JP2009042472A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP2009042472A
JP2009042472A JP2007207003A JP2007207003A JP2009042472A JP 2009042472 A JP2009042472 A JP 2009042472A JP 2007207003 A JP2007207003 A JP 2007207003A JP 2007207003 A JP2007207003 A JP 2007207003A JP 2009042472 A JP2009042472 A JP 2009042472A
Authority
JP
Japan
Prior art keywords
layer
refractive index
optical element
base member
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007207003A
Other languages
Japanese (ja)
Inventor
Sayoko Amano
佐代子 天野
Daisuke Sano
大介 佐野
Takeharu Okuno
丈晴 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007207003A priority Critical patent/JP2009042472A/en
Publication of JP2009042472A publication Critical patent/JP2009042472A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element having optical performance such as superior reflection suppression performance and high design flexibility. <P>SOLUTION: The optical element has a first layer 14, a second layer 15 and a base member 11 laminated in order from the light incidence side. The first layer has an irregular structure in which a convex part 14a and a concave part 14b are alternately formed at a pitch smaller than the wavelength λ of the incident light. The second layer includes a plurality of layers 13 and 12 of which refractive indexes are different from each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反射抑制機能等の光学的機能を有する光学素子と、これを用いた光学機器に関する。   The present invention relates to an optical element having an optical function such as a reflection suppressing function and an optical apparatus using the optical element.

多くの光学機器には、様々な透過光学素子が用いられており、例えば、デジタルカメラの撮像光学系では、透過光学素子としてのレンズにより物体像を撮像素子上に結像させる。   Many optical devices use various transmissive optical elements. For example, in an imaging optical system of a digital camera, an object image is formed on the imaging element by a lens as a transmissive optical element.

ただし、透過光学素子の材料として一般に使用される光学ガラスや光学プラスチックは屈折率が大きいために反射率が高く、このような透過光学素子を複数使用すると透過光量が少なくなってしまう。   However, optical glass or optical plastic generally used as a material for the transmission optical element has a high refractive index because of its high refractive index, and the use of a plurality of such transmission optical elements reduces the amount of transmitted light.

透過光学素子での反射を抑制するために、該光学素子に反射抑制機能を付与することが多い。光学素子に反射抑制機能を付与する方法としていくつかの方法が知られている。   In order to suppress reflection at the transmissive optical element, the optical element is often provided with a reflection suppressing function. Several methods are known as methods for imparting a reflection suppressing function to an optical element.

最も一般的な方法は、透過光学素子の表面に反射抑制膜を形成する方法である。具体的には、蒸着やスパッタ等に代表される薄膜形成技術によって透過光学素子の表面に薄膜を形成し、光学干渉を利用することで反射率を下げる。   The most general method is a method of forming a reflection suppressing film on the surface of the transmission optical element. Specifically, a thin film is formed on the surface of the transmission optical element by a thin film formation technique represented by vapor deposition, sputtering, etc., and the reflectance is lowered by using optical interference.

また、入射光の波長(使用波長ともいう)よりも細かい構造を利用する方法もある。最も有名な構造として、蛾の目”moth-eye”がある。蛾の目はそれに特有の微細構造によって非常に低い反射率を得ることができる。   There is also a method of using a structure finer than the wavelength of incident light (also referred to as a working wavelength). The most famous structure is the “moth-eye”. The eyelids can obtain very low reflectivity due to its unique microstructure.

入射光の波長よりも細かい構造では、光はその構造を認識できずに一様な媒質のような振舞いを示す。該構造は、これを構成する材料の体積比に準じた屈折率を示す。これにより、通常の材料では得られない低屈折率な構造体を実現でき、反射を良好に抑えることができる。   In a structure finer than the wavelength of incident light, the light cannot recognize the structure and behaves like a uniform medium. The structure exhibits a refractive index according to the volume ratio of the materials constituting the structure. As a result, a structure having a low refractive index that cannot be obtained with a normal material can be realized, and reflection can be satisfactorily suppressed.

微細構造を利用する反射抑制方法としては、入射光の波長より小さい粒径を有する微粒子を分散した膜を塗布する方法や(特許文献1参照) 、微細パターン加工技術によって微細周期構造を形成する方法方法(特許文献2参照) がある。
特許第3135944号公報 特開昭50−70040号公報
As a reflection suppressing method using a fine structure, a method of applying a film in which fine particles having a particle diameter smaller than the wavelength of incident light are dispersed (see Patent Document 1), or a method of forming a fine periodic structure by a fine pattern processing technique There is a method (see Patent Document 2).
Japanese Patent No. 3135944 Japanese Patent Laid-Open No. 50-70040

しかしながら、入射光の波長よりも細かい構造を形成するには、複雑なプロセスが必要であり、さらに構造を構成する材料が限定されているために設計自由度が低い。このため、このような微細構造によって高い反射抑制性能が得られるのは限られた条件の透過光学素子のみであった。   However, in order to form a structure finer than the wavelength of incident light, a complicated process is required, and the materials constituting the structure are limited, so the degree of freedom in design is low. For this reason, only a transmission optical element under limited conditions can obtain a high reflection suppression performance by such a fine structure.

本発明は、良好な反射抑制性能等の光学性能を有し、かつ設計自由度の高い光学素子を提供する。   The present invention provides an optical element having optical performance such as good antireflection performance and high design freedom.

本発明の一側面としての光学素子は、光入射側から順に、第1の層、第2の層及びベース部材とを有する。第1の層は、入射光の波長λよりも小さいピッチで凸部と凹部が交互に形成された凹凸構造を有し、第2の層は、互いに屈折率が異なる複数の層を含むことを特徴とする。   An optical element according to one aspect of the present invention includes a first layer, a second layer, and a base member in order from the light incident side. The first layer has a concavo-convex structure in which convex portions and concave portions are alternately formed at a pitch smaller than the wavelength λ of incident light, and the second layer includes a plurality of layers having different refractive indexes. Features.

本発明によれば、広帯域特性及び入射角度特性に優れた反射抑制性能等、良好な光学性能を有し、かつ設計自由度の高い光学素子を実現することができる。   According to the present invention, it is possible to realize an optical element having good optical performance such as reflection suppression performance excellent in broadband characteristics and incident angle characteristics and having a high degree of design freedom.

