算出する。ただし、IPLAは、PLA主鎖部のメチン基の水素に由来するH-NMR測定でのシグナル積分強度、IPEはポリエーテル系セグメント及び/又はポリエステル系セグメントに由来するH-NMR測定でのシグナル積分強度、UMPEは、ポリエーテル系セグメント及び/又はポリエステル系セグメントのモノマー単位の分子量、NPEはポリエーテル系セグメント及び/又はポリエステル系セグメントのうち、シグナル積分強度を与える化学的に等価なプロトンの数である。また、ポリエーテル系セグメント及び/又はポリエステル系セグメントの数平均分子量は、Mn-(ポリ乳酸セグメントの数平均分子量)×(ポリ乳酸セグメントの数)で計算できる。ここで、MnはGPCで測定したブロック共重合体可塑剤の数平均分子量を表す。 In order to evaluate the number average molecular weight Mn of the polyether segment, the polyester segment, and the polylactic acid segment in the block copolymer plasticizer from the biodegradable film in the present invention, a block copolymer plasticizer is used. As a separation method, for example, a biodegradable film is uniformly dissolved in an appropriate good solvent such as chloroform and then dropped into an appropriate poor solvent such as water or a water / methanol mixed solution, followed by filtration to obtain a polylactic acid resin, Examples include a reprecipitation method in which a precipitate mainly containing the degradable resin (B) is removed, and a solvent of the filtrate is volatilized to obtain a block copolymer plasticizer. For the block copolymer plasticizer thus separated, the number average molecular weight Mn is measured using gel permeation chromatography (GPC), and the polylactic acid segment, the polyether-based segment and / or the polyester are measured by 1 H-NMR measurement. Identify system segments. And the molecular weight of one polylactic acid segment which the block copolymer has is Mn × {1 / (number of polylactic acid segments)} × (I PLA × 72) / {(I PE × UM PE / N PE ) + (I PLA × 72)} is calculated. However, I PLA is the signal integral intensity in 1 H-NMR measurement derived from hydrogen of the methine group in the PLA main chain, and I PE is 1 H-NMR measurement derived from the polyether-based segment and / or the polyester-based segment. UM PE is the molecular weight of the monomer unit of the polyether-based segment and / or the polyester-based segment, and N PE is a chemical that gives the signal integrated strength of the polyether-based segment and / or the polyester-based segment. The number of equivalent protons. The number average molecular weight of the polyether segment and / or polyester segment can be calculated by Mn− (number average molecular weight of polylactic acid segment) × (number of polylactic acid segments). Here, Mn represents the number average molecular weight of the block copolymer plasticizer measured by GPC.
 本発明の生分解性フィルムを構成する組成物に含有されるブロック共重合体可塑剤は、乳酸系樹脂(A)100質量%中、1~30質量%であることが好ましい。1質量%以上とすることで、前述した可塑剤、相溶化剤、溶融粘度調整剤としての機能を十分に発現でき、30質量%以下とすることで、フィルムとした際のコシが強く、取り扱い性、強度、耐久性、可塑剤の耐ブリードアウト性が高くなる。ブロック共重合体可塑剤の含有率は、好ましくは乳酸系樹脂(A)100質量%中、5~25質量%、より好ましくは、10~20質量%である。 The block copolymer plasticizer contained in the composition constituting the biodegradable film of the present invention is preferably 1 to 30% by mass in 100% by mass of the lactic acid resin (A). By setting the content to 1% by mass or more, the functions as the plasticizer, compatibilizing agent and melt viscosity modifier described above can be sufficiently expressed. , Strength, durability, and bleed-out resistance of the plasticizer are increased. The content of the block copolymer plasticizer is preferably 5 to 25% by mass, more preferably 10 to 20% by mass in 100% by mass of the lactic acid resin (A).
 ブロック共重合体可塑剤の乳酸系樹脂(A)全体100質量%中の含有量は、1~30質量%であることが好ましいが、残りの70~99質量%は、ポリ乳酸系樹脂であることが好ましい。 The content of the block copolymer plasticizer in 100% by mass of the lactic acid resin (A) is preferably 1 to 30% by mass, but the remaining 70 to 99% by mass is a polylactic acid resin. It is preferable.
 乳酸系樹脂(A)の製造方法としては、詳細は後述するが、既知の重合方法を用いることができ、乳酸からの直接重合法、ラクチドを介する開環重合法などを挙げることができる。 The production method of the lactic acid-based resin (A) will be described in detail later, but a known polymerization method can be used, and examples thereof include a direct polymerization method from lactic acid and a ring-opening polymerization method via lactide.
 本発明の生分解性フィルムは、生分解性フィルムを構成する組成物全体100質量%中、乳酸系樹脂(A)を5~60質量%含有することが好ましい。生分解性フィルムを構成する組成物全体100質量%中、乳酸系樹脂(A)を5質量%以上とすることで、透明性、バイオマス性に優れたものとなり、乳酸系樹脂(A)を60質量%以下とすることで、柔軟性、耐引裂性に優れたものとなる。生分解性フィルムを構成する組成物全体100質量%中、乳酸系樹脂(A)は20~55質量%であることがより好ましく、35~50質量%であることがさらに好ましい。
(生分解性樹脂(B))
 本発明の生分解性フィルムは、柔軟性、耐引裂性を発現させるために、乳酸系樹脂(A)以外の生分解性樹脂(B)を含有することが重要である。生分解性樹脂(B)は、生分解速度の調整および生分解性フィルムを構成する組成物全体の溶融粘度を調整して特にインフレーション製膜法において安定したバブルを形成する役割も果たす。
The biodegradable film of the present invention preferably contains 5 to 60% by mass of the lactic acid resin (A) in 100% by mass of the entire composition constituting the biodegradable film. By setting the lactic acid resin (A) to 5% by mass or more in 100% by mass of the entire composition constituting the biodegradable film, the lactic acid resin (A) becomes 60%. By setting it as the mass% or less, it becomes what was excellent in the softness | flexibility and tear resistance. In 100% by mass of the entire composition constituting the biodegradable film, the lactic acid resin (A) is more preferably 20 to 55% by mass, and further preferably 35 to 50% by mass.
(Biodegradable resin (B))
In order for the biodegradable film of the present invention to exhibit flexibility and tear resistance, it is important to contain a biodegradable resin (B) other than the lactic acid resin (A). The biodegradable resin (B) also plays a role of adjusting the biodegradation rate and adjusting the melt viscosity of the entire composition constituting the biodegradable film to form stable bubbles, particularly in the inflation film forming method.
 生分解性樹脂(B)の具体例としては、例えば、ポリグリコール酸、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート・3-ヒドロキシバリレート)、ポリカプロラクトン、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペートなどに代表される脂肪族ポリエステル、ポリエチレンサクシネート・テレフタレート、ポリブチレンサクシネート・テレフタレート、ポリブチレンアジペート・テレフタレートなどに代表される脂肪族芳香族ポリエステル、熱可塑性澱粉、澱粉と脂肪族(芳香族)ポリエステルからなる樹脂、セルロースエステルなどが好ましく用いられる。また、これらの樹脂は、バイオマス性を高める観点から、構成成分の一部または全部に植物由来原料を使用することが好ましい。 Specific examples of the biodegradable resin (B) include, for example, polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-3hydroxyvalerate), polycaprolactone, polyethylene succinate, Aliphatic polyesters such as polybutylene succinate, polybutylene succinate and adipate, aliphatic polyesters represented by polyethylene succinate and terephthalate, polybutylene succinate and terephthalate, polybutylene adipate and terephthalate, etc. Plastic starch, a resin composed of starch and aliphatic (aromatic) polyester, cellulose ester and the like are preferably used. Moreover, it is preferable to use a plant-derived raw material for some or all of these structural components from the viewpoint of enhancing the biomass properties.
 なかでも、柔軟性、耐引裂性の改良効果が大きいという点から、生分解性樹脂(B)としては、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペートおよびポリブチレンアジペート・テレフタレートからなる群より選ばれる少なくとも一つがより好ましく用いられる。そして、柔軟性、耐引裂性の改良効果が最も高いのは、ポリブチレンアジペート・テレフタレートである。 Among them, the biodegradable resin (B) is selected from the group consisting of polybutylene succinate, polybutylene succinate adipate and polybutylene adipate terephthalate because it has a great effect of improving flexibility and tear resistance. More preferably, at least one of these is used. Polybutylene adipate terephthalate has the highest effect of improving flexibility and tear resistance.
 本発明の生分解性フィルムに含まれる、生分解性樹脂(B)は、生分解性フィルムを構成する組成物全体100質量%中、40~95質量%であることが好ましい。40質量%以上であると、柔軟性、耐引裂性の改良効果が得られやすく、95質量%以下であれば透明性、適度な生分解性を付与することができる点で好ましい。生分解性フィルムを構成する組成物全体100質量%中、生分解性樹脂(B)は、45~80質量%であることがより好ましく、50~65質量%であることがさらに好ましい。
(可塑剤)
 本発明の生分解性フィルムは、主に柔軟性を付与するために、生分解性を妨げない範囲で、可塑剤を含有してもよい。
The biodegradable resin (B) contained in the biodegradable film of the present invention is preferably 40 to 95% by mass in 100% by mass of the entire composition constituting the biodegradable film. When it is 40% by mass or more, an effect of improving flexibility and tear resistance is easily obtained, and when it is 95% by mass or less, transparency and appropriate biodegradability can be imparted. In 100% by mass of the entire composition constituting the biodegradable film, the biodegradable resin (B) is more preferably 45 to 80% by mass, and further preferably 50 to 65% by mass.
(Plasticizer)
The biodegradable film of the present invention may contain a plasticizer as long as it does not hinder biodegradability, mainly to impart flexibility.
 可塑剤としては、例えば、フタル酸ジエチル、フタル酸ジオクチル、フタル酸ジシクロヘキシルなどのフタル酸エステル系、アジピン酸ジ-1-ブチル、アジピン酸ジ-n-オクチル、セバシン酸ジ-n-ブチル、アゼライン酸ジ-2-エチルヘキシルなどの脂肪族二塩基酸エステル系、リン酸ジフェニル-2-エチルヘキシル、リン酸ジフェニルオクチルなどのリン酸エステル系、アセチルクエン酸トリブチル、アセチルクエン酸トリ-2-エチルヘキシル、アセチルクエン酸トリブチルなどのヒドロキシ多価カルボン酸エステル系、アセチルリシノール酸メチル、ステアリン酸アミルなどの脂肪酸エステル系、グリセリントリアセテート、トリエチレングリコールジカプリレートなどの多価アルコールエステル系、エポキシ化大豆油、エポキシ化アマニ油脂肪酸ブチルエステル、エポキシステアリン酸オクチルなどのエポキシ系可塑剤、ポリプロピレングリコールセバシン酸エステルなどのポリエステル系可塑剤、ポリエチレングリコールなどのポリアルキレンエーテル系、エーテルエステル系、アクリレート系などが挙げられる。そして、これらのうち複数種以上の混合物を、可塑剤として用いることも可能である。 Examples of the plasticizer include phthalate esters such as diethyl phthalate, dioctyl phthalate and dicyclohexyl phthalate, di-1-butyl adipate, di-n-octyl adipate, di-n-butyl sebacate, and azelain. Aliphatic dibasic acid esters such as di-2-ethylhexyl acid, phosphoric acid ester systems such as diphenyl-2-ethylhexyl phosphate, diphenyloctyl phosphate, tributyl acetylcitrate, tri-2-ethylhexyl acetylcitrate, acetyl Hydroxy polyvalent carboxylic acid esters such as tributyl citrate, fatty acid esters such as methyl acetylricinoleate and amyl stearate, polyhydric alcohol esters such as glycerol triacetate and triethylene glycol dicaprylate, epoxidized soybean oil, Examples include epoxy-based plasticizers such as oxypropylated linseed oil butyl ester and octyl epoxy stearate, polyester-based plasticizers such as polypropylene glycol sebacate, polyalkylene ethers such as polyethylene glycol, ether esters, and acrylates. . And it is also possible to use a mixture of two or more of these as a plasticizer.
 さらに、可塑剤の耐ブリードアウト性やフィルムの耐ブロッキング性の観点から、例えば数平均分子量Mn1,000以上のポリエチレングリコールなど、常温(20℃±15℃)で固体状、つまり、融点が35℃を超えることが好ましい。
(結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の混合)
 本発明の生分解性フィルムを構成する組成物に含有される乳酸系樹脂(A)の一つであるポリ乳酸系樹脂は、結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の混合物であってもよい。混合物とすることにより、結晶性、非晶性、それぞれのポリ乳酸系樹脂の利点を両立できる。
Furthermore, from the viewpoint of the bleed-out resistance of the plasticizer and the blocking resistance of the film, for example, polyethylene glycol having a number average molecular weight Mn of 1,000 or more, it is solid at ordinary temperature (20 ° C. ± 15 ° C.), that is, the melting point is 35 ° C. Is preferably exceeded.
(Mixing of crystalline polylactic acid resin and amorphous polylactic acid resin)
The polylactic acid resin which is one of the lactic acid resins (A) contained in the composition constituting the biodegradable film of the present invention is a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin. There may be. By using a mixture, the advantages of both crystalline and amorphous polylactic acid resins can be achieved.
 なお前述のように、結晶性ポリ乳酸系樹脂とは、該ポリ乳酸系樹脂を加熱下で十分に結晶化させた後に、適当な温度範囲で示差走査熱量計(DSC)にて測定を行った場合、ポリ乳酸成分に由来する融点が観測されるポリ乳酸系樹脂のことをいう。 As described above, the crystalline polylactic acid resin was measured with a differential scanning calorimeter (DSC) in an appropriate temperature range after the polylactic acid resin was sufficiently crystallized under heating. In this case, it refers to a polylactic acid resin in which a melting point derived from a polylactic acid component is observed.
 一方で非晶性ポリ乳酸系樹脂とは、同様の測定を行った際に、明確な融点を示さないポリ乳酸系樹脂のことをいう。 On the other hand, the amorphous polylactic acid resin refers to a polylactic acid resin that does not exhibit a clear melting point when the same measurement is performed.
