JP2003510467A - Nd-Fe-B alloy containing less boron and method for producing permanent magnet made of the alloy - Google Patents

Nd-Fe-B alloy containing less boron and method for producing permanent magnet made of the alloy

Info

Publication number
JP2003510467A
JP2003510467A JP2001527302A JP2001527302A JP2003510467A JP 2003510467 A JP2003510467 A JP 2003510467A JP 2001527302 A JP2001527302 A JP 2001527302A JP 2001527302 A JP2001527302 A JP 2001527302A JP 2003510467 A JP2003510467 A JP 2003510467A
Authority
JP
Japan
Prior art keywords
eff
content
alloy
weight
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001527302A
Other languages
Japanese (ja)
Inventor
カッター、マチアス
フェルネンゲル、ヴィルヘルム
Original Assignee
バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング
Publication of JP2003510467A publication Critical patent/JP2003510467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】 同じ残留磁化Brで従来の合金よりも高い抗磁力HcJを有し、残留磁化の温度係数を低くでき、かつ耐蝕性である、硼素分の少ない、少なくとも1つの希土類、少なくとも1つの遷移金属及び硼素をベースとする合金並びにこの合金製永久磁石を提供する。硼素分の少ないNd−Fe−B永久磁石は高い抗磁力を有する。この合金は26.9重量%≦[SE]eff≦33重量%、2.185-0.0442[SE]eff≦[B]eff≦1.363 -1.0136[SE]eff、[Dy + Tb + Ho]≦50%[SE]eff、0.5重量%≦[Co]≦5重量%、0.05重量%≦[Cu]≦0.3重量%、0.05重量%≦[Ga]≦0.35重量%、0.02重量%≦[Al]≦0.3重量%の条件を満たす。 (57) [Summary] At least one rare earth element having the same remanent magnetization Br, having a higher coercive force H cJ than conventional alloys, capable of lowering the temperature coefficient of remanent magnetization, and being corrosion-resistant, low in boron content, An alloy based on at least one transition metal and boron and a permanent magnet made of this alloy are provided. Nd-Fe-B permanent magnets with low boron content have high coercive force. This alloy has 26.9% by weight ≤ [SE] eff ≤ 33% by weight, 2.185-0.0442 [SE] eff ≤ [B] eff ≤ 1.363 -1.0136 [SE] eff , [Dy + Tb + Ho] ≤ 50% [SE] eff , 0.5 wt% ≦ [Co] ≦ 5 wt%, 0.05 wt% ≦ [Cu] ≦ 0.3 wt%, 0.05 wt% ≦ [Ga] ≦ 0.35 wt%, 0.02 wt% ≦ [Al] ≦ 0.3 wt% Meet the conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】 本発明は、少なくとも1つの希土類、少なくとも1つの遷移金属及び硼素をベ
ースとする合金並びにこの合金から永久磁石を製造する方法に関する。
The present invention relates to an alloy based on at least one rare earth, at least one transition metal and boron and a method for producing permanent magnets from this alloy.

【0002】 この種合金及びこの合金製永久磁石の製造方法は、欧州特許出願公開第012
4655号明細書から公知である。この公知の方法ではまずネオジム、鉄及び硼
素をベースとする合金を溶融する。この溶融合金を鋳型に流して鋳造ブロックに
鋳造し、これを引続き粉末に砕く。この粉末から磁場内で原材料片をプレス成形
し、最後に焼結する。
[0002] This kind of alloy and a method of manufacturing the permanent magnet made of this alloy are described in European Patent Application Publication No. 012.
It is known from specification 4655. In this known method, an alloy based on neodymium, iron and boron is first melted. The molten alloy is poured into a mold and cast into a casting block, which is subsequently ground into powder. Raw material pieces are pressed from this powder in a magnetic field and finally sintered.

【0003】 Nd−Fe−B永久磁石の多様な用途、特にモータ及び駆動装置においては、
150℃での抗磁力HcJが永久磁石の品質にとって重要である。逆方向の磁場が
僅かである場合、150℃での抗磁力HcJは少なくとも4.5kOe、できれば
5kOe以上なければならない。逆方向磁場が強い場合、150℃で13kOe
以上の値すら必要になる。高い抗磁力HcJの他に、このような磁石はできるだけ
高い残留磁化Brを示す必要がある。例えば150℃で4.5kOe程度の抗磁
力HcJを持つNd−Fe−B永久磁石の残留磁化Brは室温で少なくとも1.2
9T、できれば1.35T以上でなければならない。
In various applications of Nd-Fe-B permanent magnets, especially in motors and drives,
The coercivity H cJ at 150 ° C. is important for the quality of permanent magnets. When the magnetic field in the opposite direction is small, the coercive force H cJ at 150 ° C. should be at least 4.5 kOe, preferably 5 kOe or more. 13 kOe at 150 ° C when the reverse magnetic field is strong
Even the above values are required. In addition to the high coercive force H cJ , such magnets have to exhibit the highest possible remanence Br. For example remanence Br of Nd-Fe-B permanent magnet having a coercive force H cJ of about 4.5kOe at 0.99 ° C. is at least 1.2 at room temperature
9T, preferably 1.35T or higher.

【0004】 更にモータ用には、残留磁化の可逆的な温度係数TK(Br)が20〜150
℃の温度で−0.11%/Kより良くなければならない。更にこの種の永久磁石
は費用を要する高価な被覆を不要とすべく、できるだけ耐蝕性が良くなければな
らない。従って、例えば被覆しない磁石の質量損失は、所謂HASTテストで1
0日後に1mg/cm2以下でなければならない。HASTテスト時永久磁石は
130℃の温度と95%の大気中相対湿度で2.7バールの圧力に曝される。
Further, for motors, the reversible temperature coefficient TK (Br) of residual magnetization is 20 to 150.
It must be better than -0.11% / K at a temperature of ° C. Furthermore, permanent magnets of this kind must be as resistant to corrosion as possible in order to avoid costly and expensive coatings. Therefore, for example, the mass loss of an uncoated magnet is 1 in the so-called HAST test.
Must be below 1 mg / cm 2 after 0 days. During the HAST test, the permanent magnet is exposed to a pressure of 2.7 bar at a temperature of 130 ° C. and 95% relative humidity in the atmosphere.

【0005】 これら要求は従来のNd−Fe−B永久磁石によっては満たされない。[0005]   These requirements are not met by conventional Nd-Fe-B permanent magnets.

【0006】 この従来技術から出発して、本発明の課題は、同じ残留磁化Brで従来の合金
よりも高い抗磁力HcJを有し、残留磁化の温度係数が低く、かつ耐蝕性の 、少
なくとも1つの希土類、少なくとも1つの遷移材料及び硼素をベースとする永久
磁石用合金を提供することにある。
Starting from this prior art, the object of the present invention is to have a coercive force H cJ higher than conventional alloys with the same remanent magnetization Br, a low remanent magnetization temperature coefficient and at least corrosion resistance. It is to provide an alloy for permanent magnets based on one rare earth, at least one transition material and boron.

【0007】 この課題は、本発明の請求項1に記載の特徴を有する合金により解決される。[0007]   This task is solved by an alloy having the features of claim 1 of the present invention.

