JP2004002492A - 冷媒組成物及び超低温冷凍装置 - Google Patents
冷媒組成物及び超低温冷凍装置 Download PDFInfo
- Publication number
- JP2004002492A JP2004002492A JP2002106351A JP2002106351A JP2004002492A JP 2004002492 A JP2004002492 A JP 2004002492A JP 2002106351 A JP2002106351 A JP 2002106351A JP 2002106351 A JP2002106351 A JP 2002106351A JP 2004002492 A JP2004002492 A JP 2004002492A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- component
- gas
- liquid
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation By Low-Temperature Treatments (AREA)
Abstract
【解決手段】混合冷媒は、1,1,1,3,3−ペンタフルオロプロパン(HFC245fa)又は1,1,1,3,3−ペンタフルオロブタン(HFC365mfc)の何れかからなる第1成分と、1,1,1,2−テトラフルオロエタン(HFC134a)、1,1,1−トリフルオロエタン(HFC143a)又は1,1,1,2,2−ペンタフルオロエタン(HFC125)の何れかからなる第2成分と、トリフルオロメタン(HFC23)からなる第3成分と、パーフルオロメタン(FC14)からなる第4成分と、クリプトン(Kr)からなる第5成分とアルゴン(Ar)からなる第6成分とを含有する。
【選択図】図1
Description
【請求項1】1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなる第1成分と、
1,1−ジフルオロエタンからなる第2成分と、
トリフルオロメタンからなる第3成分と、
パーフルオロメタンからなる第4成分と、
メタン又はクリプトンの少なくとも一方からなる第5成分とを含有することを特徴とする冷媒組成物。
【請求項2】1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなる第1成分と、
1,1,1,2−テトラフルオロエタン、1,1,1−トリフルオロエタン又は1,1,1,2,2−ペンタフルオロエタンの少なくとも1つからなる第2成分と、
トリフルオロメタンからなる第3成分と、
パーフルオロメタンからなる第4成分と、
クリプトンからなる第5成分とを含有することを特徴とする冷媒組成物。
【請求項3】1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなる第1成分と、
1,1,1,2−テトラフルオロエタン、1,1,1−トリフルオロエタン又は1,1,1,2,2−ペンタフルオロエタンの少なくとも1つからなる第2成分と、
トリフルオロメタンからなる第3成分と、
パーフルオロメタンからなる第4成分と、
メタンからなる第5成分とを含有することを特徴とする冷媒組成物。
【請求項4】請求項1から3の何れか1項において、
第1成分は、質量百分率で5〜40%含有され、
第2成分は、質量百分率で5〜35%含有され、
第3成分は、質量百分率で10〜40%含有され、
第4成分は、質量百分率で10〜40%含有され、
第5成分は、質量百分率で10〜40%含有されていることを特徴とする冷媒組成物。
【請求項5】請求項1から4の何れか1項において、
アルゴンからなる第6成分を含有することを特徴とする冷媒組成物。
【請求項6】請求項5において、
第6成分は質量百分率で10%以下含有されていることを特徴とする冷媒組成物。
【請求項7】請求項1から6の何れか1項記載の冷媒組成物が混合冷媒として流通する冷媒回路を備えた超低温冷凍装置であって、
上記冷媒回路は、
上記混合冷媒を圧縮する圧縮機と、
上記圧縮機から吐出された混合冷媒を冷却する凝縮器と、
上記凝縮器で冷却された混合冷媒の主として第1成分を液冷媒と残留ガス冷媒とに分離する第1気液分離器と、
上記第1気液分離器で分離された残留ガス冷媒を、同様に分離された後に減圧された液冷媒との間で熱交換させる第1カスケード熱交換器と、
上記第1カスケード熱交換器で熱交換された残留ガス冷媒を、以下、主として第2成分から順次液冷媒とガス冷媒とに分離する複数段の気液分離器と、
上記気液分離器で分離された残留ガス冷媒を、同じく分離された後に減圧された液冷媒との間でそれぞれ熱交換させる複数段のカスケード熱交換器と、
上記最終段のカスケード熱交換器から出た冷媒で且つ減圧された冷媒を蒸発させる主冷却器とを具備し、
上記主冷却器で冷却作用した冷媒を上記圧縮機へ帰還させるように構成されている