以下、本発明の好ましい実施例について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1には、本発明の実施例である光学素子の構成を示す。Lは該光学素子に入射する光を示す。光学素子は、光入射側から順に、第1の層14、第2の層15(13,12)及びベース部材11を有する。   In FIG. 1, the structure of the optical element which is an Example of this invention is shown. L represents light incident on the optical element. The optical element includes a first layer 14, a second layer 15 (13, 12), and a base member 11 in order from the light incident side.

ベース部材11は、第1及び第2の層14,15による反射抑制膜201を付加するレンズやプリズム等の光学透明部材(透過光学部材)に相当する。   The base member 11 corresponds to an optical transparent member (transmission optical member) such as a lens or a prism to which the reflection suppressing film 201 by the first and second layers 14 and 15 is added.

第1の層14は、該光学素子への入射光Lの波長λよりも小さいピッチpで凸部14aと凹部14bが交互に形成された凹凸構造を有する。凸部14aと凹部14bはそれぞれ、幅wa,wbを有する。ここにいうピッチpとは、凸部14aと次の凸部14aまでの距離である。また、幅とは、凸部14aと凹部14bの交互配列方向での寸法を意味する。   The first layer 14 has a concavo-convex structure in which convex portions 14a and concave portions 14b are alternately formed at a pitch p smaller than the wavelength λ of the incident light L to the optical element. The convex portion 14a and the concave portion 14b have widths wa and wb, respectively. The pitch p here is a distance from the convex portion 14a to the next convex portion 14a. The width means the dimension in the direction in which the convex portions 14a and the concave portions 14b are alternately arranged.

第1の層012は、厚さ方向において幅が均一な凸部012aと凹部012bにより構成された凹凸構造を有する。   The first layer 012 has a concavo-convex structure constituted by convex portions 012a and concave portions 012b having a uniform width in the thickness direction.

第2の層15は、互いに屈折率が異なる2つの層13,12により構成されている。以下、これらの2つの層を、光入射側から順に、第2a層13及び第2b層12と称する。第2a層13及び第2b層12は、第1の層14のような凹凸構造を持たない均質層である。   The second layer 15 is composed of two layers 13 and 12 having different refractive indexes. Hereinafter, these two layers are referred to as the second a layer 13 and the second b layer 12 in order from the light incident side. The second a layer 13 and the second b layer 12 are homogeneous layers that do not have an uneven structure like the first layer 14.

ここで、第1の層14をなす凹凸構造におけるピッチpがλ/20以上であると、第1の層14は凸部14aを構成する媒質と凹部14b内を満たす媒質(例えば、空気)とが混合した等価屈折率を持つ層として機能するため、好ましい。   Here, when the pitch p in the concavo-convex structure forming the first layer 14 is λ / 20 or more, the first layer 14 includes a medium constituting the convex portion 14a and a medium (for example, air) filling the concave portion 14b. Is preferable because it functions as a layer having a mixed equivalent refractive index.

また、凹凸構造は、全ての凸部14aと全ての凹部14bがそれぞれ同一幅で規則的に配置された(つまりは同一ピッチで凸部と凹部が交互に形成された)周期構造であるとよい。ただし、平均ピッチがλより小さければ、凸部14aと凹部14bとが不規則配置された非周期的な構造であってもよい。   The uneven structure may be a periodic structure in which all the convex portions 14a and all the concave portions 14b are regularly arranged with the same width (that is, the convex portions and the concave portions are alternately formed at the same pitch). . However, as long as the average pitch is smaller than λ, a non-periodic structure in which the convex portions 14a and the concave portions 14b are irregularly arranged may be used.

さらに、第2a層13及び第2b層12のうち少なくとも一方は、前述した均質層でなくてもよく、λより小さいピッチで凸部と凹部が交互に形成された凹凸構造を有していてもよい。また、本実施例では、第2の層15に屈折率が異なる2つの層が含まれている場合について説明するが、第2の層は3つ以上の層を含んでいてもよい。   Furthermore, at least one of the second a layer 13 and the second b layer 12 may not be the homogeneous layer described above, and may have a concavo-convex structure in which convex portions and concave portions are alternately formed at a pitch smaller than λ. Good. In the present embodiment, the case where the second layer 15 includes two layers having different refractive indexes will be described. However, the second layer may include three or more layers.

図1に示す光学素子の屈折率構造を図2に示す。図2において、21はベース部材11の屈折率を、22は第2b層12の屈折率を示す。また、23は第2a層13の屈折率を、24は第1の層14の屈折率(等価屈折率)を示す。また、図2の縦軸は屈折率を、横軸は厚さ方向の位置を示す。   The refractive index structure of the optical element shown in FIG. 1 is shown in FIG. In FIG. 2, 21 indicates the refractive index of the base member 11, and 22 indicates the refractive index of the second b layer 12. Reference numeral 23 denotes a refractive index of the second a layer 13, and 24 denotes a refractive index (equivalent refractive index) of the first layer 14. Further, the vertical axis in FIG. 2 indicates the refractive index, and the horizontal axis indicates the position in the thickness direction.

図2から分かるように、第2の層15に含まれる複数の層(本実施例では、第2a層13及び第2b層12)の屈折率は、第1の層14の等価屈折率とベース部材11の屈折率との間の屈折率であり、かつ第1の層14に近い層ほど小さい。ただし、第2の層15のこのような屈折率層の配置は例にすぎず、必ずしもこれを満たさなくてもよい。   As can be seen from FIG. 2, the refractive index of the plurality of layers (in this embodiment, the second a layer 13 and the second b layer 12) included in the second layer 15 is equal to the equivalent refractive index of the first layer 14 and the base. The refractive index is between the refractive index of the member 11 and the layer closer to the first layer 14 is smaller. However, the arrangement of the refractive index layer of the second layer 15 is merely an example, and does not necessarily have to be satisfied.

第1の層14は、入射光Lの波長よりも十分に小さな凹凸構造を有するため、みかけ上は均質層のような光学特性を持つ。具体的には、凸部14aを構成する材料の充填量ffから求められる等価屈折率を有する。   Since the first layer 14 has an uneven structure sufficiently smaller than the wavelength of the incident light L, it apparently has optical characteristics like a homogeneous layer. Specifically, it has an equivalent refractive index obtained from the filling amount ff of the material constituting the convex portion 14a.

