JP2004001041A - Method for hot rolling wire rod and steel bar - Google Patents

Method for hot rolling wire rod and steel bar Download PDF

Info

Publication number
JP2004001041A
JP2004001041A JP2002159576A JP2002159576A JP2004001041A JP 2004001041 A JP2004001041 A JP 2004001041A JP 2002159576 A JP2002159576 A JP 2002159576A JP 2002159576 A JP2002159576 A JP 2002159576A JP 2004001041 A JP2004001041 A JP 2004001041A
Authority
JP
Japan
Prior art keywords
rolling
scale
caliber
rolled material
surface flaws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002159576A
Other languages
Japanese (ja)
Inventor
Hitoshi Kushida
串田 仁
Katsuhiko Ozaki
尾崎 勝彦
Masao Toyama
外山 雅雄
Fujio Koizumi
小泉 富士雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002159576A priority Critical patent/JP2004001041A/en
Publication of JP2004001041A publication Critical patent/JP2004001041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing surface flaws which makes the surface flaws generated by a rolling mill on the upstream side such as a roughing mill row to be easily eliminated by pressure fitting in the following rolling processes and hardly residual on the surface of products in the hot caliber rolling of wire rods and steel bars. <P>SOLUTION: A scale at a place where the surface flaws in a wrinkle shape are usually generated in the vicinity on both sides at a corner part in which a rolled material is reduced is eliminated by jetting out high pressure water from a nozzle on the exit side of at least one caliber of a rhombic caliber or an angular caliber in the method for hot rolling the wire rods and the steel bars in which the rolled material is finished to be at required dimensions by gradually reducing a cross-sectional area with a caliber schedule including the rhombic caliber and the angular caliber from a raw material billet. By this constitution, the surface flaws are made shallow and uneven with wider flaw width. The scale is prevented from intruding inside the surface flaws. As a result, the surface flaws are easily eliminated by the deformation with the following calibers and the depth of product flaws is surely reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、熱間孔型圧延により製造される線材・棒鋼の表面疵を低減させる方法に関する。
【0002】
【従来の技術】
熱間孔型圧延により製造される線材・棒鋼には、圧延仕上がりの状態で、微細な表面疵や肌荒れなどの表面欠陥がしばしば見られ、このような表面欠陥は、次工程での加工不良を引き起こすのみならず、製品の疲れ寿命などにも影響を及ぼすおそれがある。
【0003】
線材・棒鋼の圧延過程では、加熱炉で素材のビレットが適正圧延温度に加熱された後、使用する孔型の組み合わせを予め定めた孔型スケジュールに基づいて、粗圧延機列、中間圧延機列、仕上げ圧延機列の各圧延機に組み込んだロールの孔型により交互に圧下され、断面積を順次減少させて所要寸法を有する製品の線材・棒鋼に仕上げられる。このうち、粗圧延機列では、一般に、各ロールには、菱孔型または適宜角孔型が設けられ、素材のビレットは、「菱」→「菱」→「菱」または「菱」→「角」→「菱」などの孔型スケジュールにより圧延され、減面される。この粗圧延の際に孔型内での変形に伴う圧縮ひずみによって、圧延材表層にしわ状の表面疵が発生する場合がある。
【0004】
前述のように、素材ビレットから、「菱」→「菱」→「菱」または「菱」→「角」→「菱」などの孔型スケジュールにより圧下され、減面される過程で孔型内での変形に伴う圧延材表層の圧縮ひずみは、圧下されたコーナー部の近傍に生じることを、圧延変形解析および圧延実験により確認している。