【0008】 これまでのNd−Fe−B合金は、主に3つの相、即ちNd2Fe14Bの組成
を持つ硬磁性ψ相、Nd1.1Fe44の組成を有する非磁性のη相及びほぼNd
のみでできている非磁性の楔相から成る。このNdに富む楔相は、ψ相の粒子を
磁気的に互いに分離し、この結果高い抗磁力HcJをもたらす。しかし硼素濃度が
低過ぎると、非磁性のη相の箇所に抗磁力HcJを著しく低下させる軟磁性のNd 2 Fe17相が形成される危険がある。従来のNd−Fe−B合金の場合とは違っ
て、本発明により製造される合金では、非磁性のη相の箇所の硼素含有量が臨界
を下廻わると、この抗磁力HcJにとって好ましくないNd2Fe17の相ではなく
、まず一連の非磁性のガリウム含有相が生じる。このGa含有相は強磁性のNd 2 Fe17の相とは異なり、ψ相の粒子の磁気的な結合の低減に貢献し、合金の抗
磁力HcJも、温度依存性も改善させる。
[0008]   Conventional Nd-Fe-B alloys mainly consist of three phases, namely Nd.2Fe14Composition of B
Hard magnetic ψ phase with Nd1.1FeFourBFourNon-magnetic η phase with a composition of
It consists of a non-magnetic wedge phase made entirely of chisel. This Nd-rich wedge phase is composed of ψ-phase particles.
Magnetically separated from each other, resulting in high coercive force HcJBring However, if the boron concentration is
If it is too low, the coercive force H will be applied to the non-magnetic η phase.cJOf Nd with soft magnetic properties 2 Fe17There is a risk of phase formation. Unlike the conventional Nd-Fe-B alloy
In the alloy produced according to the present invention, the boron content in the nonmagnetic η phase is critical.
Below, this coercive force HcJNd unfavorable to2Fe17Not the phase of
First, a series of non-magnetic gallium-containing phases is created. This Ga-containing phase is ferromagnetic Nd 2 Fe17Phase of the alloy, it contributes to the reduction of the magnetic coupling of the particles in the ψ phase,
Magnetic force HcJAlso improves the temperature dependence.

【0009】 更に本発明の課題は、この合金から永久磁石を製造する方法を提供することに
ある。
A further object of the invention is to provide a method for producing permanent magnets from this alloy.

【0010】 この課題は、請求項6に記載の特徴を有する製造方法により解決される。[0010]   This problem is solved by a manufacturing method having the features of claim 6.

【0011】 温度操作が適切であると、特に高い値の抗磁力HcJを達成できる。この場合、
特に急冷することで極めて好適な値の抗磁力HcJが得られる。急冷は炉の有効利
用と同義である。それに対して緩慢な冷却では、永久磁石部分に冷却亀裂を形成
せず、抗磁力HcJも著しく低下させずに大きな永久磁石部材を製造できる。
With a suitable temperature control, a particularly high value of coercive force H cJ can be achieved. in this case,
Particularly, by quenching, the coercive force H cJ having an extremely suitable value can be obtained. Quenching is synonymous with effective utilization of the furnace. On the other hand, with slow cooling, a large permanent magnet member can be manufactured without forming cooling cracks in the permanent magnet portion and significantly reducing the coercive force H cJ .

【0012】 本発明を添付の図面に基づき以下に詳述する。[0012]   The present invention will be described in detail below with reference to the accompanying drawings.

【0013】 図1は、硼素及び希土類の有効含有量に依存するNd−Fe−B合金の組成を
示す相線図である。永久磁石として使用するのに適した組織は、特に相三角形1
内に生じる。この相三角形1内で、合金はNd2Fe14Bの組成を持つψ相の硬
磁性の粒子、Nd1.2Fe4Bの組成を有する非磁性のη相の粒子及びほぼNdの
みから成る非磁性の楔相で構成される。Ndに富む楔相はψ相の粒子を磁気的に
相互に分離し、これは抗磁力HcJの増大に必要である。
FIG. 1 is a phase diagram showing the composition of an Nd—Fe—B alloy depending on the effective contents of boron and rare earth. A tissue suitable for use as a permanent magnet is especially the phase triangle 1
Occurs within. Within this phase triangle 1, the alloy consists of ψ-phase hard magnetic particles having a composition of Nd 2 Fe 14 B, non-magnetic η phase particles having a composition of Nd 1.2 Fe 4 B, and non-magnetic particles consisting of almost only Nd. It is composed of a wedge phase. The Nd-rich wedge phase magnetically separates the ψ-phase particles from each other, which is necessary for increasing the coercive force H cJ .

【0014】 この合金のある組成が、相三角形1の内・外側のいずれにあるかを判定するに
は、ネオジム(Nd)の一部がNd酸化物、Nd炭化ニッケル及びNd窒化物の
形に結合されているので、まず不純物に対する希土類と硼素の含有量を修正する
必要がある。希土類の有効含有量[SE]effと硼素の有効含有量[B]effは次
式により判明する。 [SE]eff=([SE]−[ΔSE])f [B]eff=[B]f (式中[SE]と[B]は各々希土類と硼素の重量分を表す。[ΔSE]はNd 2 O3、Nd3CO及びNdN化合物に結合された希土類の分量を表し、fは標準
化係数を表す)。 [ΔSE]=5.993[O]+16.05[C]+10.30[N] f=100/(100−[ΔSE]−[O]−[C]−[N]) (式中[O]、[C]及び[N]はO、C及びNの重量分を表す)上に挙げた式
中全ての記述は重量%である。
[0014]   To determine whether a certain composition of this alloy is inside or outside the phase triangle 1.
Is a part of neodymium (Nd) of Nd oxide, Nd nickel carbide and Nd nitride.
Being bound to form, first modify the content of rare earth and boron to impurities
There is a need. Effective content of rare earth [SE]effAnd boron effective content [B]effIs next
It turns out by the formula. [SE]eff= ([SE]-[ΔSE]) f [B]eff= [B] f (In the formula, [SE] and [B] represent weight amounts of rare earth and boron, respectively. [ΔSE] represents Nd. 2 O3, Nd3Represents the amount of rare earth bound to CO and NdN compounds, f is the standard
Represents the conversion factor). [ΔSE] = 5.993 [O] +16.05 [C] +10.30 [N] f = 100 / (100- [ΔSE]-[O]-[C]-[N]) (Wherein [O], [C] and [N] represent the weight of O, C and N)
All descriptions are in weight percent.

【0015】 希土類及び硼素の有効含有量は組織の構造に影響を及ぼす。相三角形1の点η
において組織は殆ど独占的にη相の形で存在する。相三角形1の点ψにおいて合
金はψ相の形をしており、他方点SEではほぼNdに富む楔相から成る。η相の
分量は原則として任意に僅かでよい。しかし硼素含有量が少な過ぎると、非磁性
のη相の箇所に軟磁性のNd2Fe17の相が形成される危険があり、そのため抗
磁力HcJが著しく低下する。それ故、Nd−Fe−B永久磁石の組成は従来通り
の方法で常に相三角形1内、特にコノード2の上方にあるように選択される。図
1の相線図内の各点の値を表1に記載する。
The effective content of rare earths and boron affects the structure of the tissue. Phase eta point 1
In, the structure exists almost exclusively in the form of η phase. At the point ψ of the phase triangle 1, the alloy takes the form of the ψ phase, while at the point SE it consists of a wedge phase which is rich in Nd. In principle, the amount of the η phase may be arbitrarily small. However, if the boron content is too low, there is a risk that a soft magnetic Nd 2 Fe 17 phase will be formed in the nonmagnetic η phase, and therefore the coercive force H cJ will be significantly reduced. Therefore, the composition of the Nd-Fe-B permanent magnet is chosen in a conventional manner so that it is always within the phase triangle 1, especially above the conode 2. Table 1 shows the values at each point in the phase diagram of FIG.