等価屈折率nsは、凸部14aを構成する材料を屈折率nとすると、以下の式(a)により簡易的に表される。 Equivalent refractive index ns is, when the material constituting the convex portion 14a and the refractive index n 0, are simply represented by the following formula (a).

この式(a)から分かるように、凸部14aを構成する材料の充填率が高いほど第1の層14の等価屈折率が高くなる。このことを利用することで、従来の均質層では得られなかった低屈折率な層を作成できる。   As can be seen from this equation (a), the higher the filling rate of the material constituting the convex portion 14a, the higher the equivalent refractive index of the first layer 14. By utilizing this fact, it is possible to create a low refractive index layer that cannot be obtained with a conventional homogeneous layer.

本実施例の光学素子は、この第1の層14とベース部材11との間に、別の光学干渉を生じる層(第2の層15)を挿入した構成を有する。このような構成では、最表層である第1の層14の屈折率を低くして入射角に対するフレネル係数の変化を抑えることができる。さらに、第2の層15で光学干渉を生じさせることで、入射角度特性を改善することができる。   The optical element of the present embodiment has a configuration in which a layer (second layer 15) that generates another optical interference is inserted between the first layer 14 and the base member 11. In such a configuration, the refractive index of the first layer 14 that is the outermost layer can be lowered to suppress the change in the Fresnel coefficient with respect to the incident angle. Furthermore, the incidence angle characteristic can be improved by causing optical interference in the second layer 15.

また、最表層である第1の層14とこれに接する空気との屈折率差を小さくすることができるため、光学干渉の波の振幅を小さくすることができ、広帯域特性に優れた反射抑制機能を得ることができる。   In addition, since the refractive index difference between the first layer 14 as the outermost layer and the air in contact with the first layer 14 can be reduced, the amplitude of the wave of optical interference can be reduced, and the reflection suppressing function with excellent broadband characteristics. Can be obtained.

以上のような性能又は機能をより効果的に得るためには、以下の条件(1)を満足するとよりよい。   In order to obtain the above performance or function more effectively, it is better to satisfy the following condition (1).

ここで、n0は第1の層14の等価屈折率、n1は第2の層15に含まれる複数の層のうち最も第1の層側の層(図1の例では、第2a層13)の屈折率である。また、n2は該複数の層のうち最もベース部材側の層(図1の例では、第2b層12)の屈折率、n3はベース部材11の屈折率である。   Here, n0 is the equivalent refractive index of the first layer 14, and n1 is the layer closest to the first layer among the plurality of layers included in the second layer 15 (the second a layer 13 in the example of FIG. 1). Is the refractive index. Further, n2 is the refractive index of the layer closest to the base member (the second b layer 12 in the example of FIG. 1) among the plurality of layers, and n3 is the refractive index of the base member 11.

この条件(1)を満足することにより、反射する波の振幅が各層の境界面ごとで同じ大きさとなるため、より広い波長域にわたって上記性能及び機構を発揮することができる。   By satisfying this condition (1), the amplitude of the reflected wave becomes the same for each boundary surface of each layer, so that the above performance and mechanism can be exhibited over a wider wavelength range.

さらに、以下の条件を満足すれば、より効果的である。   Furthermore, it is more effective if the following conditions are satisfied.

以上説明したように各層の屈折率を設定することにより、最表層である第1の層14によって入射角度特性や広帯域特性を補正した光を別途、光学干渉によってさらに低減することができるため、高性能な反射抑制構造が得られる。   As described above, since the refractive index of each layer is set, the light whose incident angle characteristics and broadband characteristics are corrected by the first layer 14 which is the outermost layer can be further reduced by optical interference, so that A high performance antireflection structure can be obtained.

図3には、厚さ方向において幅が均一な凹凸構造を有する第1の層32が、ベース部材31上に直接形成されている(つまり、第2の層を持たない)光学素子を比較例として示す。この場合でも、第1の層32の構造を変化させることで屈折率を調整できる。この場合、以下の条件(3)を満たす構造を採用することで、図4に203で示すような反射率特性が得られる。なお、図4中の202は、図1に示した本実施例の反射抑制構造の反射率である。   FIG. 3 shows a comparative example of an optical element in which a first layer 32 having a concavo-convex structure having a uniform width in the thickness direction is directly formed on the base member 31 (that is, having no second layer). As shown. Even in this case, the refractive index can be adjusted by changing the structure of the first layer 32. In this case, by adopting a structure that satisfies the following condition (3), a reflectance characteristic as indicated by 203 in FIG. 4 can be obtained. Note that reference numeral 202 in FIG. 4 denotes the reflectance of the reflection suppressing structure of this embodiment shown in FIG.

ただし、図3に示す構造では、単層膜と同等であり、屈折率の高いベース部材31を用いる場合には、第1の層31との屈折率差が大きくなる。このため、波長帯域が狭く、入射角特性も悪い。   However, the structure shown in FIG. 3 is equivalent to a single-layer film, and when a base member 31 having a high refractive index is used, the refractive index difference from the first layer 31 is large. For this reason, the wavelength band is narrow and the incident angle characteristic is also poor.

図5には、厚さ方向において幅が均一な凹凸構造を有する第1の層53と、ベース部材51との間に均質層52を1層だけ設けた光学素子を比較例として示す。   FIG. 5 shows, as a comparative example, an optical element in which only one homogeneous layer 52 is provided between the first layer 53 having a concavo-convex structure with a uniform width in the thickness direction and the base member 51.

図4に204で示すように、図3に示す光学素子に比べて、高性能な反射抑制性能が得られる。しかし、ベース部材51の屈折率が高い場合に均質層52を1層のみ設けるだけでは、波長帯域で十分な反射抑制性能が得られない。   As shown by 204 in FIG. 4, a high-performance reflection suppressing performance can be obtained as compared with the optical element shown in FIG. However, when the base member 51 has a high refractive index, it is not possible to obtain sufficient reflection suppression performance in the wavelength band by providing only one homogeneous layer 52.

これらに対し、図1に示した本実施例の反射抑制構造では、図4中の202に示すように、広い波長帯域で十分な反射抑制性能が得られる。   On the other hand, in the reflection suppression structure of this embodiment shown in FIG. 1, sufficient reflection suppression performance can be obtained in a wide wavelength band as indicated by 202 in FIG.