【0005】
前記しわ状の表面疵は、以後の中間圧延機列および仕上げ圧延機列での各孔型での圧延加工によって消滅せずに、線材・棒鋼製品の表面にしわ疵として残存しやすい。これは、熱間圧延であるために、圧延材表面のスケールが粗圧延機列で発生したしわ状の表面疵の内部に入り込み、このスケールの介在によって、以後の圧延加工で前記表面疵が圧着せずに、製品に表面疵、即ちしわ疵として残存するものと考えられる。
【0006】
このようなスケールの介在による表面欠陥を防止する方法として、例えば、特開昭58―110117号公報では、圧延材が上下ロールにより圧下され変形する際に、上下ロール間で両側から圧延材に対して高圧水などを吹き付けて、スケールを除去する方法が提案されている。この方法では、圧延材の変形により、スケールは圧縮歪を受けて割れが入った状態にあるため、その除去が良好に行なわれ、次のパスで、上下ロールにより圧延材表面のスケールが押し込まれずに、製品に肌荒れの残存を防止できることが示されている。
【0007】
また、特開昭61−212405号公報では、オーバルカリバー溝を有する圧延ロールと丸カリバー溝を有する圧延ロールが交互に配置された圧延ロール列において、仕上げ圧延ロールよりも数パス前の線径10mm以下の線材に、ロール通過に高圧水を吹き付けつつ圧延する方法が提案されている。この方法では、10mm以下の適切な線径にまで圧延されてきた仕上げ数パス前の線材に、高圧水を吹き付けることで、圧下により剥離しつつある線材表面のスケールを除去するため、仕上げ線材の、上下ロールのカリバー溝間に位置する部分の表面の粗さを、上下ロールのカリバー溝に接した部分の表面粗さと等しい滑らかさにできることが示されている。
【0008】
【発明が解決しようとする課題】
しかし、特開昭58−110117号公報で提案された方法では、上下ロール間で両側から圧延材に対して高圧水などを吹き付けてスケールを除去するため、高圧水などの衝突により圧延材の自由表面の温度が降下し、変形能が低下する。この変形能が低下した自由表面は次の上下ロールで圧下面となるために、スケールの押し込みによる肌荒れは軽減できても、しわ状など、他の表面疵が発生しやすくなる。
【0009】
また、特開昭61−212405号公報で提案された方法では、仕上げ圧延ロールよりも数パス前の線径10mm以下の線材のロール通過時に高圧水を吹き付けて線材表面のスケールを除去することにより、仕上げ線材表面の、上下ロールのカリバー溝間に位置する部分の表面の粗さを、上下ロールのカリバー溝に接した部分の表面粗さと等しい滑らかさにできることが示されているのみである。したがって、仕上げ圧延ロールから数パス以前の上流パスで生じた表面疵、例えば、深さが0.05mm、幅が0.01mm程度の、前述の粗圧延で発生するしわ状の表面疵などの製品表面への残存に対しては、改善策が示されていない。
【0010】
本発明は、上記の問題点を解消するためになしたものであって、その課題は、熱間孔型圧延において粗圧延機列などの上流側の圧延機で発生した表面疵を、その後の圧延過程で消滅しやすくし、製品表面に残存しにくくする表面疵低減方法を提供することである。
【00011】
【課題を解決するための手段】
上記の課題を解決するために、この発明では以下の方法を採用したのである。即ち、素材ビレットから菱形状および角形状の孔型を含む孔型スケジュールによって断面積を順次減少させて、圧延材を所要の寸法に仕上げる線材・棒鋼の熱間圧延方法において、前記菱形状または角形状の少なくとも1つの孔型の出側で、圧延材の圧下されたコーナー部の両側近傍のスケールを除去するようにしたのである。
【0012】
前述のように、素材ビレットから、「菱」→「菱」→「菱」または「菱」→「角」→「菱」などの孔型スケジュールにより圧下され、減面される過程で、孔型内での変形に伴う圧延材表層の圧縮ひずみによって発生するしわ状の表面疵は、圧延材の圧下されたコーナー部の両側近傍に生じる。この部分に生成しているスケールを除去すると、表面疵は、実質的にスケール層の厚み分だけ浅くなり、また、圧延材表面に開口して、実質的に疵幅は広くなる。そして、次の孔型での変形時のメタルフローによって、浅くなりやすい、疵幅の広い凹凸となる。さらに、スケールがしわ状の表面疵の内部に入り込むことも防止でき、スケール除去後に生成する2次スケールの厚さは薄いため、以後の孔型での圧下によって、表面疵が閉じやすくなる。これらのことにより、前記表面疵は、以後の圧延過程え消滅しやすくなる。
【0013】
そして、スケール除去を行う部位は、通常、しわ状の表面疵が発生する圧延材の圧下されたコーナー部の両側近傍であり、圧延材全周には及ばないために、例えば、高圧水によってスケール除去を行う場合には、圧延材の温度降下量が少なくなる。また、前記圧下されたコーナー部の両側近傍は、次の孔型では圧下を受けない自由表面に位置し、変形応力も小さいため、温度降下による変形能不足によって表面疵が助長されたり、表面疵が新たに発生したりすることを防止できる。
【0014】
前記スケール除去を、少なくとも、素材ビレットが最初に圧下される孔型の出側で行うことが望ましい。
【0015】
素材ビレットは、最初の孔型で圧下される前に、加熱過程で生成したスケールが、通常、ノズルから噴射した高圧水により除去されるが、この加熱過程で生成したスケールは厚く、一様に除去できない場合がある。また、素材ビレットの表面、即ちスケールと地鉄界面は比較的粗く、孔型の表面も熱負荷などにより肌荒れを生じやすい。これらによって、最初の孔型では、圧下されたコーナー部の両側近傍に生じる圧延材表層の圧縮ひずみによってしわ状の表面疵が発生しやすい。しかも、この表面疵の内部にスケールが入り込みやすくなる。従って、最初の孔型の出側で、圧下されたコーナー部の両側近傍のスケール除去を行うことにより、上述の表面疵の低減をより効果的に行うことができる。
【0016】
素材ビレットから菱形状および角形状の孔型を含む孔型スケジュールによって断面積を順次減少させて、圧延材を所要の寸法に仕上げる線材・棒鋼の熱間圧延方法において、前記菱形状または角形状の全ての孔型の出側で、圧延材の圧下されたコーナー部の両側近傍のスケールを除去することもできる。
このようにすれば、上記各孔型の出側で、圧延材の圧下されたコーナー部の両側近傍のスケールが除去されるので、上述の表面疵低減の効果がより大きくなる。