【表1】 [Table 1]

【0016】 しかしNd−Fe−B永久磁石の多様な用途、特にあらゆる種類のモータ及び
駆動装置に使用する場合、150℃での抗磁力HcJは重要である。使用されるN
d−Fe−B永久磁石の抗磁力HcJは、反磁場負荷が僅かな場合で、少なくとも
4.5kOe、できれば少なくとも5kOeなければならない。強い逆方向の磁
場が印加される場合は、150℃において13kOe以上の更に高い値が必要に
なる。150℃の温度での高い抗磁力HcJの他に、この種のNd−Fe−B永久
磁石は残留磁化Brもできるだけ高くなければならない。
However, the coercive force H cJ at 150 ° C. is important for various applications of Nd-Fe-B permanent magnets, especially for all kinds of motors and drives. N used
The coercive force H cJ of the d-Fe-B permanent magnet should be at least 4.5 kOe, preferably at least 5 kOe, when the demagnetizing field load is small. When a strong reverse magnetic field is applied, a higher value of 13 kOe or more at 150 ° C. is required. In addition to the high coercive force H cJ at temperatures of 150 ° C., this type of Nd-Fe-B permanent magnet must also have a remanent magnetization Br as high as possible.

【0017】 特にモータに使用するには、残留磁化の可逆的な温度係数TK(Br)が、2
0〜150℃の温度範囲で−0.11%/Kより良くならなければならない。
Especially for use in a motor, the reversible temperature coefficient TK (Br) of the residual magnetization is 2
It must be better than -0.11% / K in the temperature range 0-150 ° C.

【0018】 更にこのNd−Fe−B永久磁石は、費用の嵩む高価な被覆を不要とすべく、
できるだけ耐蝕性に優れていなければならない。
Further, the Nd-Fe-B permanent magnet does not require an expensive and expensive coating,
It should be as corrosion resistant as possible.

【0019】 合金にガリウムを加えることで、コノード2の下方に硬磁性のψ相及び非磁性
のNdに富む相の他に、ガリウム含有相が存在する更なる相領域3が生ずること
が発見された。コノード4は相領域3をもう1つのNd2Fe17相が優位を占め
る相領域5から分離する。驚くべきことに、相領域3内の合金でモータに使用す
るNd−Fe−B永久磁石に課される要求を満たせる。この改善は以下に述べる
冶金学上のモデルで説明できる。即ち、従来のNd−Fe−B永久磁石では、限
界線2で図解した硼素の臨界含有量を下回ると、抗磁力HcJに有害な軟磁性のN
2Fe17相が生じる。ガリウム、コバルト及び銅をNd−Fe−B合金に加え
ると、限界線2に達しないところに、非磁性のη相の代えて、Nd2Fe17相で
はなく、まず一連の非磁性のガリウム含有相が生じる。このガリウム含有相はN
2Fe17相と異なり、ψ相からの粒子の磁気的な結合の低減に寄与する。その
結果、抗磁力HcJとその温度係数も改善される。硼素含有量を更に減らすと、結
局相領域5内にNd2Fe17相が生じ、それと共に抗磁力HcJが消滅する。
It has been discovered that the addition of gallium to the alloy creates below the conode 2 a further phase region 3 in which a gallium-containing phase is present in addition to the hard magnetic ψ-phase and the non-magnetic Nd-rich phase. It was The conode 4 separates the phase region 3 from the phase region 5 in which another Nd 2 Fe 17 phase predominates. Surprisingly, alloys in phase region 3 can meet the demands placed on Nd-Fe-B permanent magnets used in motors. This improvement can be explained by the metallurgical model described below. That is, in the conventional Nd-Fe-B permanent magnet, when the content of boron is less than the critical content illustrated by the limit line 2, the soft magnetic N detrimental to the coercive force H cJ is obtained.
The d 2 Fe 17 phase occurs. When gallium, cobalt and copper are added to the Nd-Fe-B alloy, the non-magnetic η phase is replaced by the Nd 2 Fe 17 phase instead of the non-magnetic η phase, and a series of non-magnetic gallium-containing materials is first added. Phases occur. This gallium-containing phase is N
Unlike the d 2 Fe 17 phase, it contributes to the reduction of magnetic coupling of particles from the ψ phase. As a result, the coercive force H cJ and its temperature coefficient are also improved. When the boron content is further reduced, the Nd 2 Fe 17 phase is eventually produced in the phase region 5, and the coercive force H cJ disappears at the same time.

【0020】 ガリウムの他に、コバルト及び銅も合金に有利な作用を付け加える。[0020]   In addition to gallium, cobalt and copper also have a favorable effect on the alloy.

【0021】 コバルトを合金化すると、Nd−Fe−B永久磁石の、例えば残留磁化の温度
係数TK(Br)が改善される。特に、残留磁化の温度係数TK(Br)は、3
重量%のコバルトを合金化することで−0.12%/Kから約−0.105%/
Kに改善される。しかしコバルトだけを合金化すると、これは軟磁性のSECo 2 ラーベス相を形成することになり、そのため抗磁力HcJがかなり低下する。こ
の有害なラーベス相の形成は、同時に銅を合金化することで阻止できる。0.0
5〜0.2重量%の銅の添加が好ましいことが判明している。その他に、銅を含
有するNd−Fe−B永久磁石を製造プロセス中に行われる熱処理の後緩慢に冷
却すると、その抗磁力HcJを著しく低下させることはない。
[0021]   When cobalt is alloyed, the temperature of, for example, the residual magnetization of the Nd-Fe-B permanent magnet
The coefficient TK (Br) is improved. In particular, the temperature coefficient TK (Br) of the residual magnetization is 3
By alloying with wt.% Cobalt, about -0.12% / K to about -0.105% /
Improved to K. However, when only cobalt is alloyed, this is soft magnetic SECo. 2 The Laves phase is formed, and therefore the coercive force HcJIs considerably reduced. This
The detrimental Laves phase formation of can be prevented by alloying copper at the same time. 0.0
It has been found preferable to add 5 to 0.2% by weight of copper. In addition, contains copper
The Nd-Fe-B permanent magnet having is slowly cooled after the heat treatment performed during the manufacturing process.
If rejected, its coercive force HcJDoes not decrease significantly.

【0022】 Nd−Fe−B永久磁石の水蒸気による腐食に対する安定性は、Co、Cu及
びGaを追加合金することで、従来のNd−Fe−B永久磁石に比べ約3桁改善
できる。その場合、特に反応性のNdに富む楔相を化学的に不活性なCo、Cu
及びGa含有相と大幅に取り換える。
The stability of the Nd-Fe-B permanent magnet against corrosion by water vapor can be improved by about 3 orders of magnitude as compared with the conventional Nd-Fe-B permanent magnet by additionally alloying Co, Cu and Ga. In that case, the wedge phase rich in Nd, which is particularly reactive, is treated with chemically inert Co or Cu.
And significantly replaces the Ga-containing phase.

