JP2003338027A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JP2003338027A
JP2003338027A JP2002145071A JP2002145071A JP2003338027A JP 2003338027 A JP2003338027 A JP 2003338027A JP 2002145071 A JP2002145071 A JP 2002145071A JP 2002145071 A JP2002145071 A JP 2002145071A JP 2003338027 A JP2003338027 A JP 2003338027A
Authority
JP
Japan
Prior art keywords
magnetic recording
alloy
layer
magnetic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002145071A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kashiwakura
良晴 柏倉
Yoshifumi Ajishi
善史 安宍
Satoru Ikegami
哲 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002145071A priority Critical patent/JP2003338027A/en
Publication of JP2003338027A publication Critical patent/JP2003338027A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance SNR characteristics and recording density by making a fine grain size and crystallinity compatible with each other using a novel base layer structure. <P>SOLUTION: A magnetic recording layer 13 consists of a Co alloy, first and second non-magnetic base layers 12 and 16 have a pure metal having a bcc structure or a laminated structure of combination of two or more layers selected from alloy and a Cr-Mn layer (an alloy thin film) 15 is provided between the non-magnetic base layers 12 and 16. The magnetic recording layer 13 of a Co alloy has a composition of Co-18Cr-12Pt-6B (at.%) and 15 nm film thickness to be fixed. The first base layer 12 is formed by using pure Cr having a bcc structure and excellent in crystal orientation properties in the circumferential direction of a substrate and the second base layer 16 is formed by using Cr-20Mo (at.%) having high consistency with the Co magnetic recording layer 13 in the crystal lattice spacing. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体に関
し、より詳細には、コンピュータ等情報機器用記憶装置
等に使用される磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium used in a storage device for information equipment such as a computer.

【0002】[0002]

【従来の技術】近年、情報機器用記憶装置の高記録密度
化が進み、磁気記録装置においても情報を読み書きする
磁気ヘッドの高度化、および情報が読み書きされる磁気
記録媒体の高度化により高記録密度化が進められてい
る。この磁気記録媒体の高記録密度化のためには、情報
信号の記録再生を行う際の再生信号と媒体ノイズの比率
であるSNRを高める必要がある。
2. Description of the Related Art In recent years, the recording density of storage devices for information equipment has been increased, and in magnetic recording devices as well, the sophistication of magnetic heads for reading and writing information and the sophistication of magnetic recording media for reading and writing information have resulted in high recording. Densification is in progress. In order to increase the recording density of this magnetic recording medium, it is necessary to increase the SNR, which is the ratio of the reproduced signal and the medium noise when recording and reproducing the information signal.

【0003】磁気記録媒体は、通常複数の薄膜の積層構
造を有している。図1は、一般的な磁気記録媒体の層構
成模式図を示す図で、図中符号1は非磁性基体(NiP
メッキつきアルミ合金、ガラスなど)、2は非磁性下地
層(Cr合金など)、3は磁性記録層(Co合金な
ど)、4はカーボン保護層を示している。
A magnetic recording medium usually has a laminated structure of a plurality of thin films. FIG. 1 is a diagram showing a layer structure schematic diagram of a general magnetic recording medium, in which reference numeral 1 is a non-magnetic substrate (NiP
A plated aluminum alloy, glass, etc., 2 is a non-magnetic underlayer (Cr alloy, etc.), 3 is a magnetic recording layer (Co alloy, etc.), and 4 is a carbon protective layer.

【0004】一般に磁気記録媒体は、アルミ合金やガラ
スなど非磁性基体1上に、結晶配向性を制御するための
非磁性下地層(以下、下地層という)2と、情報が記録
される磁性記録層3と、磁気ヘッドとの摺動から磁性記
録層3を保護するためのカーボン保護層4とを順次成膜
することにより製造される。
Generally, a magnetic recording medium has a non-magnetic base layer 1 (hereinafter referred to as a base layer) 2 for controlling crystal orientation and a magnetic recording on which information is recorded on a non-magnetic substrate 1 such as aluminum alloy or glass. It is manufactured by sequentially forming the layer 3 and the carbon protective layer 4 for protecting the magnetic recording layer 3 from sliding with the magnetic head.