【0017】
前記スケール除去を高圧水を用いて行うことが望ましい。
例えば、高圧水をノズルからスプレイ状に噴射し、高速の水滴を高密度で圧延材表面に衝突させることにより、この表面に生成したスケールを除去することが可能である。そして、圧延材の全周ではなく、圧下されたコーナー部の両側近傍のスケール除去を行うようにしたので、ノズル数を少なくでき、また、冷却水流量も少なくて済み、大規模な設備投資なしに、表面疵の低減することができる。
なお、前記高圧水の噴射ノズルの吐出圧力は5kg/cm以上が好ましい。
【0018】
【発明の実施の形態】
以下に、この発明の実施形態を添付の図1および図2に基づいて説明する。
線材・棒鋼の熱間圧延では、加熱炉で適正な圧延温度にまで加熱されたビレットを素材として、加熱炉に近接して設置された粗圧延機列、それに引き続く中間圧延機列および仕上げ圧延機列の各圧延機のロールにそれぞれ加工された孔型を組み合わせた孔型スケジュールに基づいて、素材ビレットの断面積を順次減少させて、所要寸法の線材・棒鋼に仕上げられる。
前記粗圧延機列の各ロールには、菱形状または角形状の孔型が加工され、中間圧延機列および仕上げ圧延機列の各ロールには、楕円形状または丸形状の孔型が加工されている。
【0019】
図1は、前記粗圧延機列での最初の孔型、即ちNo.1圧延機のロールに加工された菱形状の孔型1で、素材の角形状のビレット2が矢印3、3aで示した方向に圧下されて孔型1内に充満した、孔型1の出側での圧延材4の菱形状の断面を示したものである。図2は、この菱形状断面の圧延材4が、次の圧延機のロール加工された菱形状の孔型5で、矢印6、6aで示したように、前記孔型1の場合と90度異なる方向から圧下され、この菱孔型5に充満した、孔型5の出側での圧延材7の菱形状断面を示したものである。
【0020】
図1に示した孔型1における「角」→「菱」圧延では、通常、孔型1内での変形に伴う圧延材4の表層の圧縮ひずみによって、矢印8a〜8dで示したように、圧下されたコーナー部4a、4bの両側近傍に、しわ状の表面疵を生じる。前記しわ状の表面疵が発生する矢印8a〜8dで示した部位、即ち、圧延材4の圧下されたコーナー部4a、4bの両側近傍に生成したスケールを除去するための高圧水の噴射ノズルが、孔型1の出側に、前記部位に対向してそれぞれ設けられている。
【0021】
また、図2に示した孔型5における「菱」→「菱」圧延では、図1に示した場合と同様に、矢印9a〜9dで示したように、圧延材7の圧下されたコーナー部7a、7bの両側近傍に、通常しわ状の表面疵を生じる。前記「角」→「菱」圧延の場合と同様に、しわ状の表面疵が発生する矢印9a〜9dで示した部位の近傍、即ち、圧延材7の圧下されたコーナー部7a、7bの両側近傍に生成したスケールを除去するための高圧水の噴射ノズルが、孔型5の出側に、前記部位に対向してそれぞれ設けられている
【0022】
このように、孔型1および孔型5などの菱孔型または角孔型の出側で、通常、しわ状の表面疵が発生する、圧延材4および7などの圧下されたコーナー部4a、4bおよび7a、7bの両側近傍のスケールを除去することにより、表面疵は実質的にスケール層の厚み分だけ浅くなり、また、圧延材表面に開口して実質的に疵幅は広くなる。このため鋭利な疵は次の孔型での変形により、浅くなりやすい、疵幅の広い凹凸となる。さらに、スケールが、しわ状の表面疵の内部に入り込むことも防止でき、スケール除去後に生成する2次スケールの厚さは薄いため、以後の孔型での変形によって表面疵が閉じやすくなる。これらのことにより、前記表面疵は以後の圧延過程で消滅しやすくなり、製品での疵深さが確実に低減される。
【0023】
なお、前記しわ状の表面疵が発生する圧下されたコーナー部の両側近傍の部位は、頂角など孔型の形状や圧延温度などの圧延条件に基づいて、圧延変形解析により予め求めることができる。この部位は、孔型形状により若干異なるが、一般に、圧延材の圧下されたコーナー、即ち孔型の天地から圧延材の一辺の長さのおよそ1/3の範囲にある。
【0024】
【実施例】
155mm角の素材ビレットを、粗圧延機列、中間圧延機列及び仕上げ圧延機列で合わせて24台の圧延機を用いて、製品直径12mmの線材に仕上げる熱間圧延において、粗圧延機列のNo.1、No.3、No.5、No.7圧延機では菱孔型が用いられ、No.2、No.4、No.6、No.8圧延機では角孔型が用いられている。それに引き続く中間圧延機列および仕上げ圧延機列の各圧延機では、楕円孔型と丸孔型が交互に用いられている。そして、菱孔型及び角孔型の出側に、前述したように、圧延材の圧下されたコーナー部の両側近傍除去するための、高圧水の噴射ノズルを設け、この噴射ノズルを設ける位置数を、表1に示すように、1位置から7位置(粗圧延機列の全圧延機間)まで変化させて、製品での疵深さを調査した。なお、上記No.1圧延機入側では、加熱炉で素材ビレットの全表面に生成したスケールを除去するために、高圧水を噴射するデスケラーを使用している。
【0025】
素材ビレットはSCM435を用い、加熱炉からの抽出温度を1000℃、仕上げ圧延速度を30m/sとし、前記スケール除去は、噴射ノズルの吐出圧力を20kgf/cmで行った。そして、直径12mmに仕上げ、巻き取った線材の先端側コイル部、中央コイル部、後端側コイル部からそれぞれ複数のサンプルを採取して断面内に存在する表面疵の最大深さを測定し、それらの平均値を製品疵深さとし、表1に示した。表1には比較として、各孔型出側で噴射ノズルを設けない場合の製品疵深さをも記した。なお、表1で「有」は、No.1〜No.7の各圧延機(st.)の孔型出側で、スケール除去用の「噴射ノズル有」を示す。
【0026】
【表1】

Figure 2004001041
【0027】
表1から、粗圧延機列の各圧延機間の孔型出側で、いずれか1箇所噴射ノズルを設けるだけで製品疵深さは、ほぼ半減することがわかる。また、素材ビレットが最初に圧下される孔型の出側、即ちNo.1圧延機の孔型出側と他の一つの孔型出側、例えば、No.1圧延機に引き続くNo.2圧延機の孔型出側に噴射ノズルを設けることにより、製品疵深さは明瞭に低減する。そして、粗圧延機列の全圧延機間の孔型出側に噴射ノズルを設けた場合には、製品疵深さは著しく減少することがわかる。これらの結果から、菱形状または角形状孔型出側で、圧延材の圧下されたコーナー部近傍のスケールを除去することは、製品の表面疵深さの低減に極めて有効であることが確認された。なお、前記噴射ノズルの吐出圧力は20kg/cm以上とするのがさらに好ましい。