【0023】 これらの措置により、所謂HASTテスト時10日後にNd−Fe−B永久磁
石はその表面に関して1mg/cm2以下の質量の損失を示すことが判った 。所
謂HASTテストでは、Nd−Fe−B永久磁石を130℃の温度及び95%の
大気中相対湿度で2.7バールの圧力に曝す。
By these measures, it was found that the Nd-Fe-B permanent magnet showed a mass loss of 1 mg / cm 2 or less on the surface thereof after 10 days of so-called HAST test. In the so-called HAST test, Nd-Fe-B permanent magnets are exposed to a pressure of 2.7 bar at a temperature of 130 ° C. and 95% atmospheric relative humidity.

【0024】 更にNdの一部をDy、Tb又はHoと代えると、希土類の含有量をFeとB
の含有量に対しその割合を著しく変えることなしに抗磁力HcJを高められる。D
y、Tb及びHoの磁気モーメントは、Ndと異なりFeの磁気モーメントと逆
並列に配向されるので、必然的に、達成可能な残留磁化Brを低下させる。これ
は、抗磁力HcJの増加が残留磁化Brの減少と関連することを意味する。
Further, when a part of Nd is replaced with Dy, Tb or Ho, the contents of rare earths are Fe and B.
The coercive force H cJ can be increased without significantly changing the ratio with respect to the content of. D
The magnetic moments of y, Tb and Ho, unlike Nd, are oriented antiparallel to the magnetic moment of Fe, thus necessarily lowering the achievable remanent magnetization Br. This means that an increase in the coercive force H cJ is associated with a decrease in the remanent magnetization Br.

【0025】 この関係を図2及びそれに属する表2に示す。[0025]   This relationship is shown in FIG. 2 and Table 2 which belongs to it.

【表2】 [Table 2]

【0026】 表2の合金A1〜A4の組成は従来の合金に関するものである。また合金B1
〜B3は本発明による合金の組成を示すものである。図2から、Dy含有量が増
加すると抗磁力は増大するが、残留磁化は減少することが判る。
The compositions of alloys A1 to A4 in Table 2 relate to conventional alloys. Also alloy B1
~ B3 indicate the composition of the alloy according to the present invention. From FIG. 2, it can be seen that as the Dy content increases, the coercive force increases but the remanent magnetization decreases.

【0027】 更に図2から、Co、Cu及びGaを追加合金した合金は同じ残留磁化Brで
従来の合金に比べてより高い抗磁力HcJを有することが読み取れる。後者は室温
のみならず、特に150℃の場合にも該当する。
Further, it can be seen from FIG. 2 that the alloy in which Co, Cu and Ga are additionally alloyed has a higher coercive force H cJ than the conventional alloy with the same residual magnetization Br. The latter applies not only at room temperature, but especially at 150 ° C.

【0028】 3重量%の範囲のDyを含有するNd−Fe−B合金を分類して調査した。こ
の検査の結果を表3及び表4に示す。この調査の範囲内で、Nd−Fe−B永久
磁石の磁気特性は製造プロセスの範囲内で行われる熱処理中の温度操作に極めて
依存することが判った。
Nd-Fe-B alloys containing Dy in the range of 3 wt% were classified and investigated. The results of this inspection are shown in Tables 3 and 4. Within the scope of this investigation, it has been found that the magnetic properties of Nd-Fe-B permanent magnets are highly dependent on the temperature manipulation during the heat treatment carried out within the manufacturing process.

【表3】 [Table 3]

【表4】 [Table 4]

【0029】 Nd−Fe−B合金は通常、まず所望の組成を持つ合金を溶融し、溶融ブロッ
クに鋳造する。次いでこのブロックを粉末に粉砕し、必要なら最終組成を修正す
べく別の粉末と混合する。この完成粉末を磁場内で配向し、磁場を並列又は垂直
に向けるか又はアイソスタティック成形により原材料片にプレス成形する。引続
きこの原材料片に、図3及び4に示すように焼結工程6を行う。図3に示す温度
操作の例では、焼結工程6後に熱処理7を行う。焼鈍温度からの冷却は、図3に
示すように緩慢に或いは図4に示すように迅速に実施してもよい。
The Nd-Fe-B alloy is usually obtained by first melting an alloy having a desired composition and casting it into a molten block. The block is then ground into a powder and mixed with another powder to modify the final composition if necessary. The finished powder is oriented in a magnetic field and the magnetic field is oriented parallel or perpendicular or pressed into raw material pieces by isostatic molding. Subsequently, this raw material piece is subjected to a sintering step 6 as shown in FIGS. In the example of the temperature operation shown in FIG. 3, the heat treatment 7 is performed after the sintering step 6. Cooling from the annealing temperature may be performed slowly as shown in FIG. 3 or quickly as shown in FIG.

【0030】 図5は、有効硼素含有量及び冷却速度ΔT/Δtに対する抗磁力HcJの依存性
を示す。図5から、硼素含有量が高い場合、440〜500℃の狭い温度範囲内
のみで高い抗磁力HcJが得られることが読み取れる。それに対して有効硼素含有
量が低い場合、高い抗磁力HcJを比較的大きな温度範囲で得られる。従って抗磁
力HcJは硼素含有量が減少するにつれて、ほぼ3kOeに増大する。焼結工程の
範囲内で750℃以下に急冷することで、また焼鈍温度からの急冷により、抗磁
力HcJを再度、約1kOe高めることができる。
FIG. 5 shows the dependence of the coercive force H cJ on the effective boron content and the cooling rate ΔT / Δt. From FIG. 5, it can be read that when the boron content is high, a high coercive force H cJ can be obtained only within a narrow temperature range of 440 to 500 ° C. On the other hand, when the effective boron content is low, a high coercive force H cJ can be obtained in a relatively large temperature range. Therefore, the coercive force H cJ increases to almost 3 kOe as the boron content decreases. The coercive force H cJ can be increased again by about 1 kOe by quenching to 750 ° C. or less within the range of the sintering process and quenching from the annealing temperature.

【0031】 0.92重量%の低い有効硼素含有量で緩慢な冷却にも拘わらず生じる高い抗
磁力HcJは極めて注目に値する。これは断面積の大きなNd−Fe−B永久磁石
を製造する必要がある場合に特に有利である。それというのも冷却亀裂を回避す
るため、この種の部材には焼結中及び熱処理中にΔT/Δt<10K/分の低い
冷却速度が認められるに過ぎないからである。しかしこの低い冷却速度は磁気特
性の劣化を極く僅かに招くに過ぎない。図5によれば、Nd−Fe−B合金の硼
素分が少ない限り、その磁気特性に重大な悪影響を及ぼすことなく、熱処理後の
Nd−Fe−B永久磁石を1〜2K/分程度の緩慢な冷却速度で冷却することが
できる。ここで硼素分の少ないNd−Fe−B合金とは、その有効硼素含有量が
コノード2の下方にある合金のことと理解されたい。
The high coercive force H cJ that occurs despite the slow cooling with a low effective boron content of 0.92% by weight is extremely noteworthy. This is particularly advantageous when it is necessary to manufacture a Nd-Fe-B permanent magnet with a large cross section. This is because, in order to avoid cooling cracks, a low cooling rate of ΔT / Δt <10 K / min is only observed during sintering and heat treatment for this type of component. However, this low cooling rate causes only a slight deterioration of the magnetic properties. According to FIG. 5, as long as the Nd-Fe-B alloy has a low boron content, the Nd-Fe-B permanent magnet after heat treatment is slowed down by about 1 to 2 K / min without seriously adversely affecting its magnetic properties. Can be cooled at various cooling rates. Nd-Fe-B alloys with a low boron content are understood here as those alloys whose effective boron content is below the conode 2.

