JPH05114128A - Metallic thin film type magnetic disk medium and production thereof - Google Patents

Metallic thin film type magnetic disk medium and production thereof

Info

Publication number
JPH05114128A
JPH05114128A JP27537591A JP27537591A JPH05114128A JP H05114128 A JPH05114128 A JP H05114128A JP 27537591 A JP27537591 A JP 27537591A JP 27537591 A JP27537591 A JP 27537591A JP H05114128 A JPH05114128 A JP H05114128A
Authority
JP
Japan
Prior art keywords
film
layer
magnetic
coercive force
cocrpt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27537591A
Other languages
Japanese (ja)
Inventor
Kenji Kodama
健二 児玉
Kiyoshi Yamaguchi
潔 山口
Yoshisuki Kitamoto
善透 北本
Kazuyuki Seki
一幸 関
Shoji Ishida
祥二 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27537591A priority Critical patent/JPH05114128A/en
Publication of JPH05114128A publication Critical patent/JPH05114128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To control coercive forces and to enable decreasing of noises and high-density recording by forming a magnetic metallic film into two-layered constitutions consisting of a CoCrTa film of a lower layer and a CoCrPt film of an upper layer and properly combining the film thicknesses of both. CONSTITUTION:The magnetic metallic film is made into the plural layer constitutions. The upper layer 32 near a magnetic head 6 is constituted of the CoCrPt having the large coercive force and the lower layer 31 apart from the magnetic head 6 is constituted of the CoCrTa having the small coercive force. The magnetic field to be applied to the magnetic metallic film by the gap G of the magnetic head 6 is strong in the upper layer 32 and is weak in the lower layer 31 and, therefore, the sufficient writing of information is possible and overwriting is easy as well even if the upper layer 32 has the high coercive force. The coercive force can be easily controlled simply by changing the film thickness ratio of the CoCrPt and the CoCrTa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンピュータシステム
の外部記憶装置である磁気ディスク装置において、情報
の記録媒体として用いられるメタル薄膜型磁気ディスク
媒体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal thin film magnetic disk medium used as an information recording medium in a magnetic disk device which is an external storage device of a computer system, and a manufacturing method thereof.

【0002】近年の大容量記憶装置の要求に伴ない、高
記録密度の磁気ディスク媒体が求められている。また、
記録媒体の低価格化に対応して、容易な製造方法が要求
されている。このため、磁気ディスク媒体を、高密度記
録が可能な構造にする必要があり、また磁気特性の制御
が容易である必要がある。
With the recent demand for large-capacity storage devices, there is a demand for magnetic disk media having a high recording density. Also,
An easy manufacturing method is required in response to the cost reduction of the recording medium. Therefore, it is necessary that the magnetic disk medium has a structure capable of high density recording and that the magnetic characteristics be easily controlled.

【0003】[0003]

【従来の技術】図7は従来のメタル薄膜型磁気ディスク
媒体の断面構造を示す図である。Bはアルミニウムなど
の非磁性体からなる基板であり、その表面に形成したNi
Pめっき層1上に下地膜2としてCrなどをスパッタす
る。そして、CoCrTaまたはCoNiCrなどの磁性体をスパッ
タしてメタル磁性膜3を形成した後、保護膜4としてカ
ーボンをスパッタし、最後にフォンブリンなどの潤滑剤
5を塗布して乾燥させると、完成する。
2. Description of the Related Art FIG. 7 is a view showing a sectional structure of a conventional metal thin film type magnetic disk medium. B is a substrate made of a non-magnetic material such as aluminum, and Ni formed on the surface of the substrate.
Cr or the like is sputtered as a base film 2 on the P plating layer 1. Then, after a magnetic material such as CoCrTa or CoNiCr is sputtered to form the metal magnetic film 3, carbon is sputtered as the protective film 4, and finally a lubricant 5 such as fomblin is applied and dried to complete the process. ..

【0004】この磁気ディスク媒体において、磁気ヘッ
ド6のギャップGによって、メタル磁性膜3に情報の記
録/再生が行われる。
In this magnetic disk medium, information is recorded / reproduced on / from the metal magnetic film 3 by the gap G of the magnetic head 6.

【0005】[0005]

【発明が解決しようとする課題】図8は各種のメタル磁
性膜材料の保磁力を示す図である。図示のように、保磁
力Hcは、CoNiCrよりもCoCrTaが大きく、S/N特性もす
ぐれているため、従来からメタル磁性膜としてCoCrTaを
スパッタした媒体が用いられてきた。これに対し、磁気
記録の高密度化に伴って、メタル磁性膜として、CoCrPt
などのような高保磁力の材料を用いることが試みられて
いるが、CoCrPtはCoCrTaに比べてノイズが大きいといっ
た問題がある。
FIG. 8 is a diagram showing the coercive force of various metal magnetic film materials. As shown in the figure, the coercive force Hc is larger in CoCrTa than in CoNiCr and has excellent S / N characteristics, so that a medium in which CoCrTa is sputtered has been conventionally used as a metal magnetic film. On the other hand, with the increasing density of magnetic recording, CoCrPt
It has been attempted to use a material having a high coercive force such as, but CoCrPt has a problem that the noise is larger than that of CoCrTa.