【0005】非磁性基体に接する下地層から、非磁性基
体からもっとも遠い磁性記録層までの間には、結晶的な
継続性が存在する。一般に非磁性下地層材料には、bc
c構造を有するCrやCr合金といった金属薄膜ないし
NiAlのような金属間化合物が、磁性記録層にはCo
とCrの合金を主体とし、これに数種類の元素を添加し
た磁性薄膜が、保護層にはカーボンを主体とする薄膜が
それぞれ使用される。成膜方法には、薄膜特性の制御が
容易で、かつ高品質の薄膜が得られることから、一般に
スパッタ法やCVD法が用いられる。
Crystalline continuity exists from the underlayer in contact with the non-magnetic substrate to the magnetic recording layer farthest from the non-magnetic substrate. Generally, bc is used for the non-magnetic underlayer material.
A metal thin film such as Cr or Cr alloy having a c structure or an intermetallic compound such as NiAl is used as Co in the magnetic recording layer.
A magnetic thin film mainly composed of an alloy of Cr and Cr, to which several kinds of elements are added, and a thin film mainly composed of carbon are used for the protective layer. As a film forming method, a sputtering method or a CVD method is generally used because the characteristics of the thin film can be easily controlled and a high quality thin film can be obtained.

【0006】下地層および磁性記録層は、微小な金属結
晶粒子の集合体から成る。SNRを高めて記録密度を改
善するためには、磁性記録層の結晶構造を制御する必要
がある。具体的にはより微細で、所定の方向に配向した
欠陥の少ない結晶構造が好ましい。非磁性基体上に初め
に成膜される下地層の結晶構造は、磁性記録層の結晶構
造を決定する重要な役目を担う。そのため下地層の粒径
や結晶配向性を制御することは、磁気記録媒体の記録密
度改善のために不可欠である。
The underlayer and the magnetic recording layer are composed of an aggregate of fine metal crystal grains. In order to increase the SNR and improve the recording density, it is necessary to control the crystal structure of the magnetic recording layer. Specifically, a crystal structure which is finer and has a small number of defects oriented in a predetermined direction is preferable. The crystal structure of the underlayer initially formed on the nonmagnetic substrate plays an important role in determining the crystal structure of the magnetic recording layer. Therefore, controlling the grain size and crystal orientation of the underlayer is essential for improving the recording density of the magnetic recording medium.

【0007】例えば、磁性記録層との結晶格子整合性を
高めるために下地層を適宜合金化し組成を選択する、配
向性の高い下地膜と格子整合性の高い下地膜とを積層化
する、などの手法が採用されてきた。下地層の結晶微細
化のためには、結晶粒径が肥大化しないようにその膜厚
を減じる、成膜ガス圧をより高めるなどのことが有効で
あり、従来採用されてきた。
For example, in order to enhance the crystal lattice matching with the magnetic recording layer, the underlayer is appropriately alloyed to select the composition, and the underlayer having a high orientation and the underlayer having a high lattice matching are laminated. Has been adopted. In order to miniaturize the crystal of the underlayer, it is effective to reduce the film thickness so as not to enlarge the crystal grain size, and to increase the film forming gas pressure, which has been conventionally adopted.

【0008】[0008]

【発明が解決しようとする課題】記録密度をさらに高め
るためには、下地層の結晶制御が必要不可欠である。し
かしながら、従来の手法では、結晶成長、結晶配向性の
改善と粒径の微細化を高度に両立させることは困難であ
る。例えば、下地層の膜厚を過剰に減ずることで結晶粒
径は微細化されるが、結晶成長が不十分になるため、結
晶配向性を劣化させてしまう。また、組成や材料系を選
択することで結晶性を高めることは可能であるが、同時
に微細化を行うためにはやはり膜厚の減少など結晶性を
犠牲にする手法を併用する必要がある。
In order to further increase the recording density, crystal control of the underlayer is essential. However, according to the conventional method, it is difficult to achieve a high degree of compatibility between crystal growth, improvement of crystal orientation, and miniaturization of grain size. For example, the crystal grain size is made fine by excessively reducing the thickness of the underlayer, but the crystal growth becomes insufficient, so that the crystal orientation is deteriorated. Further, although it is possible to enhance the crystallinity by selecting the composition or material system, at the same time, it is necessary to use a method of sacrificing the crystallinity such as reduction of the film thickness in order to perform the miniaturization at the same time.

