JP2003340844A - Antireflection article due to sol/gel method and manufacturing method therefor - Google Patents

Antireflection article due to sol/gel method and manufacturing method therefor

Info

Publication number
JP2003340844A
JP2003340844A JP2002150124A JP2002150124A JP2003340844A JP 2003340844 A JP2003340844 A JP 2003340844A JP 2002150124 A JP2002150124 A JP 2002150124A JP 2002150124 A JP2002150124 A JP 2002150124A JP 2003340844 A JP2003340844 A JP 2003340844A
Authority
JP
Japan
Prior art keywords
fine
convex
mold
sol
antireflection article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002150124A
Other languages
Japanese (ja)
Other versions
JP4270806B2 (en
Inventor
Tomoyuki Suzuki
智之 鈴木
Arimichi Ito
有道 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002150124A priority Critical patent/JP4270806B2/en
Publication of JP2003340844A publication Critical patent/JP2003340844A/en
Application granted granted Critical
Publication of JP4270806B2 publication Critical patent/JP4270806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an antireflection article provided with fine unevenness for preventing the reflection of light with good durability. <P>SOLUTION: In order to manufacture the antireflection article by forming a fine uneven layer 3 having fine unevenness 2 to the surface of a substrate 1, (A) a master having a fine uneven shape formed thereto is prepared and (B) a master is used as a shaping mold or a duplicated mold produced by the duplication due to once or more templating/reversal of the fine uneven shape on the surface of the master is used to press the shaping mold to the coating film of a sol/gel solution containing an organometal compound applied and formed to the substrate to shape fine unevenness to the surface of the coating film to form a fine uneven layer. The fine uneven layer is further baked appropriately. The shape of the fine unevenness 2 is formed so that the cycle PMAX in the most projected parts of the fine unevenness 2 becomes the minimum wavelength λMIN or less in the vacuum of a wavelength band of visible light and the cross-sectional area occupying ratio of the substrate part in a horizontal cross section continuously and gradually increases from the most projected parts of the fine unevenness 2 to the most recessed parts thereof. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、携帯電話
機の液晶表示部等の各種用途に用い得る、光の表面反射
を防止した反射防止物品とその製造方法に関する。特
に、ゾルゲル法によって反射防止機能を付与した反射防
止物品とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection article which prevents surface reflection of light and can be used for various applications such as a liquid crystal display of a mobile phone and a method for producing the same. In particular, it relates to an antireflection article provided with an antireflection function by a sol-gel method and a method for producing the same.

【0002】[0002]

【従来の技術】光反射防止が施された物品或いは光反射
防止が望まれる物品は、様々な用途で見受けられる。例
えば、各種機器の情報表示部の窓材である。一例を挙げ
れば、携帯電話機、デジタルカメラ等では、液晶表示デ
ィスプレイ(LCD)等を利用した情報表示部を、水、
塵、外力等から保護するために、LCD等による表示パ
ネルをそのまま機器外部に露出させずに、外側に透明プ
ラスチック板等による窓材を設けて、表示パネルを保護
する事が多い(特開平7−66859号公報等参照)。
2. Description of the Related Art Articles to which light reflection is applied or articles for which light reflection is desired are found in various applications. For example, it is a window material of the information display section of various devices. As an example, in a mobile phone, a digital camera, etc., an information display unit using a liquid crystal display (LCD) or the like is
In order to protect the display panel from dust, external force, etc., the display panel made of an LCD or the like is not exposed to the outside of the device as it is, but a window member made of a transparent plastic plate or the like is provided on the outside to protect the display panel (Japanese Patent Laid-Open No. Hei 7 (1998)). -66859, etc.).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、表示パ
ネルの前方に窓材等を配置すると、窓材の表裏両面で外
光が反射し、表示の視認性が低下するという問題があっ
た。また、表示パネルの低消費電力化が重要な要素であ
る携帯電話機等の携帯機器では、外光反射の問題点とし
て表示の視認性低下の他に更に、窓材での光反射によっ
て、表示パネルからの光の一部が表示パネル側に戻され
る為に、表示パネルの光の利用効率が低下し、その分、
無駄な電力が消費されているという問題もあった。上記
窓材は反射防止物品の一例であったが、この他にも、光
反射防止が望まれる或いは必要な物品としては、例え
ば、各種光学部品、或いは、透明タッチパネル、或い
は、広告ディスプレスの前面保護板等と各種ある。
However, when a window material or the like is arranged in front of the display panel, there is a problem that external light is reflected on both front and back surfaces of the window material, and the visibility of the display is deteriorated. In portable devices such as mobile phones, where low power consumption of the display panel is an important factor, the visibility of the display is reduced as a problem of external light reflection, and the display panel is also affected by light reflection by the window material. Since part of the light from the display panel is returned to the display panel side, the light utilization efficiency of the display panel is reduced.
There was also a problem that wasted power was consumed. Although the window material is an example of an antireflection article, other articles for which antireflection is desired or necessary include, for example, various optical components, a transparent touch panel, or the front surface of an advertising display. There are various types such as protective plates.

【0004】そして、従来の反射防止処理の手法として
は、例えば、蒸着、スパッタリング、或いは塗工等の手
法によって、低屈折率層単層膜或いは低屈折率層と高屈
折率層との多層膜からなる反射防止層を設ける(特開2
001−127852号公報等参照)等の技術が一般的
である。しかし、蒸着、スパッタリング等による反射防
止層は、1回又は多数回のバッチ処理により、屈折率と
厚みを制御した薄膜を形成する必要があるので、製品の
安定性、良品率等に問題がある上、バッチ式生産となる
ので、生産性が低く、この為、コストも高くなるという
問題があった。或いはまた、別の反射防止処理として、
表面を梨地処理化し、その拡散(乱)反射によって鏡面
反射光を低減する技術も挙げられるが、この方法では光
を拡散させる点で、光の利用効率を上げることはできな
い上に透過して見る画像の解像度も低下するという問題
があった。それは、特に例えば、前記情報表示部の窓材
に於ける、表示パネルの表示光の利用効率である。
As a conventional antireflection treatment method, for example, a low-refractive-index layer single-layer film or a multi-layer film of a low-refractive-index layer and a high-refractive-index layer is formed by a method such as vapor deposition, sputtering, or coating. An antireflection layer consisting of
(See Japanese Patent Application Laid-Open No. 001-127852, etc.) is generally used. However, the antireflection layer formed by vapor deposition, sputtering or the like needs to be formed into a thin film whose refractive index and thickness are controlled by one or multiple batch treatments, so that there are problems in product stability, non-defective product ratio, etc. In addition, since batch production is used, there is a problem in that productivity is low and therefore cost is high. Alternatively, as another antireflection treatment,
There is also a technique to reduce the specular light by diffusing (diffuse) reflection on the surface to make it satin-finished, but this method does not increase the light utilization efficiency in terms of diffusing the light and sees it through. There is a problem that the resolution of the image also decreases. That is, for example, the utilization efficiency of the display light of the display panel in the window material of the information display unit.

【0005】そこで、本出願人は、これら従来の反射防
止処理技術に於ける問題点を解決すべく、特開昭50−
70040号公報に開示された、繰返周期が光の波長以
下の極めて微細な微細凹凸を表面に設けることによって
表面反射率を減少させる技術を、応用することを試み
た。同号公報に開示された技術をここで説明すれば、表
面反射を減らすべきレンズ等の光学部品に対して、その
表面にフォトレジスト等を塗布し、露光し、現像する等
して、レジストパターンを作製し、該パターンによりガ
ラス基材を腐蝕することで、光学部品の表面に一品毎に
直接、微細凹凸を造形する方法である。しかしながら、
一品毎の製造では、作業能率が悪く、工業製品に必要な
生産性(量産性)は得られないという問題があった。
Therefore, the applicant of the present invention has proposed to solve the problems in these conventional antireflection treatment techniques in Japanese Patent Laid-Open No.
An attempt was made to apply the technique disclosed in Japanese Patent No. 70040, which reduces the surface reflectance by providing the surface with extremely fine fine irregularities having a repetition period equal to or shorter than the wavelength of light. The technique disclosed in the publication will be described here. For optical components such as lenses for which surface reflection should be reduced, a photoresist or the like is applied to the surface of the optical component, exposed, and developed to form a resist pattern. Is produced, and the glass substrate is corroded by the pattern to form fine irregularities directly on the surface of the optical component for each product. However,
The production of each product has a problem that the work efficiency is poor and the productivity (mass productivity) required for industrial products cannot be obtained.

【0006】この様な観点から、本発明者らは、特願2
001−352674号(本発明出願時未公開)とし
て、複製型を用いると共に、いわゆる2P法(Phot
o−polymerization法)によって、基材
上に微細凹凸層を賦形する方法を提案した。この方法に
よれば生産性は向上するが、2P法を利用する限り、得
られる反射防止物品の表面に形成された微細凹凸層は、
光硬化性樹脂という有機材料からなるので、ガラス等の
無機材料の場合に比べれば耐熱性、耐候性等に限界があ
ることは否めなかった。
From this point of view, the present inventors have filed a Japanese patent application No. 2
No. 001-352674 (unpublished at the time of filing of the present invention), a replication type is used, and the so-called 2P method (Phot) is used.
A method of shaping a fine concavo-convex layer on a substrate by an o-polymerization method) has been proposed. According to this method, the productivity is improved, but as long as the 2P method is used, the fine uneven layer formed on the surface of the obtained antireflection article is
Since it is made of an organic material called a photocurable resin, it cannot be denied that heat resistance and weather resistance are limited as compared with the case of an inorganic material such as glass.

【0007】すなわち、本発明の課題は、光の無駄な反
射を減らし、表示の視認性を向上させると共に表示光の
光の利用効率も上げられる様な微細凹凸を表面に設けた
反射防止物品を、生産性良く製造する方法を提供するこ
とである。しかも、耐熱性や耐候性等も良好となる製造
方法を提供することである。また、この様にして得られ
た反射防止物品を提供することである。
[0007] That is, an object of the present invention is to provide an antireflection article having fine irregularities on the surface which can reduce unnecessary reflection of light, improve the visibility of the display and improve the utilization efficiency of the light of the display light. , To provide a method of manufacturing with high productivity. Moreover, it is an object of the present invention to provide a manufacturing method in which heat resistance, weather resistance and the like are improved. Another object of the present invention is to provide the antireflection article thus obtained.

【0008】[0008]

【課題を解決するための手段】そこで、上記課題を解決
すべく、本発明による反射防止物品の製造方法は、表面
に反射防止用の微細凹凸を有する微細凹凸層が基材上に
形成されて成る反射防止物品を製造する方法であって、
上記微細凹凸は、可視光の波長帯域の真空中に於ける最
小波長をλMIN、該微細凹凸の最凸部に於ける周期をP
MAXとしたときに、 PMAX≦λMIN なる関係を有し、且つ該微細凹凸をその凹凸方向と直交
する面で切断したと仮定したときの断面内に於ける基材
の材料部分の断面積占有率が、該微細凹凸の最凸部から
最凹部に行くに従って連続的に漸次増加して行く様な凹
凸であり、上記反射防止物品を製造する際に工程として
順次、(A)先ず、微細凹凸形状を造形した原型を用意
し、(B)次いで、賦形型として上記原型を用いるか、
或いは、上記原型の表面の微細凹凸形状を1又は2回以
上の型取・反転による複製を経て複製型を作製して該複
製型を用いて、基材上に塗布形成した有機金属化合物を
含むゾルゲル液の塗布膜に対して、前記賦形型を押圧
後、離型して、該塗布膜の表面に微細凹凸を賦形して微
細凹凸層とする、各工程を行う構成として、ゾルゲル法
によって反射防止物品を製造する様にした。
In order to solve the above-mentioned problems, the method for producing an antireflection article according to the present invention is characterized in that a fine uneven layer having fine unevenness for antireflection is formed on a substrate. A method of manufacturing an antireflection article consisting of:
The fine irregularities have a minimum wavelength λ MIN in a vacuum in the wavelength band of visible light and a period P at the highest convex portion of the fine irregularities.
When the MAX, the cross-sectional area of the P MAX ≦ λ MIN composed has a relationship, and the material portion in the substrate in a cross section, assuming that the the fine unevenness was cut along a plane perpendicular to the uneven direction The occupancy is such a concavo-convex pattern that it continuously and gradually increases from the most convex part to the most concave part of the fine concavo-convex, and in the steps of manufacturing the antireflection article, (A) Prepare a prototype having a concavo-convex shape, (B) then use the above prototype as a shaping mold, or
Alternatively, it contains a metal-organic compound formed by coating on a base material by making a replica mold by replicating the fine concavo-convex shape on the surface of the master mold once or twice or more by taking and reversing the mold. After pressing the shaping mold against the coating film of the sol-gel liquid, the mold is released, and fine unevenness is formed on the surface of the coating film to form a fine unevenness layer. To produce an antireflection article.

【0009】この様な製造方法とすることで、反射防止
物品の表面の微細凹凸はフォトレジスト塗布・露光・現
像等によって、一品毎に直接造形する場合に比べて、一
旦賦形型を作製した後、この賦形型からの賦形によって
形成できるので、先ず、生産性が良くなる。つまり、微
細凹凸形状を最初に造形する原型の作製に長時間を要し
ても、一旦原型を作製すれば、それをそのまま賦形型と
して用いる場合でも、賦形型は繰返し使用ができるから
である。なお、前記原型は賦形型として用いずに、前記
原型からその微細凹凸形状を型取・反転して複製した複
製型を賦形型として用いれば、より生産性は良くなる。
それは、複製型であれば、同じものを多数用意して同時
平行的にも製造できる上、たとえ複製型が傷付いたとし
ても原型から造り直す必要がないからである。これらの
生産性向上効果が得られるのは、原型をフォトリソグラ
フィー法等によって作製する工程が一番難度が高く、且
つ時間、労力、製造原価も大きいからである。
By adopting such a manufacturing method, the fine irregularities on the surface of the antireflection article are once produced by shaping a mold by coating with photoresist, exposing, developing, etc. After that, since it can be formed by shaping from this shaping mold, the productivity is improved first. In other words, even if it takes a long time to manufacture the master mold for initially molding the fine concavo-convex shape, once the master mold is manufactured, the mold can be used repeatedly even when it is used as it is as a mold. is there. In addition, if the original mold is not used as a shaping mold, but a duplicating mold in which the fine concavo-convex shape is taken and inverted from the original mold is used as the shaping mold, the productivity is further improved.
This is because if it is a duplicate mold, a large number of the same can be prepared and manufactured in parallel, and even if the duplicate mold is damaged, it is not necessary to remake it from the original mold. The reason why these productivity improving effects are obtained is that the process of producing the prototype by the photolithography method has the highest difficulty, and the time, labor, and manufacturing cost are large.