【0032】 表3、4に、アイソスタティック成形した、希土類と硼素の種々の有効含有量
を持つNd−Fe−B永久磁石の組成と磁気特性を示す。太字は本発明による硼
素分の少ない合金に関する。Nd−Fe−B永久磁石は全て通常の粉末冶金法で
製造し、約1060℃で7.6g/cm3以上の密度に焼結した。表3に挙げた
Nd−Fe−B永久磁石は、焼結温度から約1〜2K/分で緩慢に室温迄冷却し
たものである。その後これらを440〜560℃の温度で1〜2時間焼鈍し、再
度約1〜2K/分で緩慢に室温に冷却した。表4に示す磁石は、焼結温度からま
ず緩慢に約2K/分で約750℃に冷却し、約1時間の保持時間の後約30〜5
0K/分で迅速に室温に急冷した。このNd−Fe−B永久磁石を引続き470
〜530℃で焼鈍した後、再度約30〜50K/分で迅速に室温に冷却した。
Tables 3 and 4 show the composition and magnetic properties of isostatically molded Nd-Fe-B permanent magnets having various effective rare earth and boron contents. Bold type refers to low boron alloys according to the present invention. All the Nd-Fe-B permanent magnets were manufactured by a usual powder metallurgy method and sintered at a temperature of about 1060 ° C to a density of 7.6 g / cm 3 or more. The Nd-Fe-B permanent magnets listed in Table 3 are slowly cooled from the sintering temperature to room temperature at about 1-2 K / min. Thereafter, these were annealed at a temperature of 440 to 560 ° C. for 1 to 2 hours, and again slowly cooled to room temperature at about 1 to 2 K / min. The magnets shown in Table 4 were first slowly cooled from the sintering temperature at about 2 K / min to about 750 ° C. and after a holding time of about 1 hour about 30-5.
It was rapidly cooled to room temperature at 0 K / min. This Nd-Fe-B permanent magnet is continuously used for 470
After annealing at ˜530 ° C., it was quickly cooled again to room temperature at about 30-50 K / min.

【0033】 図6は、表3の合金の硼素及び希土類の有効含有量に依存する残留磁化Brの
値を示す。2つの水準線は有効希土類含有量の低下及び有効硼素含有量の増加に
つれて残留磁化Brが増大する傾向を明確に示している。30重量%以下の有効
希土類含有量と0.93重量%以上の有効硼素含有量でアイソスタティック成形
したNd−Fe−B永久磁石で1.35T以上の残留磁化Brが達成される。硼
素含有量に関して、残留磁化Brは最大値を通過し、相三角形1の限界線2の若
干下方に達する。
FIG. 6 shows the values of remanent magnetization Br depending on the effective contents of boron and rare earth in the alloys of Table 3. The two level lines clearly show the tendency for the remanent magnetization Br to increase with decreasing effective rare earth content and increasing effective boron content. With the Nd-Fe-B permanent magnet isostatically molded with an effective rare earth content of 30% by weight or less and an effective boron content of 0.93% by weight or more, a residual magnetization Br of 1.35 T or more is achieved. With respect to the boron content, the remanent magnetization Br passes the maximum value and reaches a little below the limit line 2 of the phase triangle 1.

【0034】 図7には、表3から緩慢に冷却したNd−Fe−B永久磁石の150℃での抗
磁力HcJの依存度を示している。図7から、有効硼素含有量が減少するにつれて
150℃での抗磁力HcJが高められることが読み取れる。同じことは20℃での
抗磁力HcJにも該当する。
FIG. 7 shows the dependence of the coercive force H cJ at 150 ° C. of the slowly cooled Nd—Fe—B permanent magnet from Table 3. It can be seen from FIG. 7 that the coercive force H cJ at 150 ° C. increases as the effective boron content decreases. The same applies to the coercive force H cJ at 20 ° C.

【0035】 最後に図8は希土類及び硼素の有効含有量に依存する、緩慢に冷却したNd−
Fe−B永久磁石の抗磁力HcJの温度係数の依存度を示す。ここでも有効硼素含
有量が減少するにつれ、温度係数が好ましい値に増すことが判る。抗磁力HcJ
上昇と共に、これは150℃で4.5kOe以下である緩慢に冷却された磁石の
抗磁力HcJを、5.5kOe以上の値迄上昇させることになる。この特に高い抗
磁力HcJの値は、特に28.9重量%以上の希土類含有量[SE]effで生じ、
その際有効硼素含有量との関係は、 1.814−0.0303[SE] eff≦[B] eff≦1.396−0.01491[SE] eff である。
Finally, FIG. 8 shows that slowly cooled Nd-depending on the effective contents of rare earth and boron.
The dependence of the temperature coefficient of the coercive force HcJ of the Fe-B permanent magnet is shown. Again, it can be seen that the temperature coefficient increases to a preferred value as the effective boron content decreases. With increasing coercivity H cJ, which is the coercivity H cJ of the magnet which is slowly cooled at 4.5kOe less at 0.99 ° C., to be increased to a value greater than 5.5 kOe. This particularly high value of coercive force H cJ occurs especially with a rare earth content [SE] eff of 28.9% by weight or more,
At that time, the relationship with the effective boron content is 1.814-0.0303 [SE] eff ≤ [B] eff ≤ 1.396-0.01491 [SE] eff .

【0036】 同じ図は、約750℃及び焼鈍温度から急冷されたNd−Fe−B永久磁石に
ついて示す。図9及び図10によれば、確かに緩慢に冷却されたNd−Fe−B
永久磁石に比べその温度依存性も、またその絶対値も若干よい値が得られる。そ
のため要求される特性、即ち室温で1.35T以上の残留磁化Br及び150℃
で5kOe以上の抗磁力HcJを達成する範囲は拡大される。
The same figure shows an Nd—Fe—B permanent magnet quenched from about 750 ° C. and annealing temperature. According to FIG. 9 and FIG. 10, it is confirmed that Nd-Fe-B which was cooled slowly was used.
The temperature dependence and absolute value of the permanent magnet are slightly better than those of the permanent magnet. Therefore, the required characteristics, that is, remanent magnetization Br of 1.35T or more at room temperature and 150 ° C
The range of achieving a coercive force H cJ of 5 kOe or more is expanded.

【0037】 150℃での抗磁力の特に高い値は、28.5重量%以上、特に28.7重量
%の希土類の有効含有量で生じ、その際有効硼素含有量との関係は、 1.814−0.0303[SE] eff≦[B] eff≦1.478−0.01801[SE] eff である。
A particularly high value of the coercive force at 150 ° C. occurs at an effective content of rare earths of 28.5% by weight or more, especially 28.7% by weight, and the relationship with the effective boron content is 1.814− 0.0303 [SE] eff ≤ [B] eff ≤ 1.478-0.01801 [SE] eff .

【0038】 最後にNdの他にPrも、永久磁石の磁気特性を損なうことなく使用できるこ
とを付言する。
Finally, it should be added that Pr can be used in addition to Nd without impairing the magnetic characteristics of the permanent magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のNd−Fe−B永久磁石の相線図の部分図。[Figure 1]   The partial view of the phase diagram of the Nd-Fe-B permanent magnet of the present invention.