また、図1に示した光学素子と同様の構成を有する光学素子において、第1の層に設ける凹凸構造は、図6に示すような構造であってもよい。61はベース部材である。65は第2の層であり、それぞれ均質層である第2a層63及び第2b層62を含む。   Further, in the optical element having the same configuration as the optical element shown in FIG. 1, the uneven structure provided in the first layer may be a structure as shown in FIG. 61 is a base member. Reference numeral 65 denotes a second layer, which includes a second a layer 63 and a second b layer 62, which are homogeneous layers.

64は第1の層であり、入射光Lの波長λよりも小さいピッチで凸部64aと凹部64bが交互に形成された凹凸構造を有する。ただし、凸部64aと凹部64bの幅は、第1の層64の厚さ方向において変化している。具体的には、凸部64aの幅は第2の層65及びベース部材61に近いほど大きくなっており、凹部64bの幅はその逆に変化している。   Reference numeral 64 denotes a first layer having a concavo-convex structure in which convex portions 64a and concave portions 64b are alternately formed at a pitch smaller than the wavelength λ of the incident light L. However, the widths of the convex portions 64 a and the concave portions 64 b change in the thickness direction of the first layer 64. Specifically, the width of the convex portion 64a is larger as it is closer to the second layer 65 and the base member 61, and the width of the concave portion 64b is reversed.

この光学素子の屈折率構造を図7に示す。第1の層64の等価屈折率74は、厚さ方向にて変化する。71はベース部材61の屈折率、72は第2b層62の屈折率、73は第2a層63の屈折率である。また、図7の縦軸は屈折率を、横軸は厚さ方向の位置を示す。   The refractive index structure of this optical element is shown in FIG. The equivalent refractive index 74 of the first layer 64 changes in the thickness direction. Reference numeral 71 denotes a refractive index of the base member 61, 72 denotes a refractive index of the second b layer 62, and 73 denotes a refractive index of the second a layer 63. In addition, the vertical axis in FIG. 7 indicates the refractive index, and the horizontal axis indicates the position in the thickness direction.

第1の層64の凸部64aは、第2の層側から先細りの形状を有するため、等価屈折率は、第2の層側から空気側(光入射側)に向けて徐々に低くなる。   Since the convex portion 64a of the first layer 64 has a tapered shape from the second layer side, the equivalent refractive index gradually decreases from the second layer side toward the air side (light incident side).

このような屈折率構造では、入射光は第1の層64内で無数に干渉し合って第2の層65に入射する。この場合、従来の光学干渉膜とは異なり、屈折率の勾配と第1の層64の厚みとに対応して光が減衰しながら第2の層65に入射する。そこで、残留した光のベース部材61での反射を抑えるために、第2の層65(第2a層63及び第2b層62)の屈折率と厚さを調整することで、光学特性に優れた反射抑制構造が得られる。   In such a refractive index structure, incident light interferes innumerably in the first layer 64 and enters the second layer 65. In this case, unlike the conventional optical interference film, light is incident on the second layer 65 while being attenuated corresponding to the gradient of the refractive index and the thickness of the first layer 64. Therefore, in order to suppress reflection of the remaining light on the base member 61, the refractive index and the thickness of the second layer 65 (the second a layer 63 and the second b layer 62) are adjusted, and the optical characteristics are excellent. A reflection suppressing structure is obtained.

なお、この構造を採用する場合の条件(1)及び(2)におけるn0は、該凹凸構造のうち最もベース部材側での等価屈折率である。   Note that n0 in the conditions (1) and (2) when this structure is adopted is an equivalent refractive index on the most base member side of the concavo-convex structure.

このような本実施例の反射抑制構造によれば、従来の光学干渉膜を用いずに光を減衰させることができる。従来の光学干渉膜は、層の厚さや屈折率に対して敏感であるため、広帯域特性や入射角度特性に優れた反射抑制構造を得ることが難しい。これに対し、本実施例では、入射光の入射角度や波長に対して鈍感になるため、高性能な反射抑制構造を得やすい。   According to the reflection suppressing structure of this embodiment, light can be attenuated without using a conventional optical interference film. Since the conventional optical interference film is sensitive to the thickness and refractive index of the layer, it is difficult to obtain a reflection suppressing structure having excellent broadband characteristics and incident angle characteristics. On the other hand, in this embodiment, since it becomes insensitive to the incident angle and wavelength of incident light, it is easy to obtain a high-performance reflection suppressing structure.

また、本実施例では、第1の層の構造に適した第2の層を導入することで、第1の層の材料や形状によらず、様々な透過光学部材に適用できる反射抑制構造が得られる。さらに、本実施例の第2の層には、第1の層で減衰した光が入射するため、本実施例は、従来の光学干渉膜を用いる場合に比べて、第2の層の屈折率や厚さに鈍感である。このため、本実施例の光学素子は、従来に比べて製作精度の余裕度が大きい。   Further, in this embodiment, by introducing a second layer suitable for the structure of the first layer, there is a reflection suppressing structure that can be applied to various transmission optical members regardless of the material and shape of the first layer. can get. Furthermore, since the light attenuated in the first layer is incident on the second layer of this embodiment, the second embodiment has a refractive index of the second layer as compared with the case where a conventional optical interference film is used. Insensitive to thickness. For this reason, the optical element of the present embodiment has a larger margin of manufacturing accuracy than the conventional one.

図8には、厚さ方向において構造が変化する第1の層82を有する比較例を示す。図8は、ベース部材81と、これとは異なる材料で形成された第1の層82とが互いに隣接している場合(第2の層を持たない場合)を示す。   FIG. 8 shows a comparative example having a first layer 82 whose structure changes in the thickness direction. FIG. 8 shows a case where the base member 81 and the first layer 82 formed of a different material are adjacent to each other (when the second layer is not provided).