【0010】しかも、本発明の製造方法では、反射防止
物品の表面に形成する微細凹凸層は、有機金属化合物を
出発物質とするゾルゲル法によって形成する為に、無機
質系の層が得られ、例えば2P法等による樹脂層として
形成する場合に比べて、耐熱性、耐候性等を優れたもの
とできる。また、微細凹凸の硬度も得られ、耐洗浄性も
良くなる。なお、本発明の製造方法では、微細凹凸層は
焼成しても良いが、焼成しなくても良い。また、焼成し
ない場合には、反射防止物品の基材としてはガラス等の
無機材料以外に、樹脂等の耐熱性に乏しい有機材料も可
能である上、時間がかかる焼成工程が無い点で生産性が
良く、例えば樹脂シート等の連続帯状の基材に対して、
連続処理により更に生産性を良くする事も可能となる。
Moreover, in the production method of the present invention, the fine uneven layer formed on the surface of the antireflection article is formed by the sol-gel method using an organometallic compound as a starting material, so that an inorganic layer can be obtained. The heat resistance, weather resistance, and the like can be improved as compared with the case where the resin layer is formed by the 2P method or the like. In addition, the hardness of fine irregularities can be obtained and the cleaning resistance can be improved. In the manufacturing method of the present invention, the fine concavo-convex layer may be fired, but may not be fired. When not fired, the base material of the antireflection article may be an organic material having poor heat resistance such as a resin, as well as an inorganic material such as glass, and in addition, it does not require a time-consuming firing step, thus improving productivity. Good, for example, for continuous strip base material such as resin sheet,
It is possible to further improve productivity by continuous processing.

【0011】なお、上記微細凹凸によって光反射が防止
されるのは、簡単に言えば、物質表面に、反射防止すべ
き光の波長以下のサイズの微細凹凸を設けると、該表面
と空気間の屈折率変化を、実質的に穏やかで連続的なも
のにできるので、急激で不連続な屈折率変化の場合に生
じる現象である光反射を防げるからである。
The reason why light reflection is prevented by the fine irregularities is, to put it simply, if fine irregularities having a size equal to or less than the wavelength of light to be antireflection are provided on the surface of the material, the gap between the surface and the air will be reduced. This is because the refractive index change can be made substantially gentle and continuous, so that light reflection, which is a phenomenon that occurs when the refractive index change is abrupt and discontinuous, can be prevented.

【0012】しかも、この様な微細凹凸を設けた本反射
防止物品が備える反射防止機能は、梨地処理等の様な乱
反射による鏡面反射光を低減する光拡散性の反射防止で
は無く、物品表面と空気との界面の急激な屈折率変化を
緩和する事によって実現している為に、非光拡散性であ
り、光反射率が低減した分、光透過率が向上する。従っ
て、ディスプレイ等の情報表示部の窓材等に使用時に、
表示の視認性を向上させると共に、表示光の光の利用効
率も上げられる物品となる。
In addition, the antireflection function of the present antireflection article provided with such fine irregularities is not the light diffusive antireflection that reduces the specular reflection light due to irregular reflection such as satin finish, but the article surface Since it is realized by easing the abrupt change in refractive index at the interface with air, it is non-light diffusive, and the light reflectance is reduced and the light transmittance is improved. Therefore, when used as a window material for information display parts such as displays,
The article has improved visibility of display and improved utilization efficiency of display light.

【0013】また、本発明の反射防止物品の製造方法
は、上記製造方法に於いて更に、基材が無機質基材であ
り、賦形型を離型した後、表面に微細凹凸が賦形された
微細凹凸層を焼成する製造方法とした。
Further, in the method for producing an antireflection article of the present invention, in the above-mentioned production method, the substrate is an inorganic substrate, and after releasing the shaping mold, fine irregularities are shaped on the surface. The manufacturing method of firing the fine concavo-convex layer was adopted.

【0014】本製造方法は、更に基材を無機質基材とし
て、製造工程として焼成工程を含む形態に限定したもの
であり、この様な製造方法とすることによって、微細凹
凸層が有機質成分を含む場合であっても、有機質成分を
燃焼、消失させて無機質層とすることができ、耐熱性、
耐候性、硬度、耐洗浄性等はより確実に優れたものとで
きる。従って、例えば、微細凹凸の上に更にITO膜等
の透明導電膜を物理的手法により形成する場合等の耐熱
性が要求される後処理も容易にできる様になる。
In the present manufacturing method, the base material is further limited to an inorganic base material, and the firing step is included as a manufacturing step. By such a manufacturing method, the fine uneven layer contains an organic component. Even in this case, the organic component can be burned and eliminated to form an inorganic layer, which has heat resistance,
The weather resistance, hardness, cleaning resistance, etc. can be surely improved. Therefore, for example, a post-treatment that requires heat resistance, such as when a transparent conductive film such as an ITO film is further formed on the fine irregularities by a physical method, can be easily performed.

【0015】本発明の反射防止物品は、上記いずれかの
製造方法によって製造された構成の反射防止物品とし
た。
The antireflection article of the present invention is an antireflection article having a structure manufactured by any one of the above manufacturing methods.

【0016】この様な構成の反射防止物品とすること
で、上述した各製造方法で述べた作用効果を享受できる
反射防止物品となる。
By using the antireflection article having such a structure, the antireflection article can enjoy the effects described in the above-mentioned manufacturing methods.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0018】〔概要〕図1は、本発明によるゾルゲル法
による反射防止物品の製造方法を、その一形態で概念的
に説明する説明図(断面図)である。なお、ここで説明
する形態では、原型をそのまま賦形型としては用いず
に、原型から一旦複製型を複製し、この複製型を賦形型
として使用する形態である。
[Outline] FIG. 1 is an explanatory view (cross-sectional view) for conceptually explaining one embodiment of the method for producing an antireflection article by the sol-gel method according to the present invention. In the embodiment described here, the original mold is not used as it is as a shaping mold, but a replica mold is once duplicated from the original mold, and this replica mold is used as the shaping mold.

【0019】先ず、図面上方右側の図1(A)の如く、
微細凹凸賦形用の賦形型41は、その賦形面に反射防止
物品に付与すべき微細凹凸2とは逆凹凸形状の微細凹凸
2Aを有する。この賦形型41として、生産性の点でよ
り好ましくは、図面上方左側の図1(B)の如く、露光
法等により微細凹凸形状を造形(微細凹凸形状を最初に
形作ること。)した原型40は使わずに、図1(C)の
如く、該原型40から微細凹凸形状を型取・反転により
複製した複製型を賦形型41として用いるのが良い。な
お、もちろんだが、生産性等の点で問題なければ、上記
原型40をそのまま賦形型41として用いても良い。
First, as shown in FIG. 1A on the upper right side of the drawing,
The shaping die 41 for forming fine unevenness has fine unevenness 2A having an uneven shape opposite to that of the fine unevenness 2 to be given to the antireflection article on the shaping surface. As the shaping mold 41, more preferably in terms of productivity, as shown in FIG. 1B on the upper left side of the drawing, a master pattern in which a fine concavo-convex shape is formed by an exposure method or the like (the fine concavo-convex shape is first formed). Instead of using 40, it is preferable to use, as the shaping die 41, a duplication die obtained by duplicating the fine concavo-convex shape from the original die 40 by die casting / inversion as shown in FIG. Of course, if there is no problem in terms of productivity and the like, the prototype 40 may be used as it is as the shaping mold 41.

【0020】そして、図1(A)の如く、基材1上に
は、有機金属化合物を含むゾルゲル液を塗布して塗布膜
3Aを形成しておく。そして、図1(D)の如く、賦形
型41で該塗布膜3Aを押圧した後、賦形型41を離型
すれば、図1(E)の如く、前記塗布膜3Aは、その表
面に微細凹凸2が賦形された微細凹凸層3となり、該微
細凹凸層3が基材1上に積層された構成の反射防止物品
10が得られる。
Then, as shown in FIG. 1A, a sol-gel solution containing an organometallic compound is applied on the base material 1 to form a coating film 3A. Then, as shown in FIG. 1 (D), if the coating film 3A is pressed by the shaping die 41 and then the shaping die 41 is released, as shown in FIG. 1 (E), the coating film 3A has its surface. A fine concavo-convex layer 3 having the fine concavo-convex 2 formed thereon is obtained, and an antireflection article 10 having a configuration in which the fine concavo-convex layer 3 is laminated on the substrate 1 is obtained.

【0021】なお、このままでも、上記反射防止物品1
0の表面には所望の凹凸形状の微細凹凸2が賦形されて
いるので反射防止効果が得られるが、微細凹凸2を表面
に有する微細凹凸層3の強度、耐久性等をより良くする
為には、更に焼成工程を経て、微細凹凸層3中の有機質
成分を燃焼させてしまうのが好ましい。なお、焼成する
場合には、もちろん基材はその焼成温度に耐え得る材料
となり、基材がガラス等の無機質材料の場合に好適であ
る。
The antireflection article 1 can be used as it is.
Since the surface of No. 0 is formed with the fine unevenness 2 having a desired uneven shape, an antireflection effect can be obtained, but in order to improve the strength, durability and the like of the fine unevenness layer 3 having the fine unevenness 2 on the surface. For this reason, it is preferable to burn the organic component in the fine concavo-convex layer 3 through a firing step. In the case of firing, the base material is of course a material that can withstand the firing temperature, which is suitable when the base material is an inorganic material such as glass.

【0022】なお、本発明特有の上記微細凹凸2は、光
波長以上の大きさの凹凸によるマット面(艶消し)を利
用して光を散乱(拡散反射)させる方式の従来公知の反
射防止処理乃至は防眩処理とは異なり、可視光線の波長
以下の大きさの本発明特有の形状の凹凸である。この様
な微細な凹凸によって、光反射防止効果が得られるので
ある。
The above-mentioned fine unevenness 2 peculiar to the present invention is a conventionally known antireflection treatment of a method of scattering (diffuse reflection) light by utilizing a matte surface (matte) by unevenness having a size larger than the light wavelength. Or, unlike the anti-glare treatment, it is unevenness having a shape peculiar to the present invention and having a size equal to or less than the wavelength of visible light. With such fine irregularities, a light reflection preventing effect can be obtained.

【0023】なお、図1は概念的であるので、反射防止
物品10の形状は平板状であるが、該形状は平板状に限
定されるものではない。また、微細凹凸2は反射防止物
品の2以上の複数の面に形成することもできる。
Since FIG. 1 is conceptual, the antireflection article 10 has a flat plate shape, but the shape is not limited to the flat plate shape. The fine irregularities 2 can also be formed on two or more surfaces of the antireflection article.

【0024】また、反射防止物品と賦形型とでは、その
微細凹凸は逆凹凸関係となるが、本発明の説明では、そ
れらの微細凹凸を特に明示的に区別する場合は、反射防
止物品上のものは微細凹凸2、賦形型上ののものは微細
凹凸2Aとして、符号の違いで使い分ける。但し、複製
型による賦形型では、それを得る為の型取・反転による
複製操作の数によって、賦形型と原型との微細凹凸は、
逆凹凸関係となる場合とそうで無い場合とがある。複製
操作が1回又は奇数回の場合は、賦形型と原型とは逆凹
凸関係だが、2回又は偶数回の場合はそれらは同じ凹凸
関係となる。
Further, in the antireflection article and the shaping mold, the fine irregularities have an inverse concavo-convex relationship, but in the description of the present invention, when these fine irregularities are explicitly distinguished, the Those having a fine concavo-convex pattern 2 and those having a pattern on the shaping mold have a fine concavo-convex pattern 2A, which are used differently depending on the signs. However, in the shaping mold by the duplicating mold, the fine unevenness between the shaping mold and the master mold depends on the number of duplication operations by taking and reversing to obtain it.
There are cases where there is an inverse concavo-convex relationship and cases where it does not. When the duplication operation is performed once or an odd number of times, the shaping mold and the master have an inverse concavo-convex relationship, but when the duplication operation is twice or an even number of times, they have the same concavo-convex relationship.

【0025】〔微細凹凸〕微細凹凸2が、反射防止効果
を有するのは、次の様な理由による。すなわち、該微細
凹凸2によって、反射防止物品の表面を構成する微細凹
凸層3と、外界(空気)との間の急激で不連続な屈折率
変化を、連続的で漸次変化する屈折率変化に変えること
が可能となるからである。それは、光の反射は、物質界
面の不連続な急激な屈折率変化によって生じる現象であ
るから、物品表面に於ける屈折率変化を、空間的に連続
的に変化する様にすることによって、該物品表面に於け
る光反射が減るのである。なお、微細凹凸層3は、通常
は透明で光は透過する物となるが、不透明の物であって
も、その表面反射を低下する反射防止効果は得られる。
[Fine unevenness] The fine unevenness 2 has an antireflection effect for the following reasons. That is, due to the fine irregularities 2, a rapid and discontinuous change in refractive index between the fine irregularity layer 3 forming the surface of the antireflection article and the outside (air) is converted into a continuous and gradual change in refractive index. It is possible to change. This is because the reflection of light is a phenomenon caused by a discontinuous and abrupt refractive index change at the material interface. Therefore, by making the refractive index change on the article surface spatially and continuously, Light reflection on the article surface is reduced. The fine concavo-convex layer 3 is normally transparent and allows light to pass through. However, even if it is opaque, an antireflection effect of reducing the surface reflection can be obtained.

【0026】以下、微細凹凸層3表面に形成された微細
凹凸2によって、反射防止効果が得られる理由につい
て、微細凹凸層3(及び基材1)が透明である場合を前
提として詳述する。
Hereinafter, the reason why the antireflection effect is obtained by the fine irregularities 2 formed on the surface of the fine irregularity layer 3 will be described in detail on the assumption that the fine irregularity layer 3 (and the substrate 1) is transparent.

【0027】図2〜図4は、微細凹凸層3の表面に賦形
された微細凹凸2によって得られる屈折率分布を、概念
的に説明する概念図である。先ず、図2は、反射防止物
品として、基材1(不図示)上に積層され表面に微細凹
凸2が付与された微細凹凸層3について、該微細凹凸層
3が、Z≦0の部分の空間を占め、該微細凹凸層の表
面、すなわちZ=0に於けるXY平面上に、Z軸方向を
凹凸方向とする多数の微細凹凸2が配置された状態を示
す。
2 to 4 are conceptual views for conceptually explaining the refractive index distribution obtained by the fine unevenness 2 formed on the surface of the fine unevenness layer 3. First, FIG. 2 shows, as an antireflection article, a fine concavo-convex layer 3 laminated on a base material 1 (not shown) and provided with fine concavo-convex portions 2 on the surface thereof. A state is shown in which a large number of fine unevennesses 2 having the Z-axis direction as the unevenness direction are arranged on the surface of the fine unevenness layer, that is, on the XY plane at Z = 0, occupying a space.