【0009】本発明は、このような問題に鑑みてなされ
たもので、その目的とするところは、新しい下地層構造
によって、結晶粒径の微細化と結晶性を両立させること
でSNR特性を高め、記録密度を向上させるようにした
磁気記録媒体を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to improve the SNR characteristic by making the crystal grain size finer and the crystallinity compatible by the new underlayer structure. Another object of the present invention is to provide a magnetic recording medium having an improved recording density.

【0010】[0010]

【課題を解決するための手段】本発明は、このような目
的を達成するために、請求項1に記載の発明は、非磁性
基体上にスパッタリング法により少なくとも非磁性下地
層と磁性記録層が順次形成され、さらに継続してスパッ
タリング法もしくはCVD法により保護層が形成された
薄膜の積層構造を有する磁気記録媒体において、前記磁
性記録層がCo合金で、前記非磁性下地層がbcc構造
を有する純金属または合金から選ばれる2層以上の組合
せの積層構造を有し、前記非磁性下地層間にCr−Mn
合金薄膜が設けられることを特徴とする。
In order to achieve such an object, the present invention according to claim 1 provides at least a nonmagnetic underlayer and a magnetic recording layer on a nonmagnetic substrate by a sputtering method. In a magnetic recording medium having a laminated structure of thin films sequentially formed and further continuously formed with a protective layer by a sputtering method or a CVD method, the magnetic recording layer is a Co alloy and the non-magnetic underlayer has a bcc structure. It has a laminated structure of two or more layers selected from pure metals or alloys, and Cr-Mn is provided between the non-magnetic underlayers.
An alloy thin film is provided.

【0011】また、請求項2に記載の発明は、請求項1
に記載の発明において、前記非磁性下地層が純Crまた
はCr合金であり、該非磁性下地層間に存在するCrM
n合金薄膜中のMn組成が20at%以下であり、該C
rMn合金薄膜の膜厚が0.5nm以上で3nm以下で
あることを特徴とする。
The invention described in claim 2 is the same as claim 1.
In the invention described in paragraph 1, the nonmagnetic underlayer is pure Cr or a Cr alloy, and CrM existing between the nonmagnetic underlayers.
The Mn composition in the n alloy thin film is 20 at% or less,
The thickness of the rMn alloy thin film is 0.5 nm or more and 3 nm or less.

【0012】また、請求項3に記載の発明は、請求項1
に記載の発明において、前記非磁性下地層が純Crまた
はCr合金であり、該非磁性下地層間に存在するCrM
n合金薄膜中のMn組成が30at%以下であり、該C
rMn合金薄膜の膜厚が0.5nm以上で2.5nm以
下であることを特徴とする。
The invention described in claim 3 is the same as claim 1
In the invention described in paragraph 1, the nonmagnetic underlayer is pure Cr or a Cr alloy, and CrM existing between the nonmagnetic underlayers.
The Mn composition in the n-alloy thin film is 30 at% or less,
The thickness of the rMn alloy thin film is 0.5 nm or more and 2.5 nm or less.