ことを特徴とする超低温冷凍装置。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、冷媒組成物及び超低温冷凍装置に関するものである。
【0002】
【従来の技術】
従来より、非共沸混合冷媒を用いる冷凍装置として、例えば特開平8−105660号公報及び特開平8−165465号公報に開示されているように、沸点温度の高い冷媒から順次凝縮させ、最も低い沸点温度の冷媒を最終的に蒸発させることにより、所望の超低温を得る多段気液分離方式の冷凍装置が知られている。
【0003】
この種の冷凍装置に用いられる混合冷媒として、例えば、1,1−ジクロロ−1−フルオロエタン(CH3―CCl2F、HCFC141b)、1,1−ジフルオロエタン(CH3―CHF2、HFC152a)、トリフルオロメタン(CHF3、HFC23)、パーフルオロメタン(CF4、FC14)及びメタン(CH4、HC50)の各冷媒が混合されてなるものが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の混合冷媒のうち、HCFC141bはオゾン層破壊防止のための国際的な規制措置の第2次規制対象とされており、特定フロンCFCの当面の代替冷媒であるいわゆる代替フロンHCFCに含まれる冷媒である。この代替フロンHCFCは、現在は使用可能であるものの、第2次規制対象としてその削減スケジュールが決定されており、今後、フロン規制は国際的に一層強化されると考えられる。したがって、将来的にはHCFC141bが使用できなくなるために、オゾン層を破壊しない新たな冷媒の出現が期待されている。
【0005】
そこで、本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、オゾン層を破壊する可能性がない冷媒組成物及びこの冷媒組成物を用いた超低温冷凍装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、冷媒組成物の第1成分として1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなるものを含有するようにしたものである。
【0007】
具体的に、請求項1の発明は、1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなる第1成分と、1,1−ジフルオロエタンからなる第2成分と、トリフルオロメタンからなる第3成分と、パーフルオロメタンからなる第4成分と、メタン又はクリプトンの少なくとも一方からなる第5成分とを含有する。
【0008】
また、請求項2の発明は、1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなる第1成分と、1,1,1,2−テトラフルオロエタン、1,1,1−トリフルオロエタン又は1,1,1,2,2−ペンタフルオロエタンの少なくとも1つからなる第2成分と、トリフルオロメタンからなる第3成分と、パーフルオロメタンからなる第4成分と、クリプトンからなる第5成分とを含有する。
【0009】
また、請求項3の発明は、1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなる第1成分と、1,1,1,2−テトラフルオロエタン、1,1,1−トリフルオロエタン又は1,1,1,2,2−ペンタフルオロエタンの少なくとも1つからなる第2成分と、トリフルオロメタンからなる第3成分と、パーフルオロメタンからなる第4成分と、メタンからなる第5成分とを含有する。
【0010】
また、請求項4の発明は、請求項1から3の何れか1項の発明において、第1成分は、質量百分率で5〜40%(質量百分率で5%以上で且つ40%以下)含有され、第2成分は、質量百分率で5〜35%(質量百分率で5%以上で且つ35%以下)含有され、第3成分は、質量百分率で10〜40%(質量百分率で10%以上で且つ40%以下)含有され、第4成分は、質量百分率で10〜40%(質量百分率で10%以上で且つ40%以下)含有され、第5成分は、質量百分率で10〜40%(質量百分率で10%以上で且つ40%以下)含有されている。
【0011】
また、請求項5の発明は、請求項1から4の何れか1項の発明において、アルゴンからなる第6成分を含有する。
【0012】
また、請求項6の発明は、請求項5の発明において、第6成分は質量百分率で10%以下含有されている。
【0013】
また、請求項7の発明は、請求項1から6の何れか1項記載の冷媒組成物が混合冷媒として流通する冷媒回路を備えた超低温冷凍装置を前提として、上記冷媒回路は、上記混合冷媒を圧縮する圧縮機と、上記圧縮機から吐出された混合冷媒を冷却する凝縮器と、上記凝縮器で冷却された混合冷媒の主として第1成分を液冷媒と残留ガス冷媒とに分離する第1気液分離器と、上記第1気液分離器で分離された残留ガス冷媒を、同様に分離された後に減圧された液冷媒との間で熱交換させる第1カスケード熱交換器と、上記第1カスケード熱交換器で熱交換された残留ガス冷媒を、以下、主として第2成分から順次液冷媒とガス冷媒とに分離する複数段の気液分離器と、上記気液分離器で分離された残留ガス冷媒を、同じく分離された後に減圧された液冷媒との間でそれぞれ熱交換させる複数段のカスケード熱交換器と、上記最終段のカスケード熱交換器から出た冷媒で且つ減圧された冷媒を蒸発させる主冷却器とを具備し、上記主冷却器で冷却作用した冷媒を上記圧縮機へ帰還させるように構成されている。