【0028】そして、本発明では、微細凹凸2を、図2
の如く、その最凸部2tに於ける周期をPMAXとしたと
きに、このPMAXが、可視光の波長帯域の真空中に於け
る最小波長をλMIN以下としてある為、微細凹凸形成面
への到達光に対しては、媒質(微細凹凸層、及び空気)
の屈折率に空間的な分布があっても、それは注目する波
長以下の大きさの分布である為に、その分布がそのまま
直接に光に作用せず、それが平均化されたものとして作
用する。従って、平均化された後の屈折率(有効屈折
率)が光が進行するに従って連続的に変化する様な分布
にしておけば、光の反射を防げるのである。
In the present invention, the fine unevenness 2 is formed as shown in FIG.
As the in period at its most convex portion 2t is taken as P MAX, the P MAX is, since the in the minimum wavelength in a vacuum wavelength band of visible light are not more than lambda MIN, fine irregularities forming surface For the light reaching the medium, the medium (fine concavo-convex layer and air)
Even if there is a spatial distribution in the refractive index of, the distribution does not directly affect the light because it is a distribution with a size below the wavelength of interest, and it acts as an averaged one. . Therefore, the reflection of light can be prevented by making the distribution such that the averaged refractive index (effective refractive index) continuously changes as the light advances.

【0029】なお、本発明に於いて、最凸部2tに於け
る周期PMAXとは、隣接する微細凹凸2の最凸部2t間
の距離のうち最大の距離であって、個々の微細凹凸が規
則的に配置され周期性を有する(隣接する微細凹凸同士
間の距離が同一)構成でも良いが、周期性が無い(隣接
する微細凹凸同士間の距離が不揃い)構成でも良い。
In the present invention, the period P MAX of the most convex portion 2t is the maximum distance between the most convex portions 2t of the adjacent fine irregularities 2 and is the individual fine irregularities. May be regularly arranged and have periodicity (distances between adjacent fine irregularities are the same), but may be non-periodic (distances between adjacent fine irregularities are not uniform).

【0030】そして、図2では、直交座標系として、微
細凹凸層3の表面の包絡面に立てた法線方向にZ軸を、
また、それと直交する平面内にX軸、Y軸をとる。そし
て、今、光が微細凹凸層外部から微細凹凸層内に入光し
て、該微細凹凸層内部を進み、該微細凹凸層の表面近傍
をZ軸の負方向に向かって進行しつつあり、丁度、Z軸
座標がzのところに存在するとする。
Then, in FIG. 2, the Z axis is set in the direction of the normal to the envelope surface of the fine concavo-convex layer 3 as an orthogonal coordinate system.
In addition, the X axis and the Y axis are set in the plane orthogonal to it. Then, now, light enters from the outside of the fine concavo-convex layer into the fine concavo-convex layer, travels inside the fine concavo-convex layer, and proceeds in the vicinity of the surface of the fine concavo-convex layer in the negative direction of the Z-axis, Just assume that the Z-axis coordinate is at z.

【0031】すると、ここのZ=zに居る光にとって
は、媒体の屈折率は微細凹凸層3表面が特定の微細凹凸
2をなす為、厳密には、Z=zに於いてZ軸と直交する
XY平面(横断面:水平断面)内に於いて、分布f
(x,y,z)を持つ様に見える。すなわち、XY平面
内に於いて、微細凹凸層3の断面部分は屈折率n
b(1.5程度)、其の他の部分、具体的には空気aの
部分は屈折率na(=1.0程度)となる(図3参
照)。ところが実際には、光にとっては、その波長(反
射防止の対象とする光の波長が分布を有する場合は、そ
の波長帯域の最小波長λMINを考えれば良い。)よりも
小さな空間的スケールの屈折率分布は、平均化されたも
のとして作用する結果、平均化された結果の有効屈折率
は、前記XY平面内に於いて、屈折率分布f(x,y,
z)をXY平面内に於いて積分したもの、
Then, for the light at Z = z, the refractive index of the medium has a specific fine unevenness 2 on the surface of the fine unevenness layer 3, so strictly speaking, at Z = z, it is orthogonal to the Z axis. Distribution f in the XY plane (transverse section: horizontal section)
Looks like it has (x, y, z). That is, in the XY plane, the cross section of the fine concavo-convex layer 3 has a refractive index n.
b (about 1.5), and the other part, specifically, the part of air a has a refractive index n a (= about 1.0) (see FIG. 3). However, in reality, for light, refraction on a spatial scale smaller than that wavelength (if the wavelength of the light to be anti-reflection has a distribution, consider the minimum wavelength λ MIN of the wavelength band). As a result of the refractive index distribution acting as an average, the effective refractive index of the averaged result has a refractive index distribution f (x, y, in the XY plane).
z) integrated in the XY plane,

【0032】[0032]

【数1】 [Equation 1]

【0033】となる。その結果、有効屈折率(nef)の
分布はzのみの関数nef(z)となる(図4参照)。
It becomes As a result, the distribution of the effective refractive index (n ef ) becomes a function n ef (z) of only z (see FIG. 4).

【0034】よって、もしも、微細凹凸2に於ける微細
凹凸層3の凸部の断面積が、凹部に向かって連続的に増
大する様な形状であれば(XY平面内に於ける)微細凹
凸層部分と空気部分との面積比がZ軸方向に向かって連
続的に変化する為、有効屈折率nef(z)はzに付いて
の連続関数になる。
Therefore, if the cross-sectional area of the convex portion of the fine concavo-convex layer 3 in the fine concavo-convex 2 is such that it continuously increases toward the concavity, the fine concavo-convex pattern (in the XY plane). Since the area ratio between the layer portion and the air portion continuously changes in the Z-axis direction, the effective refractive index n ef (z) is a continuous function with respect to z.

【0035】一方、一般に屈折率n0の媒質から、屈折
率n1の媒質に光が入射する場合を考える。今、簡単の
為に、入射角θ=0°(垂直入射)を考える。但し、入
射角は入射面の法線に対する角度とする。この場合、媒
質界面での反射率Rは、偏光、及び入射角には依存せ
ず、下記の〔式2〕となる。
On the other hand, in general, let us consider a case where light enters from a medium having a refractive index n 0 to a medium having a refractive index n 1 . Now, for the sake of simplicity, consider an incident angle θ = 0 ° (normal incidence). However, the incident angle is an angle with respect to the normal line of the incident surface. In this case, the reflectance R at the medium interface does not depend on the polarized light and the incident angle, and becomes the following [Formula 2].

【0036】[0036]

【数2】 [Equation 2]

【0037】従って、(有効)屈折率のZ方向への変化
が連続関数であるということは、Z方向(光の進行方
向)に微小距離Δz隔てた2点、Z=zに於ける屈折率
ef(z)をn0、Z=z+Δzに於ける屈折率n
ef(z+Δz)をn1、としたときに、
Therefore, the fact that the change of the (effective) refractive index in the Z direction is a continuous function means that the refractive index at Z = z, two points separated by a minute distance Δz in the Z direction (light traveling direction). n ef (z) is n 0 , and the refractive index n at Z = z + Δz
When ef (z + Δz) is n 1 ,

【0038】Δz→0 ならば、 n1→n0 If Δz → 0, then n 1 → n 0

【0039】となり(連続関数の定義より)、よって、
〔式2〕より、
And (from the definition of the continuous function),
From [Equation 2],

【0040】R→0R → 0

【0041】となる。It becomes

【0042】なお、ここで、より厳密に言うと、物体中
での光の波長は、真空中の波長をλ、物体の屈折率をn
としたときに、λ/nとなり、λよりは一般に或る程度
小となる。但し、物体が空気の場合の屈折率はn≒1の
為、λ/n≒λと考えて良い。但し、微細凹凸層に使わ
れる材料は、通常1.5前後の屈折率である為、屈折率
bの基材中の波長(λ/nb)は、0.7λ程度とな
る。この点を考慮すると、微細凹凸2の部分に於いて、
空気の側の部分(微細凹凸2の凹部)について見れば、
Here, to be more precise, the wavelength of the light in the object is λ, the wavelength in vacuum is n, and the refractive index of the object is n.
Then λ / n, which is generally smaller than λ to some extent. However, since the refractive index when the object is air is n≈1, it may be considered that λ / n≈λ. However, since the material used for the fine concavo-convex layer usually has a refractive index of about 1.5, the wavelength (λ / n b ) in the base material having the refractive index n b is about 0.7λ. Considering this point, in the part of the fine unevenness 2,
Looking at the part on the air side (recesses of the fine unevenness 2),

【0043】PMAX≦λMIN P MAX ≦ λ MIN

【0044】の条件を満たすとき、屈折率平均化による
反射率低減効果が期待出来る。但し、
When the condition (1) is satisfied, the effect of reducing the reflectance by averaging the refractive index can be expected. However,

【0045】λMIN/nb≦PMAX≦λMIN Λ MIN / n b ≤P MAX ≤λ MIN

【0046】である場合は、微細凹凸層の部分(微細凹
凸2の凸部)の寄与について見れば、屈折率平均化によ
る反射率低減効果は、少なくとも完全には期待出来ない
ことになる。しかし、それでも、空気部分に於ける寄与
の為、全体としては反射防止効果を有する。そして、
In the case of, the contribution of the fine concavo-convex layer portion (convex portions of the fine concavo-convex 2) cannot be expected to be at least completely reduced by the average refractive index. However, it still has an antireflection effect as a whole due to the contribution in the air portion. And

【0047】PMAX≦λMIN/nb P MAX ≤λ MIN / n b

【0048】の条件までも満たす場合は、空気部分、微
細凹凸層部分とも、周期PMAXが、最短波長よりも小さ
いと言う条件が完全に満たされる為、屈折率平均化によ
る反射防止効果は、より完全となる。具体的には、λ
MINを可視光波長帯域の下限380nm、nbを仮に1.
5とすれば、λMIN/nbは250nm、つまりPMAX
250nm以下とすれば良い。
When the condition (1) is also satisfied, the condition that the period P MAX is smaller than the shortest wavelength is completely satisfied in both the air part and the fine concavo-convex layer part, so the antireflection effect by averaging the refractive index is It will be more complete. Specifically, λ
MIN is the lower limit of the visible light wavelength band of 380 nm, and n b is 1.
If it is 5, λ MIN / n b may be 250 nm, that is, P MAX may be 250 nm or less.

【0049】次に、微細凹凸2の形状は、微細凹凸をそ
の凹凸方向と直交する面(XY平面)で切断したと仮定
したときの断面(水平断面)内に於ける微細凹凸層の材
料部分の断面積占有率が、該微細凹凸の最凸部(頂上)
から最凹部(谷底)に行くに従って連続的に漸次増加し
て行く形状とする。この為には、微細凹凸の山は少なく
ともその一部の側面が斜めの斜面を有するものとすれば
良いが、下記する図5(C)の様に斜面と共に垂直側面
がある形状の微細凹凸でも良い。特に、好ましくは、最
凸部に於いて完全に0に収束し、且つ最凹部に於いて完
全に1に収束する形状とする。具体的には例えば、図5
(B)、図5(C)の如き形状が挙げられる。但し、図
5(D)、或いは図5(E)の如く、最凸部に於いて
は、ほぼ0に漸近した形状、或いは、最凹部に於いてほ
ぼ1に漸近する様な形状であれば、或る程度の効果は得
られる。微細凹凸の形状は、この様な条件を満たせば、
どんな形状でも良い。
Next, the shape of the fine concavo-convex pattern 2 is the material portion of the fine concavo-convex layer in the section (horizontal section) assuming that the fine concavo-convex section is cut by a plane (XY plane) orthogonal to the concavo-convex direction. The cross-sectional area occupancy is the highest convex portion (top) of the fine irregularities.
From the bottom to the most recessed part (valley bottom). For this purpose, it is sufficient that at least a part of the fine uneven ridge has an oblique slope, but even if the fine uneven ridge has a vertical side as well as a slope as shown in FIG. good. Particularly preferably, the shape is such that the most convex portion converges completely to 0, and the most concave portion completely converges to 1. Specifically, for example, FIG.
Shapes as shown in (B) and FIG. 5 (C) may be mentioned. However, as shown in FIG. 5 (D) or FIG. 5 (E), if the shape is such that the most convex portion is asymptotically close to 0, or that the most concave portion is asymptotically close to 1. A certain effect can be obtained. If the shape of the fine unevenness satisfies these conditions,
Any shape is acceptable.

【0050】例えば、個々の微細凹凸2の垂直断面形状
は、図5(A)の如き正弦波等の曲線のみによる波状の
形状〔図2も参照〕、図5(B)及び図5(C)の如き
三角形等の直線のみによる形状、或いは、図5(D)の
如き三角形の最凸部が平坦面を成す形状である台形の形
状、図5(E)の如き隣接する三角形間の最凹部が平坦
面を成す形状等である。但し、図5(D)や図5(E)
の如く、最凸部或いは最凹部に平坦面を有する形状で
は、最凸部或いは最凹部の平坦面の部分で、その平坦面
の占める面積割合が大きい程、有効屈折率の変化がより
大きく不連続となる。その点で性能的には劣るものとな
る。しかし、この場合でも、微細凹凸の最凸部から最凹
部に行くに従って有効屈折率を連続的に変化させること
は出来る。従って、反射防止性能の点では、最凸部或い
は最凹部の平坦面の面積割合は少ない程好ましい。
For example, the vertical cross-sectional shape of each fine unevenness 2 is a wavy shape only by a curve such as a sine wave as shown in FIG. 5 (A) (see also FIG. 2), FIG. 5 (B) and FIG. 5 (C). ), Such as the shape of a straight line such as a triangle, or the trapezoidal shape in which the most convex portion of the triangle as shown in FIG. 5D forms a flat surface, or the shape between the adjacent triangles as shown in FIG. 5E. For example, the recess has a flat surface. However, FIG. 5 (D) and FIG. 5 (E)
As described above, in the shape having the flat surface at the most convex portion or the most concave portion, the larger the area ratio of the flat surface at the most convex portion or the most concave portion is, the larger the change in effective refractive index becomes. It will be continuous. In that respect, the performance is inferior. However, even in this case, the effective refractive index can be continuously changed from the most convex portion of the fine irregularities to the most concave portion. Therefore, in terms of antireflection performance, the smaller the area ratio of the flat surface of the most convex portion or the most concave portion, the better.

【0051】また、有効屈折率nef(z)を空気中から
微細凹凸層中に向かうZ方向の関数として、naからnb
に連続的に変化する様にする為には、微細凹凸の最凸部
に於いて、微細凹凸層の断面積占有率が0に収束する図
5(B)或いは図5(C)の如き形状(すなわち、尖っ
た形状)で且つ最凹部に於いて該断面積占有率が連続的
に1に収束する形状が最も好ましい。
Further, the effective refractive index n ef (z) is a function of the Z direction from the air to the fine concavo-convex layer, and n a to n b
In order to continuously change the shape, the shape as shown in FIG. 5 (B) or FIG. 5 (C) in which the cross-sectional area occupation ratio of the fine concavo-convex layer converges to 0 at the most convex part of the fine concavo-convex. The most preferable is a shape (that is, a pointed shape) and the cross-sectional area occupancy continuously converges to 1 at the most recessed portion.