 つまり、結晶性ポリ乳酸系樹脂の含有は、フィルムの耐引裂性、耐熱性、耐ブロッキング性向上に好適である。また、前述のブロック共重合体可塑剤を用いる場合、結晶性ポリ乳酸系樹脂はブロック共重合体可塑剤が有するポリ乳酸セグメントと共晶を形成することで、耐ブリードアウト性に大きな効果を発揮する。 That is, the inclusion of the crystalline polylactic acid resin is suitable for improving the tear resistance, heat resistance, and blocking resistance of the film. When the block copolymer plasticizer is used, the crystalline polylactic acid resin has a great effect on bleed-out resistance by forming a eutectic with the polylactic acid segment of the block copolymer plasticizer. To do.
 一方、非晶性ポリ乳酸系樹脂の含有は、フィルムの柔軟性、耐ブリードアウト性の向上に好適である。これは、可塑剤が分散できる非晶部分を提供していることが影響している。 On the other hand, the inclusion of an amorphous polylactic acid resin is suitable for improving the flexibility and bleed-out resistance of the film. This has an effect of providing an amorphous part in which the plasticizer can be dispersed.
 本発明の生分解性フィルムに用いられる結晶性ポリ乳酸系樹脂は、耐引裂性、耐熱性、耐ブロッキング性向上の観点から、ポリL-乳酸中のL-乳酸ユニットの含有割合、あるいは、ポリD-乳酸中のD-乳酸ユニットの含有割合が全乳酸ユニット100mol%中、94~100mol%が好ましく、より好ましくは96~100mol%であり、さらに好ましくは98~100mol%である。 The crystalline polylactic acid-based resin used in the biodegradable film of the present invention is obtained from the viewpoint of improving tear resistance, heat resistance, and blocking resistance, the content of L-lactic acid units in poly L-lactic acid, or poly The content ratio of D-lactic acid units in D-lactic acid is preferably 94 to 100 mol%, more preferably 96 to 100 mol%, and still more preferably 98 to 100 mol% in 100 mol% of all lactic acid units.
 本発明の生分解性フィルムを構成する組成物中のポリ乳酸系樹脂の量を100質量%としたとき、結晶性ポリ乳酸系樹脂の割合は5~80質量%であることが好ましく、10~60質量%であることがより好ましく、20~40質量%であることがさらに好ましい。
(相溶化剤)
 本発明の生分解性フィルムにおいては、耐引裂性、透明性を向上させる目的で、ポリ乳酸系樹脂と生分解性樹脂(B)の相溶化剤を含有させることが好ましい。
When the amount of the polylactic acid resin in the composition constituting the biodegradable film of the present invention is 100% by mass, the ratio of the crystalline polylactic acid resin is preferably 5 to 80% by mass. The amount is more preferably 60% by mass, and further preferably 20 to 40% by mass.
(Compatibilizer)
In the biodegradable film of the present invention, it is preferable to contain a compatibilizing agent for polylactic acid resin and biodegradable resin (B) for the purpose of improving tear resistance and transparency.
 相溶化剤の種類は特に限定されないが、主に以下の3つに分類される。1つ目は、ポリ乳酸系樹脂の構造そのもの、ポリ乳酸系樹脂に類似した構造、ポリ乳酸系樹脂と相溶性が良い構造から選ばれる少なくとも1種の構造と、生分解性樹脂(B)の構造そのもの、生分解性樹脂(B)に類似した構造、生分解性樹脂(B)と相溶性が良い構造から選ばれる少なくとも1種の構造を、併せ持つ構造を有するものである。2つ目は、乳酸系樹脂(A)と生分解性樹脂(B)の、いずれか、もしくは両方の、末端基(カルボキシル基や水酸基)と、付加反応や縮合反応により化学結合することができる官能基を有するものである。3つ目は、乳酸系樹脂(A)と生分解性樹脂(B)との間の縮合反応やエステル交換反応の触媒能力を有するものである。 Although the kind of compatibilizer is not particularly limited, it is mainly classified into the following three types. The first is the structure of the polylactic acid resin itself, a structure similar to the polylactic acid resin, at least one structure selected from structures having good compatibility with the polylactic acid resin, and the biodegradable resin (B). It has a structure having at least one structure selected from the structure itself, a structure similar to the biodegradable resin (B), and a structure compatible with the biodegradable resin (B). Second, it can be chemically bonded to the terminal group (carboxyl group or hydroxyl group) of either or both of the lactic acid resin (A) and the biodegradable resin (B) by addition reaction or condensation reaction. It has a functional group. The third one has a catalytic ability for a condensation reaction or a transesterification reaction between the lactic acid resin (A) and the biodegradable resin (B).
 1つ目に分類されるものの具体例としては、ポリ乳酸はアクリル系樹脂と相溶性が良いので、例えば、ポリオレフィンとアクリル系樹脂の共重合体、ポリエステルとアクリル系樹脂の共重合体などが挙げられる。 As specific examples of the first class, polylactic acid has good compatibility with acrylic resins, and examples thereof include polyolefin / acrylic resin copolymers, polyester / acrylic resin copolymers, and the like. It is done.
 2つ目に分類されるものの具体例としては、官能基として、グリシジル基、酸無水物基、カルボジイミド基、イソシアネート基、オキサゾリン基およびアミノ基から選択される少なくとも1種以上の官能基を含有する化合物が挙げられる。 As specific examples of the second class, the functional group contains at least one functional group selected from a glycidyl group, an acid anhydride group, a carbodiimide group, an isocyanate group, an oxazoline group, and an amino group. Compounds.
 グリシジル基を含有する化合物としては、グリシジルエーテル化合物、グリシジルエステル化合物、グリシジルアミン化合物、グリシジルイミド化合物、グリシジル(メタ)アクリレート化合物、脂環式エポキシ化合物が挙げられる。市販されているものとしては、エチレンとアクリル酸エステルとグリシジル(メタ)アクリレートの共重合体であるDuPont社の“BIOMAX”(登録商標)Strongシリーズ、Arkema社の“LOTADER” (登録商標)シリーズ、グリシジル基含有アクリル/スチレン系共重合体であるBASF社の“JONCRYL”(登録商標)シリーズ、グリシジル基含有アクリル系樹脂である東亞合成(株)の“レゼダ”(登録商標)シリーズ、同社の“アルフォン”(登録商標)シリーズなどが挙げられる。 Examples of the compound containing a glycidyl group include glycidyl ether compounds, glycidyl ester compounds, glycidyl amine compounds, glycidyl imide compounds, glycidyl (meth) acrylate compounds, and alicyclic epoxy compounds. Commercially available products include a copolymer of ethylene, acrylate ester and glycidyl (meth) acrylate, DuPont's “BIOMAX” (registered trademark) Strong series, Arkema ’s “LOTADER” (registered trademark) series, BASF's “JONCRYL” (registered trademark) series of glycidyl group-containing acrylic / styrene copolymers, “Reseda” (registered trademark) series of Toagosei Co., Ltd., glycidyl group-containing acrylic resins, Alfon "(registered trademark) series.
 酸無水物基を含有する化合物の例としては、無水コハク酸、無水マレイン酸、無水フタル酸などを含有する化合物が挙げられる。市販されているものとしては、エチレンとアクリル酸エステル、無水マレイン酸の共重合体であるArkema社の“BONDINE” (登録商標)シリーズ、無水マレイン酸グラフトポリマーであるArkema社の“OREVAC” (登録商標)シリーズ、DuPont社の“Bynel”シリーズ、三洋化成工業(株)の“ユーメックス”(登録商標)シリーズ、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)に無水マレイン酸を共重合したKraton社“KRATON”(登録商標)シリーズなどが挙げられる。 Examples of the compound containing an acid anhydride group include compounds containing succinic anhydride, maleic anhydride, phthalic anhydride, and the like. Commercially available products include the “BONDINE” ® (registered trademark) series of Arkema, which is a copolymer of ethylene and acrylic acid ester and maleic anhydride, and “OREVAC” ® (registered) of Arkema, a maleic anhydride graft polymer. Trademark) series, DuPont's “Bynel” series, Sanyo Chemical Industries' “Umex” (registered trademark) series, Kraton made by copolymerizing maleic anhydride with styrene-ethylene-butylene-styrene copolymer (SEBS) The company “KRATON” (registered trademark) series and the like.
 カルボジイミド基を含有する化合物とは、分子内に少なくともひとつの(-N=C=N-)で表されるカルボジイミド基を有する化合物であり、市販されているものとしては、日清紡績(株)の“カルボジライト”(登録商標)シリーズ、Rhein Chemie社の“STABAXOL”(登録商標)シリーズなどが挙げられる。 A compound having a carbodiimide group is a compound having at least one carbodiimide group represented by (—N═C═N—) in the molecule, and those commercially available are those manufactured by Nisshinbo Industries, Ltd. Examples include “Carbodilite” (registered trademark) series and “STABAXOL” (registered trademark) series of Rhein Chemie.
 イソシアネート基を含有する化合物の例としては、ヘキサメチレンジイソシアネートなどが挙げられる。 Examples of the compound containing an isocyanate group include hexamethylene diisocyanate.
 3つ目に分類されるものの具体例としては、有機金属化合物や硫黄酸化合物などが挙げられる。有機金属化合物としては、例えば、ステアリン酸亜鉛、酢酸亜鉛、酢酸マグネシウム、酢酸マンガンなどのカルボン酸金属塩化合物、チタンテトライソプロポキシドなどの有機チタン化合物、有機アルミニウム化合物などが挙げられる。硫黄酸化合物としては、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、p-トルエンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどが挙げられる。 Specific examples of those classified in the third category include organometallic compounds and sulfur acid compounds. Examples of the organometallic compound include carboxylic acid metal salt compounds such as zinc stearate, zinc acetate, magnesium acetate and manganese acetate, organotitanium compounds such as titanium tetraisopropoxide, and organoaluminum compounds. Examples of the sulfur acid compound include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, sodium p-toluenesulfonate, sodium dodecylbenzenesulfonate, and the like.
 本発明の生分解性フィルムにおける相溶化剤の配合量は、前記した1つ目および2つ目に分類されるものについては、乳酸系樹脂(A)と生分解性樹脂(B)の合計100質量部に対し、0.01~30質量部が好ましく、0.05~20質量部がより好ましく、0.1~10質量部がさらに好ましく、0.5~3質量部が特に好ましい。相溶化剤の配合量を、0.01質量部以上とすることで、透明性および耐引裂性の向上効果を十分に発現できる傾向にあり、30質量部以下とすることで、ゲル化などによる流動性の低下を抑えることができる。また、前記した3つ目に分類されるものについては、乳酸系樹脂(A)と生分解性樹脂(B)の合計100質量部に対し、0.01~3質量部が好ましく、0.05~2質量部がより好ましく、0.1~1質量部がさらに好ましい。相溶化剤の配合量を、0.01質量部以上とすることで、透明性および耐引裂性の向上効果を十分に発現できる傾向にあり、3質量部以下とすることで、溶融粘度の低下を抑えることができる。
(分散構造)
 本発明の生分解性フィルムは、フィルムの長さ方向と厚さ方向の断面において、乳酸系樹脂以外の生分解性樹脂(B)からなる連続相に、乳酸系樹脂(A)からなる分散相が、フィルムの長さ方向に長い楕円状またはフィルムの長さ方向に長い層状に分散した構造を有し、乳酸系樹脂(A)と生分解性樹脂(B)の合計100質量%における、乳酸系樹脂(A)の含有量(質量%)をP、生分解性樹脂(B)の含有量(質量%)をP、該分散相の厚さ(nm)をW、連続相の厚さ(nm)をWとしたときに、次式を満たすことが重要である。
The blending amount of the compatibilizing agent in the biodegradable film of the present invention is 100 in total for the lactic acid-based resin (A) and the biodegradable resin (B) for the first and second classifications. The amount is preferably 0.01 to 30 parts by mass, more preferably 0.05 to 20 parts by mass, still more preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 3 parts by mass with respect to parts by mass. By making the compounding amount of the compatibilizing agent 0.01 parts by mass or more, there is a tendency that the effect of improving the transparency and tear resistance can be sufficiently expressed. A decrease in fluidity can be suppressed. In addition, the above-mentioned third classification is preferably 0.01 to 3 parts by mass with respect to 100 parts by mass in total of the lactic acid resin (A) and the biodegradable resin (B), and 0.05 ˜2 parts by mass is more preferable, and 0.1 to 1 part by mass is more preferable. By making the compounding amount of the compatibilizing agent 0.01 parts by mass or more, there is a tendency that the effect of improving transparency and tear resistance can be sufficiently expressed, and by making it 3 parts by mass or less, the melt viscosity is lowered. Can be suppressed.
(Distributed structure)
The biodegradable film of the present invention has a dispersed phase composed of a lactic acid resin (A) in a continuous phase composed of a biodegradable resin (B) other than a lactic acid resin, in a cross section in the length direction and the thickness direction of the film. Lactic acid in a total of 100% by mass of the lactic acid-based resin (A) and the biodegradable resin (B) having a structure in which the film is dispersed in an elliptical shape that is long in the length direction of the film or a layer that is long in the length direction of the film The content (% by mass) of the resin (A) is P A , the content (% by mass) of the biodegradable resin (B) is P B , the thickness (nm) of the dispersed phase is W A , and the continuous phase the thickness (nm) of when the W B, it is important to satisfy the following equation.
   W/W≦2.0×P/P
 ここで連続相、分散相とは、いわゆる海島構造の海が連続相、島が分散相である。
W A / W B ≦ 2.0 × P A / P B
Here, the continuous phase and the disperse phase are a so-called sea-island structure sea and a discontinuous phase.
 本発明の生分解性フィルムの場合、分散相がフィルムの長さ方向に長いので、連続相、分散相のいずれかの判断が難しい場合がある。その場合は、後述する透過型電子顕微鏡(TEM)での分散構造の確認の際、フィルムの長さ方向に観察範囲をずらしていき、島構造の先端が存在する方が分散相であると判断する。 In the case of the biodegradable film of the present invention, since the dispersed phase is long in the length direction of the film, it may be difficult to determine either the continuous phase or the dispersed phase. In that case, when confirming the dispersion structure with a transmission electron microscope (TEM), which will be described later, the observation range is shifted in the length direction of the film, and it is determined that the tip of the island structure is the dispersed phase. To do.
 発明者らは、生分解性フィルムを構成する乳酸系樹脂(A)と生分解性樹脂(B)が、上記のような分散構造をとることで、生分解性フィルムに柔軟性、耐引裂性、透明性、バイオマス性を付与せしめることが可能であることを見出した。つまり、ポリ乳酸系樹脂はバイオマス性と生分解性を両立する樹脂であるが、生分解性樹脂の中では耐引裂性が低いため、次の(i)~(iii)の3つの因子を調整することで課題を解決することを見出した。 The inventors have made the biodegradable film flexible and tear resistant by the lactic acid resin (A) and the biodegradable resin (B) constituting the biodegradable film having the above-described dispersion structure. It was found that transparency and biomass can be imparted. In other words, polylactic acid-based resin is a resin that has both biomass and biodegradability, but among the biodegradable resins, the tear resistance is low, so the following three factors (i) to (iii) are adjusted. I found out that the problem was solved.