図8の構造での屈折率構造を図9に示す。91はベース部材81の屈折率、92は第1の層92の屈折率(等価屈折率)である。図8の構造では、第1の層82とベース部材81とに異なる材料を用いているため、これらの界面に大きな屈折率差が生じる。このため、空気側から入射する光は第1の層82で減衰されても、第1の層82とベース部材81との界面での反射が大きく、光学性能が劣る。図11の207には、図8の構造による反射率特性を示す。また、図11の206には、図6に示した本実施例の構造による反射率特性を示す。   FIG. 9 shows a refractive index structure in the structure of FIG. 91 is the refractive index of the base member 81, and 92 is the refractive index (equivalent refractive index) of the first layer 92. In the structure of FIG. 8, since different materials are used for the first layer 82 and the base member 81, a large difference in refractive index occurs at the interface between them. For this reason, even if the light incident from the air side is attenuated by the first layer 82, the reflection at the interface between the first layer 82 and the base member 81 is large, and the optical performance is inferior. Reference numeral 207 in FIG. 11 shows the reflectance characteristics of the structure in FIG. Further, reference numeral 206 in FIG. 11 shows reflectance characteristics according to the structure of this embodiment shown in FIG.

図10には、厚さ方向において構造が変化する第1の層103を有し、第1の層103とベース部材101との間に、均質層102を1層のみ設けた場合の比較例を示す。   FIG. 10 shows a comparative example in which the first layer 103 whose structure changes in the thickness direction is provided, and only one homogeneous layer 102 is provided between the first layer 103 and the base member 101. Show.

この構造では、図11に208で示すような比較的高い反射抑制性能が得られる。しかし、ベース部材101の屈折率が2.0以上と高い場合には、均質層102を1層のみ設けるだけでは、広帯域で十分な反射抑制性能が得られない。   With this structure, a relatively high reflection suppression performance as indicated by 208 in FIG. 11 is obtained. However, when the refractive index of the base member 101 is as high as 2.0 or more, it is not possible to obtain a sufficient reflection suppression performance in a wide band by providing only one homogeneous layer 102.

これに対し、図6に示した本実施例の構造によれば、図11中の206に示すように、広帯域で十分な反射抑制性能が得られる。   On the other hand, according to the structure of the present embodiment shown in FIG. 6, sufficient reflection suppression performance can be obtained in a wide band as indicated by 206 in FIG.


図12及び図13には、本実施例にて説明した反射抑制構造の光学素子への適用例を示す。図12は光学素子の1つであるレンズの断面図を、図13は別の光学素子であるプリズムの断面図である。

12 and 13 show application examples of the reflection suppressing structure described in this embodiment to an optical element. FIG. 12 is a cross-sectional view of a lens that is one of optical elements, and FIG. 13 is a cross-sectional view of a prism that is another optical element.

これらの図において、112,122はそれぞれ、反射抑制機能を付加するベース部材(光学透明部材)としてのレンズ本体及びプリズム本体である。111,121はそれぞれ、入射光の波長λよりも小さなピッチの凹凸構造を有する第1の層である。113,123は第2の層である。   In these drawings, reference numerals 112 and 122 denote a lens body and a prism body as a base member (optical transparent member) for adding a reflection suppressing function, respectively. Reference numerals 111 and 121 denote first layers each having a concavo-convex structure with a pitch smaller than the wavelength λ of incident light. Reference numerals 113 and 123 denote second layers.

レンズ本体及びプリズム本体112,122は、一般的な光学機器に搭載できる程度の厚さを有し、また第1の層111,121及び第2の層113,123は、入射光の波長λ以下の凹凸ピッチや厚さを持っている。   The lens body and prism bodies 112 and 122 have a thickness that can be mounted on a general optical device, and the first layers 111 and 121 and the second layers 113 and 123 have a wavelength λ or less of incident light. Have uneven pitch and thickness.

このようなレンズやプリズム等の光学素子は、多くの光学機器で使用することができる。例えば、図17には、本実施例の光学素子を用いた光学機器としてのデジタルカメラを示している。   Such optical elements such as lenses and prisms can be used in many optical devices. For example, FIG. 17 shows a digital camera as an optical apparatus using the optical element of this embodiment.

20はカメラ本体、21は本実施例の光学素子であるレンズを用いて構成された撮影光学系である。撮影光学系21は、複数のレンズによって構成されており、このうち少なくとも1つのレンズが本実施例の光学素子により構成されている。22はカメラ本体20に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。   Reference numeral 20 denotes a camera body, and reference numeral 21 denotes a photographing optical system configured using a lens which is an optical element of the present embodiment. The photographing optical system 21 is composed of a plurality of lenses, and at least one of these lenses is composed of the optical element of this embodiment. Reference numeral 22 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 21 and is built in the camera body 20.

23は撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリ、24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するための電子ビューファインダである。   Reference numeral 23 denotes a memory for recording information corresponding to the subject image photoelectrically converted by the image sensor 22, and reference numeral 24 denotes an electronic viewfinder which is constituted by a liquid crystal display panel or the like and for observing the subject image formed on the solid-state image sensor 22. It is.

このように実施例の光学素子を用いて撮像光学系を構成することで、撮像光学系内での不要な反射を抑えた高い光学性能を有するカメラを実現することができる。   As described above, by configuring the imaging optical system using the optical element according to the embodiment, it is possible to realize a camera having high optical performance in which unnecessary reflection in the imaging optical system is suppressed.

なお、本実施例の光学素子は、カメラのファインダ光学系や、液晶プロジェクタの照明光学系及び投射光学系等にも使用することができる。そして、該光学素子が上述した反射抑制構造を有することで、透過光量が十分に多く、不要な反射によるゴーストやフレアの発生を十分に抑えることができる。   The optical element of the present embodiment can also be used for a camera finder optical system, a liquid crystal projector illumination optical system, and a projection optical system. Since the optical element has the above-described reflection suppressing structure, the amount of transmitted light is sufficiently large, and generation of ghosts and flares due to unnecessary reflection can be sufficiently suppressed.

以上説明したように、上記実施例によれば、広帯域特性及び入射角度特性に優れた反射抑制性能等、良好な光学性能を有し、かつ設計自由度の高い光学素子を実現することができる。   As described above, according to the above-described embodiment, it is possible to realize an optical element having good optical performance such as reflection suppression performance excellent in broadband characteristics and incident angle characteristics and having a high degree of design freedom.

以下、上記各実施例に対応した数値例(シミュレーション例)について説明する。全ての数値例において、入射光の波長は500nmである。ただし、このことは、本発明の実施例(数値例)における入射光の波長が500nmに限定されることを意味するものではない。また、層の厚さは物理的層厚(膜厚)とした。   Hereinafter, numerical examples (simulation examples) corresponding to the respective embodiments will be described. In all numerical examples, the wavelength of incident light is 500 nm. However, this does not mean that the wavelength of incident light in the embodiment (numerical example) of the present invention is limited to 500 nm. The layer thickness was the physical layer thickness (film thickness).