【0052】次に、個々の微細凹凸の水平断面形状は、
円形(例えば図2)、楕円形、三角形、四角形、長方
形、六角形、其の他多角形等任意である。なお、水平断
面形状は、微細凹凸の最凸部から最凹部の全てにわたっ
て同じである必要は無い。従って、微細凹凸の立体形状
は、例えば、水平断面形状が円形で垂直断面形状が正三
角形の場合の微細凹凸の立体形状は円錐に、水平断面形
状が円形で垂直断面形状が三角形の場合の微細凹凸の立
体形状は斜円錐に、水平断面形状が三角形で垂直断面形
状が正三角形の場合の微細凹凸の立体形状は三角錐に、
水平断面形状が四角形で垂直断面形状が三角形の場合の
微細凹凸の立体形状は四角錐になる。
Next, the horizontal cross-sectional shape of each fine unevenness is
The shape is arbitrary such as a circle (for example, FIG. 2), an ellipse, a triangle, a quadrangle, a rectangle, a hexagon, and other polygons. The horizontal cross-sectional shape does not have to be the same from the most convex part to the most concave part of the fine unevenness. Therefore, the three-dimensional shape of the fine unevenness is, for example, a three-dimensional shape of the fine unevenness when the horizontal cross-sectional shape is circular and the vertical cross-sectional shape is an equilateral triangle, and a fine three-dimensional shape when the horizontal cross-sectional shape is circular and the vertical cross-sectional shape is triangular. The three-dimensional shape of unevenness is an oblique cone, the three-dimensional shape of fine unevenness when the horizontal cross-sectional shape is a triangle and the vertical cross-sectional shape is an equilateral triangle is a triangular pyramid,
When the horizontal cross-sectional shape is quadrangular and the vertical cross-sectional shape is triangular, the three-dimensional shape of fine irregularities is a quadrangular pyramid.

【0053】また、微細凹凸の、水平面内に於ける配置
は、図2で例示した如く二次元的配置の他に、図6
(A)の斜視図で例示の直線溝状の微細凹凸2の如く、
一次元的配置でも良く、どちらも効果は得られる。但
し、一次元的配置の場合は、光の波の振幅方向との関係
で、反射防止効果が得られる方向と得られない方向とが
出る、異方性が発生する。従って、図2の斜視図や図6
(B)及び(C)の平面図で例示の様な二次元的配置の
方が、方向性が全く無い点で好ましい。
The arrangement of the fine irregularities in the horizontal plane is not limited to the two-dimensional arrangement shown in FIG.
Like the linear groove-shaped fine unevenness 2 illustrated in the perspective view of FIG.
A one-dimensional arrangement may be used, and both can be effective. However, in the case of the one-dimensional arrangement, anisotropy occurs in which the direction in which the antireflection effect is obtained and the direction in which the antireflection effect is not obtained occur depending on the relationship with the amplitude direction of the light wave. Therefore, the perspective view of FIG.
The two-dimensional arrangement as illustrated in the plan views of (B) and (C) is preferable because it has no directivity.

【0054】なお、個々の微細凹凸の立体形状は全て同
一でも良いが、全て同一で無くても良い。また、個々の
微細凹凸2を二次元配置する場合に、周期は、個々の微
細凹凸に於いて全て同一でも良いが、全て同一で無くて
も良い。
The three-dimensional shapes of the individual fine concavities and convexities may be all the same or may not be the same. Further, when the individual fine irregularities 2 are two-dimensionally arranged, the periods may be all the same or may not be the same in the individual fine irregularities.

【0055】また、微細凹凸の高さHは、希望する反射
率の低減効果と微細凹凸層表面に入射する可視光帯域の
最大波長に応じて決定する。例えば、特開昭50−70
040号公報(特にその第3図)記載の反射率、微細凹
凸の高さ、及び光波長との関係を基に設計する場合、例
えば、可視光帯域での反射率を、2%(未処理の硝子の
場合の半分)以下に低減させることを目標とするなら
ば、その最小高さHMINが0.2λMAX以上、すなわち、
The height H of the fine irregularities is determined according to the desired reflectance reduction effect and the maximum wavelength of the visible light band incident on the surface of the fine irregularities layer. For example, JP-A-50-70
In the case of designing on the basis of the reflectance, the height of fine irregularities, and the relationship with the light wavelength described in JP-A No. 040 (particularly FIG. 3), for example, the reflectance in the visible light band is 2% (untreated). If the target is to reduce the height to less than half of the case of glass), the minimum height H MIN is 0.2λ MAX or more, that is,

【0056】HMIN≧0.2λMAX H MIN ≧ 0.2λ MAX

【0057】また、可視光帯域での反射率を0.5%以
下にまで低減させることを目標とするならば、
If the aim is to reduce the reflectance in the visible light band to 0.5% or less,

【0058】HMIN≧0.4λMAX H MIN ≧ 0.4λ MAX

【0059】とするのが好ましい。なお、ここで、λ
MAXは、可視光波長帯域の真空中に於ける最大波長であ
る。微細凹凸の高さHは、ゼロから高くなるに従って反
射率が低下して行くが、上記不等号条件を満足させる高
さまで達すると、有為な効果が得られる様になる。具体
的には、例えば、発光スペクトルの最大波長が、λMAX
=640nmの蛍光灯を用いたとすれば、HMIN≧0.
2λMAX=128nmとかなる。すなわち、HMINは12
8nm以上とすれば良い。また、スペクトルの最大波長
がλMAX=780nmの太陽光線を考えるならば、HMIN
≧0.2λMAX=156nm、すなわち、HMINは156
nm以上とすれば良い。また、最小高さHM INと周期P
MAXとの関係では、最小高さHMIN/周期PMAXの比を、
1/2〜4/1程度とする。
It is preferable that Here, λ
MAX is the maximum wavelength in vacuum in the visible light wavelength band. The reflectance decreases as the height H of the fine irregularities increases from zero, but when reaching a height that satisfies the above-mentioned inequality condition, a significant effect can be obtained. Specifically, for example, the maximum wavelength of the emission spectrum is λ MAX
= 640 nm fluorescent lamp is used, H MIN ≧ 0.
MAX = 128 nm. That is, H MIN is 12
It should be 8 nm or more. In addition, if one considers a solar ray with a maximum wavelength of the spectrum λ MAX = 780 nm, then H MIN
≧ 0.2λ MAX = 156 nm, that is, H MIN is 156
It may be set to nm or more. Also, the minimum height H M IN and the period P
In relation to MAX , the ratio of minimum height H MIN / period P MAX is
It is about 1/2 to 4/1.

【0060】ここで、微細凹凸の具体的形状及び大きさ
を例示すれば、形状は垂直断面が正弦波状で水平断面が
円形の円錐状の形状のものを多数、二次元的に規則的配
置した集合体であり、周期期PMAXが50〜250n
m、最小高さHMINを前記周期P MAXの1.5倍としたも
の等がある。
Here, the specific shape and size of the fine irregularities
For example, the vertical cross section is sinusoidal and the horizontal cross section is
Many circular conical shapes are regularly arranged in two dimensions.
It is an aggregate that is placed, and the cycle period PMAXIs 50-250n
m, minimum height HMINIs the cycle P MAX1.5 times
And so on.

【0061】〔賦形型の作製〕ゾルゲル法による塗布膜
を賦形する為に使用する賦形型として、微細凹凸形状を
最初に造形した原型を用いても良いが、生産性等の点
で、より好ましくは、該原型から1回、或いは2回以上
の型取・反転による複製工程を経て作製した複製型を用
いるのが良い。つまり、最初に一旦、原型(これを原
版、或いはマザー版とも呼ぶ)を作製した後、この原型
から複製型を作製する複製操作を1回又は2回以上の多
数回行い、その結果、得られた複製型(これを本版、或
いはマスター版とも呼ぶ)をゾルゲル法による塗布膜に
対して使用する賦形型として採用するのである。この様
な方法とすることで、工業的生産性、コスト等に優れた
方法となる。
[Manufacture of Shaped Mold] As a molding mold used for molding the coating film by the sol-gel method, a master mold having a fine concavo-convex shape formed first may be used, but in terms of productivity and the like. More preferably, it is preferable to use a replica mold produced from the master mold once or twice or more through a replicating step by taking and reversing the mold. That is, first, a prototype (this is also referred to as an original plate or a mother plate) is first made, and then a duplication operation for making a duplicated mold from this prototype is performed once or twice or more times, and as a result, Another replication type (also referred to as a main plate or a master plate) is adopted as a shaping mold used for a coating film by the sol-gel method. By adopting such a method, the method is excellent in industrial productivity and cost.

【0062】賦形型の元となる原型としては、必要な微
細凹凸が形成されているのものであれば、その作製方法
には基本的には特に限定は無く、生産性、コスト等を考
慮して適宜なものを使用すれば良い。原型の作製は、微
細凹凸2を賦形する為の凹凸形状を最初に造形する工程
であり、半導体分野等に於ける微細加工技術、すなわ
ち、光(含む電子ビーム)をパターン形成に利用する所
謂露光法を利用できる。但し、半導体の場合は、凹凸形
状はその側面が通常垂直面で良く、本発明の如く斜面に
する必要は特に無いため、本発明では、斜面が形成でき
る様にして微細加工する。
There is no particular limitation on the manufacturing method of the original mold as long as it has the necessary fine irregularities, and productivity, cost, etc. are taken into consideration. Then, an appropriate one may be used. The production of the prototype is a step of first forming an uneven shape for shaping the fine unevenness 2, and is a so-called microfabrication technique in the semiconductor field, that is, utilizing light (including an electron beam) for pattern formation. Exposure methods can be used. However, in the case of a semiconductor, since the side surface of the uneven shape is usually a vertical surface and it is not particularly necessary to form a slope as in the present invention, in the present invention, fine processing is performed so that a slope can be formed.

【0063】上記の如き微細加工技術としては、電子線
描画法を利用できる。この方法では、先ず、ガラス基板
の上にレジスト層を形成した後、電子線描画法により該
レジスト層を露光し現像してパターニングしてレジスト
パターン層とする。この後、腐蝕マスクに該レジストパ
ターン層を利用してガラス基板をドライエッチング法等
により腐蝕することで、ガラス基板に微細凹凸形状が形
成される。この際、エッチング時にサイドエッチングさ
せて、斜面を形成する。また、ガラス基板腐蝕時の腐蝕
マスクとしてはレジストパターン層自体を直接用いても
良いが、斜面を有する深い凹凸形状を形成するには、好
ましくは、ガラス基板上にクロム等による金属層を設け
た後、レジスト膜を形成してレジストパターン層を得、
前記金属層をこのレジストパターン層を利用して金属パ
ターン層としてたものを、腐蝕マスクとして用いるのが
良い。
An electron beam drawing method can be used as the fine processing technique as described above. In this method, first, a resist layer is formed on a glass substrate, and then the resist layer is exposed by an electron beam drawing method, developed, and patterned to form a resist pattern layer. After that, the glass substrate is corroded by a dry etching method or the like using the resist pattern layer as an etching mask to form fine irregularities on the glass substrate. At this time, side surfaces are etched during etching to form slopes. Further, the resist pattern layer itself may be directly used as a corrosion mask at the time of corroding the glass substrate, but in order to form a deep uneven shape having a slope, it is preferable to provide a metal layer of chromium or the like on the glass substrate. After that, a resist film is formed to obtain a resist pattern layer,
It is preferable that the metal pattern layer formed by using the resist pattern layer is used as a corrosion mask.

【0064】また、レジスト膜へのパターン形成に際し
ては、電子線描画法の他に、レーザー描画法も利用でき
る。レーザ描画法では、ホログラム、回折格子等の作製
等に利用されているレーザ干渉法が利用できる。回折格
子の場合は、一次元的配置であるが、角度を変えて多重
露光すれば、二次元配置も可能となる。但し、レーザ干
渉法では、得られる微細凹凸は、通常規則的配置となる
が、電子線描画法では、予め所定の描画パターン情報を
記憶装置にデジタルデータとして記憶しておき、該描画
パターン情報により、走査する電子線のON、OFF、
乃至は強弱を変調する。その為、規則配置の他にも、不
規則配置も可能である。また、レーザー描画法及び電子
線描画法には各々長所、短所が有る為、設計諸元、目
的、生産性等を考慮の上、適宜な手法及び条件を選択す
る。
When forming a pattern on the resist film, a laser drawing method can be used in addition to the electron beam drawing method. In the laser drawing method, a laser interference method used for producing holograms, diffraction gratings, etc. can be used. The diffraction grating has a one-dimensional arrangement, but a two-dimensional arrangement is also possible by changing the angle and performing multiple exposure. However, in the laser interferometry, the resulting fine irregularities are usually arranged regularly, but in the electron beam drawing method, predetermined drawing pattern information is stored in advance in the storage device as digital data and the drawing pattern information is used. , ON / OFF of scanning electron beam,
Or modulates the strength. Therefore, in addition to regular arrangement, irregular arrangement is also possible. Further, since the laser drawing method and the electron beam drawing method have respective advantages and disadvantages, an appropriate method and conditions are selected in consideration of design specifications, purpose, productivity and the like.

【0065】次に、上記原型から賦形型として使用する
複製型を作製する方法としては、公知の方法、例えば、
原型にニッケル等の金属めっきを行って、めっき層を剥
がせば金属製の複製型を作製できる(電鋳法)。或い
は、この複製型にもう一度めっきして、再度複製した型
を賦形型とするなど、2以上の多数回の複製操作を経て
賦形型を作製しても良い。なお、ゾルゲル法で形成した
塗布膜に対する賦形型の形態としては、板状、シート
状、ブロック状等があり得、反射防止物品の形状、用途
等に応じて適宜選択すれば良い。なお、賦形型は、上記
ニッケルの如き金属製でも良いが、シリコーン樹脂等の
樹脂製のものを使用しても良い。例えば、樹脂からなる
シート状で連続帯状も可能な賦形型である。
Next, as a method for producing a replica mold to be used as a shaping mold from the above prototype, a known method, for example,
A metallic duplicate mold can be produced by plating the prototype with a metal such as nickel and peeling off the plating layer (electroforming method). Alternatively, the duplication mold may be plated again, and the duplicated mold may be used as the shaping mold to form the shaping mold through two or more duplication operations. The shape of the shaping mold for the coating film formed by the sol-gel method may be a plate shape, a sheet shape, a block shape, etc., and may be appropriately selected depending on the shape, application, etc. of the antireflection article. The shaping mold may be made of metal such as nickel, but may be made of resin such as silicone resin. For example, it is a shaping mold which can be formed into a sheet shape made of a resin and can have a continuous strip shape.