 (i)乳酸系樹脂(A)が分散相、生分解性樹脂(B)が連続相となることで、フィルムの柔軟性、耐引裂性の向上が可能である。このような相構造にするための方法は、(a)PとPの比を後述する好ましい範囲とすることや、(b)乳酸系樹脂(A)と生分解性樹脂(B)の溶融粘度の関係を後述する好ましい範囲とすることが挙げられる。 (i) Since the lactic acid resin (A) is a dispersed phase and the biodegradable resin (B) is a continuous phase, the flexibility and tear resistance of the film can be improved. Methods for such a phase structure is of (a) or to the preferred range described later the ratio of P A and P B, (b) lactic acid resin (A) and biodegradable resin (B) It is mentioned to make the relationship of melt viscosity into a preferable range described later.
 ここで、乳酸系樹脂(A)の分散相とは、該分散相中の全成分において乳酸系樹脂(A)が質量的に最も大きい成分であることを意味する。そのため、乳酸系樹脂(A)からなる分散相には、乳酸系樹脂(A)以外の成分、例えば、各種の添加剤、有機滑剤、粒子など、乳酸系樹脂(A)以外の各成分を含んでもよい。 Here, the dispersed phase of the lactic acid-based resin (A) means that the lactic acid-based resin (A) is the largest component in mass among all the components in the dispersed phase. Therefore, the dispersed phase comprising the lactic acid resin (A) includes components other than the lactic acid resin (A), for example, various additives, organic lubricants, particles, and other components other than the lactic acid resin (A). But you can.
 同様に、生分解性樹脂(B)の連続相とは、該連続相中の全成分において生分解性樹脂(B)が質量的に最も大きい成分であることを意味する。そのため、生分解性樹脂(B)からなる分散相には、生分解性樹脂(B)以外の成分を含んでもよい。 Similarly, the continuous phase of the biodegradable resin (B) means that the biodegradable resin (B) is the largest component in mass in all the components in the continuous phase. Therefore, the dispersed phase made of the biodegradable resin (B) may contain components other than the biodegradable resin (B).
 (ii)フィルムの長さ方向と厚さ方向の断面において、乳酸系樹脂(A)からなる分散相が、フィルムの長さ方向に長い楕円状またはフィルムの長さ方向に長い層状に分散した構造をとることで、乳酸系樹脂(A)のフィルムの耐引裂性への影響を低減し、結果としてフィルムの耐引裂性の向上、更には、透明性の向上が可能である。ここで、「楕円状」、「層状」とは、後述する、透過型電子顕微鏡での観察時に、フィルムの厚さ方向全体が見える倍率で観察した際、長さ方向の両側の端部が観察される場合を「楕円状」、長さ方向の少なくとも片方の端部が観察されない場合を「層状」とする。このような分散構造とするための方法は、前記(b)の方法や、(c)フィルムをインフレーションで製膜する際に、ブロー比とドロー比を後述する好ましい範囲とすることが挙げられる。 (ii) A structure in which the disperse phase composed of the lactic acid-based resin (A) is dispersed in an elliptical shape that is long in the length direction of the film or a layer that is long in the length direction of the film in the cross section in the length direction and the thickness direction of the film By taking the above, the influence of the lactic acid resin (A) on the tear resistance of the film can be reduced. As a result, the tear resistance of the film can be improved, and further, the transparency can be improved. Here, “elliptical” and “layered” refer to the ends on both sides in the length direction when observed with a transmission electron microscope, which will be described later, at a magnification at which the entire thickness direction of the film can be seen. The case where it is formed is “elliptical”, and the case where at least one end in the length direction is not observed is “layered”. Examples of the method for obtaining such a dispersion structure include the above-described method (b) and (c) when the film is formed by inflation, the blow ratio and the draw ratio are set in the preferred ranges described later.
 (iii)W/W≦2.0×P/Pを満たすことで、乳酸系樹脂(A)のフィルムの耐引裂性への影響を少なくすることができ、結果としてフィルムの耐引裂性の向上が可能である。この条件は、ある配合比(P/P)で製造したフィルムにおける、分散相と連続相の厚さの比(W/W)がある一定値以下であることを示しており、この条件を満たすための方法は、前記(b)の方法や、前記(c)の方法が挙げられる。この条件は、W/W≦1.5P/Pが好ましく、W/W≦1.2P/Pがより好ましい。 (iii) By satisfying W A / W B ≦ 2.0 × P A / P B , the influence of the lactic acid resin (A) on the tear resistance of the film can be reduced. Tearability can be improved. This condition indicates that the ratio of the thickness of the dispersed phase to the continuous phase (W A / W B ) in a film produced at a certain blending ratio (P A / P B ) is below a certain value, Examples of the method for satisfying this condition include the method (b) and the method (c). This condition is preferably W A / W B ≦ 1.5P A / P B, and more preferably W A / W B ≦ 1.2P A / P B.
 本発明の生分解性フィルムは、高い透明性と、高い耐引裂性を発現させるため、前記分散相の厚さWが5~100nmであることが好ましい。より好ましくは10~60nm、さらに好ましくは20~50nm、特に好ましくは20~40nmである。同様の目的で、前記分散相の厚さWが10~100nmであることが好ましい。より好ましくは30~80nm、さらに好ましくは30~70nm、特に好ましくは30~60nmである。分散相の厚さWを5~100nmとするためには、前記(b)の方法や前記(c)の方法を挙げることができる。 Biodegradable film of the present invention, a high transparency, for expressing a high tear resistance, it is preferable that the thickness W A of the disperse phase is 5 ~ 100 nm. More preferably, it is 10 to 60 nm, further preferably 20 to 50 nm, and particularly preferably 20 to 40 nm. For the same purpose, the thickness W B of the dispersed phase is preferably 10 ~ 100 nm. The thickness is more preferably 30 to 80 nm, further preferably 30 to 70 nm, and particularly preferably 30 to 60 nm. The thickness W A of the dispersed phase to the 5 ~ 100 nm, there can be mentioned the method of the method and said (b) (c).
 これはフィルムの断面において、耐引裂性が相対的に弱い、乳酸系樹脂(A)を細かく分散させることで、フィルム全体としての耐引裂性を発現させるため、また、乳酸系樹脂(A)、生分解性樹脂(B)両方の相の厚さを可視光の波長より小さくすることで透明性を発現させるためである。
(乳酸系樹脂(A)の含有量Pと、生分解性樹脂(B)の含有量P
 本発明の生分解性フィルムは、前記した分散構造を有し、高い柔軟性、透明性、耐引裂性に加え、高いバイオマス性を発現させるため、P:P=5:95~60:40であることが好ましい。より好ましくは、P:P=20:80~55:45、さらに好ましくは、P:P=35:65~50:50である。ここで、PおよびPの単位は質量%である。
(乳酸系樹脂(A)と、生分解性樹脂(B)の溶融粘度の関係)
 本発明の生分解性フィルムは、前記した分散構造の条件を満たすため、温度200℃、剪断速度100sec-1における乳酸系樹脂(A)の溶融粘度をη、温度200℃、剪断速度100sec-1における生分解性樹脂(B)の溶融粘度をηとしたとき、0.3≦η≦1.1を満たすことが好ましい。0.5≦η≦0.9がより好ましく、0.5≦η≦0.6がさらに好ましい。
This is because, in the cross section of the film, the lactic acid resin (A), which is relatively weak in tear resistance, is finely dispersed to express the tear resistance of the entire film. Also, the lactic acid resin (A), This is because the thickness of both phases of the biodegradable resin (B) is made smaller than the wavelength of visible light so as to exhibit transparency.
(A content of P A lactic acid-based resin (A), the content of P B of the biodegradable resin (B))
The biodegradable film of the present invention has the above-described dispersion structure and exhibits high biomass properties in addition to high flexibility, transparency, and tear resistance, so that P A : P B = 5: 95-60: 40 is preferred. More preferably, P A : P B = 20: 80 to 55:45, and still more preferably P A : P B = 35: 65 to 50:50. Here, the unit of P A and P B are by weight.
(Relationship between melt viscosity of lactic acid resin (A) and biodegradable resin (B))
Since the biodegradable film of the present invention satisfies the above-mentioned conditions for the dispersion structure, the melt viscosity of the lactic acid resin (A) at a temperature of 200 ° C. and a shear rate of 100 sec −1 is η A , a temperature of 200 ° C., and a shear rate of 100 sec −. When the melt viscosity of the biodegradable resin (B) in 1 is η B , it is preferable that 0.3 ≦ η A / η B ≦ 1.1 is satisfied. 0.5 ≦ η A / η B ≦ 0.9 is more preferable, and 0.5 ≦ η A / η B ≦ 0.6 is more preferable.
 ここで、乳酸系樹脂(A)の溶融粘度ηは、乳酸系樹脂(A)が、ポリ乳酸系樹脂、並びに、他の乳酸系樹脂からなる場合、両者を溶融混練した樹脂として測定する。 Here, the melt viscosity η A of the lactic acid-based resin (A) is measured as a resin obtained by melt-kneading both when the lactic acid-based resin (A) is composed of a polylactic acid-based resin and another lactic acid-based resin.
 また、乳酸系樹脂(A)の溶融粘度ηの好ましい範囲は、400~1,300Pa・sであり、より好ましくは、400~1,000Pa・s、さらに好ましくは、700~1,000Pa・sである。 The preferred range of the melt viscosity η A of the lactic acid resin (A) is 400 to 1,300 Pa · s, more preferably 400 to 1,000 Pa · s, and still more preferably 700 to 1,000 Pa · s. s.
 生分解性樹脂(B)の溶融粘度ηの好ましい範囲は、700~1,300Pa・sであり、より好ましくは、1,100~1,300Pa・s、さらに好ましくは、1,100~1,250Pa・s、特に好ましくは、1,200~1,250Pa・sである。
(引裂強度)
 本発明の生分解性フィルムは、JIS K7128-1 (1998)で定められたトラウザー引裂法による、フィルムの長さ方向と、幅方向の引裂強度が、いずれも5N/mm以上であることが好ましい。より好ましくは11N/mm以上、さらに好ましくは19N/mm以上である。なお、引裂強度は大きいほど好ましいが、現実的に達成可能な数値として、上限は200N/mm程度と考えられる。フィルムの長さ方向と、幅方向の引裂強度が5N/mm以上であると、農業用マルチフィルムや松くい虫燻蒸用シート、堆肥袋などの農林業用途、野菜や果物など食品包装用途、衣料用個別包装、買い物用手提げバッグ、ゴミ袋などの各用途、あるいは各種工業製品の袋などの用途とした際に、十分な耐引裂性得られ、破れにくく実用性が向上する。
The preferable range of the melt viscosity η B of the biodegradable resin (B) is 700 to 1,300 Pa · s, more preferably 1,100 to 1,300 Pa · s, and still more preferably 1,100 to 1 250 Pa · s, particularly preferably 1,200 to 1,250 Pa · s.
(Tear strength)
The biodegradable film of the present invention preferably has a tear strength of 5 N / mm or more in the length direction and width direction of the film by the trouser tear method defined in JIS K7128-1 (1998). . More preferably, it is 11 N / mm or more, More preferably, it is 19 N / mm or more. The higher the tear strength, the better. However, the upper limit is considered to be about 200 N / mm as a practically achievable numerical value. If the tear strength in the length direction and width direction of the film is 5 N / mm or more, it is used for agricultural multi-film for agriculture, sheet for fumigation of pine worms, compost bags, food packaging for vegetables and fruits, clothing When used for individual packaging, shopping handbags, garbage bags, or other industrial products, sufficient tear resistance can be obtained, and it is difficult to break, improving practicality.
 フィルムの長さ方向と、幅方向の引裂強度が5N/mm以上とするための方法としては、前記(a)の方法、前記(b)の方法、前記(c)の方法が挙げられる。
(伸度)
 本発明の生分解性フィルムは、長さ方向および幅方向(長さ方向と垂直な方向)の伸度が、いずれも200%以上700%以下であることが好ましい。伸度が200%以上であると耐引裂性が高くなり、その上、農林業用途、食品包装用途、衣料用個別包装、買い物用手提げバッグ、ゴミ袋などの各用途、あるいは各種工業製品の袋などの用途とした際に破れにくく実用性が向上する。また、伸度が700%以下であると製膜時にロール間走行時や巻き取り時のタルミやシワが生じにくく、ロール巻姿や巻出し性が良好となる。長さ方向および幅方向の伸度は、250%以上600%以下がより好ましく、300%以上500%以下がさらに好ましい。
Examples of the method for setting the tear strength in the length direction and the width direction of the film to 5 N / mm or more include the method (a), the method (b), and the method (c).
(Elongation)
The biodegradable film of the present invention preferably has an elongation in the length direction and width direction (direction perpendicular to the length direction) of 200% or more and 700% or less. When the elongation is 200% or more, the tear resistance becomes high, and in addition, various uses such as agricultural / forestry use, food packaging use, individual packaging for clothing, handbags for shopping, garbage bags, and bags for various industrial products. It is difficult to break when used for applications such as, and the practicality improves. Further, when the elongation is 700% or less, tarmi and wrinkles are less likely to occur during roll-to-roll running and during winding, and the roll winding shape and unwinding property are improved. The elongation in the length direction and the width direction is more preferably from 250% to 600%, and even more preferably from 300% to 500%.
 長さ方向および幅方向の伸度をいずれも200~700%とするための方法としては、乳酸系樹脂(A)、生分解性樹脂(B)の配合量を、それぞれ前述した好ましい範囲とする方法が挙げられる。
(引張弾性率)
 本発明の生分解性フィルムは、十分な柔軟性を付与するために、長さ方向、幅方向それぞれの引張弾性率が100~1,500MPaであることが好ましい。引張弾性率は、200~1,200MPaであることがより好ましく、300~1,000MPaであることがさらに好ましい。
As a method for adjusting the elongation in the length direction and the width direction to 200 to 700%, the blending amounts of the lactic acid resin (A) and the biodegradable resin (B) are within the above-mentioned preferred ranges, respectively. A method is mentioned.
(Tensile modulus)
The biodegradable film of the present invention preferably has a tensile modulus in the length direction and the width direction of 100 to 1,500 MPa in order to impart sufficient flexibility. The tensile modulus is more preferably 200 to 1,200 MPa, and further preferably 300 to 1,000 MPa.
 長さ方向、幅方向それぞれの引張弾性率を100~1,500MPaとするための方法としては、乳酸系樹脂(A)、生分解性樹脂(B)の配合量を、それぞれ前述した好ましい範囲とする方法が挙げられる。
(厚み)
 本発明の生分解性フィルムは、フィルム厚みが5~200μmであることが好ましい。フィルム厚みを5μm以上とすることで、フィルムとした際のコシが強くなり、取り扱い性に優れ、また、ロール巻姿や巻出し性が良好となる。フィルム厚みを200μm以下とすることで柔軟性が向上し、農林業用途、食品包装用途、衣料用個別包装、買い物用手提げバッグ、ゴミ袋などの各用途、あるいは各種工業製品の袋などの用途とした際に取り扱い性に優れるものとなり、また、特にインフレーション製膜法においては、自重によりバブルが不安定化しない。フィルム厚みは、7~150μmがより好ましく、10~100μmがさらに好ましく、12~50μmが特に好ましい。