【0013】このように本発明は、非磁性下地層を複数
の薄膜からなる積層構造とし、その間に所定の組成と膜
厚を有するCrMn合金薄膜を挿入することを提案し
た。Cr−Mn合金薄膜中のMn組成を20at%以下
で、かつCr−Mn合金薄膜の膜厚を0.5nm以上3
nm以下、あるいはCr−Mn合金薄膜中のMn組成を
30at%以下で、かつCr−Mn合金薄膜の膜厚を
0.5nm以上で2.5nm以下にそれぞれ規定した。
このことにより、磁気記録媒体のSNR特性を高め、記
録密度を改善した。
As described above, the present invention proposes that the non-magnetic underlayer has a laminated structure composed of a plurality of thin films, and a CrMn alloy thin film having a predetermined composition and film thickness is inserted between them. The Mn composition in the Cr-Mn alloy thin film is 20 at% or less, and the thickness of the Cr-Mn alloy thin film is 0.5 nm or more 3
nm or less, or the Mn composition in the Cr-Mn alloy thin film is 30 at% or less, and the thickness of the Cr-Mn alloy thin film is 0.5 nm or more and 2.5 nm or less.
As a result, the SNR characteristic of the magnetic recording medium was enhanced and the recording density was improved.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施例について説明する。図2は、本発明の磁気記録媒体
の一実施例を説明するための断面図で、図中符号11は
非磁性基体(NiPメッキつきアルミ合金、ガラスな
ど)、12は第1下地層(純Cr)、13は磁性記録層
(Co−18Cr−12Pt−6Bat%)、14はカ
ーボン保護層、15はCr−Mn層(合金薄膜)、16
は第2下地層(Cr−20at%Mo)を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional view for explaining one embodiment of the magnetic recording medium of the present invention. In the figure, reference numeral 11 is a non-magnetic substrate (aluminum alloy with NiP plating, glass, etc.), and 12 is a first underlayer (pure). Cr), 13 is a magnetic recording layer (Co-18Cr-12Pt-6Bat%), 14 is a carbon protective layer, 15 is a Cr-Mn layer (alloy thin film), 16
Indicates the second underlayer (Cr-20 at% Mo).

【0015】本発明は、非磁性基体上にスパッタリング
法により少なくとも非磁性下地層と磁性記録層が順次形
成され、さらに継続してスパッタリング法もしくはCV
D法により保護層が形成された薄膜の積層構造を有する
磁気記録媒体で、磁性記録層13がCo合金で、非磁性
下地層12,16がbcc構造を有する純金属または合
金から選ばれる2層以上の組合せの積層構造を有し、非
磁性下地層12,16の間にCr−Mn層(合金薄膜)
15が設けられている。
According to the present invention, at least a non-magnetic underlayer and a magnetic recording layer are sequentially formed on a non-magnetic substrate by a sputtering method, and the sputtering method or CV is continuously performed.
A magnetic recording medium having a laminated structure of thin films in which a protective layer is formed by the D method, wherein the magnetic recording layer 13 is a Co alloy, and the nonmagnetic underlayers 12 and 16 are two layers selected from pure metals or alloys having a bcc structure. A Cr-Mn layer (alloy thin film) is formed between the nonmagnetic underlayers 12 and 16 having a laminated structure of the above combination.
15 are provided.

【0016】円周方向に平均粗さ0.5nmのテクスチ
ャー加工が施されたNi−Pメッキ層を有するアルミ合
金の基板11上に、第一下地層12とCr−Mn層15
と第2下地層16とCo合金の磁性記録層13とカーボ
ン保護層14とが順次DCマグネトロンスパッタ成膜さ
れている。
A first underlayer 12 and a Cr-Mn layer 15 are formed on an aluminum alloy substrate 11 having a Ni-P plated layer which is textured to have an average roughness of 0.5 nm in the circumferential direction.
The second underlayer 16, the Co alloy magnetic recording layer 13, and the carbon protective layer 14 are sequentially formed by DC magnetron sputtering.

【0017】Co合金の磁性記録層13の組成は、Co
−18Cr−12Pt−6B(at%)、膜厚は15n
m一定とした。第一下地層12は、bcc構造であり基
板円周方向への結晶配向性に優れる純Crを、第二下地
層16は、Co合金の磁性記録層13との結晶格子間隔
整合性が高いCr−20Mo(at%)とした。
The composition of the magnetic recording layer 13 of Co alloy is Co
-18Cr-12Pt-6B (at%), film thickness is 15n
m was constant. The first underlayer 12 is pure Cr, which has a bcc structure and is excellent in crystal orientation in the circumferential direction of the substrate, and the second underlayer 16 is Cr, which has high crystal lattice spacing matching with the magnetic recording layer 13 of Co alloy. It was set to -20Mo (at%).