【0066】〔ゾルゲル法〕ところで、ゾルゲル法は、
アルコキシシラン等の有機金属化合物を金属酸化物の前
駆体として含むゾルゲル液を基材上に塗布した塗布膜か
ら、金属酸化物からなる無機質系塗膜を形成する方法と
して知られている。また、最近では、有機無機複合膜を
形成する方法としても知られている。これらのゾルゲル
法にて、基材が樹脂シート等の場合には、塗布膜を高温
で熱処理して有機質成分を燃焼・消失させる焼成工程は
含めないが、基材がガラス等の無機質材料の場合には、
基材が高熱に耐え得る為に、更に塗布膜を焼成して完全
な無機質膜とすることもできる。
[Sol-Gel Method] By the way, the sol-gel method is
It is known as a method of forming an inorganic coating film made of a metal oxide from a coating film obtained by applying a sol-gel solution containing an organometallic compound such as alkoxysilane as a precursor of a metal oxide on a substrate. Recently, it is also known as a method for forming an organic-inorganic composite film. In these sol-gel methods, when the base material is a resin sheet or the like, a firing step of heat-treating the coating film at high temperature to burn and eliminate organic components is not included, but when the base material is an inorganic material such as glass. Has
Since the base material can withstand high heat, the coating film can be further baked to form a complete inorganic film.

【0067】この様なゾルゲル法による塗布膜に対し
て、更にその表面に凹凸形状を形成方法としては、例え
ば、特開昭62−225273号公報、特開平6−94
907号公報、或いは、「ゾル−ゲル法によるマイクロ
パターニング」(セラミックス,vol37,No.
3,p161−164,2002)等として提案されて
いる。これらの文献によれば、金属アルコキシドを含む
ゾルゲル液の溶液を塗布して形成した可塑性状態の塗布
膜に対して、賦形型を押圧してその表面に、回折格子、
光ディスク基板の溝等の微細な凹凸形状を賦形する方法
が提案されている。
As a method for further forming a concavo-convex shape on the surface of such a coating film by the sol-gel method, there are, for example, JP-A-62-225273 and JP-A-6-94.
907, or "Micropatterning by sol-gel method" (Ceramics, vol37, No.
3, p161-164, 2002) and the like. According to these documents, a coating film in a plastic state formed by applying a solution of a sol-gel solution containing a metal alkoxide, the shaping mold is pressed against the surface of the coating film, a diffraction grating,
There has been proposed a method of shaping a fine concavo-convex shape such as a groove of an optical disk substrate.

【0068】ゾルゲル液としては、樹脂シートやガラス
等の各種基材に対するゾルゲル液として適用されている
公知のものを使用できるが、本発明では少なくとも賦形
型を押圧するときは可塑性を呈する事が好ましい。もし
も、塗布膜の塗布から硬化までの間で可塑性を呈する時
間が少なく、賦形の作業性が悪い様ならば、可塑性を増
大する為に、例えば、溶液の粘度を上昇させる樹脂や低
分子化合物等を適宜添加するのも好ましい。
As the sol-gel liquid, a known sol-gel liquid applied to various base materials such as resin sheets and glass can be used, but in the present invention, it may exhibit plasticity at least when pressing the shaping mold. preferable. If the time to exhibit plasticity between application of the coating film and curing is short and the workability of shaping is poor, in order to increase the plasticity, for example, a resin or a low-molecular compound that increases the viscosity of the solution is used. It is also preferable to appropriately add the above.

【0069】ゾルゲル液として使用される有機金属化合
物としては、重縮合反応や架橋反応等によって、その粘
度が上昇する様な化合物を使用することができる。有機
金属化合物としては、例えば、一般式RnM(OR’)m
で表される金属アルコキシド化合物や、その加水分解物
等が挙げられる。なお、上記式中、Mは、Si、Ti、
Zr、Al、Ca、Na、Pb、B、Sn、Ge等の金
属を表し、R及びR’はメチル基、エチル基、プロピル
基、ブチル基等のアルキル基を表し、n及びmは、n+
mが金属Mの原子価となる整数を表す。従って、例えば
金属Mがケイ素Siの場合には、上記一般式は、Rn
i(OR’)n-4となる。
As the organometallic compound used as the sol-gel liquid, a compound whose viscosity increases due to a polycondensation reaction or a crosslinking reaction can be used. Examples of the organometallic compound include the general formula R n M (OR ′) m
The metal alkoxide compound represented by, its hydrolyzate, etc. are mentioned. In the above formula, M is Si, Ti,
Zr, Al, Ca, Na, Pb, B, Sn, Ge and other metals are represented, R and R ′ are alkyl groups such as methyl group, ethyl group, propyl group and butyl group, and n and m are n +
m represents an integer that is the valence of the metal M. Therefore, for example, when the metal M is silicon Si, the above general formula is R n S
i (OR ') n-4 .

【0070】更に、上記の如き金属アルコキシ化合物の
具体例を挙げれば、Si(OCH34、Si(OC
254等のケイ素系アルコキシド化合物、Ti(OC3
74、Ti(OC494等のチタン系アルコキシド
化合物、Zr(OC374、Zr(OC494等のジ
ルコニウム系アルコキシド化合物、Al(OC
374、Al(OC494等のアルミニウム系アルコ
キシド化合物、NaOC25等のナトリウム系アルコキ
シド化合物等が挙げられる。更に、ケイ素系アルコキシ
ド化合物の具体例を挙げれば、メチルトリエトキシシラ
ン〔(CH3)Si(OC253〕、メチルトリプロポ
キシシラン〔(CH 3)Si(OC373〕、ジメチル
ジエトキシシラン〔(CH32Si(OC252〕等
が挙げられる。
Further, of the metal alkoxy compounds as described above
To give a specific example, Si (OCH3)Four, Si (OC
2HFive)FourSilicon-based alkoxide compounds such as Ti (OC3
H7)Four, Ti (OCFourH9)FourTitanium-based alkoxides such as
Compound, Zr (OC3H7)Four, Zr (OCFourH9)FourEtc.
Ruconium-based alkoxide compound, Al (OC
3H7)Four, Al (OCFourH9)FourAluminum-based alcohol such as
Xide compound, NaOC2HFiveSodium alkoxide such as
Examples thereof include side compounds. Furthermore, silicon-based alkoxy
Specific examples of the compound include methyltriethoxysila
[[CH3) Si (OC2HFive)3], Methyltripropo
Xysilane [(CH 3) Si (OC3H7)3], Dimethyl
Diethoxysilane [(CH3)2Si (OC2HFive)2〕etc
Is mentioned.

【0071】また、有機金属化合物としては、一般式X
nM(OR’)mで表される金属アルコキシド化合物〔但
し、上記式中Xは、アミノ基、カルボキシル基、グリシ
ジル基、アクリロイルオキシ基、メタクリロイルオキシ
基等の反応性官能基〕、例えば金属がケイ素の場合では
所謂シランカップリング剤と称される化合物等も使用す
ることができる。
Further, as the organometallic compound, a compound represented by the general formula X
A metal alkoxide compound represented by n M (OR ′) m [wherein X is a reactive functional group such as an amino group, a carboxyl group, a glycidyl group, an acryloyloxy group, a methacryloyloxy group], for example, a metal is In the case of silicon, a compound called a so-called silane coupling agent can be used.

【0072】また、賦形時の可塑性の向上の為に添加す
る樹脂や低分子化合物としては、例えば、アクリル系樹
脂、ポリビニルアルコール等の熱可塑性樹脂、ポリエチ
レングリコール、ポリプロピレングリコール、ポリテト
ラエチレングリコール等のポリエーテル化合物等の低分
子有機化合物を使用することができる。また、ゾルゲル
液には、水、或いは、メタノール、エタノール等のアル
コール、メチルエチルケトン、メチルイソブチルケトン
等のケトン、酢酸エチル、酢酸ブチル等のエステル等の
溶剤を適宜使用する。また、ゾルゲル液には、塩酸等の
酸やアルカリを、有機金属化合物やその加水分解物等の
加水分解反応を促進する触媒として適宜使用する。
The resin or low molecular weight compound added to improve plasticity during shaping is, for example, an acrylic resin, a thermoplastic resin such as polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polytetraethylene glycol, or the like. A low molecular weight organic compound such as the polyether compound can be used. For the sol-gel solution, water or an alcohol such as methanol or ethanol, a ketone such as methyl ethyl ketone or methyl isobutyl ketone, or a solvent such as ester such as ethyl acetate or butyl acetate is appropriately used. In the sol-gel solution, an acid such as hydrochloric acid or an alkali is appropriately used as a catalyst for promoting the hydrolysis reaction of the organometallic compound or its hydrolyzate.

【0073】〔賦形型による賦形〕そして、ゾルゲル液
を塗布して形成した塗布膜に対して、前述の如き賦形型
を押圧し離型すれば、塗布膜表面には所望の微細凹凸が
賦形され、微細凹凸層が得られる。また、賦形時は塗布
膜は可塑性状態とするが、賦形後に更に反応を進めて塗
膜を完全に固化させて微細凹凸層とする。なお、賦形時
は適宜加熱しても良い。
[Shaping by Shaped Mold] Then, when the shape-forming mold as described above is pressed against the coating film formed by applying the sol-gel solution and released, desired fine irregularities are formed on the surface of the coating film. Is shaped to obtain a fine concavo-convex layer. Further, although the coating film is in a plastic state during shaping, the reaction is further advanced after shaping to completely solidify the coating film to form a fine concavo-convex layer. In addition, you may heat appropriately at the time of shaping.

【0074】〔焼成〕賦形型を離型した後、基材がガラ
ス等の無機質基材で焼成温度に耐え得る材料のものであ
れば、更に賦形後に得られた微細凹凸層を焼成して、有
機質成分が残存する場合はそれを焼いて無機質層として
も良い。焼成することにより、微細凹凸を表面に有する
微細凹凸層は、耐熱性、耐候性、硬度、耐洗浄性等がよ
り優れたものとなる。従って、例えば、微細凹凸の上に
更にITO膜等の透明導電膜を物理的手法により形成す
る場合等の耐熱性が要求される後処理も適用できる反射
防止物品が得られる。なお、焼成温度は、通常200℃
以上、例えば450℃等である。また、焼成工程を経る
事によって、賦形型で賦形し易い様に樹脂や低分子有機
化合物をゾルゲル液に添加してある場合でも、これらの
有機質成分を燃焼させて、有機質成分が残らない無機質
層として微細凹凸層を形成することができる。従って、
これら有機質成分の残存による、耐熱性、耐候性、硬
度、耐洗浄性等の性能低下を防げる。
[Firing] After releasing the shaping mold, if the base material is an inorganic base material such as glass that can withstand the firing temperature, the fine concavo-convex layer obtained after shaping is further fired. Then, when the organic component remains, it may be baked to form an inorganic layer. By firing, the fine uneven layer having fine unevenness on the surface has more excellent heat resistance, weather resistance, hardness, cleaning resistance, and the like. Therefore, for example, an antireflection article can be obtained to which a post-treatment that requires heat resistance, such as when a transparent conductive film such as an ITO film is further formed on the fine irregularities by a physical method, can be applied. The firing temperature is usually 200 ° C.
The above is, for example, 450 ° C. or the like. In addition, even if a resin or a low molecular weight organic compound is added to the sol-gel liquid so that it can be easily shaped in a shaping mold by going through a firing step, these organic components are burned and no organic component remains. A fine uneven layer can be formed as the inorganic layer. Therefore,
It is possible to prevent deterioration of performance such as heat resistance, weather resistance, hardness, and cleaning resistance due to the remaining of these organic components.

【0075】なお、基材がガラス等の無機質基材の場合
であっても、上記の如き耐熱性、耐候性、硬度、耐洗浄
性等の性能が過剰性能となるのであれば、焼成工程は省
略することもできる。焼成工程を省略すれば、それにか
かる処理時間が短縮されるので、生産性が向上する。ま
た、基材が有機質材料で樹脂シート等の連続帯状の基材
の場合では、焼成工程は実施できないが、連続処理も可
能で生産性が優れた製造方法となる。
Even if the base material is an inorganic base material such as glass, if the performances such as heat resistance, weather resistance, hardness, and cleaning resistance are excessive, the firing step is It can be omitted. If the firing step is omitted, the processing time required for it is shortened, and the productivity is improved. In addition, when the base material is an organic material and is a continuous strip-shaped base material such as a resin sheet, the firing step cannot be performed, but continuous processing is also possible and the manufacturing method is excellent in productivity.

【0076】〔基材〕基材1としては、特に限定されな
いが。ガラス(含むセラミックス)等の無機質材料、熱
可塑性樹脂、熱硬化性樹脂等の合成樹脂を用いることが
できる。なお、塗布膜を焼成する場合は、焼成時の耐熱
性の点で基材としては無機質材料が好ましい。基材の材
料には、反射防止物品の用途に応じた材料を使用すれば
良い。また、基材には、通常、透明なものを使用する。
[Substrate] The substrate 1 is not particularly limited. Inorganic materials such as glass (including ceramics), synthetic resins such as thermoplastic resins and thermosetting resins can be used. When the coating film is baked, an inorganic material is preferable as the base material in terms of heat resistance during baking. As the material of the base material, a material suitable for the application of the antireflection article may be used. A transparent material is usually used as the base material.

【0077】なお、無機質材料の基材としては、ソーダ
ガラス、石英ガラス等のガラス、セラミックス等が挙げ
られる。また、有機質材料の基材としては、熱可塑性樹
脂が代表的であり、例えば、ポリ(メタ)アクリル酸メ
チル、ポリ(メタ)アクリル酸エチル、(メタ)アクリ
ル酸メチル−(メタ)アクリル酸ブチル共重合体等のア
クリル樹脂〔但し、(メタ)アクリルとはアクリル、或
いはメタクリルを意味する。〕、ポリカーボネート樹
脂、ポリプロピレン、ポリメチルペンテン、環状オレフ
ィン系高分子(代表的にはノルボルネン系樹脂等がある
が、例えば、日本ゼオン株式会社製の製品名「ゼオノ
ア」、JSR株式会社製の「アートン」等がある)等の
ポリオレフィン系樹脂、ポリエチレンテレフタレート、
ポリエチレンナフタレート等の熱可塑性ポリエステル樹
脂、ポリアミド樹脂、ポリスチレン、アクリロニトリル
−スチレン共重合体、ポリエーテルスルフォン、ポリス
ルフォン、セルロース系樹脂、塩化ビニル樹脂、ポリエ
ーテルエーテルケトン、ポリウレタン等が挙げられる。
Examples of the base material of the inorganic material include glass such as soda glass and quartz glass, and ceramics. Further, a thermoplastic resin is typically used as the base material of the organic material, and examples thereof include methyl poly (meth) acrylate, ethyl poly (meth) acrylate, methyl (meth) acrylate-butyl (meth) acrylate. Acrylic resin such as copolymer (however, (meth) acrylic means acrylic or methacrylic. ], Polycarbonate resin, polypropylene, polymethylpentene, cyclic olefin polymer (typically, norbornene resin, etc., but for example, product name "Zeonor" manufactured by Nippon Zeon Co., Ltd., "Arton" manufactured by JSR Co., Ltd. , Etc.) and other polyolefin resins, polyethylene terephthalate,
Examples thereof include thermoplastic polyester resins such as polyethylene naphthalate, polyamide resins, polystyrene, acrylonitrile-styrene copolymers, polyether sulfones, polysulfones, cellulosic resins, vinyl chloride resins, polyether ether ketones and polyurethanes.