【0014】
すなわち、各請求項の発明による冷媒組成物の各成分は、何れもオゾン層を破壊する可能性がない規制対象外である。したがって、国際的な規制措置により使用ができなくなるという事態を回避することができる。
【0015】
また、請求項4の発明では、混合冷媒の各成分の組成比率がほぼ均等になるようにしたために、例えば、複数段の熱交換器を用いて各成分を順次蒸発させるような冷媒回路に混合冷媒として使用した場合には、各段での熱交換量をほぼ均等にすることができ、超低温を効率よく得ることができる。
【0016】
また、請求項5及び6の発明では、沸点の低いアルゴンを含有するようにしたために、より低温で冷媒組成物を蒸発させることができる。
【0017】
また、請求項7の発明では、請求項1から6の何れか1項記載の冷媒組成物が混合冷媒として冷媒回路を流通する。そして、圧縮機で圧縮されたガス状の混合冷媒は凝縮器で冷却され、主として第1成分が液化する。この液冷媒と残留ガス冷媒との混在状態の混合冷媒は、第1気液分離器に流入し、液冷媒と残留ガス冷媒とに分離する。この残留ガス冷媒は、第1カスケード熱交換器において、上記分離された液冷媒で且つ減圧されたものと熱交換されて冷却され、次段の気液分離器に供給される。そして、以下同様にして順次複数段の気液分離器で主として中沸点から低沸点にかけての冷媒が気液分離され、カスケード熱交換器でそれぞれ熱交換されて冷却される。
【0018】
そして、最終段のカスケード熱交換器を流出した残留ガス冷媒は減圧されて主冷却器に流入し、そこで蒸発して超低温を発生する。そして、主冷却器で冷却作用した冷媒は上記圧縮機へ帰還する。
【0019】
このように、気液分離器とカスケード熱交換器との組み合わせを複数段として、各段において順次高沸点成分から低沸点成分へと蒸発させることができるために、超低温を確実に得ることができる。特に、請求項4記載の冷媒組成物を混合冷媒として使用する場合には、各段のカスケード熱交換器における熱交換量をほぼ均等にすることができ、混合冷媒を超低温まで効率よく冷却することができる。また、アルゴンを含有する冷媒組成物を混合冷媒として使用する場合には、主冷却器における冷凍温度を更に下げることができる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0021】
図1に示すように、本発明の実施形態に係る超低温冷凍装置10は、沸点が互いに異なる6種類の成分が混合されてなる非共沸混合冷媒が封入された冷媒回路11を備えている。この冷媒回路11は、圧縮機20と、二重管からなる水冷コンデンサ21と、二重管からなる補助コンデンサ22と、第1〜第4の気液分離器24,30,36,42と、それぞれ二重管からなる第1〜第4のカスケード熱交換器25,31,37,43と、二重管からなる副冷却器47と、主冷却器52とが配管接続されて構成されている。この冷凍装置10では、上記水冷コンデンサ21と補助コンデンサ22とにより凝縮器56が構成されている。
【0022】
上記圧縮機20の吐出側は、水冷コンデンサ21の外管入口と配管接続されている。この水冷コンデンサ21の外管出口は補助コンデンサ22の外管入口と配管接続され、この補助コンデンサ22の外管出口は第1気液分離器24に配管接続されている。水冷コンデンサ21の内管には、図外の冷却水供給源から供給された冷却水が流通するようになっている。第1気液分離器24の気相部は第1カスケード熱交換器25における外管入口に、また液相部は減圧手段としての第1キャピラリチューブ26を介して第1カスケード熱交換器25の内管入口にそれぞれ配管接続されている。第1カスケード熱交換器25における外管出口は第2気液分離器30に配管接続されている。尚、第1カスケード熱交換器25は、内管を流れる冷媒と外管を流れる冷媒とが対向して流れるようになっている。こうして気液分離と熱交換との第1段が形成されている。
【0023】
以下、同様にして第2気液分離器30と第2カスケード熱交換器31、第3気液分離器36と第3カスケード熱交換器37、第4気液分離器42と第4カスケード熱交換器43がそれぞれ配管接続され、第2カスケード熱交換器31の外管出口は第3気液分離器36に、また第3カスケード熱交換器37の外管出口は第4気液分離器42にそれぞれ配管接続されて、気液分離と熱交換の第2段目〜第4段目が形成されている。これら各段においても上記第1段目同様に減圧手段としての第2〜第4のキャピラリチューブ32,38,44がそれそれ設けられている。
【0024】