(数値例1)
本数値例の光学素子では、第2の層に2つの層(第2a,2b層)を設け、これら2つの層の屈折率を、第1の層の屈折率とベース部材の屈折率との範囲内で互いに異ならせた。また、第2a層と第2b層とも、均質層とした。ベース部材としては、屈折率が2.0の光学ガラスを用いた。第1の層を、屈折率が1.46の材料により構成し、材料充填率を30%とした。このときの等価屈折率は1.13である。また、第1の層は、厚み方向に一様な構造とした。
(Numerical example 1)
In the optical element of this numerical example, two layers (second a and 2b layers) are provided in the second layer, and the refractive indexes of these two layers are expressed by the refractive index of the first layer and the refractive index of the base member. Different from each other within the range. The 2a layer and the 2b layer were both homogeneous layers. As the base member, optical glass having a refractive index of 2.0 was used. The first layer was made of a material having a refractive index of 1.46, and the material filling rate was 30%. The equivalent refractive index at this time is 1.13. The first layer has a uniform structure in the thickness direction.

この場合、上記条件式(1)に示す、ベース部材側の第2b層の屈折率に対する第1の層側の第2a層の屈折率の比(n2/n1)が、1.13以上1.43以下の範囲となるように各層の屈折率を設定することが望ましい。   In this case, the ratio (n2 / n1) of the refractive index of the second layer a on the first layer side to the refractive index of the second layer b on the base member side shown in the conditional expression (1) is 1.13 or more. It is desirable to set the refractive index of each layer to be in the range of 43 or less.

本数値例では、ベース部材
上に、屈折率が1.86の第2b層を55nmの厚さで形成し、その上に屈折率が1.55の第2a層を70nmの厚さで形成し、さらにその上に第1の層を100nmの厚さで形成した。この場合のn2/n1は、1.2であった。
In this numerical example, a 2b layer having a refractive index of 1.86 is formed on the base member with a thickness of 55 nm, and a second a layer having a refractive index of 1.55 is formed thereon with a thickness of 70 nm. Further, a first layer having a thickness of 100 nm was formed thereon. In this case, n2 / n1 was 1.2.

図14には、本数値例の光学素子の反射率特性を示す。図14から分かるように、本数値例によれば、400nmから700nmの広い波長域において、0.5%以下の十分に低い反射率(十分に高い反射抑制性能)が得られた。   FIG. 14 shows the reflectance characteristics of the optical element of this numerical example. As can be seen from FIG. 14, according to this numerical example, a sufficiently low reflectance (sufficiently high reflection suppression performance) of 0.5% or less was obtained in a wide wavelength range from 400 nm to 700 nm.

また、図14には、比較例として、屈折率が2.0のベース部材の上に等価屈折率が1.13の第1の層を設け、第2の層を設けていない光学素子の反射率特性を示す。   In FIG. 14, as a comparative example, the reflection of an optical element in which a first layer having an equivalent refractive index of 1.13 is provided on a base member having a refractive index of 2.0 and no second layer is provided. The rate characteristic is shown.

(数値例2)
本数値例の光学素子では、第2の層に3つの層(第2a,2b,2c層)を設け、これら3つの層の屈折率を、第1の層の屈折率とベース部材の屈折率との範囲内で互いに異ならせた。また、該3つの層とも、均質層とした。ベース部材としては、屈折率が2.0の光学ガラスを用いた。第1の層を、屈折率が1.46の材料により構成し、材料充填率を30%とした。このときの等価屈折率は1.13である。また、第1の層は、厚み方向に一様な構造とした。
(Numerical example 2)
In the optical element of this numerical example, three layers (second a, 2b, and 2c layers) are provided in the second layer, and the refractive indexes of these three layers are the refractive index of the first layer and the refractive index of the base member. And different from each other. The three layers were homogeneous layers. As the base member, optical glass having a refractive index of 2.0 was used. The first layer was made of a material having a refractive index of 1.46, and the material filling rate was 30%. The equivalent refractive index at this time is 1.13. The first layer has a uniform structure in the thickness direction.

この場合、n2/n1が1.13以上1.43以下の範囲となるように各層の屈折率を設定することが望ましい。   In this case, it is desirable to set the refractive index of each layer so that n2 / n1 is in the range of 1.13 to 1.43.

本数値例では、ベース部材
上に屈折率が1.71の第2a層を74nmの厚さで形成し、その上に屈折率が1.51の第2b層を84nmの厚さで形成した。さらにその上に、屈折率が1.33の第2c層を96nmの厚さで形成し、その上に第1の層を109nmの厚さで形成した。この場合のn2/n1は、1.13であった。
In this numerical example, the 2a layer having a refractive index of 1.71 was formed on the base member with a thickness of 74 nm, and the second layer b having a refractive index of 1.51 was formed thereon with a thickness of 84 nm. Further, a second c layer having a refractive index of 1.33 was formed thereon with a thickness of 96 nm, and a first layer was formed thereon with a thickness of 109 nm. In this case, n2 / n1 was 1.13.

図15には、本数値例の光学素子の反射率特性を示す。図15から分かるように、本数値例によれば、400nmから700nmの広い波長域において、0.5%以下の十分に低い反射率(十分に高い反射抑制性能)が得られた。   FIG. 15 shows the reflectance characteristics of the optical element of this numerical example. As can be seen from FIG. 15, according to this numerical example, a sufficiently low reflectance (sufficiently high reflection suppression performance) of 0.5% or less was obtained in a wide wavelength range from 400 nm to 700 nm.

(数値例3)
本数値例の光学素子では、第2の層に2つの層(第2a,2b層)を設け、これら2つの層の屈折率を、第1の層の屈折率とベース部材の屈折率との範囲内で互いに異ならせた。また、第2a層を凹凸構造とし、第2b層を均質層とした。ベース部材としては、屈折率が1.8の光学ガラスを用いた。
(Numerical example 3)
In the optical element of this numerical example, two layers (second a and 2b layers) are provided in the second layer, and the refractive indexes of these two layers are expressed by the refractive index of the first layer and the refractive index of the base member. Different from each other within the range. In addition, the 2a layer was a concavo-convex structure, and the 2b layer was a homogeneous layer. As the base member, optical glass having a refractive index of 1.8 was used.