【0078】〔反射防止物品の用途〕なお、本発明によ
る反射防止物品としては、形状は、三次元形状、板、シ
ート等任意であり、用途も特に限定れるものでは無い。
但し、その反射防止表面の微細凹凸は、極めて微細であ
るが故に、汚れや傷に対して注意するに越したことは無
いので、微細凹凸は好ましくは外面には露出させず、内
面に設けられる用途、或いは、装置内部に設けられる用
途等が好適である。なお、本発明が適用し得る用途は、
これから例示される用途に限定されるものではない。
[Application of Antireflection Article] The antireflection article according to the present invention may have any shape such as a three-dimensional shape, a plate or a sheet, and the application is not particularly limited.
However, since the fine irregularities of the antireflection surface are extremely fine, it is better to pay attention to dirt and scratches, so the fine irregularities are preferably not exposed on the outer surface but provided on the inner surface. It is suitable for use, or for use provided inside the device. The applications to which the present invention can be applied are
It is not limited to the applications exemplified below.

【0079】例えば、携帯電話、デシタルカメラ等の各
種機器に於ける情報表示部の窓材である。これら表示部
では、LCD等の表示パネルの前面に、板や成形品等と
なった樹脂製或いはガラス製の窓材が配置される。窓材
としての反射防止物品は、外側は露出する為に傷や汚れ
への耐性の点で本発明特有の微細凹凸は設けず、内側の
裏面の側に該微細凹凸を設けたものとするのが好まし
い。なお、情報表示部は、LCD等の表示パネル以外
に、時計に代表される機械式アナログメータ等の様な機
械的手段で表示するものでもよく、これらの窓材でも良
い。なお、窓材は、平板状もあるが、組み付けやデザイ
ン上の観点から周囲に突起等有するものもある。
For example, it is a window material for an information display section in various devices such as mobile phones and digital cameras. In these display parts, a resin or glass window material such as a plate or a molded product is arranged in front of a display panel such as an LCD. Since the antireflection article as a window material is exposed on the outside, the fine irregularities peculiar to the present invention are not provided in terms of resistance to scratches and stains, and the fine irregularities are provided on the inner back surface side. Is preferred. The information display section may be displayed by a mechanical means such as a mechanical analog meter typified by a timepiece other than a display panel such as an LCD, or may be a window material of these. The window material has a flat plate shape, but may have a projection or the like on the periphery from the viewpoint of assembly and design.

【0080】なお、上記の様な窓付き情報表示部を有す
る機器としては、携帯電話、時計の外にも、パーソナル
コンピュータ、電子手帳等のPDA乃至は携帯情報端
末、電卓、或いは、CDプレーヤー、DVDプレーヤ、
MDプレーヤ、半導体メモリ方式音楽プレーヤ等の各種
携帯型音楽プレーヤ、或いは、ビデオテープレコーダ、
ICレコーダ、ビデオカメラ、デシタルカメラ、ラベル
プリンタ等の電子機器、或いは、電気炊飯器、電子ポッ
ト、洗濯機等の電気製品等がある。
As the device having the windowed information display section as described above, a personal computer, a personal digital assistant (PDA) such as an electronic notebook, a personal digital assistant, a calculator, a CD player, or the like can be used in addition to a mobile phone or a clock. DVD player,
Various portable music players such as MD players and semiconductor memory type music players, or video tape recorders,
There are electronic devices such as IC recorders, video cameras, digital cameras, label printers, and electric products such as electric rice cookers, electronic pots, and washing machines.

【0081】また、板状やシート状の反射防止物品に於
いては、透明タッチパネル等に使用する透明板等の透明
基材が挙げられる。透明タッチパネルは、表示部に入力
機能を付加するものであるが、該製品組立上、LCD、
CRT等の表示パネルと別部品として組み付けるので、
表示パネルと透明タッチパネル間に空隙が残り、光反射
が生じる。そこで、透明タッチパネルの裏面側を成す透
明基材を、その裏面を本発明特有の微細凹凸を設けた反
射防止物品とすれば、光反射が防げる。
Further, in the plate-shaped or sheet-shaped antireflection article, a transparent substrate such as a transparent plate used for a transparent touch panel and the like can be mentioned. The transparent touch panel is for adding an input function to the display unit.
As it is assembled as a separate part from the display panel such as CRT,
A gap remains between the display panel and the transparent touch panel, causing light reflection. Therefore, light reflection can be prevented by using a transparent base material forming the back surface side of the transparent touch panel as an antireflection article having the back surface provided with fine irregularities peculiar to the present invention.

【0082】なお、透明タッチパネルは、例えば、電子
手帳等のPDA乃至は携帯情報端末(機器)、或いは、
カーナビゲーションシステム、POS(販売時点情報管
理)端末、携帯型オーダー入力端末、ATM(現金自動
預金支払兼用機)、ファクシミリ、固定電話端末、携帯
電話機、デシタルカメラ、ビデオカメラ、パソコン、パ
ソコン用ディスプレイ、テレビジョン受像機、テレビ用
モニターディスプレイ、券売機、計測機器、電卓、電子
楽器等の電子機器、複写機、ECR(金銭登録機)等の
事務器、或いは、洗濯機、電子レンジ等の電気製品に使
用される。また、本発明の反射防止物品は、各種光学部
品としての用途も挙げられる。例えば、写真機のレン
ズ、写真機のファインダの窓材、眼鏡のレンズ、オーバ
ーヘッドプロジェクタのフレネルレンズ、レーザ装置の
出力取出窓、光センサの光入力窓、望遠鏡のレンズ等が
挙げられる。
The transparent touch panel is, for example, a PDA such as an electronic notebook or a portable information terminal (device), or
Car navigation system, POS (point-of-sale information management) terminal, portable order input terminal, ATM (cash automatic teller machine), facsimile, fixed telephone terminal, mobile phone, digital camera, video camera, personal computer, display for personal computer, Electronic devices such as television receivers, television monitor displays, ticket vending machines, measuring instruments, calculators, electronic musical instruments, copiers, ECR (cash register), or electric appliances such as washing machines and microwave ovens. Used for. The antireflection article of the present invention may also be used as various optical components. For example, a lens of a camera, a window member of a finder of a camera, a lens of eyeglasses, a Fresnel lens of an overhead projector, an output extraction window of a laser device, a light input window of an optical sensor, a telescope lens, and the like.

【0083】[0083]

【実施例】以下、実施例により本発明を更に詳述する。The present invention will be described in more detail with reference to the following examples.

【0084】〔実施例1〕次の様にして、賦形型、ゾル
ゲル液を用意して、図1(E)の如き表面に微細凹凸2
を有する微細凹凸層3が、基材1上に積層された構成の
透明な反射防止物品10を作製した。
Example 1 A shaping mold and a sol-gel solution were prepared in the following manner, and fine irregularities 2 were formed on the surface as shown in FIG. 1 (E).
A transparent antireflection article 10 having a structure in which the fine concavo-convex layer 3 having the above was laminated on the substrate 1 was produced.

【0085】(1)賦形型の作製:石英ガラス基板の片
面に金属クロム膜を形成した後、その上にポジ型レジス
トをスピンコートしてレジスト膜を形成した。次いで、
このレジス膜に、縦横周期300nmのメッシュ状描画
データを電子線描画装置にて描画後、現像液で現像し、
前記メッシュ開口領域が開口したレジストパターン層を
形成した。次いで、該レジストパターン層の開口部から
露出している金属クロム膜を塩素系ガスでドライエッチ
ングした。そして、レジストパターン層と金属クロム膜
を耐エッチング層として、ガラス基板をフッ素系ガスで
ドライエッチングして、所望の微細凹凸形状が造形され
た原型(マザー版)を作製した。次に、この原型から、
電気めっき法によって、厚さ80μmのニッケルめっき
プレートからなる複製型(ニッケルスタンパ)を賦形型
として作製した。
(1) Fabrication of shaping mold: After forming a metallic chromium film on one surface of a quartz glass substrate, a positive resist was spin-coated thereon to form a resist film. Then
After drawing mesh-shaped drawing data having a vertical and horizontal cycle of 300 nm on this resist film with an electron beam drawing apparatus, it is developed with a developing solution,
A resist pattern layer having openings in the mesh opening area was formed. Then, the metal chromium film exposed from the opening of the resist pattern layer was dry-etched with a chlorine-based gas. Then, the glass substrate was dry-etched with a fluorine-based gas using the resist pattern layer and the metal chromium film as an etching resistant layer to prepare a prototype (mother plate) on which desired fine irregularities were formed. Next, from this prototype,
By electroplating, a replica mold (nickel stamper) made of a nickel-plated plate having a thickness of 80 μm was produced as a shaping mold.

【0086】(2)ゾルゲル液の作製:ゾルゲル液とし
ては、高分子量SiO2ゾル溶液と、低分子量SiO2
ル溶液とを各々調整し、これらを混合して作製した。
(2) Preparation of sol-gel solution: As the sol-gel solution, a high molecular weight SiO 2 sol solution and a low molecular weight SiO 2 sol solution were prepared, respectively, and mixed to prepare.

【0087】(2−1)高分子量SiO2ゾル溶液の調
整:撹拌機、窒素導入管、排出管を装備した四つ口フラ
スコに、メチルトリメトキシシラン(MTMOS)2
2.7g(0.17mol)とメタノール14mlを加
えて混合し、0℃に冷却した。これと水と塩酸とを、各
々、H2O/MTMOS=1.30、HCl/MTMO
S=0.105となる様に添加して、室温で10分間撹
拌した後、乾燥窒素を導入しながら70℃で3時間、1
50rpmの速度で撹拌した後、減圧下で溶媒を留去し
て、高粘性の重合物からなる高分子量体を得た。この高
分子量体がMeSiO1.5(但し、Meはメチル基)に
加水分解及び縮合したと仮定したときの固形分濃度が
1.5質量%になる様に、該高分子量体をメチルエチル
ケトンに溶解し、高分子量SiO2ゾル液を得た。この
高分子量体の分子量は、ポリスチレンを標準試料とし
て、GPC(ゲル浸透クロマトグラフ)により測定した
ところ、重量平均分子量で42000であった。
(2-1) Preparation of high molecular weight SiO 2 sol solution: Methyltrimethoxysilane (MTMOS) 2 was added to a four-necked flask equipped with a stirrer, a nitrogen introduction tube, and a discharge tube.
2.7 g (0.17 mol) and 14 ml of methanol were added and mixed, and the mixture was cooled to 0 ° C. And water and hydrochloric acid which, respectively, H 2 O / MTMOS = 1.30 , HCl / MTMO
S was added at 0.105 and stirred at room temperature for 10 minutes, then, while introducing dry nitrogen, at 70 ° C. for 3 hours, 1
After stirring at a speed of 50 rpm, the solvent was distilled off under reduced pressure to obtain a high molecular weight polymer composed of a highly viscous polymer. The high molecular weight polymer was dissolved in methyl ethyl ketone so that the solid content concentration was 1.5 mass% assuming that the high molecular weight polymer was hydrolyzed and condensed to MeSiO 1.5 (where Me is a methyl group). A high molecular weight SiO 2 sol solution was obtained. The molecular weight of this high molecular weight substance was 42000 in terms of weight average molecular weight, which was measured by GPC (gel permeation chromatography) using polystyrene as a standard sample.

【0088】(2−2)低分子量SiO2ゾル溶液の調
整:メチルトリエトキシシラン(MTEOS)が理想的
にSiO2又はMeSiO1.5に加水分解及び縮合したと
仮定したときの固形分濃度が3重量%となる様に、MT
EOSを溶媒であるメチルエチルケトンに溶解し、液温
が25℃に安定するまで30分撹拌した。次に、触媒と
して濃度0.005Nの塩酸をMTEOSのアルコキシ
基と等モル量を添加して、25℃で3時間、加水分解反
応を行った。次に、硬化剤として酢酸ナトリウムと酢酸
を混合したものを添加して、25℃で1時間撹拌して、
低分子量SiO2ゾル溶液を得た。
(2-2) Preparation of low molecular weight SiO 2 sol solution: Solid content concentration was 3% by weight assuming that methyltriethoxysilane (MTEOS) was ideally hydrolyzed and condensed to SiO 2 or MeSiO 1.5. So that MT
EOS was dissolved in a solvent, methyl ethyl ketone, and stirred for 30 minutes until the liquid temperature became stable at 25 ° C. Next, 0.005N concentration of hydrochloric acid as a catalyst was added in an equimolar amount to the alkoxy group of MTEOS, and a hydrolysis reaction was performed at 25 ° C. for 3 hours. Next, a mixture of sodium acetate and acetic acid was added as a curing agent, and the mixture was stirred at 25 ° C for 1 hour,
A low molecular weight SiO2 sol solution was obtained.

【0089】(3)ゾルゲル液の調整:上記低分子量S
iO2ゾル溶液に、前記高分子量SiO2ゾル溶液を30
質量%添加して、塗布用のゾルゲル液とした。
(3) Preparation of sol-gel solution: the above low molecular weight S
The above-mentioned high molecular weight SiO 2 sol solution is added to the io 2 sol solution in an amount of 30.
Mass% was added to give a sol-gel liquid for coating.

【0090】(4)塗布膜の形成及び賦型:厚さ250
μmのポリエチレンテレフタレートシートからなる基材
の表面に上記ゾルゲル液を、溶剤除去後の膜厚が、10
ミクロンとなる様に塗布し、60℃で5分間乾燥して塗
布膜とした。次いで、前記(1)の賦形型を用いて、熱
プレス法にて該塗布膜の表面に所望の微細凹凸を賦型し
た。すなわち、SiO2層を塗布形成した基材に賦形型
を〔120℃、1Pa(10kgf/cm2)〕の熱圧
条件で押圧した。その結果、賦形型を剥離して得られた
基材上の塗布膜表面には、賦形型の逆凹凸パターンが形
成され、所望の微細凹凸を表面に有する微細凹凸層とな
り、該微細凹凸層が基材上に積層された構成の透明な反
射防止物品が得られた。
(4) Formation and application of coating film: thickness 250
The above sol-gel solution was applied to the surface of a substrate made of a polyethylene terephthalate sheet having a thickness of 10 μm so that the film thickness after removing the solvent was 10
The coating film was applied so as to have a micron size, and dried at 60 ° C. for 5 minutes to form a coating film. Then, using the shaping mold of the above (1), desired fine irregularities were shaped on the surface of the coating film by a hot pressing method. That is, the shaping mold was pressed on the base material on which the SiO 2 layer was applied and formed under the heat and pressure condition of [120 ° C., 1 Pa (10 kgf / cm 2 )]. As a result, on the surface of the coating film on the substrate obtained by peeling off the shaping mold, an inverse concave-convex pattern of the shaping mold is formed to form a fine unevenness layer having desired fine unevenness on the surface. A transparent antireflection article was obtained in which the layers were laminated on a substrate.