(有機滑剤)
 本発明の生分解性フィルムを構成する組成物は、組成物全体100質量%中、有機滑剤を0.1~5質量%含むことが好ましい。この場合、巻き取り後のブロッキングを良好に抑制できる。また、有機滑剤の添加過多による溶融粘度の低下や加工性の悪化、あるいはフィルムとした際のブリードアウトやヘイズアップなどの外観不良の問題も発生しにくい。
As a method for setting the tensile modulus in the length direction and the width direction to 100 to 1,500 MPa, the blending amounts of the lactic acid resin (A) and the biodegradable resin (B) are set to the preferred ranges described above, respectively. The method of doing is mentioned.
(Thickness)
The biodegradable film of the present invention preferably has a film thickness of 5 to 200 μm. By setting the film thickness to 5 μm or more, the firmness of the film becomes strong, the handleability is excellent, and the roll winding shape and unwinding property are good. Flexibility is improved by setting the film thickness to 200 μm or less. Applications such as agriculture and forestry, food packaging, individual packaging for clothing, handbags for shopping, garbage bags, and bags for various industrial products In this case, in the inflation film-forming method, bubbles do not become unstable due to their own weight. The film thickness is more preferably 7 to 150 μm, further preferably 10 to 100 μm, and particularly preferably 12 to 50 μm.
(Organic lubricant)
The composition constituting the biodegradable film of the present invention preferably contains 0.1 to 5% by mass of an organic lubricant in 100% by mass of the whole composition. In this case, blocking after winding can be favorably suppressed. In addition, problems such as a decrease in melt viscosity and deterioration of workability due to excessive addition of an organic lubricant, or poor appearance such as bleed out and haze up when formed into a film are less likely to occur.
 有機滑剤としては特に限定されず、種々の物を使用可能であるが、例えば、脂肪酸アミド系の有機滑剤が使用できる。その中でも、より良好な耐ブロッキング性を発現する観点で、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスラウリン酸アミドなどの比較的高融点である有機滑剤が好ましい。
(ヘイズ)
 本発明の生分解性フィルムは、ヘイズが50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましく、20%以下であることが特に好ましい。ヘイズが50%以下である場合、食品包装用途、衣料用個別包装、買い物用手提げバッグ、ゴミ袋などの各用途、あるいは各種工業製品の袋などの用途などに成形加工した際には内容物が容易に確認できる、商品としての見栄えがよいなど高い意匠性により好適である場合が多い。なお、乳酸系樹脂(A)、生分解性樹脂(B)の一般的な特性から、生分解性フィルムのヘイズとしては1%未満にすることは困難であることから、下限は1%程度である。
(添加剤)
 本発明の生分解性フィルムを構成する組成物には、本発明の効果を損なわない範囲で前述した以外の添加剤を含有してもよい。例えば、公知の結晶核剤、酸化防止剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、抗酸化剤、イオン交換剤、粘着性付与剤、消泡剤、着色顔料、染料、末端封鎖剤などが含有できる。
The organic lubricant is not particularly limited, and various materials can be used. For example, fatty acid amide organic lubricants can be used. Among them, an organic lubricant having a relatively high melting point, such as ethylene bis stearic acid amide, ethylene bis oleic acid amide, and ethylene bis lauric acid amide, is preferable from the viewpoint of expressing better blocking resistance.
(Haze)
The biodegradable film of the present invention preferably has a haze of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. If the haze is 50% or less, the contents may be formed when processed into food packaging applications, individual packaging for clothing, handbags for shopping, garbage bags, or bags for various industrial products. In many cases, it is preferable due to its high design properties such as easy confirmation and good appearance as a product. Since the haze of the biodegradable film is difficult to be less than 1% from the general characteristics of the lactic acid resin (A) and the biodegradable resin (B), the lower limit is about 1%. is there.
(Additive)
The composition constituting the biodegradable film of the present invention may contain additives other than those described above as long as the effects of the present invention are not impaired. For example, known crystal nucleating agents, antioxidants, UV stabilizers, anti-coloring agents, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, antioxidants, ion exchange agents, and tackifying Agents, antifoaming agents, color pigments, dyes, end-capping agents and the like can be contained.
 結晶核剤としては、有機系結晶核剤では、メラミン系化合物、フェニルホスホン酸金属塩、ベンゼンカルボアミド誘導体、脂肪族カルボン酸ヒドラジド、芳香族カルボン酸ヒドラジド、ソルビトール系化合物、アミノ酸、ポリペプチド、金属フタロシアニン等を好ましく使用することができる。無機系結晶核剤では、タルク、クレー、マイカ、カオリナイト等の珪酸塩鉱物、カーボンブラックなどを好ましく使用することができる。 As a crystal nucleating agent, an organic crystal nucleating agent is a melamine compound, phenylphosphonic acid metal salt, benzenecarboxamide derivative, aliphatic carboxylic acid hydrazide, aromatic carboxylic acid hydrazide, sorbitol compound, amino acid, polypeptide, metal Phthalocyanine and the like can be preferably used. As the inorganic crystal nucleating agent, silicate minerals such as talc, clay, mica and kaolinite, carbon black and the like can be preferably used.
 酸化防止剤としてはヒンダードフェノール系、ヒンダードアミン系などを好ましく使用することができる。 As the antioxidant, hindered phenols, hindered amines and the like can be preferably used.
 着色顔料としてはカーボンブラック、酸化チタン、酸化亜鉛、酸化鉄などの無機顔料の他、シアニン系、スチレン系、フタロシアイン系、アンスラキノン系、ペリノン系、イソインドリノン系、キノフタロン系、キノクリドン系、チオインディゴ系などの有機顔料などを好ましく使用することができる。 Color pigments include inorganic pigments such as carbon black, titanium oxide, zinc oxide, iron oxide, cyanine, styrene, phthalocyanine, anthraquinone, perinone, isoindolinone, quinophthalone, and quinocridone. Organic pigments such as thioindigo can be preferably used.
 末端封鎖剤としては、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物等の付加反応型化合物が挙げられる。乳酸系樹脂(A)や生分解性樹脂(B)を末端封鎖することは、カルボキシル基末端濃度を下げることで、加水分解による強度低下を抑制し、良好な耐久性を付与する観点で好ましい。
(粒子)
 本発明の生分解性フィルムを構成する組成物には、加工品の易滑性や耐ブロッキング性の向上などを目的として、粒子を添加してもよい。
Examples of the end capping agent include addition reaction type compounds such as carbodiimide compounds, epoxy compounds, and oxazoline compounds. End-capping the lactic acid-based resin (A) and the biodegradable resin (B) is preferable from the viewpoint of reducing strength reduction due to hydrolysis and imparting good durability by lowering the carboxyl group terminal concentration.
(particle)
Particles may be added to the composition constituting the biodegradable film of the present invention for the purpose of improving the slipperiness and blocking resistance of the processed product.
 このような粒子は、無機粒子であっても有機粒子であっても特に限定されないが、例えば、シリカ等の酸化ケイ素、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の各種炭酸塩、硫酸カルシウム、硫酸バリウム等の各種硫酸塩、ウォラストナイト、チタン酸カリウム、ホウ化アルミニウム、セピオライト等の各種複合酸化物、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム等の各種リン酸塩、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化亜鉛等の各種酸化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、フッ化リチウム等の各種塩等からなる粒子を使用することができる。
(製造方法)
 次に、本発明の生分解性フィルムを製造する方法について具体的に説明するがこれに限定されるものではない。
Such particles are not particularly limited, whether they are inorganic particles or organic particles. Examples thereof include silicon oxide such as silica, various carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, calcium sulfate, and barium sulfate. Various sulfates such as Wollastonite, Potassium titanate, Aluminum boride, Sepiolite, etc. Various phosphates such as Lithium phosphate, Calcium phosphate, Magnesium phosphate, Aluminum oxide, Titanium oxide, Zirconium oxide In addition, particles composed of various oxides such as zinc oxide, hydroxides such as aluminum hydroxide and magnesium hydroxide, various salts such as lithium fluoride, and the like can be used.
(Production method)
Next, the method for producing the biodegradable film of the present invention will be specifically described, but the present invention is not limited thereto.
 本発明におけるポリ乳酸系樹脂は、例えば、次のような方法で得ることができる。原料としては、L-乳酸またはD-乳酸の乳酸成分を主体とし、前述した乳酸成分以外のヒドロキシカルボン酸を併用することができる。またヒドロキシカルボン酸の環状エステル中間体、例えば、ラクチド、グリコリド等を原料として使用することもできる。更にジカルボン酸類やグリコール類等も使用することができる。 The polylactic acid resin in the present invention can be obtained, for example, by the following method. As a raw material, a lactic acid component of L-lactic acid or D-lactic acid is mainly used, and a hydroxycarboxylic acid other than the lactic acid component described above can be used in combination. Further, a cyclic ester intermediate of hydroxycarboxylic acid, for example, lactide, glycolide, etc. can be used as a raw material. Furthermore, dicarboxylic acids and glycols can also be used.
 ポリ乳酸系樹脂は、上記原料を直接脱水縮合する方法、または上記環状エステル中間体を開環重合する方法によって得ることができる。例えば直接脱水縮合して製造する場合、乳酸類または乳酸類とヒドロキシカルボン酸類を好ましくは有機溶媒、特にフェニルエーテル系溶媒の存在下で共沸脱水縮合し、特に好ましくは共沸により留出した溶媒から水を除き実質的に無水の状態にした溶媒を反応系に戻す方法によって重合することにより高分子量のポリマーが得られる。 The polylactic acid resin can be obtained by a method of directly dehydrating and condensing the raw materials or a method of ring-opening polymerization of the cyclic ester intermediate. For example, in the case of producing by direct dehydration condensation, lactic acid or lactic acid and hydroxycarboxylic acid are preferably subjected to azeotropic dehydration condensation in the presence of an organic solvent, particularly a phenyl ether solvent, and particularly preferably a solvent distilled by azeotropic distillation. A polymer having a high molecular weight can be obtained by polymerizing by a method in which water is removed from the solvent and the solvent is brought into a substantially anhydrous state and returned to the reaction system.
 また、ラクチド等の環状エステル中間体をオクチル酸錫等の触媒を用い減圧下開環重合することによっても高分子量のポリマーが得られることも知られている。このとき、有機溶媒中での加熱還流時の水分および低分子化合物の除去の条件を調整する方法や、重合反応終了後に触媒を失活させ解重合反応を抑える方法、製造したポリマーを熱処理する方法などを用いることにより、ラクチド量の少ないポリマーを得ることができる。 It is also known that a high molecular weight polymer can be obtained by subjecting a cyclic ester intermediate such as lactide to ring-opening polymerization under reduced pressure using a catalyst such as tin octylate. At this time, a method for adjusting the conditions for removing moisture and low molecular weight compounds during heating and refluxing in an organic solvent, a method for suppressing the depolymerization reaction by deactivating the catalyst after completion of the polymerization reaction, and a method for heat-treating the produced polymer Can be used to obtain a polymer with a small amount of lactide.
 本発明の生分解性フィルムを構成する組成物、つまり、乳酸系樹脂(A)、生分解性樹脂(B)、あるいはその他の成分等を含有する組成物を得るにあたっては、各成分を溶媒に溶かした溶液を均一混合した後、溶媒を除去して組成物を製造することも可能であるが、溶媒へ原料の溶解、溶媒除去等の工程が不要で、実用的な製造方法である、各成分を溶融混練することにより組成物を製造する溶融混練法を採用することが好ましい。その溶融混練方法については、特に制限はなく、ニーダー、ロールミル、バンバリーミキサー、単軸または二軸押出機等の通常使用されている公知の混合機を用いることができる。中でも生産性の観点から、単軸または二軸押出機の使用が好ましい。 In obtaining the composition constituting the biodegradable film of the present invention, that is, the composition containing the lactic acid resin (A), the biodegradable resin (B), or other components, each component is used as a solvent. It is possible to produce a composition by removing the solvent after uniformly mixing the dissolved solution, but steps such as dissolution of the raw material in the solvent, removal of the solvent, etc. are unnecessary, and each is a practical production method. It is preferable to employ a melt-kneading method for producing a composition by melt-kneading the components. The melt kneading method is not particularly limited, and a commonly used known mixer such as a kneader, roll mill, Banbury mixer, single-screw or twin-screw extruder can be used. Among these, from the viewpoint of productivity, it is preferable to use a single screw or twin screw extruder.
 溶融混練時の温度は150℃~240℃の範囲が好ましく、乳酸系樹脂(A)の劣化を防ぐ意味から、180℃~210℃の範囲とすることがより好ましい。 The temperature at the time of melt kneading is preferably in the range of 150 ° C. to 240 ° C., and more preferably in the range of 180 ° C. to 210 ° C. from the viewpoint of preventing deterioration of the lactic acid resin (A).
 本発明の生分解性フィルムは、例えば上記した方法により得られた組成物を用いて、公知のインフレーション法、チューブラー法、Tダイキャスト法などの既存のフィルムの製造法により得ることが出来るが、本発明の生分解性フィルムの分散構造を得るためにはインフレーション法が好ましい。 The biodegradable film of the present invention can be obtained, for example, by a known film production method such as a known inflation method, a tubular method, or a T-die cast method, using the composition obtained by the above-described method. In order to obtain the dispersion structure of the biodegradable film of the present invention, the inflation method is preferred.