上記第4カスケード熱交換器43の外管出口は、副冷却器47の外管入口に配管接続されている。副冷却器47の外管出口に接続された配管は2つに分岐されており、その一方は、減圧手段としての第5キャピラリチューブ48を介して副冷却器47の内管入口に配管接続されている。また、分岐された他の一方は、減圧手段としての第6キャピラリチューブ53を介して主冷却器52の入口に配管接続されている。
【0025】
上記主冷却器52は、例えば細胞を保存するためのフリーザや、室内中の水分を凝縮させることにより真空度を上げるように構成された真空室等により構成されている。
【0026】
そして、主冷却器52の出口に接続された配管と、副冷却器47の内管出口に接続された配管とが合流し、さらに第4キャピラリチューブ44と第4カスケード熱交換器43の内管入口とを接続する配管に合流している。
【0027】
第4カスケード熱交換器43の内管出口は、第3カスケード熱交換器37の内管入口へ、第3カスケード熱交換器37の内管出口は、第2カスケード熱交換器31の内管入口へ、第2カスケード熱交換器31の内管出口は、第1カスケード熱交換器25の内管入口へそれぞれ配管接続されている。また、第2〜第4の気液分離器30,36,42の各液相部は、それぞれキャピラリチューブ32,38,44を介して第2〜第4のカスケード熱交換器31,37,43の内管入口にそれぞれ配管接続されている。また、第1カスケード熱交換器25の内管出口は補助コンデンサ22の内管入口へ、補助コンデンサ22の内管出口は、圧縮機20の吸入側へそれぞれ配管接続されている。
【0028】
上記冷媒回路11に封入された混合冷媒は、以下の第1成分〜第6成分の冷媒が互いに混合された状態で含有されている。即ち、第1成分の冷媒は、1,1,1,3,3−ペンタフルオロプロパン(HFC245fa、CF3−CH2−CHF2、分子量134.00g/mol、沸点15℃)又は1,1,1,3,3−ペンタフルオロブタン(HFC365mfc、CF3−CH2−CF2−CH3、分子量148.00g/mol、沸点40℃)の何れか一方からなる。第2成分の冷媒は、1,1,1,2−テトラフルオロエタン(HFC134a、CH2F−CF3、分子量102.03g/mol、沸点―26.2℃)、1,1,1−トリフルオロエタン(HFC143a、CH3−CF3、分子量84.04g/mol、沸点―47.4℃)又は1,1,1,2,2−ペンタフルオロエタン(HFC125、CHF2−CF3、分子量120.02g/mol、沸点―48.5℃)の何れか1つからなる。第3成分の冷媒は、トリフルオロメタン(HFC23、CHF3、分子量70.01g/mol、沸点―82.1℃)からなる。第4成分の冷媒は、パーフルオロメタン(FC14、CF4、分子量88.01g/mol、沸点―127.9℃)からなる。第5成分の冷媒は、クリプトン(Kr、分子量83.80g/mol、沸点―153.4℃)からなる。第6成分の冷媒は、アルゴン(R740、Ar、分子量39.95g/mol、沸点―185.65℃)からなる。
【0029】
上記混合冷媒では、第1成分の冷媒が、質量百分率、即ち質量を基準とした百分率で混合冷媒に対して5〜40%(5%以上で且つ40%以下)含有されており、上記第2成分の冷媒が、同様に5〜35%(5%以上で且つ35%以下)含有されており、上記第3成分、第4成分及び第5成分の冷媒が、それぞれ同様に10〜40%(10%以上で且つ40%以下)含有されており、上記第6成分の冷媒が、同様に10%以下含有されているのが望ましい。このように各成分の比率がほぼ均等になるように組成比率を特定することにより、冷媒回路11の各段におけるカスケード熱交換器25,31,37,43での熱交換量をほぼ均等にすることができ、混合冷媒を効率よく超低温まで冷却することができる。
【0030】
次に、上記冷凍装置10の運転動作について説明する。圧縮機20から吐出された高温高圧のガス状混合冷媒は、水冷コンデンサ21の外管に流入し、内管を流れる冷却水によって一部が冷却された後、補助コンデンサ22の外管に流入する。補助コンデンサ22の外管に流入した混合冷媒は、後述するように主冷却器52及び副冷却器47からの帰還冷媒によって例えば27℃程度に冷却される。これにより、混合冷媒の主として第1成分の大部分と第2成分の相当部分とが液化し、これ以外の成分はガス状態にある気液混合状態になる。
【0031】
そして、この混合冷媒は、第1気液分離器24に流入し、ガス冷媒と液冷媒とに分離する。液冷媒は第1キャピラリチューブ26によって減圧されて第1カスケード熱交換器25の内管に流入する。この第1カスケード熱交換器25の内管には、冷却器47,52からの帰還冷媒も合流して流入する。一方、第1気液分離器24のガス冷媒は、第1カスケード熱交換器25の外管に流入し、上記内管に流入した冷媒と熱交換し、主として第2成分の大部分と第3成分の相当部分が凝縮する。この外管の混合冷媒は、例えば約−34℃となる。
【0032】