【0018】第一下地層12の膜厚は、7nm一定、第
二下地層の膜厚は3nm一定とした。Cr−Mn層15
中のMn組成は、10,20,30at%の3種類を選
択した。いずれの金属薄膜についても、ターゲット組成
と成膜される薄膜の組成はほぼ等しいことが確認されて
いる。
The thickness of the first underlayer 12 was constant at 7 nm, and the thickness of the second underlayer was constant at 3 nm. Cr-Mn layer 15
Three types of Mn composition were selected from 10, 20, and 30 at%. It has been confirmed that the target composition and the composition of the formed thin film are almost the same for all the metal thin films.

【0019】非磁性基板11の外形は、外周φ95mm
−内周φ25mmのドーナツ状で、厚さ1.0mmであ
る。カーボン保護層14の膜厚は5nmとした。スパッ
タ時のアルゴン圧力は5mTorr一定とした。スパッ
タ成膜前には、第一下地層12の成膜直前の基板温度が
約250℃になるように基板加熱を行っている。
The outer shape of the non-magnetic substrate 11 is 95 mm in circumference.
-Donut shape with an inner circumference of 25 mm and a thickness of 1.0 mm. The thickness of the carbon protective layer 14 was 5 nm. The argon pressure during sputtering was constant at 5 mTorr. Prior to the sputtering film formation, the substrate is heated so that the substrate temperature immediately before the formation of the first underlayer 12 is about 250 ° C.

【0020】図3は、Cr−Mn膜厚の変化に伴うSN
R特性と、高周波特性をあらわす分解能の変化を示した
図である。測定にはスピンスタンドタイプのR/Wテス
ターを使用した。測定用磁気ヘッドにはGMR(巨大磁
気抵抗)タイプのものを使用し、測定半径は33mm、
基板回転数は4500rpm、測定線記録密度を308
kfciとした。
FIG. 3 shows the SN with the change of the Cr-Mn film thickness.
It is a figure showing a change of resolution which expresses R characteristic and a high frequency characteristic. A spin stand type R / W tester was used for the measurement. A GMR (giant magnetic resistance) type magnetic head is used for the measurement magnetic head, and the measurement radius is 33 mm,
The substrate rotation speed is 4500 rpm, and the measurement line recording density is 308.
kfci.

【0021】Cr−Mn層15を膜厚0.5nm設ける
ことで、Cr−Mn層15が0nmである従来媒体に対
するSNRの改善が認められる。同時に分解能も増加し
ており、周波数特性の改善、すなわち、高記録密度への
適用性が増していることが確認される。いずれのCr−
Mn組成についても、Cr−Mn層15の膜厚が厚くな
るとSNRは低下していく。
By providing the Cr-Mn layer 15 with a film thickness of 0.5 nm, an improvement in SNR over the conventional medium having a Cr-Mn layer 15 of 0 nm is recognized. At the same time, the resolution is increasing, and it is confirmed that the frequency characteristics are improved, that is, the applicability to high recording density is increased. Any of Cr-
Regarding the Mn composition, the SNR decreases as the thickness of the Cr—Mn layer 15 increases.

【0022】Cr−10Mn、Cr−20Mnの場合は
厚さ3nmまで、Cr−30Mnの場合は厚さ2.5n
mまでは従来媒体よりも高いSNR値を維持しており、
この膜厚が本発明における上限である。3nm以下の極
薄い膜を物性、膜厚ともに安定して均一に成膜するのは
困難である。特に0.5nm未満の領域は、それが顕著
となることから、本実施例では0.5nm未満を適用外
としている。0.5nm以上で3nm以下の範囲では、
生産性の点を考慮すればより厚膜であることが好まし
く、必要とされるSNR改善幅に応じてCr−Mn層1
5の膜厚を適宜選択することが好ましい。
In the case of Cr-10Mn and Cr-20Mn, the thickness is up to 3 nm, and in the case of Cr-30Mn, the thickness is 2.5n.
Up to m, it maintains a higher SNR value than conventional media,
This film thickness is the upper limit in the present invention. It is difficult to form an extremely thin film having a thickness of 3 nm or less with stable physical properties and film thickness. In particular, in the region of less than 0.5 nm, it becomes remarkable, so that less than 0.5 nm is not applied in this embodiment. In the range of 0.5 nm or more and 3 nm or less,
A thicker film is preferable in view of productivity, and the Cr—Mn layer 1 may be formed depending on the required SNR improvement width.
It is preferable to appropriately select the film thickness of 5.