【0006】しかも、CoCrPtは、通常の成膜条件では保
磁力が高過ぎるため、磁気ヘッドから離れている磁性膜
の下側部では書込み磁場が弱く、磁性膜の下側部でのデ
ータの書込みが不十分となり、オーバライト特性が悪
い。特に、磁化反転間隔が大きなデータの上に、時間反
転間隔の小さなデータを書き込んだ場合に顕著である。
Moreover, CoCrPt has a too high coercive force under normal film forming conditions, so that the write magnetic field is weak in the lower side of the magnetic film away from the magnetic head, and the writing of data in the lower side of the magnetic film is performed. Is insufficient and the overwrite characteristics are poor. In particular, it is remarkable when data having a small time reversal interval is written on data having a large magnetization reversal interval.

【0007】したがって、ノイズの低減と高密度記録の
双方を満足するには、メタル磁性膜において最適な保磁
力が必要となる。従来から、磁気特性の制御は、磁性膜
を構成している合金の組成を変えたり、あるいは磁性膜
を成膜する際の作製条件を変えることによって行われて
いる。例えば、下地のCr層の膜厚を変えたり、メタル磁
性膜をスパッタする際のArガス圧を変化させる。
Therefore, in order to satisfy both the noise reduction and the high density recording, an optimum coercive force is required in the metal magnetic film. Conventionally, the control of magnetic properties has been performed by changing the composition of the alloy forming the magnetic film or changing the manufacturing conditions for forming the magnetic film. For example, the thickness of the underlying Cr layer is changed, or the Ar gas pressure when sputtering the metal magnetic film is changed.

【0008】ところが、図8からも明らかなように、同
一組成からなる磁性膜の磁気特性のとりうる範囲は、組
成によってかなり限定されているため、成膜条件を変え
ただけでは、最適な磁気特性を得ることは極めて困難で
ある。まして、メタル磁性膜内における膜厚方向の磁気
特性の分布まで制御することは困難である。
However, as is clear from FIG. 8, the range in which the magnetic properties of the magnetic films having the same composition can be taken is considerably limited depending on the composition. Therefore, only by changing the film forming conditions, the optimum magnetic properties can be obtained. It is extremely difficult to obtain the characteristics. Furthermore, it is difficult to control even the distribution of magnetic characteristics in the film thickness direction within the metal magnetic film.

【0009】本発明の技術的課題は、このような問題に
着目し、ノイズの低減と高密度記録の双方を満足できる
メタル磁性膜を有する磁気ディスク媒体を実現すること
にある。
A technical problem of the present invention is to realize such a problem and to realize a magnetic disk medium having a metal magnetic film which can satisfy both of noise reduction and high density recording.

【0010】[0010]

【課題を解決するための手段】図1は本発明によるメタ
ル薄膜型磁気ディスク媒体の基本原理を説明する断面図
である。請求項1の発明は、非磁性基板B上に形成した
磁性膜がメタル磁性膜からなる磁気ディスク媒体におい
て、該メタル磁性膜が、下層31と上層32の2層からなっ
ており、下層31はCoCrTaで構成し、上層32はCoCrPtで構
成したものである。
FIG. 1 is a sectional view for explaining the basic principle of a metal thin film type magnetic disk medium according to the present invention. According to the invention of claim 1, in the magnetic disk medium in which the magnetic film formed on the non-magnetic substrate B is a metal magnetic film, the metal magnetic film is composed of two layers of a lower layer 31 and an upper layer 32, and the lower layer 31 is The upper layer 32 is made of CoCrTa and the upper layer 32 is made of CoCrPt.

【0011】請求項2の発明は、請求項1における下層
31は、保磁力Hcが1000〜1700OeのCo系合金膜で構成され
ており、上層32は、保磁力Hcが1500〜2600OeのCo系合金
膜で構成されているものである。
The invention of claim 2 is the lower layer of claim 1.
Reference numeral 31 is a Co-based alloy film having a coercive force Hc of 1000 to 1700 Oe, and the upper layer 32 is a Co-based alloy film having a coercive force Hc of 1500 to 2600 Oe.

【0012】請求項3の発明は、請求項1における下層
31は、組成が2〜20at.%Crと2〜6at.%TaとCoからなる
CoCrTaメタル薄膜であり、上層32は、組成が10〜20at.%
Crと5〜15at.%PtとCoからなるCoCrPtメタル薄膜である
ものである。
The invention according to claim 3 is the lower layer according to claim 1.
31 is composed of 2 to 20 at.% Cr, 2 to 6 at.% Ta and Co.
It is a CoCrTa metal thin film, and the upper layer 32 has a composition of 10 to 20 at.%.
It is a CoCrPt metal thin film composed of Cr, 5 to 15 at.% Pt and Co.

【0013】請求項4の発明は、請求項1記載のメタル
薄膜型磁気ディスク媒体の製造方法であって、下層31の
下に成膜する下地膜2と下層31の成膜ガス圧は、20〜30
mTorr の範囲から選択し、上層32の成膜ガス圧は、3〜
30mTorr の範囲から選択して成膜するものである。
A fourth aspect of the present invention is the method for manufacturing a metal thin film magnetic disk medium according to the first aspect, wherein the film forming gas pressure of the underlayer 2 and the lower layer 31 formed under the lower layer 31 is 20. ~ 30
Select from the range of mTorr, the film forming gas pressure of the upper layer 32 is 3 ~
The film is selected from the range of 30 mTorr.