そして、この気液混合状態の混合冷媒は、第2気液分離器30に流入し、ガス冷媒と液冷媒とに分離する。液冷媒は第2キャピラリチューブ32によって減圧されて第2カスケード熱交換器31の内管に流入する。この第2カスケード熱交換器31の内管には、冷却器47,52からの帰還冷媒も合流して流入する。一方、第2気液分離器30のガス冷媒は、第2カスケード熱交換器31の外管に流入し、上記内管に流入した冷媒と熱交換し、主として第3成分の大部分と第4成分の相当部分が凝縮する。この外管の混合冷媒は、例えば約−64℃となる。
【0033】
そして、この気液混合状態の混合冷媒は、第3気液分離器36に流入し、ガス冷媒と液冷媒とに分離する。液冷媒は第3キャピラリチューブ38によって減圧されて第3カスケード熱交換器37の内管に流入する。この第3カスケード熱交換器37の内管には、冷却器47,52からの帰還冷媒も合流して流入する。一方、第3気液分離器36のガス冷媒は、第3カスケード熱交換器37の外管に流入し、上記内管に流入した冷媒と熱交換し、主として第4成分の大部分と第5成分の相当部分が凝縮する。この外管の混合冷媒は、例えば約−89℃となる。
【0034】
そして、この気液混合状態の混合冷媒は、第4気液分離器42に流入し、ガス冷媒と液冷媒とに分離する。液冷媒は第4キャピラリチューブ44によって減圧されて第4カスケード熱交換器43の内管に流入する。この第4カスケード熱交換器43の内管には、冷却器47,52からの帰還冷媒も合流して流入する。一方、第4気液分離器42のガス冷媒は、第4カスケード熱交換器43の外管に流入し、上記内管に流入した冷媒と熱交換し、主として第5成分の相当部分と第6成分の一部分が凝縮する。この外管の混合冷媒は、例えば約−109℃となる。
【0035】
こうして第5成分と第6成分とを含む気液混合冷媒は、副冷却器47の外管に流入し、その外管出口から出た冷媒のうちの一部で且つ第5キャピラリチューブ48によって減圧された冷媒との間で熱交換することによって約−123℃の完全液化状態となる。この液冷媒は、副冷却器47を流出した後、分流してその一部は上記の如く減圧された後に副冷却器47の内管に流入し、残りは第6キャピラリチューブ53によって減圧され、主冷却器52に流入する。この冷媒は例えば約−155℃となっている。この冷媒は、主冷却器52において蒸発して利用側を例えば150℃の超低温に冷却し、副冷却器47の内管を流出した冷媒と合流する。
【0036】
上記主冷却器52及び副冷却器47を流出した冷媒は、各キャピラリチューブ44,38,32,26で減圧された冷媒が順次合流すると共に、第4カスケード熱交換器43から第1カスケード熱交換器25に流入し、更には補助コンデンサ22に流入して上述の如くそれぞれ外管を流れる混合冷媒を冷却する。そして、この冷媒は、補助コンデンサ22を流出した後、圧縮機20に帰還する。
【0037】
以上説明したように、本実施形態に係る超低温冷凍装置10によれば、混合冷媒の各成分の冷媒は、何れもオゾン層を破壊する可能性がない規制対象外であるために、国際的な規制措置により使用ができなくなるという事態を回避することができる。
【0038】
また、沸点の低いアルゴンを混合冷媒に含有するようにしたために、より低温で冷媒を蒸発させることができる。
【0039】
また、混合冷媒が冷媒回路11を流通する。そして、圧縮機20で圧縮されたガス状の混合冷媒は水冷コンデンサ21及び補助コンデンサ22で冷却され、主として第1成分が液化する。この液冷媒と残留ガス冷媒との混在状態の混合冷媒は、第1気液分離器24に流入し、液冷媒と残留ガス冷媒とに分離する。この残留ガス冷媒は、第1カスケード熱交換器25において、上記分離された液冷媒で且つ減圧されたものと熱交換されて冷却され、次段の第2気液分離器30に供給される。そして、以下同様にして順次第2、第3及び第4の気液分離器30,36,42で主として中沸点から低沸点にかけての冷媒が気液分離され、第2、第3及び第4のカスケード熱交換器31,37,43でそれぞれ熱交換されて冷却される。
【0040】
そして、第4カスケード熱交換器43を流出した残留ガス冷媒は副冷却器47で液化される。また、副冷却器47で液化された冷媒は、減圧されて主冷却器52に流入し、そこで蒸発して超低温を発生する。そして、主冷却器52及び副冷却器47で冷却作用した冷媒は、順次第4カスケード熱交換器43から第1カスケード熱交換器25を経由して上記圧縮機20へ帰還する。このとき、第4、第3、第2及び第1気液分離器42,36,30,24で分離された液冷媒の減圧されたものと順次合流する。
【0041】
このように、気液分離器24,30,36,42とカスケード熱交換器25,31,37,43との組み合わせを4段として、高沸点成分から低沸点成分へと順次各段において蒸発させながら最終的に超低温を確実に得ることができる。特に、混合冷媒として、アルゴンからなる第6成分を含有する混合冷媒を使用しているために、主冷却器52における冷凍温度をさらに下げることができる。
【0042】