【図2】 種々のNd−Fe−B永久磁石の残留磁化Brと抗磁力HcJの関係を示す図。FIG. 2 is a diagram showing a relationship between remanent magnetization Br and coercive force H cJ of various Nd—Fe—B permanent magnets.

【図3】 焼結及び焼鈍時に行われる温度操作の線図。[Figure 3]   The diagram of temperature operation performed at the time of sintering and annealing.

【図4】 焼結及び焼鈍時に行われるもう1つの可能な温度操作の線図。[Figure 4]   Diagram of another possible temperature operation performed during sintering and annealing.

【図5】 焼結及び焼鈍時に行われる温度操作の形式の抗磁力HcJ依存度を示す線図。FIG. 5 is a diagram showing the coercive force H cJ dependency of the type of temperature operation performed during sintering and annealing.

【図6】 硼素及び希土類の有効含有量の残留磁化依存度を示す線図。[Figure 6]   FIG. 5 is a diagram showing the remanent magnetization dependence of the effective contents of boron and rare earth.

【図7】 緩慢に冷却した硼素及び希土類の有効含有量の150℃での抗磁力HcJ依存度
を示す線図。
FIG. 7 is a diagram showing the coercive force H cJ dependence at 150 ° C. of the effective contents of slowly cooled boron and rare earths.

【図8】 緩慢に冷却した場合の硼素及び希土類有効含有量の残留磁化の温度係数TK
(HcJ)依存度を示す線図。
FIG. 8: Temperature coefficient TK of remanent magnetization of boron and rare earth effective contents when slowly cooled
A diagram showing (H cJ ) dependence.

【図9】 迅速に冷却した場合の硼素及び希土類有効含有量の150℃での抗磁力HcJ
依存度を示す線図。
FIG. 9 is a diagram showing the dependency of the effective coercive force H cJ at 150 ° C. on the effective contents of boron and rare earth in the case of rapid cooling.

【図10】 迅速に冷却した場合の硼素及び希土類有効含有量の抗磁力の温度度係数TK
(HcJ)の依存度を示す線図。
FIG. 10: Temperature coefficient TK of coercive force of boron and rare earth effective contents when rapidly cooled
The diagram which shows the dependence degree of ( HcJ ).

【符号の説明】[Explanation of symbols]

1 相三角形 2、4 コノード(限界線) 3、5 相領域 ψ Nd2Fe14Bの組成を有する硬磁性の相 η Nd1.1Fe4Bの組成を有する非磁性の相 SE Ndに富む楔相 A1〜A4 従来技術による合金の組成 B1〜B3 本発明による合金の組成1 phase triangle 2, 4 conode (limit line) 3, 5 phase region ψ Nd 2 Fe 14 B hard magnetic phase η Nd 1.1 Fe 4 B nonmagnetic phase SE Nd rich wedge phase A1 to A4 Composition of alloy according to prior art B1 to B3 Composition of alloy according to the present invention

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 33/02 C22C 33/02 K H01F 1/053 H01F 1/04 H Fターム(参考) 4K018 AA27 CA04 DA21 DA29 FA09 KA45 5E040 AA04 AA19 CA01 HB03 HB06 HB11 NN01 NN18 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 33/02 C22C 33/02 K H01F 1/053 H01F 1/04 HF term (reference) 4K018 AA27 CA04 DA21 DA29 FA09 KA45 5E040 AA04 AA19 CA01 HB03 HB06 HB11 NN01 NN18