【0023】組成の範囲限定は、次の考察により行われ
る。Cr−30Mnではそれ以下のMn量と比較して、
適用できるCr−Mn層15の膜厚の範囲が狭くなって
いる。これ以上Mnを添加すれば適用膜厚範囲はさらに
狭まることになり、生産マージンが減少する。そのため
Mn量には上限が存在し、本実施例からその値を30%
に限定した。
The range of the composition is limited by the following consideration. In Cr-30Mn, compared with the Mn amount less than that,
The applicable range of the thickness of the Cr—Mn layer 15 is narrow. If Mn is added more than this, the applicable film thickness range will be further narrowed and the production margin will be reduced. Therefore, there is an upper limit for the amount of Mn, and the value is 30% from this example.
Limited to.

【0024】Mnの結晶構造は、単純なbcc格子を複
数個組み合わせた形の立方格子であることが知られてい
る。したがって、Crのようなbcc結晶にMnを添加
していくと、bcc格子が徐々に乱れてくる。Mnの過
剰添加によるSNRの低下はこの格子の乱れのためであ
ると考えられる。Mn添加量が少ない場合には、このよ
うな結晶格子の乱れは生じ得ないため、下限については
とくに限定されるものではない。
It is known that the crystal structure of Mn is a cubic lattice formed by combining a plurality of simple bcc lattices. Therefore, as Mn is added to a bcc crystal such as Cr, the bcc lattice gradually becomes disordered. It is considered that the decrease in SNR due to the excessive addition of Mn is due to the disorder of the lattice. When the amount of Mn added is small, such disorder of the crystal lattice cannot occur, so the lower limit is not particularly limited.

【0025】本実施例中のCr−10Mnを1.6mn
挿入した磁気記録媒体の活性化体積は、従来媒体よりも
約12%小さいことが確認されている。活性化体積は近
似的に結晶粒の体積に等価な値であり、この値が小さい
ことは、より微細な結晶粒が形成されていることを示し
ている。また、電子線回折測定結果などから、Cr−M
n挿入による結晶性や結晶配向性の劣化は見られていな
い。
In the present embodiment, Cr-10Mn is 1.6 nm.
It has been confirmed that the activated volume of the inserted magnetic recording medium is about 12% smaller than that of the conventional medium. The activation volume is a value approximately equivalent to the volume of crystal grains, and a small value thereof indicates that finer crystal grains are formed. In addition, from the results of electron beam diffraction measurement, Cr-M
No deterioration in crystallinity or crystal orientation due to n insertion was observed.

【0026】以上のことから、Cr−Mn層の挿入によ
るSNR特性の改善は、結晶性や結晶配向性を劣化させ
ることなく結晶粒径を微細化することによるものである
と考えられる。
From the above, it is considered that the improvement of the SNR characteristics by inserting the Cr—Mn layer is due to the refinement of the crystal grain size without deteriorating the crystallinity and the crystal orientation.