また、混合冷媒の第1〜第5成分の組成比率がほぼ均等、即ち20%前後になるようにしたために、冷媒回路11の各段におけるカスケード熱交換器25,31,37,43での熱交換量をほぼ均等にすることができ、混合冷媒を効率よく超低温まで冷却することができる。
【0043】
【発明のその他の実施の形態】
上記実施形態では、冷媒回路11は、副冷却器47の外管出口に接続された配管が分岐されてその一方が主冷却器52に接続される構成としたが、これに代え、副冷却器47の外管出口が減圧手段としてのキャピラリチューブを介して主冷却器52の入口と配管接続され、主冷却器52の出口が副冷却器47の内管入口と配管接続され、主冷却器52を流出した冷媒で副冷却器47の外管を流れる冷媒を冷却する構成としてもよい。
【0044】
また、上記実施形態では、混合冷媒の第1成分は、HFC245fa又はHFC365mfcの何れか一方としたが、これに代え、HFC245fa及びHFC365mfcを混合したものとしてもよい。
【0045】
また、上記実施形態について、混合冷媒の第5成分は、クリプトンに代え、メタン(HC50、CH4、分子量16.00g/mol、沸点―161.45℃)としてもよい。
【0046】
また、上記実施形態では、混合冷媒の第2成分は、HFC134a、HFC143a又はHFC125の何れか1つとしたが、これに代え、HFC134a、HFC143a又はHFC125の何れかを混合したものとしてもよい。また、第2成分は、1,1−ジフルオロエタン(HFC152a、CH3−CHF2、分子量66.05g/mol、沸点―24.7℃)としてもよい。
【0047】
また、上記実施形態について、混合冷媒は、第6成分を省略してもよい。
【0048】
また、上記実施形態では、カスケード熱交換器25,31,37,43において主冷却器52に向かう冷媒を外管に、また主冷却器52から圧縮機20に帰還する冷媒を内管に導入する構成としたが、これとは逆に主冷却器52に向かう冷媒を内管に、また主冷却器52から圧縮機20に帰還する冷媒を外管に導入する構成としてもよい。また、これらを個別に組み合わせた構成としてもよい。
【0049】
また、上記実施形態では、カスケード熱交換器25,31,37,43、水冷コンデンサ21、補助コンデンサ22及び副冷却器47として二重管からなるものを示したが、これらの何れかはプレート式、シェルアンドチューブ式等の熱交換器でもよい。また、減圧機構26,32,38,44をキャピラリチューブで構成したが、これに代え、膨張弁等の他の減圧機構としてもよい。
【0050】
また、上記実施形態では気液分離を4回行うシステムを示したが、これに代え、気液分離を3回又は5回行うシステムに構成してもよい。
【0051】
また、上記実施形態では水冷コンデンサ21を用いた水冷システムを示したが、これに代え、空冷コンデンサを用いたシステムに構成してもよい。
【0052】
【発明の効果】
以上説明したように、請求項1から3の発明によれば、各成分の何れもオゾン層を破壊する可能性がない規制対象外であるために、国際的な規制措置により使用ができなくなるという事態を回避することができる。
【0053】
また、請求項4の発明によれば、混合冷媒の各成分の組成比率がほぼ均等になるようにしたために、例えば、複数段の熱交換器を用いて各成分を順次蒸発させるような冷媒回路に混合冷媒として使用した場合には、各段での熱交換量をほぼ均等にすることができ、超低温を効率よく得ることができる。
【0054】
また、請求項5及び6の発明によれば、沸点の低いアルゴンを含有するようにしたために、より低温で冷媒組成物を蒸発させることができる。
【0055】
また、請求項7の発明によれば、各段において順次高沸点成分から低沸点成分へと蒸発させることができるために、超低温を確実に得ることができる。特に、請求項4記載の冷媒組成物を混合冷媒として使用する場合には、各段のカスケード熱交換器における熱交換量をほぼ均等にすることができ、混合冷媒を超低温まで効率よく冷却することができる。また、アルゴンを含有する冷媒組成物を混合冷媒として使用する場合には、主冷却器における冷凍温度を更に下げることができる。
【図面の簡単な説明】
【図1】実施形態に係る超低温冷凍装置の全体構成を示す冷媒系統図である。
【符号の説明】
11 冷媒回路
20 圧縮機
21 水冷コンデンサ(凝縮器)
22 補助コンデンサ(凝縮器)
24 第1気液分離器
25 第1カスケード熱交換器
30 第2気液分離器
31 第2カスケード熱交換器
36 第3気液分離器
37 第3カスケード熱交換器
42 第4気液分離器
43 第4カスケード熱交換器
47 副冷却器
52 主冷却器
Claims (6)
- 1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなる第1成分と、
1,1−ジフルオロエタンからなる第2成分と、
トリフルオロメタンからなる第3成分と、
パーフルオロメタンからなる第4成分と、