【0028】
なお、前記噴射ノズルに供給する高圧水に砥粒を混ぜてスケール除去能力を向上させることも、製品疵深さの低減に有効である。また、高圧水を用いる代わりに、ショットブラスティングまたはホットスカーフィングなどによってスケール除去を行なってもよい。さらに、高圧水に砥粒を混ぜて用いる場合には、高圧水の圧力や砥粒の種類および粒径などを、ショットブラスティングを用いる場合には、ショットの粒径や投射速度および投射密度などを、ホットスカーフィングを用いる場合は溶削条件などを、それぞれ調整することにより、スケール除去だけでなく生成した表面疵をも除去するようにすれば、製品での表面疵深さを一層低減することが可能となる。
【0029】
【発明の効果】
以上のように、この発明によれば、菱形状または角形状の孔型の出側で、通常、しわ状の表面疵が発生する、圧延材の圧下されたコーナー部の両側近傍のスケールを除去するようにしたので、表面疵は、前述のように、次の孔型での変形によって、浅くなりやすい、疵幅の広い凹凸となる。そして、しわ状の表面疵の内部にスケールが入り込むことが防止され、スケール除去後に生成する2次スケールの厚さも薄いため、以後の孔型での変形によって、圧縮ひずみを受けた場合に表面疵が閉じやすくなる。これらのことによって、前記表面疵は以後の圧延過程で解消されやすくなり、その疵深さが確実に低減される。
【0030】
また、スケール除去を行う部位は、通常、しわ状の表面疵が発生する圧延材の圧下されたコーナー部の両側近傍であり、圧延材全周には及ばないために、高圧水によってスケール除去を行う場合に圧延材の温度降下量が少なくなる。しかも、この部位は次の孔型では圧下を受けない自由表面に位置し、変形応力も小さいため、温度降下による変形能不足によって表面疵が助長されたり、新たな表面疵の発生を防止できる。
【0031】
さらに、上述のように、スケール除去を行なう部位は、圧延材外周面の一部であるため、スケール除去に高圧水を用いる場合には、噴射ノズル数を少なくでき、また、冷却水流量も少なくて済み、大規模な設備投資なしに製品表面疵を低減させることが可能である。
【図面の簡単な説明】
【図1】この発明の実施形態の最初の孔型(菱孔型)出側でのスケール除去の部位を示す断面図
【図2】同上の次の菱孔型出側でのスケール除去の部位を示す断面図
【符号の説明】
1:孔型        2:素材ビレット      3、3a:矢印
4:圧延材       4a、4b:コーナー部   5:孔型
6、6a:矢印     7:圧延材    8a〜8d、9a〜9d:矢印[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reducing surface defects of a wire or a steel bar manufactured by hot hole rolling.
[0002]
[Prior art]
Wire rods and steel bars manufactured by hot hole rolling often show surface defects such as fine surface flaws and rough surfaces in the finished rolled state, and such surface defects can cause processing defects in the next process. In addition to causing fatigue, it may affect the fatigue life of the product.
[0003]
In the rolling process of wire rods and bars, after the billet of the material is heated to the appropriate rolling temperature in the heating furnace, the combination of the dies to be used is determined based on a predetermined stencil schedule, based on the roughing mill row and the intermediate rolling mill row. The rolls are alternately pressed down by the dies of the rolls incorporated in each of the rolling mills in the finishing rolling mill row, and the cross-sectional area is gradually reduced to finish the product wire rod or steel bar having required dimensions. Among these, in the rough rolling mill train, generally, each roll is provided with a rhombic hole type or a square hole type as appropriate, and the billet of the material is "rhombic" → "rhombic" → "rhombic" or "rhombic" → "rhombic" Rolled and reduced according to a hole-shaped schedule such as "corner" → "rhombic". During the rough rolling, a wrinkle-shaped surface flaw may be generated on the surface layer of the rolled material due to the compression strain caused by the deformation in the die.