【0027】本発明は、結晶性を維持しながら微細な下
地構造を提供するものである。したがって、下地層が成
膜された以降の層構成によってその効果が失われるもの
ではない。多方面で報告されている新しいタイプの磁気
記録媒体、例えば、下地層と磁性記録層との間にCo合
金系の薄膜が挿入された磁気記録媒体、Ru層を介した
2層以上の磁性層の間に反強磁性結合が得られている媒
体などに対しても有効である。
The present invention provides a fine underlayer structure while maintaining crystallinity. Therefore, the effect is not lost by the layer structure after the base layer is formed. A new type of magnetic recording medium reported in various fields, for example, a magnetic recording medium in which a Co alloy thin film is inserted between an underlayer and a magnetic recording layer, and two or more magnetic layers via a Ru layer It is also effective for a medium in which an antiferromagnetic coupling is obtained between.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、非
磁性下地層を複数の薄膜からなる積層構造とし、その間
に所定の組成と膜厚を有するCrMn合金薄膜を挿入す
ることによって薄膜の結晶性を劣化することなく結晶粒
径を微細化し、SNR特性を改善することができる。好
ましい組成と膜厚は、Cr−Mn合金薄膜中のMn組成
が20at%以下で、かつCr−Mn合金薄膜の膜厚が
0.5nm以上で3nm以下、あるいはCr−Mn合金
薄膜中のMn組成が30at%以下で、かつCr−Mn
合金薄膜の膜厚が0.5nm以上で2.5nm以下であ
る。
As described above, according to the present invention, the nonmagnetic underlayer has a laminated structure composed of a plurality of thin films, and a CrMn alloy thin film having a predetermined composition and a predetermined thickness is inserted between them to form a thin film. It is possible to reduce the crystal grain size and improve the SNR characteristics without deteriorating the crystallinity. The preferable composition and film thickness are as follows: the Mn composition in the Cr-Mn alloy thin film is 20 at% or less, and the film thickness of the Cr-Mn alloy thin film is 0.5 nm or more and 3 nm or less, or the Mn composition in the Cr-Mn alloy thin film. Is 30 at% or less, and Cr-Mn
The thickness of the alloy thin film is 0.5 nm or more and 2.5 nm or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な磁気記録媒体の層構成模式図を示す図
である。
FIG. 1 is a diagram showing a schematic layer structure of a general magnetic recording medium.

【図2】本発明の磁気記録媒体の一実施例を説明するた
めの断面図である。
FIG. 2 is a sectional view for explaining one embodiment of the magnetic recording medium of the present invention.

【図3】Cr−Mn膜厚の変化に伴うSNR特性と、高
周波特性をあらわす分解能の変化を示した図である。
FIG. 3 is a diagram showing changes in SNR characteristics and changes in resolution representing high frequency characteristics with changes in Cr—Mn film thickness.

【符号の説明】[Explanation of symbols]

1 非磁性基体 2 非磁性下地層 3 磁性記録層 4 カーボン保護層 11 非磁性基体 12 第1下地層 13 磁性記録層 14 カーボン保護層 15 Cr−Mn層 16 第2下地層 1 Non-magnetic substrate 2 Non-magnetic underlayer 3 Magnetic recording layer 4 Carbon protective layer 11 Non-magnetic substrate 12 First underlayer 13 Magnetic recording layer 14 Carbon protective layer 15 Cr-Mn layer 16 Second underlayer

フロントページの続き (72)発明者 池上 哲 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5D006 BB01 CA01 CA05 CA06 DA03 EA03 FA09 Continued front page    (72) Inventor Satoshi Ikegami             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. F-term (reference) 5D006 BB01 CA01 CA05 CA06 DA03                       EA03 FA09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上にスパッタリング法により
少なくとも非磁性下地層と磁性記録層が順次形成され、
さらに継続してスパッタリング法もしくはCVD法によ
り保護層が形成された薄膜の積層構造を有する磁気記録
媒体において、前記磁性記録層がCo合金で、前記非磁
性下地層がbcc構造を有する純金属または合金から選
ばれる2層以上の組合せの積層構造を有し、前記非磁性
下地層間にCr−Mn合金薄膜が設けられることを特徴
とする磁気記録媒体。
1. A nonmagnetic underlayer and a magnetic recording layer are sequentially formed on a nonmagnetic substrate by a sputtering method,
Further, in a magnetic recording medium having a laminated structure of thin films in which a protective layer is continuously formed by a sputtering method or a CVD method, the magnetic recording layer is a Co alloy and the nonmagnetic underlayer is a pure metal or alloy having a bcc structure. A magnetic recording medium having a laminated structure of a combination of two or more layers selected from the above, wherein a Cr—Mn alloy thin film is provided between the non-magnetic underlayers.
【請求項2】 前記非磁性下地層が純CrまたはCr合
金であり、該非磁性下地層間に存在するCrMn合金薄
膜中のMn組成が20at%以下であり、該CrMn合
金薄膜の膜厚が0.5nm以上で3nm以下であること
を特徴とする請求項1に記載の磁気記録媒体。
2. The nonmagnetic underlayer is pure Cr or a Cr alloy, the Mn composition in the CrMn alloy thin film existing between the nonmagnetic underlayers is 20 at% or less, and the thickness of the CrMn alloy thin film is 0. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a thickness of 5 nm or more and 3 nm or less.
【請求項3】 前記非磁性下地層が純CrまたはCr合
金であり、該非磁性下地層間に存在するCrMn合金薄
膜中のMn組成が30at%以下であり、該CrMn合
金薄膜の膜厚が0.5nm以上で2.5nm以下である
ことを特徴とする請求項1に記載の磁気記録媒体。
3. The nonmagnetic underlayer is pure Cr or a Cr alloy, the Mn composition in the CrMn alloy thin film existing between the nonmagnetic underlayers is 30 at% or less, and the thickness of the CrMn alloy thin film is 0. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a thickness of 5 nm or more and 2.5 nm or less.
JP2002145071A 2002-05-20 2002-05-20 Magnetic recording medium Withdrawn JP2003338027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145071A JP2003338027A (en) 2002-05-20 2002-05-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145071A JP2003338027A (en) 2002-05-20 2002-05-20 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2003338027A true JP2003338027A (en) 2003-11-28