メタン又はクリプトンの少なくとも一方からなる第5成分とを含有することを特徴とする冷媒組成物。 - 1,1,1,3,3−ペンタフルオロプロパン又は1,1,1,3,3−ペンタフルオロブタンの少なくとも一方からなる第1成分と、
1,1,1,2−テトラフルオロエタン、1,1,1−トリフルオロエタン又は1,1,1,2,2−ペンタフルオロエタンの少なくとも1つからなる第2成分と、
トリフルオロメタンからなる第3成分と、
パーフルオロメタンからなる第4成分と、
クリプトンからなる第5成分とを含有することを特徴とする冷媒組成物。 - 請求項1又は2において、
第1成分は、質量百分率で5〜40%含有され、
第2成分は、質量百分率で5〜35%含有され、
第3成分は、質量百分率で10〜40%含有され、
第4成分は、質量百分率で10〜40%含有され、
第5成分は、質量百分率で10〜40%含有されていることを特徴とする冷媒組成物。 - 請求項1から3の何れか1項において、
アルゴンからなる第6成分を含有することを特徴とする冷媒組成物。 - 請求項4において、
第6成分は質量百分率で10%以下含有されていることを特徴とする冷媒組成物。 - 請求項1から5の何れか1項記載の冷媒組成物が混合冷媒として流通する冷媒回路を備えた超低温冷凍装置であって、
上記冷媒回路は、
上記混合冷媒を圧縮する圧縮機と、
上記圧縮機から吐出された混合冷媒を冷却する凝縮器と、
上記凝縮器で冷却された混合冷媒の主として第1成分を液冷媒と残留ガス冷媒とに分離する第1気液分離器と、
上記第1気液分離器で分離された残留ガス冷媒を、同様に分離された後に減圧された液冷媒との間で熱交換させる第1カスケード熱交換器と、
上記第1カスケード熱交換器で熱交換された残留ガス冷媒を、以下、主として第2成分から順次液冷媒とガス冷媒とに分離する複数段の気液分離器と、
上記気液分離器で分離された残留ガス冷媒を、同じく分離された後に減圧された液冷媒との間でそれぞれ熱交換させる複数段のカスケード熱交換器と、
上記最終段のカスケード熱交換器から出た冷媒で且つ減圧された冷媒を蒸発させる主冷却器とを具備し、
上記主冷却器で冷却作用した冷媒を上記圧縮機へ帰還させるように構成されている
ことを特徴とする超低温冷凍装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002106351A JP2004002492A (ja) | 2002-04-09 | 2002-04-09 | 冷媒組成物及び超低温冷凍装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002106351A JP2004002492A (ja) | 2002-04-09 | 2002-04-09 | 冷媒組成物及び超低温冷凍装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004002492A true JP2004002492A (ja) | 2004-01-08 |
Family
ID=30428268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002106351A Pending JP2004002492A (ja) | 2002-04-09 | 2002-04-09 | 冷媒組成物及び超低温冷凍装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004002492A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009019164A (ja) * | 2007-07-13 | 2009-01-29 | Shin Meiwa Ind Co Ltd | 冷媒組成物及び冷凍装置 |
US7624585B2 (en) | 2004-12-14 | 2009-12-01 | Sanyo Electric Co., Ltd. | Freezer unit |
CN103275674A (zh) * | 2013-04-24 | 2013-09-04 | 台州市金睿德制冷设备科技有限公司 | -120℃~-160℃温区混合制冷剂 |
KR101397944B1 (ko) * | 2012-07-24 | 2014-05-27 | 김용범 | 효율이 우수한 이중관식열교환기를 갖는 단단압축 방식의 냉동기 |
WO2019203271A1 (ja) * | 2018-04-19 | 2019-10-24 | ダイキン工業株式会社 | 冷媒を含有する組成物及びその応用 |
-
2002
- 2002-04-09 JP JP2002106351A patent/JP2004002492A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7624585B2 (en) | 2004-12-14 | 2009-12-01 | Sanyo Electric Co., Ltd. | Freezer unit |