 本発明の生分解性フィルムを製造するにあたっては、例えば前述した方法により得られた組成物を一旦ペレット化し、再度溶融混練して押出・製膜する際には、ペレットを60~100℃にて6時間以上乾燥するなどして、水分量を1,200ppm以下、好ましくは500ppm以下、より好ましくは200ppm以下としたポリ乳酸系樹脂等を含有する組成物を用いることが好ましい。さらに、真空度10Torr以下の高真空下で真空乾燥をすることで、ポリ乳酸系樹脂等を含有する組成物中のラクチド含有量を低減させることが好ましい。ポリ乳酸系樹脂等を含有する組成物の水分量を1,200ppm以下とし、さらに、ラクチド含有量を低減することで、溶融混練中の加水分解を防ぎ、それにより分子量低下を防ぐことができ、ポリ乳酸系樹脂等を含有する組成物とした際の溶融粘度を適度なレベルとし、製膜工程を安定させることができるためにも好ましい。また、同様の観点から、一旦ペレット化、あるいは溶融押出・製膜する際には、ベント孔付きの2軸押出機を使用し、水分や低分子量物などの揮発物を除去しながら溶融押出することが好ましい。 In producing the biodegradable film of the present invention, for example, when the composition obtained by the above-described method is once pelletized, melt-kneaded again and extruded and formed into a film, the pellet is heated at 60 to 100 ° C. It is preferable to use a composition containing a polylactic acid resin or the like having a moisture content of 1,200 ppm or less, preferably 500 ppm or less, more preferably 200 ppm or less by drying for 6 hours or more. Furthermore, it is preferable to reduce the lactide content in the composition containing a polylactic acid resin or the like by vacuum drying under a high vacuum with a degree of vacuum of 10 Torr or less. The water content of the composition containing a polylactic acid resin or the like is 1,200 ppm or less, and further, by reducing the lactide content, hydrolysis during melt-kneading can be prevented, thereby preventing a decrease in molecular weight. It is also preferable because the melt viscosity at the time of preparing a composition containing a polylactic acid resin or the like can be set to an appropriate level and the film forming process can be stabilized. From the same point of view, when pelletizing or melt-extrusion / film formation, a twin-screw extruder with a vent hole is used and melt extrusion is performed while removing volatiles such as moisture and low molecular weight substances. It is preferable.
 本発明の生分解性フィルムをインフレーション法により製造する場合は、例えば、前述のような方法により調整した組成物をベント孔付き2軸押出機にて溶融押出して環状ダイスに導き、環状ダイスから押出して内部には乾燥エアーを供給して風船状(バブル)に形成し、さらにエアーリングにより均一に空冷固化させ、ニップロールでフラットに折りたたみながら所定の引き取り速度で引き取った後、必要に応じて両端、または片方の端を切り開いて巻き取れば良い。 When the biodegradable film of the present invention is produced by the inflation method, for example, the composition prepared by the method as described above is melt-extruded by a twin-screw extruder with a vent hole, led to an annular die, and extruded from the annular die. Then, dry air is supplied inside and formed into a balloon shape (bubble), further air-cooled and solidified uniformly by an air ring, and taken up at a predetermined take-up speed while being folded flat with a nip roll, then both ends as necessary. Alternatively, one end may be cut open and wound.
 本発明の生分解性フィルムをインフレーション製膜する際には、インフレーション製膜時のブロー比と、ドロー比の調整が重要である。ここで、ブロー比とは、フィルムの幅方向の延伸比のことで、(片方の端を切り開いて巻き取った際のフィルムの幅方向の長さ)/(環状ダイスの円周の長さ)で求める。また、ドロー比とは、フィルムの長さ方向のドロー延伸比のことで、(巻き取り速度)/(環状ダイスからの吐出速度)で表されるが、実用上は、(環状ダイスのリップ間隙)/{(製膜後のフィルム厚み)×(ブロー比)}で求める。本発明の生分解性フィルムでは、前述した分散構造を形成するために、ブロー比は、1.6~4.0が好ましく、ドロー比は、10~50が好ましい。ブロー比は、2.2~3.4がより好ましく、2.8~3.4がさらに好ましい。ドロー比は15~45がより好ましく、20~35がさらに好ましい。 When the biodegradable film of the present invention is formed into an inflation film, it is important to adjust the blow ratio and the draw ratio during the inflation film formation. Here, the blow ratio is the stretch ratio in the width direction of the film, (the length in the width direction of the film when one end is cut open and wound) / (the length of the circumference of the annular die) Ask for. The draw ratio is the draw ratio in the length direction of the film and is expressed by (winding speed) / (discharge speed from the annular die). ) / {(Film thickness after film formation) × (blow ratio)}. In the biodegradable film of the present invention, the blow ratio is preferably 1.6 to 4.0 and the draw ratio is preferably 10 to 50 in order to form the dispersion structure described above. The blow ratio is more preferably 2.2 to 3.4, still more preferably 2.8 to 3.4. The draw ratio is more preferably 15 to 45, still more preferably 20 to 35.
 環状ダイスのリップ間隙は、上記した好ましいブロー比、ドロー比で製膜した際に目的のフィルム厚みになるように調整すればよいが、通常、0.6~1.8であり、好ましくは、1.2~1.6である。また、環状ダイスは、厚み精度、均一性の点から、スパイラル型を用いることが好ましく、同様の観点から環状ダイスは回転式のものを用いることが好ましい。 The lip gap of the annular die may be adjusted so as to have a desired film thickness when the film is formed with the above-mentioned preferable blow ratio and draw ratio, but is usually 0.6 to 1.8, preferably 1.2 to 1.6. The annular die is preferably a spiral type from the viewpoint of thickness accuracy and uniformity, and from the same viewpoint, the annular die is preferably a rotary type.
 また、本発明の生分解性フィルムをインフレーション製膜する際の押出温度は通常150~240℃の範囲であり、180~210℃が好ましく、環状ダイスの温度は通常150~190℃の範囲であり、155~170℃が好ましい。 In addition, the extrusion temperature when the biodegradable film of the present invention is formed into a film is usually in the range of 150 to 240 ° C., preferably 180 to 210 ° C., and the temperature of the annular die is usually in the range of 150 to 190 ° C. 155 to 170 ° C is preferable.
 フィルムに成形した後に、フィルムの熱収縮を抑制するために加熱ロールやオーブン内で熱処理を施しても良い。また、印刷性、ラミネート適性、コーティング適性などを向上させる目的で各種の表面処理を施しても良い。表面処理の方法としては、コロナ放電処理、プラズマ処理、火炎処理、酸処理などが挙げられ、いずれの方法をも用いることができるが、連続処理が可能であり、既存の製膜設備への装置設置が容易な点や処理の簡便さからコロナ放電処理が最も好ましいものとして例示できる。 After being formed into a film, heat treatment may be performed in a heating roll or an oven in order to suppress thermal shrinkage of the film. Various surface treatments may be applied for the purpose of improving printability, laminate suitability, coating suitability, and the like. Examples of the surface treatment include corona discharge treatment, plasma treatment, flame treatment, acid treatment, etc., and any method can be used, but continuous treatment is possible, and equipment for existing film forming equipment is used. Corona discharge treatment can be exemplified as the most preferable because of its easy installation and simple processing.
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれにより何ら制限を受けるものではない。
[測定および評価方法]
 実施例中に示す測定や評価は次に示すとおりの条件で行った。
(1)分散構造
 フィルムにルテニウム酸で染色処理を施し、エポキシ樹脂に包埋した後、ウルトラミクロトームを用いてフィルムの長さ方向に平行かつフィルム面に垂直な方向に切断し、超薄切片を作製した。切断面を、透過型電子顕微鏡((株)日立ハイテクノロジー製H-7100型)を用いて、加速電圧100kVの条件下で、まずフィルムの厚さ方向全体が見える倍率で観察し、フィルムの厚さ方向に等間隔に3等分した際、3等分した各領域について厚さ方向の中央部分について、5万倍の倍率で写真を撮影した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto.
[Measurement and evaluation method]
Measurements and evaluations shown in the examples were performed under the following conditions.
(1) Dispersion structure The film is dyed with ruthenic acid, embedded in an epoxy resin, and then cut in a direction parallel to the length direction of the film and perpendicular to the film surface using an ultramicrotome. Produced. Using a transmission electron microscope (H-7100, manufactured by Hitachi High-Technology Co., Ltd.), the cut surface was first observed at a magnification at which the entire thickness direction of the film could be seen under the condition of an acceleration voltage of 100 kV. When it was divided into three equal parts in the vertical direction, a photograph was taken at a magnification of 50,000 times for the central part in the thickness direction for each of the three divided areas.
 撮影した写真をフィルムの長さ方向を縦にして、15cm×15cmの正方形に切り出し、縦の長さの中央部分を横切る線を引く(すなわち、正方形を上下に等面積に分割する線を引く)。その線と、フィルムの長さ方向に長い楕円状またはフィルムの長さ方向に長い層状に分散した相の境界部分との交点を基準として、左右両端の相構造を省き、残りの全ての分散相、連続相の厚さを0.1mm単位で測定した。同様にして残り2領域についても分散相、連続相の厚さ測定を行い、分散相、連続相それぞれについて、全ての平均値を算出後、実測1mmを20nmに換算して、W、W(nm)(小数点第1位を四捨五入)とした。 Cut the photographed photo into a 15cm x 15cm square with the length direction of the film vertical, and draw a line across the center of the vertical length (ie draw a line that divides the square vertically into equal areas) . With reference to the intersection of the line and the boundary portion of the phase dispersed in the shape of an ellipse that is long in the length direction of the film or a layer that is long in the length direction of the film, the phase structure at the left and right ends is omitted, and all the remaining dispersed phases are omitted. The thickness of the continuous phase was measured in units of 0.1 mm. Similarly, for the remaining two regions, the thickness of the dispersed phase and the continuous phase is measured, and after calculating the average value of all of the dispersed phase and the continuous phase, 1 mm of actual measurement is converted to 20 nm, and W A and W B (Nm) (the first decimal place was rounded off).
 なお、分散相がフィルムの長さ方向に長いために、連続相、分散相のいずれかの判断が難しい場合には、透過型電子顕微鏡(TEM)での分散構造の確認において、フィルムの長さ方向に観察範囲をずらしていき、島構造の先端が存在する方が分散相であると判断する。 In addition, when it is difficult to determine either the continuous phase or the dispersed phase because the dispersed phase is long in the length direction of the film, the length of the film is confirmed in the confirmation of the dispersed structure with a transmission electron microscope (TEM). The observation range is shifted in the direction, and it is determined that the tip of the island structure is the dispersed phase.
 図1に、フィルムの断面写真(倍率:5万倍)の例を示した。
(2)引張弾性率(MPa)
 測定方向に長さ150mmm、幅10mmの短冊状にサンプルを切り出し、温度23℃、湿度65%RHの雰囲気下における応力-歪み測定を以下のように行った。(株)オリエンテック製テンシロンUCT-100を用い、チャック間初期長50mm、引張速度300mm/minで引張試験を行い、応力-歪み曲線の最初の直線部分を用いて、直線上の2点間の応力の差を同じ2点間の歪みの差で除し、引張弾性率を計算した。測定は計10回行い、その平均値(1の位を四捨五入)を採用した。これを長さ方向、幅方向、それぞれについて算出した。
(3)引裂強度(N/mm)
 温度23℃、湿度65%RHの雰囲気下において、JIS K 7128-1 (1998)に従って、トラウザー引裂法による引裂強度測定を以下のように行った。(株)オリエンテック製テンシロンUCT-100を用い、試験速度200mm/minで、測定は計10回行い、その平均値(小数点第1位を四捨五入)を採用した。これを長さ方向、幅方向、それぞれについて算出した。
(4)ヘイズ(%)
 スガ試験機(株)製ヘイズメーターHGM-2DPを用いて、JIS K 7136 (2000)に規定された方法に従ってヘイズ値を測定した。測定は1サンプルにつき測定場所を変更して5回行い、その平均値(小数点第1位を四捨五入)を採用した。
(5)溶融粘度(Pa・s)
 (株)島津製作所製フローテスターCFT-500A(ダイ径1mm、ダイ長10mm、プランジャ断面積1cm)を用いて、温度200℃、予熱3分で測定、剪断速度100sec-1の溶融粘度の値(Pa・s)(1の位を四捨五入)を採用した。
(6)バイオマス度(%)
 フィルムを構成する樹脂組成物全体を100質量%としたときのバイオマス由来である樹脂の配合割合(質量%)(小数点第1位を四捨五入)とし、次の基準にて評価した。
FIG. 1 shows an example of a cross-sectional photograph of the film (magnification: 50,000 times).
(2) Tensile modulus (MPa)
A sample was cut into a strip shape having a length of 150 mm in the measurement direction and a width of 10 mm, and stress-strain measurement was performed as follows in an atmosphere at a temperature of 23 ° C. and a humidity of 65% RH. Using Tensilon UCT-100 manufactured by Orientec Co., Ltd., a tensile test was performed at an initial length between chucks of 50 mm and a tensile speed of 300 mm / min. Using the first linear part of the stress-strain curve, the distance between two points on the straight line The tensile modulus was calculated by dividing the difference in stress by the difference in strain between the same two points. The measurement was performed 10 times in total, and the average value (rounded to the first decimal place) was adopted. This was calculated for each of the length direction and the width direction.
(3) Tear strength (N / mm)
In an atmosphere of a temperature of 23 ° C. and a humidity of 65% RH, tear strength measurement by a trouser tear method was performed as follows according to JIS K 7128-1 (1998). Using Tensilon UCT-100 manufactured by Orientec Co., Ltd., the measurement was performed 10 times in total at a test speed of 200 mm / min, and the average value (rounded to the first decimal place) was adopted. This was calculated for each of the length direction and the width direction.
(4) Haze (%)
Using a haze meter HGM-2DP manufactured by Suga Test Instruments Co., Ltd., the haze value was measured according to the method specified in JIS K 7136 (2000). The measurement was performed 5 times by changing the measurement location for each sample, and the average value (rounded to the first decimal place) was adopted.
(5) Melt viscosity (Pa · s)