Family

ID=29704543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145071A Withdrawn JP2003338027A (en) 2002-05-20 2002-05-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2003338027A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272949A (en) * 2006-03-30 2007-10-18 Hoya Corp Magnetic disk
WO2009041399A1 (en) * 2007-09-25 2009-04-02 Sanyo Special Steel Co., Ltd. Cr-mn-b sputtering target member for producing base film of magnetic recording medium, and thin film produced by using the same
US7670694B2 (en) 2006-12-22 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. Media for recording devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272949A (en) * 2006-03-30 2007-10-18 Hoya Corp Magnetic disk
US7670694B2 (en) 2006-12-22 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. Media for recording devices
WO2009041399A1 (en) * 2007-09-25 2009-04-02 Sanyo Special Steel Co., Ltd. Cr-mn-b sputtering target member for producing base film of magnetic recording medium, and thin film produced by using the same

Similar Documents

Publication Publication Date Title
US7368185B2 (en) Perpendicular magnetic recording media and magnetic storage apparatus using the same
JP3755449B2 (en) Perpendicular magnetic recording medium
US20080186627A1 (en) Perpendicular magnetic recording medium with granular structured magnetic recording layer, method for producing the same, and magnetic recording apparatus
US7470475B2 (en) Magnetic recording medium and magnetic storage apparatus
US6844046B2 (en) Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and sputtering target
JP2004296030A (en) Perpendicular magnetic recording medium and its manufacturing method
US7354665B2 (en) Magnetic recording medium and magnetic storage apparatus
JP2011014191A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2005521980A (en) Magnetic recording medium and magnetic storage device
JP2004234718A (en) Magnetic recording medium
JP2003123243A (en) Magnetic recording medium and method of manufacturing the same
JP2003338027A (en) Magnetic recording medium
JPH05114128A (en) Metallic thin film type magnetic disk medium and production thereof
JPH0268716A (en) Production of magnetic disk medium
JP2001291231A (en) Magnetic recording medium, its manufacturing method and magnetic storage device
JP2011146113A (en) Method for manufacturing perpendicular magnetic recording medium
US6826825B2 (en) Method for manufacturing a magnetic recording medium
US20030215676A1 (en) Magnetic recording medium
JP2003346333A (en) Perpendicular magnetic record medium and manufacturing method therefor
JPH0793738A (en) Magnetic recording medium
JP2002170224A (en) Magnetic recording medium and method of manufacture
JPH1041134A (en) Magnetic recording medium and its manufacturing method
JP2001331934A (en) Magnetic recording medium, method for producing the same, magnetic recording and reproducing unit and sputtering target
JP3013598B2 (en) Magnetic recording media
JP2623849B2 (en) Manufacturing method of magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050418