【0091】上記微細凹凸層を基材表面に有する反射防
止物品について、反射率を測定したところ、視感反射率
は0.3%と反射防止効果が認められた。
When the reflectance of the antireflection article having the above-mentioned fine concavo-convex layer on the surface of the substrate was measured, the luminous reflectance was 0.3%, and the antireflection effect was recognized.

【0092】〔実施例2〕次の様にして、賦形型、ゾル
ゲル液を用意して、図1(E)の如き表面に微細凹凸2
を有する微細凹凸層3が、基材1上に積層された構成の
透明な反射防止物品10を作製した。
Example 2 A shaping mold and a sol-gel solution were prepared as follows, and fine irregularities 2 were formed on the surface as shown in FIG. 1 (E).
A transparent antireflection article 10 having a structure in which the fine concavo-convex layer 3 having the above was laminated on the substrate 1 was produced.

【0093】(1)賦形型の作製:石英ガラス基板の片
面に金属クロム膜を形成した後、その上にポジ型レジス
トをスピンコートしてレジスト膜を形成した。次いで、
このレジス膜に、縦横周期300nmのメッシュ状描画
データを電子線描画装置にて描画後、現像液で現像し、
前記メッシュ開口領域が開口したレジストパターン層を
形成した。次いで、該レジストパターン層の開口部から
露出している金属クロム膜を塩素系ガスでドライエッチ
ングした。そして、レジストパターン層と金属クロム膜
を耐エッチング層として、ガラス基板をフッ素系ガスで
ドライエッチングして、所望の微細凹凸形状が造形され
た原型(マザー版)を作製した。次に、この原型から、
電気めっき法によって、厚さ80μmのニッケルめっき
プレートからなる複製型(ニッケルスタンパ)を賦形型
として作製した。
(1) Preparation of shaping mold: After forming a metallic chromium film on one surface of a quartz glass substrate, a positive resist was spin-coated thereon to form a resist film. Then
After drawing mesh-shaped drawing data having a vertical and horizontal cycle of 300 nm on this resist film with an electron beam drawing apparatus, it is developed with a developing solution,
A resist pattern layer having openings in the mesh opening area was formed. Then, the metal chromium film exposed from the opening of the resist pattern layer was dry-etched with a chlorine-based gas. Then, the glass substrate was dry-etched with a fluorine-based gas using the resist pattern layer and the metal chromium film as an etching resistant layer to prepare a prototype (mother plate) on which desired fine irregularities were formed. Next, from this prototype,
By electroplating, a replica mold (nickel stamper) made of a nickel-plated plate having a thickness of 80 μm was produced as a shaping mold.

【0094】(2)ゾルゲル液の作製:ゾルゲル液とし
ては、高分子量SiO2ゾル溶液と、低分子量SiO2
ル溶液とを各々調整し、これらを混合して作製した。
(2) Preparation of sol-gel solution: As the sol-gel solution, a high molecular weight SiO 2 sol solution and a low molecular weight SiO 2 sol solution were prepared and mixed to prepare a sol-gel solution.

【0095】(2−1)高分子量SiO2ゾル溶液の調
整:撹拌機、窒素導入管、排出管液を装備した四つ口フ
ラスコに、メチルトリメトキシシラン(MTMOS)2
2.7g(0.17mol)とメタノール14mlを加
えて混合し、0℃に冷却した。これと水と塩酸とを、各
々、H2O/MTMOS=1.30、HCl/MTMO
S=0.105となる様に添加して、室温で10分間撹
拌した後、乾燥窒素を導入しながら70℃で3時間、1
50rpmの速度で撹拌した後、減圧下で溶媒を留去し
て、高粘性の重合物からなる高分子量体を得た。この高
分子量体がMeSiO1.5に加水分解及び縮合したと仮
定したときの固形分濃度が1.5質量%になる様に、該
高分子量体をメチルエチルケトンに溶解し、高分子量S
iO2ゾル液を得た。この高分子量体の分子量は、ポリ
スチレンを標準試料として、GPC(ゲル浸透クロマト
グラフ)により測定したところ、重量平均分子量で42
000であった。
(2-1) Preparation of high molecular weight SiO 2 sol solution: Methyltrimethoxysilane (MTMOS) 2 was added to a four-necked flask equipped with a stirrer, a nitrogen inlet tube, and a discharge tube solution.
2.7 g (0.17 mol) and 14 ml of methanol were added and mixed, and the mixture was cooled to 0 ° C. And water and hydrochloric acid which, respectively, H 2 O / MTMOS = 1.30 , HCl / MTMO
S was added at 0.105 and stirred at room temperature for 10 minutes, then, while introducing dry nitrogen, at 70 ° C. for 3 hours, 1
After stirring at a speed of 50 rpm, the solvent was distilled off under reduced pressure to obtain a high molecular weight polymer composed of a highly viscous polymer. The polymer was dissolved in methyl ethyl ketone so that the solid content concentration was 1.5% by mass, assuming that the polymer was hydrolyzed and condensed to MeSiO 1.5.
An iO 2 sol solution was obtained. The molecular weight of this high molecular weight substance was measured by GPC (gel permeation chromatography) using polystyrene as a standard sample.
It was 000.

【0096】(2−2)低分子量SiO2ゾル溶液の調
整:メチルトリエトキシシラン(MTEOS)が理想的
にSiO2又はMeSiO1.5(但し、Meはメチル基)
に加水分解及び縮合したと仮定したときの固形分濃度が
3重量%となる様に、MTEOSを溶媒であるメチルエ
チルケトンに溶解し、液温が25℃に安定するまで30
分撹拌した。次に、触媒として濃度0.005Nの塩酸
をMTEOSのアルコキシ基と等モル量添加して、25
℃で3時間、加水分解反応を行った。次に、硬化剤とし
て酢酸ナトリウムと酢酸を混合したものを添加して、2
5℃で1時間撹拌して、低分子量SiO2ゾル溶液を得
た。
(2-2) Preparation of low molecular weight SiO 2 sol solution: Methyltriethoxysilane (MTEOS) is ideally SiO 2 or MeSiO 1.5 (where Me is a methyl group).
MTEOS was dissolved in a solvent, methyl ethyl ketone, so that the solid content concentration was 3% by weight, assuming that it had been hydrolyzed and condensed to 30.degree. C. until the liquid temperature stabilized at 25.degree.
Stir for minutes. Next, as a catalyst, hydrochloric acid having a concentration of 0.005 N was added in an equimolar amount with the alkoxy group of MTEOS to give 25
The hydrolysis reaction was performed at 3 ° C. for 3 hours. Next, a mixture of sodium acetate and acetic acid was added as a curing agent, and 2
It stirred at 5 degreeC for 1 hour, and obtained the low molecular weight SiO2 sol solution.

【0097】(3)ゾルゲル液の調整:上記低分子量S
iO2ゾル溶液に、前記高分子量SiO2ゾル溶液を30
質量%添加し、さらにこの添加後の溶液に対して、ポリ
エチレングリコールを5質量%添加したものを、塗布用
のゾルゲル液とした。
(3) Preparation of sol-gel solution: the above low molecular weight S
iO to 2 sol solution, the high molecular weight SiO 2 sol solution 30
A sol-gel solution for coating was prepared by adding 5% by mass of polyethylene glycol to the solution after the addition.

【0098】(4)塗布膜の形成及び賦型:厚さ2mm
のガラス製の基材の表面に上記ゾルゲル液を、溶剤除去
後の膜厚が、10ミクロンとなる様に塗布し、60℃で
5分間乾燥して塗布膜とした。次いで、前記(1)の賦
形型を用いて、熱プレス法にて該塗布膜の表面に所望の
微細凹凸を賦型した。すなわち、SiO2層を塗布形成
した基材に賦形型を〔120℃、1Pa(10kgf/
cm2)〕の熱圧条件で押圧した。その結果、賦形型を
剥離して得られた基材上の塗布膜表面には、賦形型の逆
凹凸パターンが形成され、所望の微細凹凸を表面に有す
る微細凹凸層となったた。更に、賦形型を剥離した後、
該微細凹凸層を450℃で30分焼成して、最終的な微
細凹凸層として、所望の反射防止物品を得た。
(4) Formation of coating film and shaping: thickness 2 mm
The above sol-gel solution was applied to the surface of the glass base material of No. 1 so that the film thickness after removal of the solvent would be 10 μm, and dried at 60 ° C. for 5 minutes to form a coating film. Then, using the shaping mold of the above (1), desired fine irregularities were shaped on the surface of the coating film by a hot pressing method. That is, a shaping mold is applied to a substrate on which a SiO 2 layer is formed by coating [120 ° C., 1 Pa (10 kgf /
cm 2 )] was pressed under the hot pressing condition. As a result, an inverse concavo-convex pattern of the shaping mold was formed on the surface of the coating film on the substrate obtained by peeling the shaping mold, and a fine concavo-convex layer having desired fine concavities and convexities on the surface was obtained. Furthermore, after peeling off the shaping mold,
The fine concavo-convex layer was baked at 450 ° C. for 30 minutes to obtain a desired antireflection article as a final fine concavo-convex layer.

【0099】上記微細凹凸層を基材表面に有する反射防
止物品について、反射率を測定したところ、視感反射率
は0.5%と反射防止効果が認められた。
When the reflectance of the antireflection article having the above-mentioned fine concavo-convex layer on the surface of the substrate was measured, the luminous reflectance was 0.5%, and the antireflection effect was recognized.

【0100】[0100]

【発明の効果】(1)本発明の反射防止物品の製造方法
によれば、反射防止物品の表面の微細凹凸はフォトレジ
スト塗布・露光・現像等によって、一品毎に直接造形す
る場合に比べて、一旦賦形型を作製した後、この賦形型
からの賦形によって形成できるので、生産性が良い。し
かも、表面に形成する微細凹凸層は、ゾルゲル法によっ
て形成する為に、無機質系の層が得られ、例えば2P法
等による樹脂層として形成する場合に比べて、耐熱性、
耐候性等を優れたものとできる。また、微細凹凸の硬度
も得られ、耐洗浄性等も良くなる。また、賦形後の微細
凹凸層の焼成を行わない場合には、基材にはガラス等の
無機材料以外に樹脂等の耐熱性に乏しい有機材料も可能
となる。しかも、時間がかかる焼成工程が無い点で生産
性が良く、例えば樹脂シート等の連続帯状の基材に対し
て、連続処理により更に生産性を良くする事も可能とな
る。また、本発明の製造方法で反射防止物品に付与され
る反射防止機能は、梨地処理等の様な鏡面乱反射によっ
て光反射を低減するものでは無く、物品表面と空気との
界面の急激な屈折率変化を緩和する事によって実現して
いる為に、光反射率が低減した分、光透過率が向上す
る。従って、ディスプレイ等の情報表示部の窓材等に使
用時に、表示の視認性を向上させると共に、表示光の光
の利用効率も上げられる反射防止物品が得られる。
(1) According to the method for producing an antireflection article of the present invention, the fine irregularities on the surface of the antireflection article are compared with the case where each article is directly formed by applying photoresist, exposing, developing or the like. The productivity is good because it can be formed by once forming a shaping mold and then shaping from this shaping mold. Moreover, since the fine concavo-convex layer formed on the surface is formed by the sol-gel method, an inorganic-based layer is obtained, and the heat resistance, as compared with the case where it is formed as a resin layer by the 2P method,
The weather resistance and the like can be made excellent. Further, the hardness of fine irregularities can be obtained, and the cleaning resistance and the like can be improved. When the fine concavo-convex layer after shaping is not fired, an organic material having poor heat resistance such as resin can be used as the base material in addition to the inorganic material such as glass. Moreover, the productivity is good in that there is no time-consuming firing step, and it is possible to further improve the productivity by continuously treating a continuous strip-shaped substrate such as a resin sheet. Further, the antireflection function imparted to the antireflection article by the production method of the present invention does not reduce light reflection by specular diffuse reflection such as satin finish, but the sharp refractive index of the interface between the article surface and air. Since it is realized by alleviating the change, the light transmittance is improved as much as the light reflectance is reduced. Therefore, it is possible to obtain an antireflection article that can improve the visibility of the display when used as a window material of an information display unit such as a display and can improve the utilization efficiency of the light of the display light.

【0101】(2)また、基材を無機質基材とし、微細
凹凸層を焼成する様にすれば、微細凹凸層が有機質成分
を含む場合であっても、有機質成分を燃焼、消失させて
無機質層とすることができ、耐熱性、耐候性、硬度、耐
洗浄性等はより確実に優れたものとできる。従って、例
えば、微細凹凸の上に更にITO膜等の透明導電膜を物
理的手法により形成する場合等の耐熱性が要求される後
処理も容易にできる様になる。
(2) If the base material is an inorganic base material and the fine irregularity layer is baked, the organic component is burned and disappears even if the fine irregularity layer contains the organic component. It can be formed into a layer, and the heat resistance, weather resistance, hardness, cleaning resistance and the like can be more surely made excellent. Therefore, for example, a post-treatment that requires heat resistance, such as when a transparent conductive film such as an ITO film is further formed on the fine irregularities by a physical method, can be easily performed.

【0102】(3)本発明の反射防止物品によれば、上
記各製造方法で述べた効果が得られる。
(3) According to the antireflection article of the present invention, the effects described in the above respective manufacturing methods can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の反射防止物品の製造方法をその一形態
で概念的に説明する説明図。
FIG. 1 is an explanatory view conceptually explaining the method for producing an antireflection article of the present invention in one form thereof.

【図2】微細凹凸で得られる有効屈折率の分布を概念的
に説明する為の図(その1)。
FIG. 2 is a diagram (1) for conceptually explaining the distribution of the effective refractive index obtained by fine irregularities.

【図3】微細凹凸で得られる有効屈折率の分布を概念的
に説明する為の図(その2)。
FIG. 3 is a diagram (part 2) for conceptually explaining the distribution of the effective refractive index obtained by fine irregularities.