[0004]
As described above, from the material billet, it is rolled down according to a hole-shaped schedule such as “hyo” → “hyo” → “hyo” or “hyo” → “corner” → “hyo”, and inside the hole during the process of surface reduction It has been confirmed by rolling deformation analysis and rolling experiments that the compressive strain of the surface layer of the rolled material due to the deformation in the above occurs in the vicinity of the reduced corner.
[0005]
The wrinkle-like surface flaws do not disappear by the rolling process using the respective dies in the subsequent intermediate rolling mill row and the finishing rolling mill row, and tend to remain as wrinkle flaws on the surface of the wire rod / steel product. Since this is hot rolling, the scale on the surface of the rolled material enters the inside of wrinkle-like surface flaws generated in the row of coarse rolling mills, and the presence of this scale causes the surface flaws to be pressed in the subsequent rolling process. Instead, it is considered that surface defects, ie, wrinkles, remain on the product.
[0006]
As a method for preventing such surface defects due to the interposition of scale, for example, in Japanese Patent Application Laid-Open No. Sho 58-110117, when a rolled material is pressed down and deformed by upper and lower rolls, the rolled material is pressed from both sides between the upper and lower rolls. A method of removing scale by spraying high-pressure water or the like has been proposed. In this method, the scale is in a state of being cracked due to compression strain due to deformation of the rolled material, so that the scale is removed well, and in the next pass, the scale on the rolled material surface is not pushed by the upper and lower rolls. It shows that it is possible to prevent the residual skin roughness in the product.
[0007]
Japanese Patent Application Laid-Open No. 61-212405 discloses that in a rolling roll row in which rolling rolls having oval caliber grooves and rolling rolls having round caliber grooves are alternately arranged, a wire diameter of 10 mm several passes before the finish rolling rolls. A method has been proposed in which the following wires are rolled while blowing high-pressure water through the rolls. In this method, high-pressure water is sprayed onto a wire before finishing several passes that has been rolled to an appropriate wire diameter of 10 mm or less to remove scale on the surface of the wire that is peeling off by rolling. It is shown that the surface roughness of the portion located between the caliber grooves of the upper and lower rolls can be made as smooth as the surface roughness of the portion in contact with the caliber grooves of the upper and lower rolls.
[0008]
[Problems to be solved by the invention]
However, in the method proposed in JP-A-58-110117, since high-pressure water or the like is sprayed on the rolled material from both sides between the upper and lower rolls to remove scale, the rolled material is freed by collision with high-pressure water or the like. The surface temperature drops and the deformability decreases. Since the free surface having the reduced deformability becomes a pressing surface by the next upper and lower rolls, other surface flaws such as wrinkles are likely to occur even if the rough surface due to the pushing of the scale can be reduced.
[0009]
Also, in the method proposed in Japanese Patent Application Laid-Open No. 61-212405, high-pressure water is sprayed during the passage of a wire having a wire diameter of 10 mm or less several passes before the finish rolling roll to remove scale on the surface of the wire. It is only shown that the surface roughness of the portion of the finished wire rod between the caliber grooves of the upper and lower rolls can be made as smooth as the surface roughness of the portion in contact with the caliber grooves of the upper and lower rolls. Therefore, surface flaws generated in the upstream pass several passes before the finish rolling roll, for example, products such as wrinkle-shaped surface flaws generated by the above-described rough rolling, having a depth of about 0.05 mm and a width of about 0.01 mm. No improvement measures are indicated for the residual on the surface.
[0010]
The present invention has been made in order to solve the above-described problems, and the object is to reduce surface defects generated in an upstream rolling mill such as a rough rolling mill row in hot hole rolling, and thereafter, An object of the present invention is to provide a method for reducing surface flaws, which is easily eliminated in a rolling process and hardly remains on a product surface.
[00011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following method. That is, in the hot rolling method of a wire rod or a steel bar in which a cross-sectional area is sequentially reduced from a raw material billet according to a hole shape schedule including a diamond shape and a square shape, and the rolled material is finished to a required size, the diamond shape or the square shape is used. On the exit side of at least one groove of the shape, the scale near both sides of the reduced corner portion of the rolled material is removed.
[0012]
As described above, from the material billet, it is rolled down according to a hole-shaped schedule such as “hyo” → “hyo” → “hyo” or “hyo” → “horn” → “hyo” Wrinkled surface flaws, which are generated by the compressive strain of the surface of the rolled material due to deformation in the inside, occur near both sides of the reduced corner of the rolled material. When the scale formed in this portion is removed, the surface flaws become substantially shallower by the thickness of the scale layer, and open to the surface of the rolled material to substantially widen the flaw width. Then, due to the metal flow at the time of deformation in the next hole shape, irregularities having a wide flaw width tend to be shallow. Further, it is possible to prevent the scale from entering the inside of the wrinkle-like surface flaws, and since the thickness of the secondary scale formed after removing the scale is thin, the surface flaws are easily closed by the subsequent reduction by the hole mold. For these reasons, the surface flaws are more likely to disappear in the subsequent rolling process.
[0013]
And the part to remove the scale is usually near both sides of the rolled-down corner of the rolled material where wrinkled surface flaws occur, and does not reach the entire circumference of the rolled material. When removal is performed, the amount of temperature drop of the rolled material is reduced. In addition, the vicinity of both sides of the reduced corner portion is located on a free surface which is not subjected to the reduction in the next hole type and has a small deformation stress. Can be prevented from newly occurring.
[0014]
It is desirable that the descaling be performed at least on the outlet side of the hole type in which the material billet is firstly reduced.
[0015]
Before the raw material billet is reduced by the first die, the scale generated in the heating process is usually removed by high-pressure water sprayed from a nozzle, but the scale generated in the heating process is thick and uniform. May not be removed. In addition, the surface of the material billet, that is, the interface between the scale and the iron base is relatively rough, and the surface of the hole-shaped surface is liable to be roughened due to heat load or the like. As a result, in the first mold, wrinkle-shaped surface flaws are likely to occur due to the compressive strain of the surface layer of the rolled material generated near both sides of the reduced corner portion. In addition, the scale easily enters the inside of the surface flaw. Therefore, by removing the scale near both sides of the reduced corner at the exit side of the first die, the above-described surface flaw can be more effectively reduced.
[0016]
The cross-sectional area is sequentially reduced by a groove schedule including a diamond shape and a square shape from a material billet, and in a hot rolling method of a wire rod or a steel bar to finish a rolled material to a required size, the diamond shape or the square shape is used. It is also possible to remove the scale near both sides of the reduced corner of the rolled material at the exit side of all the molds.
By doing so, the scale near both sides of the rolled-down corner portion of the rolled material is removed at the exit side of each of the molds, so that the above-described effect of reducing surface flaws is further enhanced.
[0017]
It is desirable to remove the scale using high-pressure water.
For example, it is possible to remove scale generated on the surface of a rolled material by spraying high-pressure water from a nozzle in a spray shape and causing high-speed water droplets to collide with the surface of a rolled material at high density. The scale is removed not only on the entire circumference of the rolled material, but also on both sides of the reduced corner, so that the number of nozzles can be reduced, the cooling water flow rate can be reduced, and no large-scale capital investment is required. In addition, surface flaws can be reduced.
The discharge pressure of the high-pressure water injection nozzle is preferably 5 kg / cm 2 or more.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
In the hot rolling of wire rods and bars, a billet heated to an appropriate rolling temperature in a heating furnace is used as a raw material, and a row of rough rolling mills installed near the heating furnace, followed by a series of intermediate rolling mills and a finishing rolling mill The cross-sectional area of the material billet is gradually reduced based on the piercing schedule in which the piercing rolls of each rolling mill in the row are combined with each other to finish the wire and the bar of the required dimensions.
Each roll of the rough rolling mill row is processed with a rhombus or square shape, and each roll of the intermediate rolling mill row and the finish rolling mill row is processed with an elliptical or round shape. I have.
[0019]
FIG. 1 shows the first hole type in the rough rolling mill train, that is, No. 1 A diamond-shaped die 1 machined into a roll of a rolling mill, and an angular billet 2 of a material is pressed down in the direction shown by arrows 3 and 3a to fill the die 1 and the die 1 comes out. 2 shows a rhombic cross section of the rolled material 4 on the side. FIG. 2 shows that the rolled material 4 having the diamond-shaped cross section is a diamond-shaped die 5 that has been roll-processed in the next rolling mill. FIG. 3 shows a rhombic cross section of the rolled material 7 at the exit side of the die 5, which is rolled down from different directions and filled in the die 5.
[0020]
In the “corner” → “rhombic” rolling in the die 1 shown in FIG. 1, usually, as indicated by arrows 8a to 8d, due to the compressive strain of the surface layer of the rolled material 4 accompanying the deformation in the die 1, Wrinkle-shaped surface flaws are generated near both sides of the pressed corners 4a and 4b. The part indicated by arrows 8a to 8d where the wrinkle-like surface flaw is generated, that is, the high-pressure water jet nozzle for removing scale generated near both sides of the reduced corners 4a and 4b of the rolled material 4 is provided. , Are provided on the exit side of the mold 1 so as to face the above-described portions.
[0021]
Further, in the “Rib” → “Rib” rolling in the grooved die 5 shown in FIG. 2, as shown by arrows 9a to 9d, as shown by arrows 9a to 9d, the reduced corner portions of the rolled material 7 Usually, wrinkle-shaped surface flaws are generated near both sides of 7a and 7b. Similar to the case of the “corner” → “rhombic” rolling, the vicinity of a portion indicated by arrows 9a to 9d where a wrinkle-like surface flaw is generated, that is, both sides of the reduced corner portions 7a and 7b of the rolled material 7 Injection nozzles for high-pressure water for removing scale generated in the vicinity are provided on the exit side of the die 5 so as to face the above-mentioned portions.
As described above, on the exit side of the rhomboid or square-hole type such as the die-forms 1 and 5, usually, wrinkled surface flaws are generated, and the rolled-down corners 4 a such as the rolled materials 4 and 7, By removing the scales near both sides of 4b and 7a, 7b, the surface flaws become substantially shallower by the thickness of the scale layer, and the flaw widths become substantially wider by opening to the rolled material surface. For this reason, the sharp flaws are likely to become shallow and have irregularities with a wide flaw width due to deformation in the next hole shape. Furthermore, it is possible to prevent the scale from entering the inside of the wrinkled surface flaws, and since the thickness of the secondary scale generated after removing the scale is thin, the surface flaws are easily closed by deformation in the hole shape thereafter. As a result, the surface flaws easily disappear in the subsequent rolling process, and the flaw depth in the product is reliably reduced.