第1の層を屈折率が1.46の材料により構成し、材料充填率を30%とした。このときの等価屈折率は1.13である。また、第1の層は厚み方向に一様な構造とした。この場合、n2/n1が、1.06以上1.36以下の範囲となるように各層の屈折率を設定することが望ましい。   The first layer was made of a material having a refractive index of 1.46, and the material filling rate was 30%. The equivalent refractive index at this time is 1.13. The first layer has a uniform structure in the thickness direction. In this case, it is desirable to set the refractive index of each layer so that n2 / n1 is in the range of 1.06 to 1.36.

また、第2a層を、屈折率が1.46の材料により構成し、材料充填率を65%とした。このときの等価屈折率は1.30である。第2a層は、厚み方向に一様な構造とした。   The 2a layer was made of a material having a refractive index of 1.46, and the material filling rate was 65%. The equivalent refractive index at this time is 1.30. The 2a layer had a uniform structure in the thickness direction.

本数値例では、ベース部材
上に、屈折率が1.60の第2b層(均質層)を70nmの厚さで形成し、その上に等価屈折率が1.30の第2a層(凹凸構造層)を80nmの厚さで形成し、さらにその上に第1の層を93nmの厚さで形成した。この場合のn2/n1は、1.23であった。
In this numerical example, a second b layer (homogeneous layer) having a refractive index of 1.60 is formed on the base member with a thickness of 70 nm, and a second a layer (uneven structure) having an equivalent refractive index of 1.30 is formed thereon. Layer) was formed with a thickness of 80 nm, and a first layer was formed thereon with a thickness of 93 nm. In this case, n2 / n1 was 1.23.

図16には、本数値例の光学素子の反射率特性を示す。図16から分かるように、本数値例によれば、400nmから700nmの広い波長域において、0.3%以下の十分に低い反射率(十分に高い反射抑制性能)が得られた。   FIG. 16 shows the reflectance characteristics of the optical element of this numerical example. As can be seen from FIG. 16, according to this numerical example, a sufficiently low reflectance (sufficiently high reflection suppression performance) of 0.3% or less was obtained in a wide wavelength range from 400 nm to 700 nm.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。例えば、上記実施例では、第1及び第2の層をベース部材上に設けることによって反射抑制機能を得る場合について説明したが、他の光学機能を得るために上記第1及び第2の層をベース部材上に設けてもよい。   Each embodiment described above is only a representative example, and various modifications and changes can be made to each embodiment in carrying out the present invention. For example, in the above-described embodiment, the case where the reflection suppressing function is obtained by providing the first and second layers on the base member has been described. However, in order to obtain other optical functions, the first and second layers are formed. You may provide on a base member.

本発明の実施例である光学素子の構成を示す概略図。Schematic which shows the structure of the optical element which is an Example of this invention. 図1の光学素子の屈折率構造を示す図。The figure which shows the refractive index structure of the optical element of FIG. 比較例としての光学素子の構成を示す概略図。Schematic which shows the structure of the optical element as a comparative example. 図1,図3及び図5の光学素子における反射抑制性能を示す図。The figure which shows the reflection suppression performance in the optical element of FIG.1, FIG3 and FIG.5. 他の比較例としての光学素子の構成を示す概略図。Schematic which shows the structure of the optical element as another comparative example. 本発明の別の実施例である光学素子の構成を示す概略図。Schematic which shows the structure of the optical element which is another Example of this invention. 図6の光学素子の屈折率構造を示す図。The figure which shows the refractive index structure of the optical element of FIG. 別の比較例としての光学素子の構成を示す概略図。Schematic which shows the structure of the optical element as another comparative example. 図8の光学素子の屈折率構造を示す図。The figure which shows the refractive index structure of the optical element of FIG. さらに別の比較例としての光学素子の構成を示す概略図。Furthermore, the schematic which shows the structure of the optical element as another comparative example. 図6,図8及び図10の光学素子における反射抑制性能を示す図。The figure which shows the reflection suppression performance in the optical element of FIG.6, FIG8 and FIG.10. 実施例の反射抑制構造のレンズへの適用例を示す図。The figure which shows the example of application to the lens of the reflection suppression structure of an Example. 実施例の反射抑制構造のプリズムへの適用例を示す図。The figure which shows the example of application to the prism of the reflection suppression structure of an Example. 実施例に対応する数値例1の反射率特性を示す図。The figure which shows the reflectance characteristic of the numerical example 1 corresponding to an Example. 数値例2の反射率特性を示す図。FIG. 6 is a diagram showing the reflectance characteristics of Numerical Example 2. 数値例3の反射率特性を示す図。FIG. 6 is a diagram showing the reflectance characteristics of Numerical Example 3. 実施例の光学素子を用いたデジタルカメラの概略図。1 is a schematic diagram of a digital camera using an optical element of an embodiment.

符号の説明Explanation of symbols

11,61 ベース部材
12,62 第2b層
13,63 第2a層
14,64 第1の層
15,65 第2の層
L 入射光
11, 61 Base member 12, 62 2b layer 13, 63 2a layer 14, 64 1st layer 15, 65 2nd layer L Incident light

Claims (5)

光入射側から順に、第1の層、第2の層及びベース部材とを有し、
前記第1の層は、入射光の波長λよりも小さいピッチで凸部と凹部が交互に形成された凹凸構造を有し、
前記第2の層は、互いに屈折率が異なる複数の層を含むことを特徴とする光学素子。
In order from the light incident side, it has a first layer, a second layer, and a base member,
The first layer has a concavo-convex structure in which convex portions and concave portions are alternately formed at a pitch smaller than the wavelength λ of incident light,
The optical element, wherein the second layer includes a plurality of layers having different refractive indexes.
前記第2の層に含まれる前記複数の層の屈折率は、前記第1の層の等価屈折率と前記ベース部材の屈折率との間の屈折率であり、かつ前記第1の層に近い層ほど小さいことを特徴とする請求項1に記載の光学素子。   The refractive index of the plurality of layers included in the second layer is a refractive index between the equivalent refractive index of the first layer and the refractive index of the base member, and is close to the first layer. The optical element according to claim 1, wherein the layer is smaller. 以下の条件を満足することを特徴とする請求項1又は2に記載の光学素子。

ただし、n0は前記第1の層の等価屈折率、n1は前記第2の層に含まれる前記複数の層のうち最も前記第1の層側の層の屈折率、n2は該複数の層のうち最も前記ベース部材側の層の屈折率、n3は前記ベース部材の屈折率である。
The optical element according to claim 1, wherein the following condition is satisfied.