Using a flow tester CFT-500A manufactured by Shimadzu Corporation (die diameter 1 mm, die length 10 mm, plunger cross-sectional area 1 cm 2 ), measured at a temperature of 200 ° C. with a preheating of 3 minutes, a melt viscosity value at a shear rate of 100 sec −1 (Pa · s) (rounded to the first decimal place) was adopted.
(6) Biomass degree (%)
The resin composition ratio (mass%) derived from biomass when the entire resin composition constituting the film was 100 mass% (rounded to the first decimal place) was evaluated according to the following criteria.
 excellent:38%以上
 good:25%以上、38%未満
 fair:5%以上、25%未満
 bad:5%未満
(7)質量平均分子量Mw、数平均分子量Mn
 ゲルパーミエーションクロマトグラフィー(GPC)により測定した標準ポリメチルメタクリレート換算の値である。GPCの測定は、検出器にWATERS社示差屈折計WATERS410を用い、ポンプにWATERS社MODEL510高速液体クロマトグラフィーを用い、カラムにShodex GPC HFIP-806MとShodex GPC HFIP-LGを直列に接続したものを用いて行った。測定条件は、流速0.5mL/minとし、溶媒にヘキサフルオロイソプロパノールを用い、試料濃度1mg/mLの溶液を0.1mL注入した。
[乳酸系樹脂(A)]
(A1)
 ポリL-乳酸、質量平均分子量Mw200,000、D体含有量1.4mol%、融点166℃、温度200℃、剪断速度100sec-1における溶融粘度1,400Pa・s、バイオマス度100%。
(A2)
 ポリL-乳酸、質量平均分子量Mw200,000、D体含有量12.0mol%、融点無し、温度200℃、剪断速度100sec-1における溶融粘度1,250Pa・s、バイオマス度100%。
(A3)
 数平均分子量Mn8,000のポリエチレングリコール62質量部とL-ラクチド38質量部とオクチル酸スズ0.05質量部を混合し、撹拌装置付きの反応容器中で、窒素雰囲気下160℃で3時間重合することで、数平均分子量Mn8,000のポリエチレングリコールの両末端に数平均分子量Mn2,500のポリ乳酸セグメントを有するポリ乳酸系樹脂A3を得た。バイオマス度は39%であった。
(A4)
 上記(A1)30質量部と上記(A2)70質量部の混合物をシリンダー温度200℃のスクリュー径44mmの真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して、ポリ乳酸系樹脂A4を得た。温度200℃、剪断速度100sec-1における溶融粘度は1,300Pa・sであった。バイオマス度は100%であった。
(A5)
 上記(A1)27質量部、上記(A2)63質量部および上記(A3)10質量部の混合物をシリンダー温度200℃のスクリュー径44mmの真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して、ポリ乳酸系樹脂A5を得た。温度200℃、剪断速度100sec-1における溶融粘度は1,000Pa・sであった。バイオマス度は94%であった。
(A6)
 上記(A1)24質量部、上記(A2)56質量部および上記(A3)20質量部の混合物をシリンダー温度200℃のスクリュー径44mmの真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して、ポリ乳酸系樹脂A6を得た。温度200℃、剪断速度100sec-1における溶融粘度は700Pa・sであった。バイオマス度は88%であった。
(A7)
 上記(A1)21質量部、上記(A2)49質量部および上記(A3)30質量部の混合物をシリンダー温度200℃のスクリュー径44mmの真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して、ポリ乳酸系樹脂A7を得た。温度200℃、剪断速度100sec-1における溶融粘度は400Pa・sであった。バイオマス度は82%であった。
(A8)
 ポリL-乳酸、質量平均分子量Mw200,000、D体含有量5.0mol%、融点150℃、温度200℃、剪断速度100sec-1における溶融粘度1,400Pa・s、バイオマス度100%。
[生分解性樹脂(B)]
(B1)
 ポリブチレンアジペート・テレフタレート樹脂(BASF社製、商品名“エコフレックス”FBX7011)、温度200℃、剪断速度100sec-1における溶融粘度1,200Pa・s。
(B2)
 ポリブチレンサクシネート系樹脂(三菱化学(株)製、商品名“GS Pla”(登録商標)AZ91T)、温度200℃、剪断速度100sec-1における溶融粘度1,050Pa・s。
(B3)
 ポリブチレンサクシネート・アジペート系樹脂(昭和高分子(株)製、商品名“ビオノーレ”(登録商標)#3001)、温度200℃、剪断速度100sec-1における溶融粘度1,250Pa・s。
(B4)
 ポリブチレンアジペート・テレフタレート樹脂(BASF社製、商品名“エコフレックス”FBX7020)、温度200℃、剪断速度100sec-1における溶融粘度650Pa・s。
[相溶化剤(C)]
(C1)
 エチレン/アクリル酸エステル/グリシジルアクリレート共重合体(DuPont社製“BIOMAX”(登録商標)Strong120)。
(C2)
 エチレン/アクリル酸エステル/グリシジルメタクリレート共重合体(Arkema社製“LOTADER”(登録商標)AX8900)。
(C3)
 エポキシ基含有スチレン/アクリル酸エステル共重合体(BASF社製“JONCRYL”(登録商標)ADR-4368)。
(C4)
 エポキシ基含有アクリル系グラフト樹脂(東亞合成(株)製“レゼダ”(登録商標)GP-301)。
(C5)
 エチレン/アクリル酸エステル/無水マレイン酸共重合体(Arkema社製“BONDINE”(登録商標)TX8030)。
(C6)
 無水マレイン酸変性スチレン/エチレン/ブチレン/スチレン共重合体(Kraton社製“KRATON”(登録商標)FG1924)。
(C7)
 ポリカルボジイミド(日清紡績(株)製“カルボジライト”(登録商標)LA-1)。
(C8)
 酢酸マグネシウム(無水物)。
(C9)
 チタンテトライソプロポキシド。
(C10)
 p-トルエンスルホン酸。
(C11)
 ヘキサメチレンジイソシアネート。
[生分解性フィルムの作製]
(比較例1)
 ポリ乳酸系樹脂(A1)45質量部、生分解性樹脂(B1)55質量部の混合物を、シリンダー温度190℃のスクリュー径45mm、L/D=32の真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して組成物を得た。
excellent: 38% or more good: 25% or more, less than 38% fair: 5% or more, less than 25% bad: less than 5% (7) Mass average molecular weight Mw, number average molecular weight Mn
It is a value in terms of standard polymethyl methacrylate measured by gel permeation chromatography (GPC). GPC measurement uses a WATERS differential refractometer WATERS410 as a detector, WATERS MODEL510 high performance liquid chromatography as a pump, and Shodex GPC HFIP-806M and Shodex GPC HFIP-LG connected in series as a column. I went. The measurement conditions were a flow rate of 0.5 mL / min, hexafluoroisopropanol was used as the solvent, and 0.1 mL of a solution having a sample concentration of 1 mg / mL was injected.
[Lactic acid resin (A)]
(A1)
Poly L-lactic acid, mass average molecular weight Mw 200,000, D-form content 1.4 mol%, melting point 166 ° C., temperature 200 ° C., melt viscosity 1,400 Pa · s at a shear rate of 100 sec −1 , biomass degree 100%.
(A2)
Poly L-lactic acid, mass average molecular weight Mw 200,000, D-form content 12.0 mol%, no melting point, temperature 200 ° C., melt viscosity 1,250 Pa · s at a shear rate of 100 sec −1 , biomass degree 100%.
(A3)
62 parts by mass of polyethylene glycol having a number average molecular weight Mn of 8,000, 38 parts by mass of L-lactide and 0.05 parts by mass of tin octylate are mixed and polymerized in a reaction vessel equipped with a stirrer at 160 ° C. for 3 hours in a nitrogen atmosphere. Thus, a polylactic acid resin A3 having polylactic acid segments having a number average molecular weight Mn of 2,500 at both ends of polyethylene glycol having a number average molecular weight Mn of 8,000 was obtained. The biomass degree was 39%.
(A4)
A mixture of 30 parts by weight of the above (A1) and 70 parts by weight of the above (A2) was subjected to a twin screw extruder with a vacuum vent with a cylinder diameter of 200 ° C. and a screw diameter of 44 mm, and melted and kneaded while degassing the vacuum vent. And then pelletized to obtain a polylactic acid resin A4. The melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec −1 was 1,300 Pa · s. The degree of biomass was 100%.
(A5)
A mixture of 27 parts by mass of (A1), 63 parts by mass of (A2) and 10 parts by mass of (A3) was subjected to a twin screw extruder equipped with a vacuum vent with a cylinder diameter of 200 ° C. and a screw diameter of 44 mm, and the vacuum vent part was removed. It melt-kneaded with air, homogenized, and then pelletized to obtain polylactic acid resin A5. The melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec −1 was 1,000 Pa · s. The degree of biomass was 94%.
(A6)
A mixture of 24 parts by mass of (A1), 56 parts by mass of (A2) and 20 parts by mass of (A3) is subjected to a twin screw extruder with a vacuum diameter of 44 mm and a cylinder temperature of 200 ° C., and the vacuum vent is removed. The mixture was melt-kneaded with air, homogenized, and pelletized to obtain a polylactic acid resin A6. The melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec −1 was 700 Pa · s. The degree of biomass was 88%.
(A7)
A mixture of 21 parts by mass of (A1), 49 parts by mass of (A2) and 30 parts by mass of (A3) was supplied to a twin screw extruder with a vacuum vent with a cylinder diameter of 200 ° C. and a screw diameter of 44 mm, and the vacuum vent part was removed. It melt-kneaded with air, homogenized, and then pelletized to obtain polylactic acid resin A7. The melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec −1 was 400 Pa · s. The degree of biomass was 82%.
(A8)
Poly L-lactic acid, mass average molecular weight Mw 200,000, D-form content 5.0 mol%, melting point 150 ° C., temperature 200 ° C., melt viscosity 1,400 Pa · s at a shear rate of 100 sec −1 , biomass degree 100%.
[Biodegradable resin (B)]
(B1)
Polybutylene adipate terephthalate resin (trade name “Ecoflex” FBX7011 manufactured by BASF), melt viscosity of 1,200 Pa · s at a temperature of 200 ° C. and a shear rate of 100 sec −1 .
(B2)
Polybutylene succinate resin (trade name “GS Pla” (registered trademark) AZ91T, manufactured by Mitsubishi Chemical Corporation), melt viscosity of 1,050 Pa · s at a temperature of 200 ° C. and a shear rate of 100 sec −1 .
(B3)
Polybutylene succinate-adipate resin (manufactured by Showa Polymer Co., Ltd., trade name “Bionore” (registered trademark) # 3001), melt viscosity at a temperature of 200 ° C. and a shear rate of 100 sec −1, 1,250 Pa · s.
(B4)
Polybutylene adipate terephthalate resin (trade name “Ecoflex” FBX7020, manufactured by BASF), melt viscosity 650 Pa · s at a temperature of 200 ° C. and a shear rate of 100 sec −1 .
[Compatibilizer (C)]
(C1)
Ethylene / acrylic acid ester / glycidyl acrylate copolymer (“BIOMAX” (registered trademark) Strong 120 manufactured by DuPont).
(C2)
Ethylene / acrylic acid ester / glycidyl methacrylate copolymer ("LOTADER" (registered trademark) AX8900 manufactured by Arkema).
(C3)
Epoxy group-containing styrene / acrylic acid ester copolymer (“JONCRYL” (registered trademark) ADR-4368 manufactured by BASF).
(C4)
Epoxy group-containing acrylic graft resin (“Reseda” (registered trademark) GP-301, manufactured by Toagosei Co., Ltd.).
(C5)
Ethylene / acrylic acid ester / maleic anhydride copolymer (“BONDINE” (registered trademark) TX8030 manufactured by Arkema).
(C6)
Maleic anhydride modified styrene / ethylene / butylene / styrene copolymer (“KRATON” (registered trademark) FG1924 manufactured by Kraton).
(C7)
Polycarbodiimide (“Carbodilite” (registered trademark) LA-1 manufactured by Nisshinbo Industries, Inc.).
(C8)
Magnesium acetate (anhydrous).
(C9)
Titanium tetraisopropoxide.
(C10)
p-Toluenesulfonic acid.
(C11)
Hexamethylene diisocyanate.
[Production of biodegradable film]
(Comparative Example 1)
A mixture of 45 parts by mass of polylactic acid-based resin (A1) and 55 parts by mass of biodegradable resin (B1) was subjected to a twin screw extruder with a vacuum vent with a cylinder diameter of 190 ° C. and a screw diameter of 45 mm and L / D = 32. The composition was obtained by melt-kneading while degassing the vacuum vent part, homogenizing, and pelletizing.
 この組成物のペレットを、回転式ドラム型真空乾燥機を用いて、温度60℃で12時間真空乾燥した。 The pellets of this composition were vacuum-dried at a temperature of 60 ° C. for 12 hours using a rotary drum type vacuum dryer.
 この組成物のペレットを、押出機シリンダー温度190℃のスクリュー径65mmの一軸押出機に供給し、直径250mm、リップクリアランス1.4mm、温度160℃のスパイラル型環状ダイスより、ブロー比2.8にてバブル状に上向きに押出し、冷却リングにより空冷し、ダイス上方のニップロールで折りたたみながら引き取り、両端部をエッジカッターにて切断して2枚に切り開き、それぞれワインダーにてフィルムを巻き取った。吐出量と引き取り速度の調整により、ドロー比25、最終厚みが20μmのフィルムを得た。得られたフィルムの物性を表1に示した。 Pellets of this composition were supplied to a single screw extruder with a screw diameter of 65 mm at an extruder cylinder temperature of 190 ° C., and a blow ratio of 2.8 from a spiral annular die with a diameter of 250 mm, a lip clearance of 1.4 mm, and a temperature of 160 ° C. Then, it was extruded upward in a bubble shape, air-cooled with a cooling ring, taken up while being folded with a nip roll above the die, cut at both ends with an edge cutter and cut into two pieces, and each film was wound with a winder. By adjusting the discharge amount and the take-off speed, a film having a draw ratio of 25 and a final thickness of 20 μm was obtained. Table 1 shows the physical properties of the obtained film.
 実施例1~26、比較例2~5は、フィルムの原料、製膜条件を表1、表2、表3のとおりに変更した以外は、比較例1と同様にして、最終厚みが20μmのフィルムを得た。得られたフィルムの物性を表1、表2、表3、表4に示した。 In Examples 1 to 26 and Comparative Examples 2 to 5, the final thickness was 20 μm in the same manner as in Comparative Example 1, except that the film raw materials and film forming conditions were changed as shown in Tables 1, 2 and 3. A film was obtained. The physical properties of the obtained film are shown in Table 1, Table 2, Table 3, and Table 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の生分解性フィルムは、柔軟性、耐引裂性、透明性に優れ、かつバイオマス性に優れた、特にインフレーション製膜法で良好な効果が発現する生分解性フィルムであり、生分解性やバイオマス性に加え、主に、柔軟性、耐引裂性、透明性を必要とする、農業用マルチフィルムや松くい虫燻蒸用シート、堆肥袋などの農林業用途、野菜や果物など食品包装用途、衣料用個別包装、買い物用手提げバッグ、ゴミ袋などの各用途、あるいは各種工業製品の袋などに好ましく用いることができる。 The biodegradable film of the present invention is a biodegradable film that is excellent in flexibility, tear resistance, transparency, and excellent in biomass properties, and in particular, exhibits a good effect by an inflation film forming method. Agricultural and forestry applications such as agricultural multi-films, pine worm fumigation sheets, compost bags, food packaging applications such as vegetables and fruits, which mainly require flexibility, tear resistance and transparency It can be preferably used for individual uses such as individual packaging for clothing, handbags for shopping, garbage bags, bags for various industrial products, and the like.
 A:分散相
 B:連続相
A: Dispersed phase B: Continuous phase

Claims (8)

  1.  乳酸系樹脂(A)と、乳酸系樹脂(A)以外の生分解性樹脂(B)を含有する生分解性フィルムであって、フィルムの長さ方向と厚さ方向の断面において、生分解性樹脂(B)からなる連続相に、乳酸系樹脂(A)からなる分散相が、フィルムの長さ方向に長い楕円状またはフィルムの長さ方向に長い層状に分散した構造を有し、乳酸系樹脂(A)と生分解性樹脂(B)の合計100質量%における、乳酸系樹脂(A)の含有量(質量%)をP、生分解性樹脂(B)の含有量(質量%)をP、該分散相の厚さ(nm)をW、連続相の厚さ(nm)をWとしたときに、次式を満たす生分解性フィルム。
       W/W≦2.0×P/P
    A biodegradable film containing a lactic acid-based resin (A) and a biodegradable resin (B) other than the lactic acid-based resin (A), wherein the biodegradable film is cross-sectional in the length direction and the thickness direction of the film. The continuous phase composed of the resin (B) has a structure in which the dispersed phase composed of the lactic acid-based resin (A) is dispersed in an ellipse that is long in the length direction of the film or a layer that is long in the length direction of the film. The content (mass%) of the lactic acid resin (A) in the total 100 mass% of the resin (A) and the biodegradable resin (B) is P A , and the content (mass%) of the biodegradable resin (B). the P B, the thickness of the dispersion phase (nm) W a, the thickness of the continuous phase (nm) is taken as W B, biodegradable film satisfies the following equation.
    W A / W B ≦ 2.0 × P A / P B
  2.  前記分散相の厚さWが5~100nmである請求項1に記載の生分解性フィルム。 The biodegradable film of claim 1 thickness W A of the disperse phase is 5 ~ 100 nm.
  3.  JIS K7128-1 (1998)で定められたトラウザー引裂法によるフィルムの引裂強度が、長さ方向、幅方向のいずれも5N/mm以上である請求項1または2に記載の生分解性フィルム。 The biodegradable film according to claim 1 or 2, wherein the tear strength of the film by the trouser tear method defined in JIS K7128-1 (1998) is 5 N / mm or more in both the length direction and the width direction.
  4.  P:P=5:95~60:40である請求項1~3のいずれかに記載の生分解性フィルム。 The biodegradable film according to any one of claims 1 to 3, wherein P A : P B = 5: 95 to 60:40.
  5.  温度200℃、剪断速度100sec-1における乳酸系樹脂(A)の溶融粘度をη、温度200℃、剪断速度100sec-1における生分解性樹脂(B)の溶融粘度をηとしたとき、次式を満たす請求項1~4のいずれかに記載の生分解性フィルム。
       0.3≦η≦1.1
    Temperature 200 ° C., a melt viscosity eta A, temperature 200 ° C. of the lactic acid resin (A) at a shear rate of 100 sec -1, when the melt viscosity of the biodegradable resin at a shear rate of 100 sec -1 (B) was eta B, The biodegradable film according to any one of claims 1 to 4, which satisfies the following formula.
    0.3 ≦ η A / η B ≦ 1.1
  6.  相溶化剤を含有する請求項1~5のいずれかに記載の生分解性フィルム。 The biodegradable film according to any one of claims 1 to 5, comprising a compatibilizer.
  7.  乳酸系樹脂(A)が、ポリエーテル系セグメントとポリ乳酸セグメントとを有するブロック共重合体及びポリエステル系セグメントとポリ乳酸セグメントとを有するブロック共重合体からなる群より選ばれる少なくとも1つとホモポリ乳酸とからなる請求項1~6のいずれかに記載の生分解性フィルム。 Lactic acid-based resin (A) is at least one selected from the group consisting of a block copolymer having a polyether-based segment and a polylactic acid segment, and a block copolymer having a polyester-based segment and a polylactic acid segment, and homopolylactic acid, The biodegradable film according to any one of claims 1 to 6, comprising:
  8.  生分解性樹脂(B)が、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペートおよびポリブチレンアジペート・テレフタレートからなる群より選ばれる少なくとも1つである請求項1~7のいずれかに記載の生分解性フィルム。 The biodegradable resin according to any one of claims 1 to 7, wherein the biodegradable resin (B) is at least one selected from the group consisting of polybutylene succinate, polybutylene succinate adipate and polybutylene adipate terephthalate. Sex film.
PCT/JP2012/067650 2011-08-08 2012-07-11 Biodegradable film WO2013021772A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147004536A KR101970847B1 (en) 2011-08-08 2012-07-11 Biodegradable film
JP2012538894A JP5867406B2 (en) 2011-08-08 2012-07-11 Biodegradable film
CN201280038185.4A CN103732657B (en) 2011-08-08 2012-07-11 Biodegradable film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-172561 2011-08-08
JP2011172561 2011-08-08