JP2009019164A (ja) * | 2007-07-13 | 2009-01-29 | Shin Meiwa Ind Co Ltd | 冷媒組成物及び冷凍装置 |
KR101397944B1 (ko) * | 2012-07-24 | 2014-05-27 | 김용범 | 효율이 우수한 이중관식열교환기를 갖는 단단압축 방식의 냉동기 |
CN103275674A (zh) * | 2013-04-24 | 2013-09-04 | 台州市金睿德制冷设备科技有限公司 | -120℃~-160℃温区混合制冷剂 |
WO2019203271A1 (ja) * | 2018-04-19 | 2019-10-24 | ダイキン工業株式会社 | 冷媒を含有する組成物及びその応用 |
JP2019189862A (ja) * | 2018-04-19 | 2019-10-31 | ダイキン工業株式会社 | 冷媒を含有する組成物及びその応用 |
CN112004907A (zh) * | 2018-04-19 | 2020-11-27 | 大金工业株式会社 | 含有制冷剂的组合物及其应用 |
CN112004907B (zh) * | 2018-04-19 | 2022-03-29 | 大金工业株式会社 | 含有制冷剂的组合物及其应用 |
US11306234B2 (en) | 2018-04-19 | 2022-04-19 | Daikin Industries, Ltd. | Composition containing refrigerant and application thereof |
JP2022105565A (ja) * | 2018-04-19 | 2022-07-14 | ダイキン工業株式会社 | 冷媒を含有する組成物及びその応用 |
JP7410429B2 (ja) | 2018-04-19 | 2024-01-10 | ダイキン工業株式会社 | 冷媒を含有する組成物及びその応用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1016836B1 (en) | Method for providing refrigeration | |
JP3678619B2 (ja) | 特に極低温用の可変負荷冷凍系 | |
US6327866B1 (en) | Food freezing method using a multicomponent refrigerant | |
EP1016842B1 (en) | Single circuit cryogenic liquefaction of industrial gas with multicomponent refrigerant | |
KR20000048443A (ko) | 내부 재순환을 이용한 다성분 냉매 냉각 방법 | |
KR20000048442A (ko) | 다중성분 냉각제 유체로부터 발생된 냉각을 이용하여 주변이하 온도 특히, 극저온 분리를 수행하기 위한 방법 | |
WO2007034939A1 (ja) | 凝縮用熱変換装置及びそれを用いた冷凍システム | |
KR20000052601A (ko) | 산업 가스의 다중 순회 극저온 액화 | |
JP2004002492A (ja) | 冷媒組成物及び超低温冷凍装置 | |
JP4651255B2 (ja) | 冷媒組成物およびそれを用いた冷凍回路 | |
KR20030015857A (ko) | 저온 냉각 시스템 | |
KR20130140469A (ko) | 기액 분리기 및 이를 이용한 냉동장치 | |
JP6682081B1 (ja) | 冷凍方法 | |
JP2004019995A (ja) | 冷凍装置 | |
JP4270802B2 (ja) | 超低温冷凍装置 | |
JP2004226018A (ja) | 冷凍装置 | |
JPH08233386A (ja) | 熱交換器 | |
JP2562723B2 (ja) | 冷媒組成物及び冷凍装置 | |
JP2626912B2 (ja) | 冷凍装置 | |
JP2003314908A (ja) | 低温冷凍装置 | |
JPH08165465A (ja) | 冷媒組成物及び冷凍装置 | |
JP2009156563A (ja) | 自己平衡する凝縮、蒸発熱交換器装置及びそれを組み込んだ冷凍サイクルとそれを用いた凝縮液の一部回収装置 | |
JPH10153352A (ja) | 冷凍装置 | |
JP2009019164A (ja) | 冷媒組成物及び冷凍装置 | |
JP3327705B2 (ja) | 冷媒組成物及びこれを用いた冷凍装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041104 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080212 |