Where n0 is the equivalent refractive index of the first layer, n1 is the refractive index of the layer closest to the first layer among the plurality of layers included in the second layer, and n2 is the refractive index of the plurality of layers. Of these, the refractive index of the layer closest to the base member, n3 is the refractive index of the base member.
前記凸部及び前記凹部は、該第1の層の厚さ方向において幅が変化しており、前記n0は、該凹凸構造のうち最も前記ベース部材側での等価屈折率であることを特徴とする請求項3に記載の光学素子。   The width of the convex portion and the concave portion is changed in the thickness direction of the first layer, and n0 is an equivalent refractive index closest to the base member in the concavo-convex structure. The optical element according to claim 3.
請求項1から4のいずれか1つに記載の光学素子を含むことを特徴とする光学機器。

An optical apparatus comprising the optical element according to claim 1.
JP2007207003A 2007-08-08 2007-08-08 Optical element Pending JP2009042472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007207003A JP2009042472A (en) 2007-08-08 2007-08-08 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207003A JP2009042472A (en) 2007-08-08 2007-08-08 Optical element

Publications (1)

Publication Number Publication Date
JP2009042472A true JP2009042472A (en) 2009-02-26

Family

ID=40443270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207003A Pending JP2009042472A (en) 2007-08-08 2007-08-08 Optical element

Country Status (1)

Country Link
JP (1) JP2009042472A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069126B2 (en) 2012-12-20 2015-06-30 Canon Kabushiki Kaisha Optical element, optical system and optical apparatus having antireflection coating
JP2019041224A (en) * 2017-08-24 2019-03-14 株式会社デンソーテン Antenna device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070040A (en) * 1973-05-10 1975-06-11
JP2003205564A (en) * 2002-01-15 2003-07-22 Dainippon Printing Co Ltd Electrification preventing transfer foil with reflection preventing function
JP2003340844A (en) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Antireflection article due to sol/gel method and manufacturing method therefor
WO2006059686A1 (en) * 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2006227596A (en) * 2005-01-21 2006-08-31 Pentax Corp Optical element having antireflection film and manufacturing method thereof
JP2006259711A (en) * 2005-02-18 2006-09-28 Canon Inc Optical transparent member and optical system using the same
WO2007018149A1 (en) * 2005-08-08 2007-02-15 Matsushita Electric Industrial Co., Ltd. Imaging optical system
JP2007072397A (en) * 2005-09-09 2007-03-22 Ricoh Co Ltd Optical element and method of manufacturing the optical element
JP2009031764A (en) * 2007-07-04 2009-02-12 Mitsubishi Rayon Co Ltd Antireflection article, molded article obtained therefrom and automobile part provided therewith
JP2009031610A (en) * 2007-07-27 2009-02-12 Canon Inc Optical device and optical equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070040A (en) * 1973-05-10 1975-06-11
JP2003205564A (en) * 2002-01-15 2003-07-22 Dainippon Printing Co Ltd Electrification preventing transfer foil with reflection preventing function
JP2003340844A (en) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Antireflection article due to sol/gel method and manufacturing method therefor
WO2006059686A1 (en) * 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2006227596A (en) * 2005-01-21 2006-08-31 Pentax Corp Optical element having antireflection film and manufacturing method thereof
JP2006259711A (en) * 2005-02-18 2006-09-28 Canon Inc Optical transparent member and optical system using the same
WO2007018149A1 (en) * 2005-08-08 2007-02-15 Matsushita Electric Industrial Co., Ltd. Imaging optical system
JP2007072397A (en) * 2005-09-09 2007-03-22 Ricoh Co Ltd Optical element and method of manufacturing the optical element
JP2009031764A (en) * 2007-07-04 2009-02-12 Mitsubishi Rayon Co Ltd Antireflection article, molded article obtained therefrom and automobile part provided therewith
JP2009031610A (en) * 2007-07-27 2009-02-12 Canon Inc Optical device and optical equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069126B2 (en) 2012-12-20 2015-06-30 Canon Kabushiki Kaisha Optical element, optical system and optical apparatus having antireflection coating
JP2019041224A (en) * 2017-08-24 2019-03-14 株式会社デンソーテン Antenna device

Similar Documents

Publication Publication Date Title
JP5773576B2 (en) Anti-reflection structure and optical equipment
US9715044B2 (en) Antireflection film, and optical element and optical system that include the same
JP2008276059A (en) Optical element and optical system having the same
JP5777353B2 (en) Diffractive optical element, optical system, and optical instrument
JP5885649B2 (en) Optical element having antireflection film, optical system and optical apparatus
JP5294584B2 (en) Optical element and optical apparatus
US8437083B2 (en) Optical element, optical system including the optical element, and optical apparatus including the optical system
JP5473472B2 (en) Optical element and optical apparatus
CN212255765U (en) Imaging lens, camera module and electronic device
WO2019024572A1 (en) Anti-reflection structure, display device and fabrication method for anti-reflection structure
JP2015094878A (en) Anti-reflection film, optical element, optical system, and optical device
JP6873602B2 (en) Diffractive optical elements, optical systems, and optical equipment
JP5885595B2 (en) Antireflection film, and optical element, optical system, and optical apparatus having the same
JP2010066704A (en) Optical element, optical system, and optical apparatus
JP2007226033A (en) Lens system
JP2009042472A (en) Optical element
JP2009139775A (en) Optical system, and optical equipment having the same
JP2007298918A (en) Optical element and optical system including the same
JP2017134362A (en) Optical element and optical system having the same
JP2018185394A (en) Anti-reflection film and optical element having the same, optical system, and optical device
JP2002062419A (en) Diffractive optical device and optical appliance having the diffractive optical device
JP2010271374A (en) Optical system and optical instrument having the same
JP2020079853A (en) Optical element, optical system, and optical apparatus
JP2018005152A (en) Optical element and optical device having the same
JP2018005139A (en) Antireflection film and optical element, optical system and optical instrument having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112