[0023]
The portions near both sides of the reduced corner where the wrinkle-like surface flaws are generated can be obtained in advance by rolling deformation analysis based on rolling conditions such as the shape of the die and the rolling temperature such as the apex angle. . This portion slightly varies depending on the shape of the groove, but is generally in the range of about one third of the length of one side of the rolled material from the pressed corner of the rolled material, that is, from the top to the bottom of the hole.
[0024]
【Example】
In hot rolling in which a 155 mm square material billet is combined with a rough rolling mill row, an intermediate rolling mill row, and a finishing rolling mill row to finish a wire having a product diameter of 12 mm using 24 rolling mills, No. 1, No. 3, no. 5, no. No. 7 rolling mill uses a rhomboid type. 2, No. 4, no. 6, no. In the 8 rolling mill, a square hole type is used. In the subsequent rolling mills of the intermediate rolling mill row and the finishing rolling mill row, the elliptical hole type and the round hole type are alternately used. As described above, a high-pressure water injection nozzle is provided on the exit side of the rhomboid and square-hole types to remove the vicinity of both sides of the reduced corner of the rolled material, and the number of positions where the injection nozzle is provided Was changed from 1 position to 7 positions (between all rolling mills in the rough rolling mill row) as shown in Table 1, and the flaw depth in the product was investigated. Note that the above No. On the entry side of one rolling mill, a deskeller that injects high-pressure water is used to remove scale generated on the entire surface of the material billet in a heating furnace.
[0025]
The material billet was SCM435, the extraction temperature from the heating furnace was 1000 ° C., the finish rolling speed was 30 m / s, and the scale removal was performed at a discharge pressure of the injection nozzle of 20 kgf / cm 2 . Then, finished to a diameter of 12 mm, a plurality of samples are taken from the front end coil portion, the center coil portion, and the rear end side coil portion of the wound wire, and the maximum depth of surface flaws existing in the cross section is measured, The average value was defined as the product flaw depth and is shown in Table 1. Table 1 also shows, as a comparison, the product flaw depth in the case where no injection nozzle is provided on each hole-forming side. In Table 1, “Yes” means No. 1 to No. No. 7 shows that “injection nozzle” is provided on the exit side of the die in each rolling mill (st.).
[0026]
[Table 1]
Figure 2004001041
[0027]
From Table 1, it can be seen that the product flaw depth is almost halved only by providing an injection nozzle at any one position on the die forming side between the rolling mills in the rough rolling mill row. In addition, the exit side of the hole type in which the material billet is first lowered, that is, No. 1 rolling mill exit side and another one die exit side, e.g. No. 1 following the first rolling mill. By providing the injection nozzle on the exit side of the die of the two-rolling mill, the product flaw depth is clearly reduced. And, when the injection nozzle is provided on the side of the die form between all the rolling mills in the rough rolling mill row, it can be seen that the product flaw depth is significantly reduced. From these results, it was confirmed that removing the scale in the vicinity of the pressed corner of the rolled material at the rhombus-shaped or square-shaped hole-forming side was extremely effective in reducing the surface flaw depth of the product. Was. In addition, it is more preferable that the discharge pressure of the injection nozzle be 20 kg / cm 2 or more.
[0028]
It is also effective to reduce the product flaw depth by improving the scale removal ability by mixing abrasive grains with high-pressure water supplied to the injection nozzle. Instead of using high-pressure water, scale removal may be performed by shot blasting or hot scarfing. Furthermore, when abrasive grains are mixed with high-pressure water, the pressure of high-pressure water and the type and grain size of the abrasive grains are used.When shot blasting is used, the shot grain size, projection speed and projection density are used. In the case of using hot scarfing, by adjusting the cutting conditions and the like respectively, by removing not only the scale removal but also the generated surface flaw, the surface flaw depth in the product is further reduced. It becomes possible.
[0029]
【The invention's effect】
As described above, according to the present invention, on the exit side of a diamond-shaped or square-shaped hole, a wrinkle-shaped surface flaw usually occurs, and scales near both sides of a rolled-down rolled corner are removed. Therefore, as described above, the surface flaws become uneven with a wide flaw width, as described above, due to deformation in the next hole shape. The scale is prevented from entering the inside of the wrinkle-like surface flaws, and the thickness of the secondary scale generated after removing the scales is also thin. Becomes easier to close. Due to these facts, the surface flaw is easily eliminated in the subsequent rolling process, and the flaw depth is surely reduced.
[0030]
In addition, the portion to be descaled is usually near both sides of the rolled-down corner portion of the rolled material where wrinkled surface flaws occur, and does not reach the entire circumference of the rolled material. When this is done, the temperature drop of the rolled material is reduced. In addition, since this portion is located on a free surface which is not subjected to a reduction in the next die and has a small deformation stress, surface defects are promoted due to insufficient deformability due to a temperature drop, and generation of new surface defects can be prevented.