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】B、Co、Cu、Ga及びAlの元素並びに製造条件から生じ
る不純物を含み、イットリウムを含む希土類の少なくとも1つと鉄から成る合金
において、有効希土類含有量[SE]eff、有効硼素含有量[B]eff、Dy、T
b及びHoの[Dy+Tb+Ho]共同含有量、コバルト含有量[Co]、銅含
有量[Cu]及びガリウム含有量[Ga]並びにアルミニウム含有量[Al]の
重量比が、 26.9重量%≦[SE]eff≦33重量% 2.185 - 0.0442[SE]eff≦[B]eff≦1.363 - 0.0136[SE]eff [Dy + Tb + Ho]≦17重量% 0.5重量%≦[Co]≦5重量% 0.05重量%≦[Cu]≦0.3重量% 0.05重量%≦[Ga]≦0.35重量% 0.02重量%≦[Al]≦0.3重量% であることを特徴とする硼素分の少ないNd−Fe−B合金。
1. An effective rare earth content [SE] eff , effective boron in an alloy comprising iron and at least one rare earth element including yttrium, which contains elements of B, Co, Cu, Ga and Al and impurities resulting from manufacturing conditions. Content [B] eff , Dy, T
b and Ho [Dy + Tb + Ho] joint content, cobalt content [Co], copper content [Cu] and gallium content [Ga], and aluminum content [Al] in a weight ratio of 26.9% by weight ≦ [SE] eff ≤ 33 wt% 2.185-0.0442 [SE] eff ≤ [B] eff ≤ 1.363-0.0136 [SE] eff [Dy + Tb + Ho] ≤ 17 wt% 0.5 wt% ≤ [Co] ≤ 5 wt% 0.05 wt% Nd-Fe-B alloy with low boron content, characterized in that ≤ [Cu] ≤ 0.3 wt% 0.05 wt% ≤ [Ga] ≤ 0.35 wt% 0.02 wt% ≤ [Al] ≤ 0.3 wt%.
【請求項2】 有効硼素含有量[B]effが、希土類と 1.814−0.0303[SE]eff≦[B]eff≦1.363−0.0136[SE]eff の重量関係にあることを特徴とする請求項1記載の合金。2. The effective boron content [B] eff has a weight relationship of 1.814-0.0303 [SE] eff ≤ [B] eff ≤ 1.363-0.0136 [SE] eff with the rare earth element. The listed alloy. 【請求項3】 希土類含有量[SE]effが28.9重量%以上であり、有
効硼素含有量[B]effと 1.814−0.0303[SE] eff≦[B] eff≦1.396−0.01491[SE] eff の重量関係にあることを特徴とする請求項1又は2記載の合金。
3. The rare earth content [SE] eff is 28.9% by weight or more, and the effective boron content [B] eff and 1.814-0.0303 [SE] eff ≤ [B] eff ≤ 1.396-0.01491 [SE]. The alloy according to claim 1 or 2, which has a weight relationship of eff .
【請求項4】 希土類含有量[SE]effが28.5重量%以上であり、有
効硼素含有量[B]effと、 1.814−0.0303[SE] eff≦[B] eff≦1.478−0.01801[SE] eff の重量関係にあることを特徴とする請求項1又は2記載の合金。
4. The rare earth content [SE] eff is 28.5% by weight or more, the effective boron content [B] eff is 1.814-0.0303 [SE] eff ≤ [B] eff ≤ 1.478-0.01801 [SE. ] The weight relationship of eff , The alloy of Claim 1 or 2 characterized by the above-mentioned.
【請求項5】 希土類含有量[SE]effが28.7重量%以上であること
を特徴とする請求項4記載の合金。
5. The alloy according to claim 4, wherein the rare earth content [SE] eff is 28.7% by weight or more.
【請求項6】 コバルト含有量が2.5〜3.5重量%であることを特徴と
する請求項1乃至5の1つに記載の合金。
6. The alloy according to claim 1, wherein the cobalt content is 2.5 to 3.5% by weight.
【請求項7】 Cu含有量が0.1〜0.2重量%であることを特徴とする
請求項1乃至6の1つに記載の合金。
7. The alloy according to claim 1, wherein the Cu content is 0.1 to 0.2% by weight.
【請求項8】 Ga含有量が0.20〜0.30重量%であることを特徴と
する請求項1乃至7の1つに記載の合金。
8. The alloy according to claim 1, wherein the Ga content is 0.20 to 0.30% by weight.
【請求項9】 希土類がNd、Pr、Dy、Tbの元素の群から選択されて
いることを特徴とする請求項1乃至8の1つに記載の合金。
9. The alloy according to claim 1, wherein the rare earth element is selected from the group of elements Nd, Pr, Dy and Tb.
【請求項10】 請求項1乃至9の1つに記載の合金から永久磁石を製造す
る方法において、 −少なくとも1つの溶融ブロックの粉砕により製造した粉末を磁場内で配向し、 原材料片にプレス成形し、 −該原材料片を1020℃〜1140℃の温度で焼結し、 −原材料片を300℃以下の温度に冷却し、その際800℃以上では平均冷却速 度ΔT1/Δt1<5K/分で冷却し、 −この原材料片を焼鈍及び冷却する工程を含み、 平均冷却速度ΔT2/Δt2に応じた焼鈍温度TAは、以下に記載する関係 、
即ち ΔT2/Δt2<5K/分で、 [B]eff<2.993−0.069[SE]effで450℃≦TA≦550℃ [B]eff>2.993−0.069[SE]effで460℃≦TA≦510℃ であり、 5K/分≦ΔT2/Δt2≦100K/分で、 450℃≦TA≦550℃ であることを特徴とする永久磁石の製造方法。
10. A method for producing a permanent magnet from an alloy as claimed in claim 1, wherein the powder produced by grinding at least one melt block is oriented in a magnetic field and pressed into raw material pieces. -Sintering the raw material pieces at a temperature of 1020 ° C to 1140 ° C; -cooling the raw material pieces to a temperature of 300 ° C or less, at which the average cooling rate ΔT 1 / Δt 1 <5K / Cooling in minutes, and-including the steps of annealing and cooling this piece of raw material, the annealing temperature TA according to the average cooling rate ΔT 2 / Δt 2 is
That is, when ΔT 2 / Δt 2 <5 K / min, [B] eff <2.993-0.069 [SE] eff 450 ° C. ≦ TA ≦ 550 ° C. [B] eff > 2.993-0.069 [SE ] Eff is 460 ° C. ≦ TA ≦ 510 ° C., 5 K / min ≦ ΔT 2 / Δt 2 ≦ 100 K / min, and 450 ° C. ≦ TA ≦ 550 ° C.
【請求項11】 この原材料片を焼結した後0.5〜2時間にわたり700
〜800℃の保持温度に保つことを特徴とする請求項10記載の方法。
11. 700 for 0.5 to 2 hours after sintering this piece of raw material
11. The method according to claim 10, characterized in that the holding temperature is maintained at ˜800 ° C.
【請求項12】 焼結後の粗製品を保持温度から平均冷却速度ΔT3/Δt
3>5K/分で冷却することを特徴とする請求項11記載の方法。
12. The average cooling rate ΔT3 / Δt from the holding temperature of the crude product after sintering.
The method according to claim 11, characterized in that cooling is performed at 3> 5 K / min.
【請求項13】 冷却速度ΔT2/Δt2及びΔT3/Δt3が30〜50K/
分あることを特徴とする請求項12記載の方法。
13. A cooling rate ΔT 2 / Δt 2 and ΔT 3 / Δt 3 of 30 to 50 K /
13. The method of claim 12, wherein the minutes are minutes.
【請求項14】 焼結後の粗製品を保持温度から平均冷却速度ΔT3/Δt3 <5K/分で冷却することを特徴とする請求項10又は11記載の方法。14. The method according to claim 10, wherein the crude product after sintering is cooled from the holding temperature at an average cooling rate ΔT 3 / Δt 3 <5 K / min. 【請求項15】 冷却速度ΔT1/Δt1ないしΔT3/Δt3が1〜2K/分
であることを特徴とする請求項12記載の方法。
15. The method according to claim 12, wherein the cooling rate ΔT 1 / Δt 1 to ΔT 3 / Δt 3 is 1 to 2 K / min.
JP2001527302A 1999-09-24 2000-09-18 Nd-Fe-B alloy containing less boron and method for producing permanent magnet made of the alloy Pending JP2003510467A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19945942A DE19945942C2 (en) 1999-09-24 1999-09-24 Process for the production of permanent magnets from a low-boron Nd-Fe-B alloy
DE19945942.8 1999-09-24
PCT/EP2000/009128 WO2001024203A1 (en) 1999-09-24 2000-09-18 BORON-LOW Nd-Fe-B ALLOY AND METHOD FOR PRODUCING PERMANENT MAGNETS ON THE BASIS OF SAID ALLOY

Publications (1)

Publication Number Publication Date
JP2003510467A true JP2003510467A (en) 2003-03-18

Family

ID=7923255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001527302A Pending JP2003510467A (en) 1999-09-24 2000-09-18 Nd-Fe-B alloy containing less boron and method for producing permanent magnet made of the alloy

Country Status (4)

Country Link
EP (1) EP1214720B1 (en)
JP (1) JP2003510467A (en)
DE (2) DE19945942C2 (en)
WO (1) WO2001024203A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032432A1 (en) * 2009-09-15 2011-03-24 Byd Company Limited Rare earth permanent magnetic material and preparation method thereof
WO2015022945A1 (en) 2013-08-12 2015-02-19 日立金属株式会社 R-t-b system sintered magnet
WO2015030231A1 (en) 2013-09-02 2015-03-05 日立金属株式会社 Method of producing r-t-b sintered magnet
JP2015103681A (en) * 2013-11-26 2015-06-04 日立金属株式会社 Rare earth-transition metal-boron based sintered magnet
EP3076408A1 (en) 2015-03-31 2016-10-05 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet and making method
EP3076407A1 (en) 2015-03-31 2016-10-05 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet and making method
EP3076406A1 (en) 2015-03-31 2016-10-05 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet and making method
JPWO2015147053A1 (en) * 2014-03-26 2017-04-13 日立金属株式会社 Method for producing RTB-based sintered magnet
EP3179487A1 (en) 2015-11-18 2017-06-14 Shin-Etsu Chemical Co., Ltd. R-(fe,co)-b sintered magnet and making method
EP3264429A1 (en) 2016-06-20 2018-01-03 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet and making method
EP3309801A1 (en) 2016-09-26 2018-04-18 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet
EP3309803A1 (en) 2016-09-26 2018-04-18 Shin-Etsu Chemical Co., Ltd. Method for preparing r-fe-b sintered magnet
WO2018101239A1 (en) 2016-12-02 2018-06-07 信越化学工業株式会社 R-fe-b sintered magnet and production method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012109929A1 (en) 2012-10-18 2014-05-08 Karlsruher Institut für Technologie A method for producing a magnetic alloy and magnetic alloy produced by this method
CN104674115A (en) * 2013-11-27 2015-06-03 厦门钨业股份有限公司 Low-B rare earth magnet
CN104952574A (en) 2014-03-31 2015-09-30 厦门钨业股份有限公司 Nd-Fe-B-Cu type sintered magnet containing W
CN111048273B (en) 2019-12-31 2021-06-04 厦门钨业股份有限公司 R-T-B series permanent magnetic material, raw material composition, preparation method and application

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1277159C (en) * 1983-05-06 1990-12-04 Setsuo Fujimura Isotropic permanent magnets and process for producing same
DE3740157A1 (en) * 1987-11-26 1989-06-08 Max Planck Gesellschaft SINTER MAGNET BASED ON FE-ND-B
US5472525A (en) * 1993-01-29 1995-12-05 Hitachi Metals, Ltd. Nd-Fe-B system permanent magnet
DE69423305T2 (en) * 1993-12-10 2000-11-30 Sumitomo Special Metals Co., Ltd. Permanent magnet alloy powder based on iron for resin-bonded magnets and magnets made from them
US5480471A (en) * 1994-04-29 1996-01-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same
JPH08181010A (en) * 1994-12-22 1996-07-12 Hitachi Metals Ltd Rare earth sintered magnet
US5858123A (en) * 1995-07-12 1999-01-12 Hitachi Metals, Ltd. Rare earth permanent magnet and method for producing the same
DE19541948A1 (en) * 1995-11-10 1997-05-15 Schramberg Magnetfab Magnetic material and permanent magnet of the NdFeB type
DE19636285C2 (en) * 1996-09-06 1998-07-16 Vakuumschmelze Gmbh Process for producing an SE-Fe-B permanent magnet
JPH10289813A (en) * 1997-04-16 1998-10-27 Hitachi Metals Ltd Rare-earth magnet

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504881A (en) * 2009-09-15 2013-02-07 ビーワイディー カンパニー リミテッド Rare earth permanent magnetic material and preparation method thereof
WO2011032432A1 (en) * 2009-09-15 2011-03-24 Byd Company Limited Rare earth permanent magnetic material and preparation method thereof
WO2015022945A1 (en) 2013-08-12 2015-02-19 日立金属株式会社 R-t-b system sintered magnet
US10847290B2 (en) 2013-08-12 2020-11-24 Hitachi Metals, Ltd. R-T-B based sintered magnet
WO2015030231A1 (en) 2013-09-02 2015-03-05 日立金属株式会社 Method of producing r-t-b sintered magnet
US10658108B2 (en) 2013-09-02 2020-05-19 Hitachi Metals, Ltd. Method for producing R-T-B based sintered magnet
JP2015103681A (en) * 2013-11-26 2015-06-04 日立金属株式会社 Rare earth-transition metal-boron based sintered magnet
JPWO2015147053A1 (en) * 2014-03-26 2017-04-13 日立金属株式会社 Method for producing RTB-based sintered magnet
DE112015001405B4 (en) 2014-03-26 2018-07-26 Hitachi Metals, Ltd. A method of manufacturing an R-T-B based sintered magnet
US9972435B2 (en) 2014-03-26 2018-05-15 Hitachi Metals, Ltd. Method for manufacturing R-T-B based sintered magnet
US9892831B2 (en) 2015-03-31 2018-02-13 Shin-Etsu Chemical Co., Ltd. R-Fe—B sintered magnet and making method
EP3076406A1 (en) 2015-03-31 2016-10-05 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet and making method
KR20160117363A (en) 2015-03-31 2016-10-10 신에쓰 가가꾸 고교 가부시끼가이샤 R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
EP3076408A1 (en) 2015-03-31 2016-10-05 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet and making method
JP2017147426A (en) * 2015-03-31 2017-08-24 信越化学工業株式会社 R-iron-boron based sintered magnet and method for manufacturing the same
CN106024254B (en) * 2015-03-31 2020-06-09 信越化学工业株式会社 R-Fe-B sintered magnet and preparation method thereof
KR20160117364A (en) 2015-03-31 2016-10-10 신에쓰 가가꾸 고교 가부시끼가이샤 R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
EP3076407A1 (en) 2015-03-31 2016-10-05 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet and making method
US10515747B2 (en) 2015-03-31 2019-12-24 Shin-Etsu Chemical Co., Ltd. R-Fe-B sintered magnet and making method
KR20160117365A (en) 2015-03-31 2016-10-10 신에쓰 가가꾸 고교 가부시끼가이샤 R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
US10410775B2 (en) 2015-03-31 2019-09-10 Shin-Etsu Chemical Co., Ltd. R—Fe—B sintered magnet and making method
CN106024254A (en) * 2015-03-31 2016-10-12 信越化学工业株式会社 R-fe-b sintered magnet and making method
US10573438B2 (en) 2015-11-18 2020-02-25 Shin-Etsu Chemical Co., Ltd. R-(Fe, Co)-B sintered magnet and making method
EP3179487A1 (en) 2015-11-18 2017-06-14 Shin-Etsu Chemical Co., Ltd. R-(fe,co)-b sintered magnet and making method
EP3264429A1 (en) 2016-06-20 2018-01-03 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet and making method
US11315710B2 (en) 2016-06-20 2022-04-26 Shin-Etsu Chemical Co., Ltd. R-Fe-B sintered magnet and making method
EP3309803A1 (en) 2016-09-26 2018-04-18 Shin-Etsu Chemical Co., Ltd. Method for preparing r-fe-b sintered magnet
EP3309801A1 (en) 2016-09-26 2018-04-18 Shin-Etsu Chemical Co., Ltd. R-fe-b sintered magnet
US10720271B2 (en) 2016-09-26 2020-07-21 Shin-Etsu Chemical Co., Ltd. R-Fe-B sintered magnet
US10937578B2 (en) 2016-09-26 2021-03-02 Shin-Etsu Chemical Co., Ltd. Method for preparing R—Fe—B sintered magnet
US11410805B2 (en) 2016-09-26 2022-08-09 Shin-Etsu Chemical Co., Ltd. R-Fe-B sintered magnet
KR20190091289A (en) 2016-12-02 2019-08-05 신에쓰 가가꾸 고교 가부시끼가이샤 R-Fe-B type sintered magnet and its manufacturing method
WO2018101239A1 (en) 2016-12-02 2018-06-07 信越化学工業株式会社 R-fe-b sintered magnet and production method therefor
US11600413B2 (en) 2016-12-02 2023-03-07 Shin-Etsu Chemical Co., Ltd. R—Fe—B sintered magnet and production method therefor

Also Published As

Publication number Publication date
DE19945942C2 (en) 2003-07-17
EP1214720A1 (en) 2002-06-19
WO2001024203A1 (en) 2001-04-05
EP1214720B1 (en) 2005-03-09
DE19945942A1 (en) 2001-04-12
DE50009741D1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
EP1420418B1 (en) R-Fe-B sintered magnet
JP4103938B1 (en) R-T-B sintered magnet
JP2003510467A (en) Nd-Fe-B alloy containing less boron and method for producing permanent magnet made of the alloy
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
JPH06212327A (en) Rare earth permanent magnet alloy
JP4687662B2 (en) Iron-based rare earth alloy magnet
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP4170468B2 (en) permanent magnet
EP0386286B1 (en) Rare earth iron-based permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPH0146574B2 (en)
KR100204344B1 (en) Rare-earth-element-fe-co-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP2000331810A (en) R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
JPH0536495B2 (en)
JPH05182813A (en) Manufacture of rare earth permanent magnet
JPH0475303B2 (en)
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201