Publications (1)

Publication Number Publication Date
WO2013021772A1 true WO2013021772A1 (en) 2013-02-14

Family

ID=47668292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067650 WO2013021772A1 (en) 2011-08-08 2012-07-11 Biodegradable film

Country Status (4)

Country Link
JP (1) JP5867406B2 (en)
KR (1) KR101970847B1 (en)
CN (1) CN103732657B (en)
WO (1) WO2013021772A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129294A1 (en) * 2013-02-19 2014-08-28 東レ株式会社 Polylactic resin composition, molded product, and method for producing polylactic resin composition
CN104606707A (en) * 2013-11-04 2015-05-13 允友成(宿迁)复合新材料有限公司 Degradable antibacterial bio-pharmaceutical multilayer film
JP2017203130A (en) * 2016-05-13 2017-11-16 昭和電工株式会社 Biodegradable film
IT201700022439A1 (en) * 2017-02-28 2018-08-28 Novamont Spa POLYMER COMPOSITION FOR HIGHLY UNINTENDABLE FILM

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105557164A (en) * 2015-12-16 2016-05-11 广西壮族自治区林业科学研究院 Slow release method for forest fertilizer nutrients
KR101789724B1 (en) * 2016-03-29 2017-10-25 (주)우성케미칼 Improved compatibility for biodegradable compound composition
CN105860457A (en) * 2016-05-11 2016-08-17 上海馨星环保科技有限公司 Novel polylactic film
KR102046799B1 (en) * 2017-11-29 2019-12-02 주식회사 알앤에프케미칼 Biodegradable film for filter for sink drain with insect repellent effect and high tearing strength
KR102618102B1 (en) * 2021-12-09 2023-12-27 서울대학교산학협력단 Biodegradable polymer blends having improved mechanical properties, barrier property and processability and preparation method thereof
KR102521667B1 (en) * 2022-03-28 2023-04-12 이정민 Food waste collection sieve molded with biodegrable resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160675A (en) * 2001-11-28 2003-06-03 Asahi Kasei Corp Transparent, impact resistant, polylactic acid-based oriented film or sheet, and manufacturing method thereof
JP2003181919A (en) * 2001-12-13 2003-07-03 Asahi Kasei Corp Biodegradable heat-shrinkable film and shrink package using the same
JP2003286354A (en) * 2002-01-28 2003-10-10 Asahi Kasei Corp Biodegradable oriented film
JP2003292642A (en) * 2002-01-30 2003-10-15 Asahi Kasei Corp Biodegradable film
JP2005264155A (en) * 2004-02-16 2005-09-29 Nippon Shokubai Co Ltd Biodegradable film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440858A1 (en) 1994-11-15 1996-05-23 Basf Ag Biodegradable polymers, processes for their production and their use for the production of biodegradable moldings
US5883199A (en) * 1997-04-03 1999-03-16 University Of Massachusetts Polyactic acid-based blends
ITTO20010058A1 (en) 2001-01-25 2002-07-25 Novamont Spa BIODEGRADABLE POLYESTER TERNARY MIXTURES AND PRODUCTS OBTAINED FROM THESE.
JP3510218B2 (en) 2001-05-02 2004-03-22 ユニチカ株式会社 Polylactic acid based film and method for producing the same
JP5061868B2 (en) 2007-12-06 2012-10-31 東レ株式会社 Polylactic acid film
AU2009295999B2 (en) * 2008-09-29 2013-12-19 Basf Se Biodegradable polymer mixture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160675A (en) * 2001-11-28 2003-06-03 Asahi Kasei Corp Transparent, impact resistant, polylactic acid-based oriented film or sheet, and manufacturing method thereof
JP2003181919A (en) * 2001-12-13 2003-07-03 Asahi Kasei Corp Biodegradable heat-shrinkable film and shrink package using the same
JP2003286354A (en) * 2002-01-28 2003-10-10 Asahi Kasei Corp Biodegradable oriented film
JP2003292642A (en) * 2002-01-30 2003-10-15 Asahi Kasei Corp Biodegradable film
JP2005264155A (en) * 2004-02-16 2005-09-29 Nippon Shokubai Co Ltd Biodegradable film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129294A1 (en) * 2013-02-19 2014-08-28 東レ株式会社 Polylactic resin composition, molded product, and method for producing polylactic resin composition
CN104606707A (en) * 2013-11-04 2015-05-13 允友成(宿迁)复合新材料有限公司 Degradable antibacterial bio-pharmaceutical multilayer film
JP2017203130A (en) * 2016-05-13 2017-11-16 昭和電工株式会社 Biodegradable film
IT201700022439A1 (en) * 2017-02-28 2018-08-28 Novamont Spa POLYMER COMPOSITION FOR HIGHLY UNINTENDABLE FILM

Also Published As

Publication number Publication date
CN103732657A (en) 2014-04-16
CN103732657B (en) 2016-01-20
KR20140048298A (en) 2014-04-23
JP5867406B2 (en) 2016-02-24
KR101970847B1 (en) 2019-04-19
JPWO2013021772A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5867406B2 (en) Biodegradable film
JP5867084B2 (en) Polylactic acid film
TWI510546B (en) Polylactic acid based film
JP5799809B2 (en) Porous film
WO2013038770A1 (en) Film
JP6287832B2 (en) the film
JP5979007B2 (en) Polylactic acid film
JP2014162799A (en) Polylactic acid-based mulching film
JP2013155223A (en) Polylactic acid-based film
WO2016158736A1 (en) Biodegradable white film and manufacturing method therefor
JP5332552B2 (en) Chip-like product made of polylactic acid resin composition
JP2004090522A (en) Polylactic acid resin film and polylactic acid resin fusion-cut sealing bag
JP4511099B2 (en) Lactic acid-based resin composition, sheet-like product thereof, and bag-like product
JP2015083661A (en) Porous film and manufacturing method therefor
JP5957908B2 (en) Biodegradable film
JP2014074126A (en) Film
JP4246523B2 (en) Lactic acid resin composition
JP2006232929A (en) Stretched film
JP2013159747A (en) Polylactic acid-based film
JP2005219487A (en) Laminated film
JP2014173074A (en) Biodegradable film
JP2016097576A (en) Laminate film
JP6492720B2 (en) Method for producing stretched film
JP2015038193A (en) Porous film
JP2014077125A (en) Block copolymer, resin composition and porous film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012538894

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147004536

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12822388

Country of ref document: EP

Kind code of ref document: A1