【0014】[0014]

【作用】請求項1のように、メタル磁性膜を複数の層構
成とし、磁気ヘッド6に近い上層32は保磁力の大きなCo
CrPtで構成し、磁気ヘッド6から離れている下層31は保
磁力の小さなCoCrTaで構成しているが、磁気ヘッド6の
ギャップGでメタル磁性膜に与える磁場は、上層32は強
く、下層31は弱いため、上層32は保磁力が高くても、情
報を十分に書込むことができ、オーバライトも容易であ
る。
According to the present invention, the metal magnetic film has a multi-layer structure, and the upper layer 32 near the magnetic head 6 is made of Co having a large coercive force.
The lower layer 31 composed of CrPt and separated from the magnetic head 6 is composed of CoCrTa having a small coercive force, but the magnetic field applied to the metal magnetic film at the gap G of the magnetic head 6 is strong in the upper layer 32 and in the lower layer 31. Since it is weak, the upper layer 32 can sufficiently write information even if the coercive force is high, and the overwrite is easy.

【0015】また、磁気ヘッド6から離れている下層31
を構成するCoCrTaは、保磁力の小さな材料で構成されて
いるが、S/N特性にすぐれているため、全体としてノ
イズも効果的に低減される。したがって、上層32と下層
31の相互の作用によって、ノイズが低減され、しかも高
記録密度のメタル薄膜型磁気ディスク媒体を実現でき
る。
Further, the lower layer 31 separated from the magnetic head 6
The CoCrTa constituting the element is made of a material having a small coercive force, but since it has excellent S / N characteristics, noise can be effectively reduced as a whole. Therefore, the upper layer 32 and the lower layer
By the mutual action of 31, the metal thin film magnetic disk medium with reduced noise and high recording density can be realized.

【0016】請求項2のように、前記の下層31を、保磁
力Hcが1000〜1700OeのCo系合金膜で構成し、上層32を、
保磁力Hcが1500〜2600OeのCo系合金膜で構成することに
よって、S/N特性および電磁変換特性などの磁気特性
を容易に制御できる。
According to a second aspect of the present invention, the lower layer 31 is composed of a Co-based alloy film having a coercive force Hc of 1000 to 1700 Oe, and the upper layer 32 is
By using a Co-based alloy film having a coercive force Hc of 1500 to 2600 Oe, magnetic characteristics such as S / N characteristics and electromagnetic conversion characteristics can be easily controlled.

【0017】また、請求項3のように、前記の下層31
は、組成が2〜20at.%Crと2〜6at.%TaとCoからなるCo
CrTaメタル薄膜で構成し、上層32を、組成が10〜20at.%
Crと5〜15at.%PtとCoからなるCoCrPtメタル薄膜で構成
することにより、それぞれの組成と膜厚比を選定するこ
とで、電磁変換特性を最適に設定できる。
Also, as in claim 3, the lower layer 31
Is a Co whose composition is 2 to 20 at.% Cr, 2 to 6 at.% Ta and Co.
It is composed of a CrTa metal thin film, and the upper layer 32 has a composition of 10 to 20 at.%.
By using a CoCrPt metal thin film composed of Cr, 5 to 15 at.% Pt and Co, the electromagnetic conversion characteristics can be optimally set by selecting the composition and film thickness ratio of each.

【0018】請求項4のように、下地膜2と下層31の成
膜ガス圧を20〜30mTorr と高くすることにより、下層31
が低ノイズとなる。従来のCoCrTaのみから成る単層膜3
では、保磁力が低すぎるという問題があったため、従来
のCoCrTa膜の成膜ガス圧は3〜10mTorr と低くしていた
が、CoCrTa層31の上にCoCrPtからなる上層32を成膜する
ことで、高い保磁力が得られるので、下層31は低ノイズ
膜となる高い成膜ガス圧で成膜できる。
As described in claim 4, the lower layer 31 is formed by increasing the film forming gas pressure of the base film 2 and the lower layer 31 to 20 to 30 mTorr.
Results in low noise. Conventional single-layer film consisting of CoCrTa only 3
However, since there was a problem that the coercive force was too low, the film forming gas pressure of the conventional CoCrTa film was low at 3 to 10 mTorr, but by forming the upper layer 32 of CoCrPt on the CoCrTa layer 31. Since a high coercive force can be obtained, the lower layer 31 can be formed with a high film forming gas pressure which is a low noise film.

【0019】[0019]

【実施例】次に本発明によるメタル薄膜型磁気ディスク
媒体およびその製造方法が実際上どのように具体化され
るかを実施例で説明する。図2は、メタル磁性膜がCoCr
Pt単層(500Å) の従来の媒体と、本発明により下層31が
CoCrTa(150Å) 、上層32がCoCrPt(350Å) の2層構成の
媒体の磁気特性を比較した図である。
EXAMPLES Next, practical examples of how the metal thin film magnetic disk medium and the method for manufacturing the same according to the present invention are embodied will be described. In Figure 2, the metal magnetic film is CoCr
The conventional Pt single layer (500 Å) medium and the lower layer 31 according to the present invention
FIG. 4 is a diagram comparing magnetic characteristics of a medium having a two-layer structure of CoCrTa (150Å) and the upper layer 32 of CoCrPt (350Å).

【0020】上下の層の組成は、請求項3に従い、下層
31のCoCrTaは、12at.%Crと2at.%Taと86at.%Coであり、
また上層32のCoCrPtは、15at.%Crと10at.%Ptと75at.%Co
である。また、いずれの試料も、5.25インチのNiPめっ
きされたアルミニウム基板上に、静止対向型のDCマグネ
トロンスパッタ装置で成膜した。
The composition of the upper and lower layers is the lower layer according to claim 3.
31 CoCrTa is 12 at.% Cr, 2 at.% Ta and 86 at.% Co,
The CoCrPt of the upper layer 32 is 15 at.% Cr, 10 at.% Pt and 75 at.% Co.
Is. In addition, each sample was formed into a film on a 5.25-inch NiP-plated aluminum substrate by a static opposed type DC magnetron sputtering apparatus.

【0021】電磁変換特性の評価には、ギャップ長0.45
μm、トラック幅10μm、浮上量0.14μmの薄膜磁気ヘ
ッドを用いた。媒体S/Nm特性の記録周波数は、14.3MH
z、ノイズ帯域はその2倍とし、周速は19.7m/s であ
る。
To evaluate the electromagnetic conversion characteristics, the gap length 0.45
A thin film magnetic head having a track width of 10 μm, a flying height of 0.14 μm was used. Recording frequency of medium S / Nm characteristics is 14.3MH
z, the noise band is twice that, and the peripheral speed is 19.7 m / s.

【0022】白丸と白四角は、D50特性( 出力が50%に
低下する際の書込み周波数 )であり、保磁力Hcが1600Oe
付近では、従来のCoCrPt単層構成の場合よりも、本発明
による2層構成の方が大きく、特性が改善されており、
高密度記録に有効である。
White circles and white squares are D50 characteristics (writing frequency when the output decreases to 50%), and the coercive force Hc is 1600 Oe.
In the vicinity, the two-layer structure according to the present invention is larger than that of the conventional CoCrPt single-layer structure, and the characteristics are improved.
Effective for high density recording.

【0023】黒丸と黒四角は、S/N特性であり、本発
明による2層構成は、保磁力Hcが1600Oe付近で、CoCrPt
単層よりS/N特性が2dB程度改善されている。
Black circles and black squares have S / N characteristics, and the two-layer structure according to the present invention has a coercive force Hc of about 1600 Oe and CoCrPt
The S / N characteristic is improved by about 2 dB compared to the single layer.

【0024】図3は、前記のCoCrPt単層構成の媒体と、
前記の本発明による2層構成の媒体のオーバライト特性
を比較した図である。オーバライト特性は、すでに情報
が書込まれている媒体において、異なる周波数で重ねて
書込んだときに、先に書込まれた情報の磁気の残存量で
あり、その値が小さいほど良い。
FIG. 3 shows a medium having the above-mentioned CoCrPt single layer structure,
FIG. 6 is a diagram comparing the overwrite characteristics of the two-layered medium according to the present invention. The overwrite characteristic is the residual amount of magnetism of previously written information when it is overwritten at different frequencies in a medium in which information has already been written. The smaller the value, the better.

【0025】この図では、白四角で示すCoCrPt単層のメ
タル磁性膜に比べて、本発明による2層構成のメタル磁
性膜( 白丸 )が、Hc1600Oe付近では3〜4dB改善されて
おり、オーバライト特性にすぐれている。
In this figure, the metal magnetic film having a two-layer structure (white circle) according to the present invention is improved by 3 to 4 dB in the vicinity of Hc1600Oe as compared with the CoCrPt single-layer metal magnetic film shown by the white squares, and the overwrite is overwritten. It has excellent characteristics.

【0026】このように、下層31に低ノイズのCoCrTa
を、上層32に高保磁力のCoCrPtを用いた多層メタル磁性
膜は、同じ保磁力のCoCrPt単層膜に比べて、オーバライ
ト特性が改善され、D50も向上しており、ノイズ低減も
可能で、電磁変換特性にすぐれている。
As described above, the lower layer 31 has low noise CoCrTa.
The multi-layer metal magnetic film using high coercive force CoCrPt for the upper layer 32 has improved overwrite characteristics and D50 compared to a CoCrPt single layer film having the same coercive force, and noise reduction is also possible. Excellent electromagnetic conversion characteristics.

【0027】図4は本発明による2層構成のメタル磁性
膜において、膜厚を500Åで一定とし、下層のCoCrTaと
上層のCoCrPtとの膜厚比を変えた場合の保磁力の変化を
測定した結果である。なお、成膜は、静止対向型DCマ
グネトロンスパッタ装置を用いてスパッタ法で行なっ
た。下地のCrおよびCoCrTaのスパッタ時のArガス圧は、
30mTorr であり、CoCrPtスパッタ時のArガス圧は10mTor
r であった。
FIG. 4 shows a change in coercive force of a two-layered metal magnetic film according to the present invention when the film thickness is constant at 500Å and the film thickness ratio between the lower layer CoCrTa and the upper layer CoCrPt is changed. The result. The film formation was performed by a sputtering method using a stationary facing type DC magnetron sputtering device. The Ar gas pressure during sputtering of the underlying Cr and CoCrTa is
30mTorr, Ar gas pressure during CoCrPt sputtering is 10mTor
It was r.

【0028】黒の三角のように、まずCoCrPt膜厚をゼロ
とし、CoCrTaのみで構成した場合は、1000Oe程度である
のに対し、CoCrTa膜厚を次第に減らし、CoCrPt膜厚を増
やしていくと、保磁力が次第に高くなっていく。そし
て、黒丸のようにCoCrTa膜厚をゼロとし、CoCrPt膜のみ
で構成すると、保磁力は2000Oe以上になる。ただし、Co
CrTa単層膜とCoCrPt単層膜のHcの平均値が得られるの
は、CoCrPtとCoCrTaの膜厚比が5:5のときでなく、
7:3のときである。
When the CoCrPt film thickness is first set to zero and is composed of only CoCrTa, like a black triangle, it is about 1000 Oe, whereas the CoCrTa film thickness is gradually decreased and the CoCrPt film thickness is increased. The coercive force gradually increases. Then, when the CoCrTa film thickness is set to zero like a black circle and only the CoCrPt film is formed, the coercive force becomes 2000 Oe or more. However, Co
The average value of Hc of the CrTa single layer film and the CoCrPt single layer film is obtained not when the film thickness ratio of CoCrPt and CoCrTa is 5: 5, but
It was 7: 3.

【0029】このように、本発明によれば、CoCrPtとCo
CrTaの膜厚比を変えるだけで、保磁力を容易に制御でき
る。なお、膜厚の制御は、スパッタ時間によって、ある
いはスパッタパワーによって、容易に行なうことができ
る。
Thus, according to the present invention, CoCrPt and Co
The coercive force can be easily controlled only by changing the thickness ratio of CrTa. The film thickness can be easily controlled by the sputtering time or the sputtering power.

【0030】また、この図では、CoCrPtおよびCoCrTaそ
れぞれの組成は一定であるが、組成を選定し、それぞれ
の保磁力を変えることによって、さらに保磁力の選択幅
が大きくなる。例えば、保磁力が1000OeのCoCrTaと2300
OeのCoCrPtで2層膜を構成すると、全体で1700Oeの保磁
力が得られる。同様に、保磁力が1400OeのCoCrTaと2700
OeのCoCrPtで2層膜を構成すると、全体で2000Oeの保磁
力が得られ、保磁力が1700OeのCoCrTaと3000OeのCoCrPt
で2層膜を構成すると、全体で2300Oeの保磁力が得られ
る。さらに、CoCrPtにボロン(B) を添加すると、保磁力
をさらに高くできる。
Further, in this figure, the compositions of CoCrPt and CoCrTa are constant, but by selecting the compositions and changing their coercive forces, the coercive force selection range is further expanded. For example, CoCrTa with a coercive force of 1000 Oe and 2300
If a two-layer film is formed of Oe CoCrPt, a coercive force of 1700 Oe is obtained as a whole. Similarly, CoCrTa with coercive force of 1400 Oe and 2700
When a two-layer film is composed of Oe CoCrPt, a coercive force of 2000 Oe is obtained as a whole, and the coercive force is 1700 Oe CoCrTa and 3000 Oe CoCrPt.
If a two-layer film is constructed with, a coercive force of 2300 Oe can be obtained as a whole. Furthermore, the coercive force can be further increased by adding boron (B) to CoCrPt.

【0031】図5に、2層膜の保磁力が、CoCrTa膜厚と
CoCrPt膜厚によってどのように変化するかを示す。比較
のため、CoCrTa単層膜(黒の三角)およびCoCrPt単層膜
(黒丸)の結果も示した。横軸は両膜厚の和であり、Co
CrTa膜厚が100Åで、50ÅずつCoCrPt膜厚を増やした場
合が白四角、CoCrTa膜厚が150Åで、50ÅずつCoCrPt膜
厚を増やした場合が白丸、CoCrTa膜厚が200Åで、50Å
ずつCoCrPt膜厚を増やした場合が白菱形である。
FIG. 5 shows the coercive force of the two-layer film as CoCrTa film thickness.
It shows how it changes depending on the CoCrPt film thickness. For comparison, the results of the CoCrTa single layer film (black triangle) and the CoCrPt single layer film (black circle) are also shown. The horizontal axis is the sum of both film thicknesses, and Co
When the CrTa film thickness is 100Å and the CoCrPt film thickness is increased by 50Å, the white squares are shown. When the CoCrTa film thickness is 150Å, the CoCrPt film thickness is increased by 50Å the white circles, CoCrTa film thickness is 200Å, 50Å
The white rhombus is formed by increasing the CoCrPt film thickness.

【0032】本発明による2層膜の保磁力は、膜厚の増
加とともに増加し、膜厚300 Å付近から飽和していく。
この飽和値は、CoCrTa膜厚が厚いほど小さい。また、2
層膜のBrδ値( δは磁性膜厚 )は、CoCrTaとCoCrPtの膜
厚比によらず、磁性膜厚の和でほとんど決まる。
The coercive force of the two-layer film according to the present invention increases as the film thickness increases, and becomes saturated from the film thickness of around 300 Å.
This saturation value decreases as the CoCrTa film thickness increases. Also, 2
The Brδ value (δ is the magnetic film thickness) of the layer film is almost determined by the sum of the magnetic film thicknesses regardless of the film thickness ratio of CoCrTa and CoCrPt.

【0033】このように、2層膜の膜厚を適当に組み合
わせることにより、保磁力Hc=1000〜2000Oe、Brδ=20
0 〜400G・μmの範囲の磁気特性を容易に得ることがで
きる。すなわち、下層のCoCrTaと上層のCoCrPtとの膜厚
比によって、保磁力HcとBrδを自由に設定できる。
Thus, by appropriately combining the film thicknesses of the two-layer film, the coercive force Hc = 1000 to 2000 Oe and Brδ = 20.
Magnetic characteristics in the range of 0 to 400 G · μm can be easily obtained. That is, the coercive force Hc and Brδ can be freely set by the film thickness ratio between the lower layer CoCrTa and the upper layer CoCrPt.

【0034】図6に、スパッタ時のArガス圧による保磁
力の変動を示す。黒の三角はCoCrTa単層膜、黒丸はCoCr
Ptの単層膜、白丸が本発明によるCoCrTaとCoCrPtの2層
膜(膜厚比はCoCrPt:CoCrTaが7:3)である。CoCrPt
単層膜では、Arガス圧が高くなるにつれて保磁力が減少
するが、2層膜の場合は、逆に増加することがわかる。
黒の三角が示すように、CoCrTaやCrをスパッタする際の
保磁力変動が少ないため、2層膜に対しても良い影響が
得られる。
FIG. 6 shows the change in coercive force due to the Ar gas pressure during sputtering. Black triangles are CoCrTa single layer film, black circles are CoCr
A single layer film of Pt, and a white circle is a two-layer film of CoCrTa and CoCrPt according to the present invention (the film thickness ratio is 7: 3 for CoCrPt: CoCrTa). CoCrPt
It can be seen that in the single-layer film, the coercive force decreases as the Ar gas pressure increases, but in the case of the two-layer film, it increases.
As indicated by the black triangle, the coercive force changes little when CoCrTa or Cr is sputtered, so that a good effect can be obtained on the two-layer film.

【0035】また、下地のCr層をスパッタする際に、Ar
ガス圧が増えるほど、メタル磁性膜の保磁力Hcは低下す
るが、メタル磁性膜におけるS/N特性は向上する。し
たがって、請求項4のように、下地膜2と下層31の成膜
ガス圧を20〜30mTorr と高くすることにより、下層31を
低ノイズにできる。本発明は、CoCrTa層31の上にCoCrPt
からなる上層32を成膜することで、高い保磁力が得られ
るので、下層31の保磁力が低くても支障はない。なお、
CoCrPtからなる上層32の成膜ガス圧は、3〜30mTorr の
範囲から選択する。
When the underlying Cr layer is sputtered, Ar
As the gas pressure increases, the coercive force Hc of the metal magnetic film decreases, but the S / N characteristic of the metal magnetic film improves. Therefore, by increasing the film forming gas pressure of the base film 2 and the lower layer 31 to 20 to 30 mTorr, the lower layer 31 can have low noise. According to the present invention, CoCrPt is formed on the CoCrTa layer 31.
Since a high coercive force can be obtained by forming the upper layer 32 made of, there is no problem even if the lower layer 31 has a low coercive force. In addition,
The film forming gas pressure of the upper layer 32 made of CoCrPt is selected from the range of 3 to 30 mTorr.

【0036】[0036]

【発明の効果】以上のように本発明によれば、メタル薄
膜型磁気ディスク媒体におけるメタル磁性膜を、下層31
がCoCrTa膜、上層32がCoCrPt膜の2層構成とし、両者の
膜厚を適当に組み合わせることで、保磁力HcやBrδを自
由に選択でき、ノイズの低減と高密度記録の両者を満足
できる磁気ディスク媒体を容易に実現することができ
る。
As described above, according to the present invention, the metal magnetic film in the metal thin film type magnetic disk medium is provided with the lower layer 31
Is a CoCrTa film and the upper layer 32 is a CoCrPt film. By appropriately combining the film thicknesses of both, the coercive force Hc and Brδ can be freely selected, and noise reduction and high density recording can be satisfied. A disk medium can be easily realized.

【0037】また、請求項2のように、下層31を、保磁
力Hcが1000〜1700OeのCo系合金膜で構成し、上層32を、
保磁力Hcが1500〜2600OeのCo系合金膜で構成することに
より、電磁変換特性が最適なメタル薄膜型磁気ディスク
媒体を製造できる。
Further, as in claim 2, the lower layer 31 is composed of a Co-based alloy film having a coercive force Hc of 1000 to 1700 Oe, and the upper layer 32 is
By using a Co-based alloy film having a coercive force Hc of 1500 to 2600 Oe, it is possible to manufacture a metal thin film magnetic disk medium having an optimum electromagnetic conversion characteristic.

【0038】請求項3のように、下層31は、組成が2〜
20at.%Crと2〜6at.%TaとCoからなるCoCrTaメタル薄膜
で構成し、上層32は、組成が10〜20at.%Crと5〜15at.%
PtとCoからなるCoCrPtメタル薄膜で構成することによ
り、それぞれの組成と膜厚比を選定することで、電磁変
換特性を最適に設定できる。
As in claim 3, the lower layer 31 has a composition of 2 to
It is composed of a CoCrTa metal thin film composed of 20 at.% Cr, 2-6 at.% Ta and Co, and the upper layer 32 has a composition of 10-20 at.% Cr and 5-15 at.%.
By using a CoCrPt metal thin film composed of Pt and Co, the electromagnetic conversion characteristics can be optimally set by selecting the composition and film thickness ratio of each.

【0039】請求項4のように、下地膜2と下層31の成
膜ガス圧を20〜30mTorr と高くすることにより、下層31
を低ノイズとし、保磁力はCoCrPtからなる上層32で確保
できる。
As described in claim 4, by increasing the film forming gas pressure of the base film 2 and the lower layer 31 to 20 to 30 mTorr, the lower layer 31
Is low noise, and coercive force can be secured by the upper layer 32 made of CoCrPt.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるメタル薄膜型磁気ディスク媒体の
基本原理を説明する断面図である。
FIG. 1 is a cross-sectional view illustrating the basic principle of a metal thin film magnetic disk medium according to the present invention.

【図2】メタル磁性膜がCoCrPt単層の媒体と本発明によ
る2層構成のメタル薄膜型磁気ディスク媒体の磁気特性
を比較した図である。
FIG. 2 is a diagram comparing magnetic characteristics of a medium having a CoCrPt single-layer metal magnetic film and a metal thin-film magnetic disk medium having a two-layer structure according to the present invention.

【図3】CoCrPt単層構成の媒体と、本発明による2層構
成の媒体のオーバライト特性を比較した図である。
FIG. 3 is a diagram comparing the overwrite characteristics of a CoCrPt single layer medium and a double layer medium according to the present invention.

【図4】本発明による2層構成のメタル磁性膜におい
て、膜厚を一定とし、下層のCoCrTaと上層のCoCrPtの膜
厚比を変えた場合の保磁力の変化を測定した結果であ
る。
FIG. 4 is a result of measuring a change in coercive force in a metal magnetic film having a two-layer structure according to the present invention when the film thickness is constant and the film thickness ratio of CoCrTa of the lower layer and CoCrPt of the upper layer is changed.

【図5】2層膜の保磁力が、CoCrTa膜厚とCoCrPt膜厚に
よってどのように変化するかを示す図である。
FIG. 5 is a diagram showing how the coercive force of a two-layer film changes depending on the CoCrTa film thickness and the CoCrPt film thickness.

【図6】スパッタ時のArガス圧による保磁力の変動を示
す。
FIG. 6 shows a change in coercive force due to Ar gas pressure during sputtering.

【図7】従来のメタル薄膜型磁気ディスク媒体の断面構
造を示す図である。
FIG. 7 is a diagram showing a cross-sectional structure of a conventional metal thin film magnetic disk medium.

【図8】各種のメタル磁性膜材料の保磁力を示す図であ
る。
FIG. 8 is a diagram showing coercive force of various metal magnetic film materials.

【符号の説明】[Explanation of symbols]

B 非磁性の基板 1 NiPメッキ層 2 下地膜(Cr) 3 従来のメタル磁性膜 31 メタル薄膜における下層 32 メタル薄膜における上層 4 保護膜4 5 潤滑剤 6 磁気ヘッド G ギャップ B Non-magnetic substrate 1 NiP plating layer 2 Underlayer film (Cr) 3 Conventional metal magnetic film 31 Lower layer in metal thin film 32 Upper layer in metal thin film 4 Protective film 4 5 Lubricant 6 Magnetic head G Gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関 一幸 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 石田 祥二 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuyuki Seki, Kazuyuki Seki, 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Shoji Ishida, 1015, Kamedotachu, Nakahara-ku, Kawasaki, Kanagawa Prefecture, Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板(B) 上に形成した磁性膜がメ
タル磁性膜からなる磁気ディスク媒体において、 該メタル磁性膜が、下層(31)と上層(32)の2層からなっ
ており、 下層(31)はCoCrTaで構成し、上層(32)はCoCrPtで構成し
たことを特徴とするメタル薄膜型磁気ディスク媒体。
1. A magnetic disk medium in which a magnetic film formed on a non-magnetic substrate (B) is a metal magnetic film, wherein the metal magnetic film is composed of two layers, a lower layer (31) and an upper layer (32). A metal thin film magnetic disk medium characterized in that the lower layer (31) is composed of CoCrTa and the upper layer (32) is composed of CoCrPt.
【請求項2】 前記の下層(31)は、保磁力Hcが1000〜17
00OeのCo系合金膜で構成されており、 上層(32)は、保磁力Hcが1500〜2600OeのCo系合金膜で構
成されていることを特徴とする請求項1記載のメタル薄
膜型磁気ディスク媒体。
2. The lower layer (31) has a coercive force Hc of 1000-17.
2. The metal thin film magnetic disk according to claim 1, wherein the upper layer (32) is composed of a Co-based alloy film of 00 Oe, and the upper layer (32) is composed of a Co-based alloy film of coercive force Hc of 1500 to 2600 Oe. Medium.
【請求項3】 前記の下層(31)は、組成が2〜20at.%Cr
と2〜6at.%TaとCoからなるCoCrTaメタル薄膜であり、 上層(32)は、組成が10〜20at.%Crと5〜15at.%PtとCoか
らなるCoCrPtメタル薄膜であることを特徴とする請求項
1記載のメタル薄膜型磁気ディスク媒体。
3. The lower layer (31) has a composition of 2 to 20 at.% Cr.
And a CoCrTa metal thin film composed of 2 to 6 at.% Ta and Co, and the upper layer (32) is a CoCrPt metal thin film composed of 10 to 20 at.% Cr, 5 to 15 at.% Pt and Co. The metal thin film magnetic disk medium according to claim 1.
【請求項4】 請求項1記載の下層(31)の下に成膜する
下地膜(2)と下層(31)の成膜ガス圧は、20〜30mTorr の
範囲から選択し、上層(32)の成膜ガス圧は、3〜30mTor
r の範囲から選択して成膜することを特徴とするメタル
薄膜型磁気ディスク媒体の製造方法。
4. The film forming gas pressure of the underlayer (2) and the lower layer (31) formed under the lower layer (31) according to claim 1, is selected from the range of 20 to 30 mTorr, and the upper layer (32). Deposition gas pressure is 3 to 30 mTor
A method of manufacturing a metal thin film magnetic disk medium, characterized in that the film is selected from the range of r.
JP27537591A 1991-10-23 1991-10-23 Metallic thin film type magnetic disk medium and production thereof Pending JPH05114128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27537591A JPH05114128A (en) 1991-10-23 1991-10-23 Metallic thin film type magnetic disk medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27537591A JPH05114128A (en) 1991-10-23 1991-10-23 Metallic thin film type magnetic disk medium and production thereof

Publications (1)

Publication Number Publication Date
JPH05114128A true JPH05114128A (en) 1993-05-07

Family

ID=17554609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27537591A Pending JPH05114128A (en) 1991-10-23 1991-10-23 Metallic thin film type magnetic disk medium and production thereof

Country Status (1)

Country Link
JP (1) JPH05114128A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763071A (en) * 1996-03-11 1998-06-09 Seagate Technology, Inc. High areal density magnetic recording medium with dual magnetic layers
US5834111A (en) * 1994-05-31 1998-11-10 Hmt Technology Corporation Multilayered magnetic recording medium with coercivity gradient
US6168861B1 (en) 1997-12-12 2001-01-02 Seagate Technology Llc High coercivity, high signal-to-noise ratio dual magnetic layer media
US6623873B1 (en) 1998-11-20 2003-09-23 Hitachi, Ltd. Magnetic recording medium and magnetic disk apparatus using the same
EP1600951A1 (en) * 2004-05-24 2005-11-30 Hitachi Global Storage Technologies B. V. Magnetic Recording System
US7049013B2 (en) 2001-01-29 2006-05-23 Fujitsu Limited Magnetic recording medium and method of producing the same, and magnetic storage apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306419A (en) * 1989-05-19 1990-12-19 Seiko Epson Corp Magnetic recording medium
JPH0352115A (en) * 1989-07-19 1991-03-06 Matsushita Electric Ind Co Ltd Metallic thin film type magnetic recording medium
JPH03224121A (en) * 1989-10-20 1991-10-03 Fuji Electric Co Ltd Magnetic recording medium and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306419A (en) * 1989-05-19 1990-12-19 Seiko Epson Corp Magnetic recording medium
JPH0352115A (en) * 1989-07-19 1991-03-06 Matsushita Electric Ind Co Ltd Metallic thin film type magnetic recording medium
JPH03224121A (en) * 1989-10-20 1991-10-03 Fuji Electric Co Ltd Magnetic recording medium and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834111A (en) * 1994-05-31 1998-11-10 Hmt Technology Corporation Multilayered magnetic recording medium with coercivity gradient
US5763071A (en) * 1996-03-11 1998-06-09 Seagate Technology, Inc. High areal density magnetic recording medium with dual magnetic layers
US6168861B1 (en) 1997-12-12 2001-01-02 Seagate Technology Llc High coercivity, high signal-to-noise ratio dual magnetic layer media
US6623873B1 (en) 1998-11-20 2003-09-23 Hitachi, Ltd. Magnetic recording medium and magnetic disk apparatus using the same
US6703148B2 (en) 1998-11-20 2004-03-09 Hitachi, Ltd. Magnetic recording medium and magnetic disk apparatus using the same
US7049013B2 (en) 2001-01-29 2006-05-23 Fujitsu Limited Magnetic recording medium and method of producing the same, and magnetic storage apparatus
EP1600951A1 (en) * 2004-05-24 2005-11-30 Hitachi Global Storage Technologies B. V. Magnetic Recording System

Similar Documents

Publication Publication Date Title
US5763071A (en) High areal density magnetic recording medium with dual magnetic layers
US7327528B2 (en) Magnetic recording medium and magnetic storage apparatus
US6881496B2 (en) Antiferromagnetically coupled magnetic recording medium possessing three coupled magnetic layers and magnetic storage apparatus
EP1346348B1 (en) Magnetic recording medium and magnetic storage apparatus
JP3900999B2 (en) Perpendicular magnetic recording medium
US6610424B1 (en) Magnetic recording medium and magnetic storage apparatus
US5900323A (en) Magnetic recording medium and magnetic recording drive
JPH05114128A (en) Metallic thin film type magnetic disk medium and production thereof
US6972157B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7029772B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JPH0765345A (en) Magnetic recording medium
US7049013B2 (en) Magnetic recording medium and method of producing the same, and magnetic storage apparatus
JPH0737237A (en) Magnetic recording medium and its production and magnetic recorder
JPH0831639A (en) Vertical magnetic recording medium
JPH11185237A (en) Perpendicular magnetic recording medium and its production
JPH0744851A (en) Perpendicular magnetic recording medium and its production
JP3013598B2 (en) Magnetic recording media
JPH06103555A (en) Perpendicular magnetic recording medium
JPH0258723A (en) Magnetic recording medium and magnetic memory medium
JP2003162812A (en) Perpendicular magnetic recording medium
JP2000200409A (en) Magnetic recording medium
JPH09305951A (en) Magnetic recording medium and magnetic recording method
JPH0714712A (en) Magnetic recording medium
JPH06290450A (en) Magnetic recording medium
JP2003141721A (en) Method of manufacturing two-layered perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970527