[0031]
Furthermore, as described above, since the portion for performing scale removal is a part of the outer peripheral surface of the rolled material, when high-pressure water is used for scale removal, the number of spray nozzles can be reduced, and the cooling water flow rate is also reduced. It is possible to reduce product surface defects without large-scale capital investment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a scale removing portion at a first hole-shaped (rhomboid) outlet side of an embodiment of the present invention. FIG. Sectional view showing [Description of reference numerals]
1: Form 2: Material billet 3, 3a: Arrow 4: Rolled material 4a, 4b: Corner 5: Form 6, 6a: Arrow 7: Rolled material 8a-8d, 9a-9d: Arrow

Claims (4)

素材ビレットから菱形状および角形状の孔型を含む孔型スケジュールによって断面積を順次減少させて、圧延材を所要の寸法に仕上げる線材・棒鋼の熱間圧延方法において、前記菱形状または角形状の少なくとも1つの孔型の出側で、圧延材の圧下されたコーナー部の両側近傍のスケールを除去することを特徴とする線材・棒鋼の熱間圧延方法。The cross-sectional area is gradually reduced from a raw material billet by a hole shape schedule including a diamond shape and a square shape, and in a hot rolling method of a wire rod or a steel bar for finishing a rolled material to a required size, the diamond shape or the square shape is used. A hot-rolling method for a wire rod or a steel bar, comprising removing scale near both sides of a reduced corner portion of a rolled material on the exit side of at least one groove. 前記圧延材の圧下されたコーナー部の両側近傍のスケール除去を、最初に圧下される孔型の出側で行うことを特徴とする請求項1に記載の線材・棒鋼の熱間圧延方法。2. The hot rolling method for a wire rod or a steel bar according to claim 1, wherein the scale removal near both sides of the rolled-down corner portion of the rolled material is performed on an outlet side of a hole shape to be reduced first. 素材ビレットから菱形状および角形状の孔型を含む孔型スケジュールによって断面積を順次減少させて、圧延材を所要の寸法に仕上げる線材・棒鋼の熱間圧延方法において、前記菱形状または角形状の全ての孔型の出側で、圧延材の圧下されたコーナー部の両側近傍のスケールを除去することを特徴とする線材・棒鋼の熱間圧延方法。The cross-sectional area is gradually reduced from a raw material billet by a hole shape schedule including a diamond shape and a square shape, and in a hot rolling method of a wire rod or a steel bar for finishing a rolled material to a required size, the diamond shape or the square shape is used. A hot rolling method for a wire rod or a steel bar, wherein scales near both sides of a reduced corner portion of a rolled material are removed on the exit sides of all the molds. 前記スケール除去を高圧水を用いて行うことを特徴とする請求項1から3のいずれかに記載の線材・棒鋼の熱間圧延方法。The method for hot-rolling a wire / bar according to any one of claims 1 to 3, wherein the scale is removed using high-pressure water.
JP2002159576A 2002-05-31 2002-05-31 Method for hot rolling wire rod and steel bar Pending JP2004001041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159576A JP2004001041A (en) 2002-05-31 2002-05-31 Method for hot rolling wire rod and steel bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159576A JP2004001041A (en) 2002-05-31 2002-05-31 Method for hot rolling wire rod and steel bar

Publications (1)

Publication Number Publication Date
JP2004001041A true JP2004001041A (en) 2004-01-08

Family

ID=30429295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159576A Pending JP2004001041A (en) 2002-05-31 2002-05-31 Method for hot rolling wire rod and steel bar

Country Status (1)

Country Link
JP (1) JP2004001041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212965A (en) * 2007-03-02 2008-09-18 Nippon Steel Corp Method and equipment for hot-rolling steel bar or wire rod
KR101180196B1 (en) 2010-12-03 2012-09-05 포항공과대학교 산학협력단 Ultrafine-grained wire rod having high strength and ductilty and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212965A (en) * 2007-03-02 2008-09-18 Nippon Steel Corp Method and equipment for hot-rolling steel bar or wire rod
KR101180196B1 (en) 2010-12-03 2012-09-05 포항공과대학교 산학협력단 Ultrafine-grained wire rod having high strength and ductilty and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP2394752B1 (en) Titanium material for hot rolling and manufacturing method thereof
JPH06269839A (en) Descaling method and rolling method for slab
KR101220738B1 (en) Forging method of Heavy Thick Plate
EP1836009A2 (en) Shaped direct chill aluminum ingot
US4793168A (en) Method of and apparatus for effecting a thickness-reduction rolling of a hot thin plate material
JP3802830B2 (en) Steel sheet descaling method and equipment
JP4800245B2 (en) Billet descaler
JP2004001041A (en) Method for hot rolling wire rod and steel bar
RU2344010C2 (en) Method of sectional bar rolling
JP3551129B2 (en) Manufacturing method and manufacturing equipment for hot rolled steel strip
JP4456586B2 (en) Hot rolling method for strip
JP3872346B2 (en) Hot rolling method for steel bars and wire rods
JP4096654B2 (en) Method for preventing surface flaws of slab and slab
JP2001009520A (en) Steel plate descaling method
JPH05269507A (en) Manufacture of seamless steel tube of iron-based alloy containing chromium
JP3171326B2 (en) Thick steel plate manufacturing method
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP7127484B2 (en) Metal plate manufacturing method and metal plate manufacturing equipment
JP6458662B2 (en) Billet manufacturing method and billet manufacturing equipment
JP2002316206A (en) Shape excellent in surface property, steel for the shape, and method and device for manufacturing them
JP7127408B2 (en) Steel rolling method and rolling equipment
JP2512295B2 (en) Width reduction method for hot slabs
US20060086167A1 (en) Coiler drum with raised surfaces
JP2007118028A (en) Method for mechanically descaling steel material
RU2238180C1 (en) Method for making bimetallic products