【図4】微細凹凸で得られる有効屈折率の分布を概念的
に説明する為の図(その3)。
FIG. 4 is a diagram (part 3) for conceptually explaining the distribution of the effective refractive index obtained by fine irregularities.

【図5】微細凹凸の(垂直)断面形状の幾つかを例示す
る断面図。
FIG. 5 is a cross-sectional view illustrating some of the (vertical) cross-sectional shapes of fine irregularities.

【図6】微細凹凸の水平面内での配置の幾つかを例示す
る断面図。
FIG. 6 is a cross-sectional view illustrating some of arrangements of fine irregularities in a horizontal plane.

【符号の説明】[Explanation of symbols]

1 基材 2 微細凹凸 2A (賦形型上の)微細凹凸 2t (微細凹凸2の)最凸部 3A (賦形前の)塗布膜 3 微細凹凸層 10 反射防止物品 40 原型 41 賦形型(複製型) n 屈折率 na 屈折率(空気) nb 屈折率(基材) n0 屈折率 n1 屈折率 nef(Z) 有効屈折率 HMIN (微細凹凸の)最小高さ PMAX 周期 R 反射率 λMIN 最小波長 λMAX 最大波長DESCRIPTION OF SYMBOLS 1 Base material 2 Fine unevenness 2A (on a shaping mold) Fine unevenness 2t (The finest unevenness 2) Most convex part 3A (Before shaping) Coating film 3 Fine unevenness layer 10 Antireflection article 40 Prototype 41 Molding ( replicating) n the refractive index n a refractive index (air) n b refractive index (substrate) n 0 the refractive index n 1 the refractive index n ef (Z) effective refractive index H MIN (minute unevenness) minimum height P MAX cycle R Reflectivity λ MIN Minimum wavelength λ MAX Maximum wavelength

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/1335 B29L 7:00 4F204 // B29L 7:00 11:00 11:00 G02B 1/10 Z Fターム(参考) 2H042 BA04 BA13 BA15 BA16 2H091 FA37X FB02 FB08 FC19 FC25 FD06 FD23 2K009 AA04 BB02 BB11 CC02 CC21 DD02 DD06 DD11 4F100 AA01A AA20 AH08A AK42 AT00B BA02 DD07B GB41 JL02 JL09 JM01A JM10A JN06A 4F202 AB19 AC06 AF01 AG01 AG05 AH73 CA01 CB01 CD04 CD05 CK11 4F204 AA33 AA36 AB01 AB03 AC06 AG01 AG05 AH73 AH78 EA03 EA04 EB01 EB29 EE02 EE21 EE23 EF27 EK10 EK13 EK17 EK24 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G02F 1/1335 B29L 7:00 4F204 // B29L 7:00 11:00 11:00 G02B 1/10 Z F term (reference) 2H042 BA04 BA13 BA15 BA16 2H091 FA37X FB02 FB08 FC19 FC25 FD06 FD23 2K009 AA04 BB02 BB11 CC02 CC21 DD02 DD06 DD11 4F100 AA01A AA20 AH08A AK42 AT00B BA02 DD07B GB41 JL02 JL09 JM01A JM10A JN06A 4F202 AB19 AC06 AF01 AG01 AG05 AH73 CA01 CB01 CD04 CD05 CK11 4F204 AA33 AA36 AB01 AB03 AC06 AG01 AG05 AH73 AH78 EA03 EA04 EB01 EB29 EE02 EE21 EE23 EF27 EK10 EK13 EK17 EK24

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面に反射防止用の微細凹凸を有する微
細凹凸層が基材上に形成されて成る反射防止物品を製造
する方法であって、 上記微細凹凸は、可視光の波長帯域の真空中に於ける最
小波長をλMIN、該微細凹凸の最凸部に於ける周期をP
MAXとしたときに、 PMAX≦λMIN なる関係を有し、 且つ該微細凹凸をその凹凸方向と直交する面で切断した
と仮定したときの断面内に於ける基材の材料部分の断面
積占有率が、該微細凹凸の最凸部から最凹部に行くに従
って連続的に漸次増加して行く様な凹凸であり、 上記反射防止物品を製造する際に工程として順次、
(A)先ず、微細凹凸形状を造形した原型を用意し、
(B)次いで、賦形型として上記原型を用いるか、或い
は、上記原型の表面の微細凹凸形状を1又は2回以上の
型取・反転による複製を経て複製型を作製して該複製型
を用いて、基材上に塗布形成した有機金属化合物を含む
ゾルゲル液の塗布膜に対して、前記賦形型を押圧後、離
型して、該塗布膜の表面に微細凹凸を賦形して微細凹凸
層とする、各工程を行う、ゾルゲル法による反射防止物
品の製造方法。
1. A method for producing an antireflection article, comprising a fine irregularity layer having fine irregularities for antireflection formed on a surface of a substrate, wherein the fine irregularities are vacuum in a wavelength band of visible light. The minimum wavelength in the inside is λ MIN , and the cycle at the most convex part of the fine irregularities is P
When the MAX, the cross-sectional area of the P MAX ≦ λ MIN composed has a relationship, and the material portion in the substrate in a cross section, assuming that the the fine unevenness was cut along a plane perpendicular to the uneven direction The occupancy is such a concavo-convex pattern that it gradually and gradually increases as it goes from the most convex part to the most concave part of the fine concavo-convex, and as a step when manufacturing the antireflection article, sequentially,
(A) First, prepare a prototype having a fine concavo-convex shape,
(B) Next, the above-mentioned master is used as a shaping mold, or a micro-concavo-convex shape on the surface of the above-mentioned master is replicated one or more times by taking and reversing the mold to prepare a replica mold, and the replica mold is produced. Using a coating film of a sol-gel liquid containing an organometallic compound formed by coating on a substrate, after pressing the shaping mold, the mold is released, and fine irregularities are formed on the surface of the coating film. A method for producing an antireflection article by a sol-gel method, wherein each step is performed to form a fine concavo-convex layer.
【請求項2】 基材が無機質基材であり、賦形型を離型
した後、表面に微細凹凸が賦形された微細凹凸層を焼成
する、請求項1記載のゾルゲル法による反射防止物品の
製造方法。
2. The antireflection article by the sol-gel method according to claim 1, wherein the base material is an inorganic base material, and after releasing the shaping mold, the fine concavo-convex layer having fine concavities and convexities formed on the surface is baked. Manufacturing method.
【請求項3】 請求項1又は2記載のゾルゲル法による
反射防止物品の製造方法によって製造された反射防止物
品。
3. An antireflection article produced by the method for producing an antireflection article by the sol-gel method according to claim 1.
JP2002150124A 2002-05-24 2002-05-24 Method for producing antireflection article by sol-gel method Expired - Fee Related JP4270806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150124A JP4270806B2 (en) 2002-05-24 2002-05-24 Method for producing antireflection article by sol-gel method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150124A JP4270806B2 (en) 2002-05-24 2002-05-24 Method for producing antireflection article by sol-gel method

Publications (2)

Publication Number Publication Date
JP2003340844A true JP2003340844A (en) 2003-12-02
JP4270806B2 JP4270806B2 (en) 2009-06-03

Family

ID=29768051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150124A Expired - Fee Related JP4270806B2 (en) 2002-05-24 2002-05-24 Method for producing antireflection article by sol-gel method

Country Status (1)

Country Link
JP (1) JP4270806B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092588A1 (en) * 2004-03-25 2005-10-06 Sanyo Electric Co., Ltd. Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold
JP2006292837A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Projection type display device
JP2007090656A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Translucent article
JP2007101799A (en) * 2005-10-03 2007-04-19 Nippon Sheet Glass Co Ltd Transmission optical element
JP2007190899A (en) * 2005-12-21 2007-08-02 Fujifilm Corp Nanostructure material having regular arrangement and manufacturing method thereof
JP2007287486A (en) * 2006-04-17 2007-11-01 Aitesu:Kk Organic electroluminescence element having fine structure between transparent substrate and electrode
JP2008158013A (en) * 2006-12-20 2008-07-10 Sony Corp Optical element, its manufacturing method, duplicate substrate for fabricating optical element and its manufacturing method
JP2008158293A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Hydrophilic antireflection structure
JP2009042472A (en) * 2007-08-08 2009-02-26 Canon Inc Optical element
JP2010513961A (en) * 2006-12-22 2010-04-30 シュライフリング ウント アパラーテバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical rotary coupler with large return loss
JP2011003399A (en) * 2009-06-18 2011-01-06 Sharp Corp Method of manufacturing transparent conductive film, and transparent conductive film
JP2011237568A (en) * 2010-05-10 2011-11-24 Ricoh Opt Ind Co Ltd Antireflection optical element
JP2013219334A (en) * 2012-03-16 2013-10-24 Jx Nippon Oil & Energy Corp Method for manufacturing substrate using film-like mold, and manufacturing device
WO2014006874A1 (en) * 2012-07-04 2014-01-09 日本曹達株式会社 Functional anti-reflection laminate
JP2014003284A (en) * 2012-05-25 2014-01-09 Tokuyama Corp Composition for photocurable nanoimprint and patterning method
JP2014003276A (en) * 2012-04-02 2014-01-09 Tokuyama Corp Composition for photocurable nanoimprint and patterning method
JP2015012100A (en) * 2013-06-28 2015-01-19 株式会社トクヤマ Photocurable composition for nanoimprint, and method for pattern formation
JP2015038978A (en) * 2013-07-17 2015-02-26 日本電気硝子株式会社 Wavelength conversion member
CN104875301A (en) * 2015-05-30 2015-09-02 歌尔声学股份有限公司 Injection mold production method capable of reducing segment difference
TWI596811B (en) * 2012-03-16 2017-08-21 Jx Nippon Oil & Energy Corp Manufacturing method and manufacturing apparatus of a substrate having an uneven pattern using a film-shaped mold and a method of manufacturing the apparatus having the substrate
JP2020118909A (en) * 2019-01-25 2020-08-06 富士フイルム株式会社 Method for forming concavo-convex structure, method for manufacturing substrate and substrate
CN111718131A (en) * 2014-07-16 2020-09-29 Agc株式会社 Cover glass

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092588A1 (en) * 2004-03-25 2005-10-06 Sanyo Electric Co., Ltd. Production method of curved-surface metal mold having fine uneven structure and production method of optical element using this metal mold
JP2006292837A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Projection type display device
JP2007090656A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Translucent article
JP2007101799A (en) * 2005-10-03 2007-04-19 Nippon Sheet Glass Co Ltd Transmission optical element
JP2007190899A (en) * 2005-12-21 2007-08-02 Fujifilm Corp Nanostructure material having regular arrangement and manufacturing method thereof
JP2007287486A (en) * 2006-04-17 2007-11-01 Aitesu:Kk Organic electroluminescence element having fine structure between transparent substrate and electrode
JP2008158013A (en) * 2006-12-20 2008-07-10 Sony Corp Optical element, its manufacturing method, duplicate substrate for fabricating optical element and its manufacturing method
JP2010513961A (en) * 2006-12-22 2010-04-30 シュライフリング ウント アパラーテバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical rotary coupler with large return loss
JP2008158293A (en) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd Hydrophilic antireflection structure
JP2009042472A (en) * 2007-08-08 2009-02-26 Canon Inc Optical element
JP2011003399A (en) * 2009-06-18 2011-01-06 Sharp Corp Method of manufacturing transparent conductive film, and transparent conductive film
JP2011237568A (en) * 2010-05-10 2011-11-24 Ricoh Opt Ind Co Ltd Antireflection optical element
JP2013219334A (en) * 2012-03-16 2013-10-24 Jx Nippon Oil & Energy Corp Method for manufacturing substrate using film-like mold, and manufacturing device
TWI596811B (en) * 2012-03-16 2017-08-21 Jx Nippon Oil & Energy Corp Manufacturing method and manufacturing apparatus of a substrate having an uneven pattern using a film-shaped mold and a method of manufacturing the apparatus having the substrate
JP2014003276A (en) * 2012-04-02 2014-01-09 Tokuyama Corp Composition for photocurable nanoimprint and patterning method
JP2014003284A (en) * 2012-05-25 2014-01-09 Tokuyama Corp Composition for photocurable nanoimprint and patterning method
WO2014006874A1 (en) * 2012-07-04 2014-01-09 日本曹達株式会社 Functional anti-reflection laminate
CN104380150A (en) * 2012-07-04 2015-02-25 日本曹达株式会社 Functional anti-reflection laminate
JPWO2014006874A1 (en) * 2012-07-04 2016-06-02 日本曹達株式会社 Functional antireflection laminate
JP2015012100A (en) * 2013-06-28 2015-01-19 株式会社トクヤマ Photocurable composition for nanoimprint, and method for pattern formation
JP2015038978A (en) * 2013-07-17 2015-02-26 日本電気硝子株式会社 Wavelength conversion member
CN111718131A (en) * 2014-07-16 2020-09-29 Agc株式会社 Cover glass
CN104875301A (en) * 2015-05-30 2015-09-02 歌尔声学股份有限公司 Injection mold production method capable of reducing segment difference
JP2020118909A (en) * 2019-01-25 2020-08-06 富士フイルム株式会社 Method for forming concavo-convex structure, method for manufacturing substrate and substrate

Also Published As

Publication number Publication date
JP4270806B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4270806B2 (en) Method for producing antireflection article by sol-gel method
US6677703B2 (en) Cover plate for display device, method of making the same, display device and reflection reducing structure
JP4632589B2 (en) Transparent touch panel with antireflection function and display device using the same
JP4592972B2 (en) Light diffusing film, surface light source device and display device using light diffusing film
JP2003240904A (en) Antireflection article
WO2013183708A1 (en) Optical element, fabrication method thereof, display element, and projecting image display device
JP2003240903A (en) Antireflection article
JP2002286906A (en) Antireflection method, antireflection structure and antireflection structural body having antireflection structure and method for manufacturing the same
CN101055329A (en) Wire-grid polarizers, methods of fabrication thereof and their use in transmissive displays
JP2003215314A (en) Antireflection article
JP2006201782A (en) Wire grid polarization film, method for manufacturing the same, liquid crystal display using the same, and method for manufacturing mold for forming grid of the same
TW200409961A (en) Light control film
US9081134B2 (en) Substrate having low reflection and high contact angle, and production method for same
JP4393042B2 (en) Antiglare antireflection member and optical member
WO2013159687A1 (en) Light guide sheet comprising optical micro structure and manufacturing method thereof
JP2007090656A (en) Translucent article
JP2008203473A (en) Antireflection structure and structure
JP2002333502A (en) Antireflection window plate for display cover of portable device having display and portable device
CN112014918A (en) Backlight module
JP5899696B2 (en) Anti-reflective article
KR20140020274A (en) Printed material and photographic material
CN113934056B (en) Light source assembly, display device and surface light source device
JP2008209448A (en) Antireflection structure
JP2003215303A (en) Antireflection article
JP2004287238A (en) Antireflection member and electronic device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees