JP2003329494A - Flow rate measuring device - Google Patents

Flow rate measuring device

Info

Publication number
JP2003329494A
JP2003329494A JP2002136682A JP2002136682A JP2003329494A JP 2003329494 A JP2003329494 A JP 2003329494A JP 2002136682 A JP2002136682 A JP 2002136682A JP 2002136682 A JP2002136682 A JP 2002136682A JP 2003329494 A JP2003329494 A JP 2003329494A
Authority
JP
Japan
Prior art keywords
flow
flow rate
pressure fluctuation
fluid passage
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002136682A
Other languages
Japanese (ja)
Other versions
JP3941585B2 (en
Inventor
Yukio Nagaoka
行夫 長岡
Yasuhiro Umekage
康裕 梅景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002136682A priority Critical patent/JP3941585B2/en
Publication of JP2003329494A publication Critical patent/JP2003329494A/en
Application granted granted Critical
Publication of JP3941585B2 publication Critical patent/JP3941585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform accurate measurement when pressure changes or even when the pressure is constant. <P>SOLUTION: This flow rate measuring device has a flow rate detecting means 6 for detecting a flow rate of a fluid passage 5, and a pressure fluctuation control valve 6 for restraining an inverse directional flow, and constituting a flow flowing in from the center and diffusing to the periphery in the forward direction on the upstream side of the fluid passage 5. Thus, a pressure fluctuation is restrained by preventing the inverse directional flow, and an accurate flow rate can be determined without causing turbulence of the flow even in a non-pulsating state. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスなどの流量を
計測する流量計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring the flow rate of gas or the like.

【0002】[0002]

【従来の技術】従来のこの種の流量計測装置を、図6に
基づいて説明する。図において、流体通路1の一部に超
音波式のような流量検出手段2を備えて流量を計測す
る。流れに周期的な変動がある場合には、計測のタイミ
ングによって流量測定値にバラツキが生じる。例えば家
庭用ガス消費量を計量するガスメータでは、近くでガス
エンジンが運転されると圧力変動が発生する。このため
圧力変動を緩衝するため弁体3を有する脈動吸収装置4
を設け脈動レベルを低減することが行われていた。
2. Description of the Related Art A conventional flow rate measuring device of this type will be described with reference to FIG. In the figure, an ultrasonic type flow rate detecting means 2 is provided in a part of the fluid passage 1 to measure the flow rate. When the flow has a periodic fluctuation, the flow rate measurement value varies depending on the measurement timing. For example, in a gas meter that measures the amount of household gas consumed, pressure fluctuations occur when a gas engine is operated nearby. Therefore, the pulsation absorbing device 4 having the valve body 3 for buffering pressure fluctuations
Was provided to reduce the pulsation level.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の流
量計測装置では、脈動吸収装置によって生じる流れの乱
れや流速分布の偏りが流量計測の精度を悪化させる欠点
があった。
However, the conventional flow rate measuring device has a drawback that the flow turbulence and the deviation of the flow velocity distribution caused by the pulsation absorbing device deteriorate the accuracy of the flow rate measurement.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するために、流体通路と、前記流体通路の流量を検出
する流量検出手段と、前記流体通路の上流側に、逆方向
の流れを抑制するとともに順方向には中央より流入し周
辺に拡散する流れを構成する圧力変動制御弁とを備えた
ものである。上記発明によって逆方向の流れを防止して
圧力変動を抑制するとともに、脈動のない状態でも流れ
の乱れを生じさせず正確な流量を求める。
In order to solve the above-mentioned problems, the present invention provides a fluid passage, a flow rate detecting means for detecting the flow rate of the fluid passage, and a reverse flow on the upstream side of the fluid passage. And a pressure fluctuation control valve that forms a flow that flows in from the center and diffuses to the periphery in the forward direction. According to the above-mentioned invention, the flow in the opposite direction is prevented and the pressure fluctuation is suppressed, and the accurate flow rate is obtained without causing the flow turbulence even in the absence of pulsation.

【0005】[0005]

【発明の実施の形態】本発明は、流体通路と、前記流体
通路の流量を検出する流量検出手段と、前記流体通路の
上流側に、逆方向の流れを抑制するとともに順方向には
中央より流入し周辺に拡散する流れを構成する圧力変動
制御弁とを備えたもので、脈動がある場合にはその脈動
を吸収し、脈動がない場合にも流れの乱れを発生させず
流量を正確に計測する。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a fluid passage, a flow rate detecting means for detecting a flow rate of the fluid passage, an upstream side of the fluid passage, a flow in a reverse direction are suppressed and a forward direction from a center. It is equipped with a pressure fluctuation control valve that forms a flow that flows in and diffuses to the surroundings.If there is pulsation, it absorbs the pulsation, and even if there is no pulsation, flow turbulence does not occur and the flow rate is accurate. measure.

【0006】また、圧力変動制御弁は流体に旋回流を与
えるもので、旋回流により流れの安定性を高める。
Further, the pressure fluctuation control valve gives a swirling flow to the fluid, and the swirling flow enhances the stability of the flow.

【0007】また、圧力変動吸収弁に羽根を備えたもの
で、この羽根によって旋回流を与えて流れを安定化させ
るものである。
Further, the pressure fluctuation absorbing valve is provided with a vane, and a swirling flow is given by the vane to stabilize the flow.

【0008】また、流体通路と、前記流体通路の流量を
検出する流量検出手段と、前記流体通路の下流側に、逆
方向の流れを抑制するとともに順方向には流体を通過さ
せる圧力変動制御弁とを備えたたもので、圧力変動制御
弁での流れの乱れによる流量計測精度への影響が少な
い。
Further, a fluid passage, a flow rate detecting means for detecting a flow rate of the fluid passage, and a pressure fluctuation control valve for suppressing a reverse flow and allowing a fluid to pass in a forward direction on the downstream side of the fluid passage. Since it is equipped with and, the influence of flow turbulence in the pressure fluctuation control valve on the flow rate measurement accuracy is small.

【0009】また、圧力変動制御弁の通路をバイパスす
る連通流路を備えたもので、小流量時には、連通流路を
介して流れるので圧力変動制御弁による流れの乱れが小
さい。
Further, the pressure fluctuation control valve is provided with a communication passage for bypassing the passage, and when the flow rate is small, the flow fluctuation is small due to the flow through the communication passage.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】(実施例1)図1は本発明の実施例1の流
量計測装置を示した構成図である。図1において、流体
通路5に流量検出手段6を設け通路の流量を検出する。
流量検出手段6は流れの上流側と下流側に超音波送受信
器6aと6bをそれぞれ配置し、上流から下流への超音
波の伝搬時間と、下流から上流への超音波伝搬時間の時
間差から流量を算出するもので、詳細は後述する。流量
検出手段6の上流5aには弁座7aと弁体7bとバネ7
cからなる圧力変動制御弁7が設けられている。
(Embodiment 1) FIG. 1 is a configuration diagram showing a flow rate measuring apparatus according to Embodiment 1 of the present invention. In FIG. 1, a flow rate detecting means 6 is provided in the fluid passage 5 to detect the flow rate in the passage.
The flow rate detecting means 6 is provided with ultrasonic transmitters / receivers 6a and 6b on the upstream side and the downstream side of the flow, respectively. Is calculated and the details will be described later. A valve seat 7a, a valve body 7b, and a spring 7 are provided upstream 5a of the flow rate detecting means 6.
A pressure fluctuation control valve 7 consisting of c is provided.

【0012】次に動作について述べる。図1において圧
力変動制御弁7は流量検出手段6の上流側に設けられて
おり、弁体7aの重量に抗してバネ7cで付勢して弁座
7bを閉じるように構成されている。順方向に流体が流
れると弁体7bを下方向にバネ7cの力に対抗して押し
下げ、弁を開く。流れがないときには弁体7bはバネ7
cで弁座7aを塞いでいるが、順方向の流れ(矢印の方
向)では圧力差によって図のように弁体7bが押し下げ
られ弁を開く。順方向の流れが大きくなると弁の開度は
さらに大きくなり、圧力損失は大きく増加しない。圧力
変動によって逆方向の流れが発生すると、弁体7は上向
きの力を受けて弁座7aを強く塞いで流れを止める。
Next, the operation will be described. In FIG. 1, the pressure fluctuation control valve 7 is provided on the upstream side of the flow rate detecting means 6, and is configured to close the valve seat 7b by urging the spring 7c against the weight of the valve body 7a. When the fluid flows in the forward direction, the valve element 7b is pushed downward against the force of the spring 7c to open the valve. When there is no flow, the valve body 7b is the spring 7
Although the valve seat 7a is closed by c, the valve body 7b is pushed down as shown in the figure by the pressure difference in the forward flow (direction of the arrow) to open the valve. When the flow in the forward direction becomes large, the opening degree of the valve becomes larger and the pressure loss does not increase significantly. When the flow in the opposite direction is generated due to the pressure fluctuation, the valve body 7 receives an upward force and strongly closes the valve seat 7a to stop the flow.

【0013】すなわち流体通路に平均的な流れがない場
合や平均的に小流量の場合には、圧力変動によって発生
する逆流を防止し、また順方向の流れも弁開度が小さい
ために抑制され、脈動的な流れは低減され、流量検出手
段6の値も大きく変動せず、平均流量を算出できる。ま
た、流体通路に大流量が流れた場合には弁体7bに発生
する差圧が大きくなるので弁体7bは図の下方向に変位
し弁開度を大きくし、圧力損失を著しく増加させること
がない。このとき圧力変動が発生すると弁開度が大きい
ため圧力変動を抑制する効果が小さいので流量誤差を発
生するが、平均流量が大きく流れており、相対的に誤差
の比率は小さいので問題にならない。
That is, when there is no average flow in the fluid passage or when the flow rate is small on average, the backflow generated by the pressure fluctuation is prevented, and the forward flow is also suppressed because the valve opening is small. The pulsating flow is reduced, the value of the flow rate detecting means 6 does not fluctuate greatly, and the average flow rate can be calculated. Further, when a large flow rate flows in the fluid passage, the differential pressure generated in the valve body 7b becomes large, so the valve body 7b is displaced downward in the figure to increase the valve opening degree, and significantly increase the pressure loss. There is no. At this time, if a pressure fluctuation occurs, the valve opening is large and the effect of suppressing the pressure fluctuation is small, so a flow rate error is generated, but since the average flow rate is large and the error ratio is relatively small, there is no problem.

【0014】なお、弁体7aの開度が大きくなり過ぎる
場合には最大開度を規制するストッパ−(図示せず)を
つけることができる。
If the opening of the valve body 7a becomes too large, a stopper (not shown) for restricting the maximum opening can be attached.

【0015】圧力変動制御弁7を流量検出手段6より上
流側に設けると、この部分で圧力変動が抑制されるの
で、流量検出手段6には脈動の影響がよりいっそう小さ
くなる。なお弁体7bとバネ7cの方向は自由に選択す
ることができる。
If the pressure fluctuation control valve 7 is provided on the upstream side of the flow rate detecting means 6, the pressure fluctuation is suppressed in this portion, so that the influence of pulsation on the flow rate detecting means 6 is further reduced. The directions of the valve body 7b and the spring 7c can be freely selected.

【0016】一方上流に弁体が設けられることによって
流れが変化し流量精度を悪化させることが考えられる。
しかし、流体は流路の中央にある弁座7aから流入し、
弁体7bと弁座7aとの隙間から円周方向に流体は拡散
して流れるので、流量検出手への影響は極めて小さい。
また、流体通路5の入口部は5aはその上流側に接続さ
れたもの(たとえば曲り配管)によって偏った流速分布
を有して流入するが、弁体7bを通過する際に拡散され
て流量検出手段6には偏りのない流速分布で流れる。
On the other hand, it is conceivable that the flow rate will be changed and the flow rate accuracy will be deteriorated by providing the valve element on the upstream side.
However, the fluid flows in from the valve seat 7a in the center of the flow path,
Since the fluid diffuses and flows in the circumferential direction from the gap between the valve body 7b and the valve seat 7a, the influence on the flow rate detecting hand is extremely small.
Further, at the inlet of the fluid passage 5, 5a flows in with a flow velocity distribution biased by the one connected to the upstream side (for example, a bent pipe), but is diffused when passing through the valve body 7b to detect the flow rate. The means 6 has a flow velocity distribution with no deviation.

【0017】図2は超音波による流量検出手段の詳細を
示したものである。図2において、第1送受信器6aと
送受信する第2送受信器6bが流れ方向に配置されてい
る。8は超音波に基づく信号を処理し演算する流量演算
手段で、9は送信回路で、トリガ手段10によって第1
送受信器6aを駆動し、第2送受信器6bに向け、すな
わち上流から下流に超音波を送信する。増幅回路11は
第2送受信器bで受信した信号を増幅し、この増幅され
た信号は基準信号と比較回路12で比較され、基準信号
以上の信号が検出された後、繰り返し手段13で再度ト
リガ手段10から送信が行われ、上記の送受信を所定の
回数を繰り返した後の時間をタイマカウンタのような計
時手段14で求める。
FIG. 2 shows the details of the flow rate detecting means using ultrasonic waves. In FIG. 2, the second transceiver 6b that transmits and receives with the first transceiver 6a is arranged in the flow direction. Reference numeral 8 is a flow rate calculating means for processing and calculating a signal based on ultrasonic waves, 9 is a transmission circuit, and the first means is provided by the trigger means 10.
The transmitter / receiver 6a is driven and ultrasonic waves are transmitted toward the second transmitter / receiver 6b, that is, from upstream to downstream. The amplifier circuit 11 amplifies the signal received by the second transceiver b, the amplified signal is compared with the reference signal by the comparison circuit 12, and after the signal equal to or higher than the reference signal is detected, the repeating means 13 triggers again. The time after the transmission is performed from the means 10 and the above-mentioned transmission / reception is repeated a predetermined number of times is obtained by the time measuring means 14 such as a timer counter.

【0018】次に切換手段15で第1送受信器6aと第
2送受信器6bの送受信を切り換えて、第2送受信器6
bから第1送受信器6aすなわち下流から上流に向かっ
て超音波信号を送信し、この送信を前述のように繰り返
し、その時間を計時する。そして、その時間差から管路
の大きさや流れの状態を考慮して流量演算手段8で流量
値を求める。
Next, the switching means 15 switches the transmission / reception of the first transceiver 6a and the second transceiver 6b, and the second transceiver 6
The ultrasonic signal is transmitted from b to the first transceiver 6a, that is, from the downstream side to the upstream side, this transmission is repeated as described above, and the time is counted. Then, the flow rate calculation means 8 obtains the flow rate value from the time difference in consideration of the size of the pipeline and the flow state.

【0019】(実施例2)図3は本発明の実施例を示す
構成図で、図3において、流体通路5に設けられた流量
検出手段6の下流側に弁座7aと弁体7bからなる圧力
変動制御弁7が設けられている。
(Embodiment 2) FIG. 3 is a block diagram showing an embodiment of the present invention. In FIG. 3, a valve seat 7a and a valve body 7b are provided downstream of the flow rate detecting means 6 provided in the fluid passage 5. A pressure fluctuation control valve 7 is provided.

【0020】次に動作について述べる。流れがないとき
には弁体7bはその自重で弁座7aを塞いでいるが、順
方向の流れ(矢印の方向)では圧力差によって図のよう
に弁体7bが浮き上がって弁を開く。順方向の流れが大
きくなると弁の開度はさらに大きくなり、圧力損失は大
きく増加しない。圧力変動によって逆方向の流れが発生
すると、弁体7は下向きの力を受け自重と相まって弁座
7aを強く塞いで流れを止める。
Next, the operation will be described. When there is no flow, the valve body 7b closes the valve seat 7a by its own weight, but in the forward flow (direction of the arrow), the valve body 7b floats up and opens the valve due to the pressure difference as shown in the figure. When the flow in the forward direction becomes large, the opening degree of the valve becomes larger and the pressure loss does not increase significantly. When the flow in the opposite direction is generated due to the pressure fluctuation, the valve body 7 receives a downward force and, together with its own weight, strongly closes the valve seat 7a to stop the flow.

【0021】圧力変動制御弁7は流量検出手段6の下流
側にあるので、この部分で多少流れが乱れても流量検出
に悪影響を及ぼすことがない。
Since the pressure fluctuation control valve 7 is located on the downstream side of the flow rate detecting means 6, even if the flow is somewhat disturbed at this portion, it does not adversely affect the flow rate detection.

【0022】(実施例3)図4は弁体7bを示しもの
で、図4(a)は正面図、図4(b)はその平面図を示
す。弁体16は前述の弁体7bとほぼ同一の作用をする
が、羽根16aなどの複数の羽根によって流れは旋回流
を起こす。この旋回流によって著しく流速分布の偏った
流れに対しても、流速分布を安定にする事ができる。
(Embodiment 3) FIG. 4 shows a valve body 7b. FIG. 4 (a) is a front view and FIG. 4 (b) is a plan view thereof. The valve body 16 operates almost the same as the valve body 7b described above, but the flow is swirled by a plurality of blades such as the blade 16a. This swirling flow makes it possible to stabilize the flow velocity distribution even with respect to a flow having a significantly deviated flow velocity distribution.

【0023】(実施例4)図5は弁座17に連通流路1
7aを設けたもので、小流量時にはこの連通流路17a
から流体が通過し、弁体18の位置が変化しないので流
れは極めて安定である。また弁体18を球状にしたもの
では、中心に対してより対象性が高く流れに対して安定
である。連通流路17aは弁体18に設けても良い。
(Embodiment 4) FIG. 5 shows the flow path 1 communicating with the valve seat 17.
7a is provided, and when the flow rate is small, this communication flow path 17a
Since the fluid passes through the valve body 18 and the position of the valve body 18 does not change, the flow is extremely stable. Further, if the valve element 18 is spherical, it is more symmetrical with respect to the center and stable against flow. The communication channel 17a may be provided in the valve body 18.

【0024】弁体は応答性を高めるためにより軽量であ
る方が好ましい。このためなるべく比重の小さい材料で
構成したり、中空にすることが行われても良い。
It is preferable that the valve body is lighter in weight so as to improve the responsiveness. Therefore, it may be made of a material having a specific gravity as small as possible or may be made hollow.

【0025】[0025]

【発明の効果】以上の説明から明らかなように本発明の
流量計測装置によれば次の効果が得られる。
As is apparent from the above description, the following effects can be obtained by the flow rate measuring device of the present invention.

【0026】(1)本発明は、流体通路と、前記流体通
路の流量を検出する流量検出手段と、前記流体通路の上
流側に、逆方向の流れを抑制するとともに順方向には中
央より流入し周辺に拡散する流れを構成する圧力変動制
御弁とを備えたので、脈動がある場合にはその脈動を吸
収し、脈動がない場合にも流れの乱れを発生させず流量
を正確に計測できる。
(1) According to the present invention, the fluid passage, the flow rate detecting means for detecting the flow rate of the fluid passage, the upstream side of the fluid passage, the flow in the reverse direction are suppressed, and the fluid flows in from the center in the forward direction. Since it has a pressure fluctuation control valve that forms a flow that diffuses to the surroundings, it absorbs pulsation when there is pulsation, and even when there is no pulsation, flow turbulence does not occur and the flow rate can be accurately measured. .

【0027】(2)圧力変動制御弁は流体に旋回流を与
えるので、旋回流により流れの安定性をより一層高める
ことができ計測精度が高い。
(2) Since the pressure fluctuation control valve gives a swirling flow to the fluid, the swirling flow can further enhance the stability of the flow and the measurement accuracy is high.

【0028】(3)圧力変動吸収弁に羽根を有し、旋回
流を与えるので流れの安定性が高い。
(3) Since the pressure fluctuation absorbing valve has vanes and gives a swirling flow, the flow stability is high.

【0029】(4)流体通路と、前記流体通路の流量を
検出する流量検出手段と、前記流体通路の下流側に、逆
方向の流れを抑制するとともに順方向には流体を通過さ
せる圧力変動制御弁とを備えたので、圧力変動制御弁で
の流れの乱れによる流量計測精度への影響が少なく、高
精度に計測できる。
(4) A fluid passage, a flow rate detecting means for detecting a flow rate of the fluid passage, and a pressure fluctuation control for suppressing a reverse flow and allowing a fluid to pass in a forward direction on the downstream side of the fluid passage. Since the valve is provided, the flow fluctuation in the pressure fluctuation control valve has little influence on the flow rate measurement accuracy, and high-precision measurement is possible.

【0030】(5)圧力変動制御弁の通路をバイパスす
る連通流路を備えたもので、小流量時には、弁体をバイ
パスして流れるので圧力変動制御弁による流れの乱れが
小さく、高精度に計測できる。
(5) A communication passage for bypassing the passage of the pressure fluctuation control valve is provided, and when the flow rate is small, the valve body bypasses the flow, so that the flow fluctuation due to the pressure fluctuation control valve is small and highly accurate. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の流量計測装置の構成図FIG. 1 is a configuration diagram of a flow rate measuring device according to a first embodiment of the present invention.

【図2】同装置における流量計測手段のブロック図FIG. 2 is a block diagram of a flow rate measuring means in the device.

【図3】本発明の実施例2の流量計測装置の構成図FIG. 3 is a configuration diagram of a flow rate measuring device according to a second embodiment of the present invention.

【図4】(a)本発明の実施例3の流量計測装置の圧力
変動制御弁を示す正面図 (b)本発明の実施例3の流量計測装置の圧力変動制御
弁を示す平面図
FIG. 4A is a front view showing a pressure fluctuation control valve of a flow rate measuring device according to a third embodiment of the present invention. FIG. 4B is a plan view showing a pressure fluctuation control valve of a flow rate measuring device according to a third embodiment of the present invention.

【図5】本発明の実施例4の流量計測装置の圧力変動制
御弁の構成図
FIG. 5 is a configuration diagram of a pressure fluctuation control valve of a flow rate measuring device according to a fourth embodiment of the present invention.

【図6】従来の流量計測装置の構成図FIG. 6 is a block diagram of a conventional flow rate measuring device.

【符号の説明】[Explanation of symbols]

5 流体通路 6 流量検出手段 7 変動圧力制御弁 7b 弁体 16 弁体 16a 羽根 17 弁座 17b 連通流路 5 fluid passages 6 Flow rate detection means 7 Fluctuating pressure control valve 7b Disc 16 valve body 16a feather 17 seat 17b Communication channel

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F030 CC13 CE12 CF01 CF05 2F031 AA04 AB09 2F035 DA08 DA14    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F030 CC13 CE12 CF01 CF05                 2F031 AA04 AB09                 2F035 DA08 DA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流体通路と、前記流体通路の流量を検出
する流量検出手段と、前記流体通路の上流側に、逆方向
の流れを抑制するとともに順方向には流体を拡散する流
れを与える圧力変動制御弁とを備えた流量計測装置。
1. A fluid passage, a flow rate detecting means for detecting a flow rate of the fluid passage, and a pressure which, in the upstream side of the fluid passage, suppresses a flow in a reverse direction and gives a flow for diffusing a fluid in a forward direction. A flow measurement device equipped with a fluctuation control valve.
【請求項2】 圧力変動制御弁により流体に旋回流を与
える請求項1記載の流量計測装置。
2. The flow rate measuring device according to claim 1, wherein a swirl flow is applied to the fluid by a pressure fluctuation control valve.
【請求項3】 圧力変動制御弁に羽根を備えた請求項2
記載の流量制御装置。
3. The pressure fluctuation control valve is provided with vanes.
The flow control device described.
【請求項4】 流体通路と、前記流体通路の流量を検出
する流量検出手段と、前記流体通路の下流側に、逆方向
の流れを抑制するとともに順方向には流体を通過させる
圧力変動制御弁とを備えた流量計測装置。
4. A fluid passage, a flow rate detecting means for detecting a flow rate of the fluid passage, and a pressure fluctuation control valve for suppressing a reverse flow and allowing a fluid to pass in a forward direction on the downstream side of the fluid passage. A flow rate measuring device equipped with.
【請求項5】 圧力変動制御弁の通路をバイパスする連
通流路を備えた請求項1〜4のいづれか1項に記載の流
量計測装置。
5. The flow rate measuring device according to claim 1, further comprising a communication flow passage that bypasses a passage of the pressure fluctuation control valve.
JP2002136682A 2002-05-13 2002-05-13 Flow measuring device Expired - Fee Related JP3941585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136682A JP3941585B2 (en) 2002-05-13 2002-05-13 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136682A JP3941585B2 (en) 2002-05-13 2002-05-13 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2003329494A true JP2003329494A (en) 2003-11-19
JP3941585B2 JP3941585B2 (en) 2007-07-04

Family

ID=29698641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136682A Expired - Fee Related JP3941585B2 (en) 2002-05-13 2002-05-13 Flow measuring device

Country Status (1)

Country Link
JP (1) JP3941585B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128825A (en) * 2006-11-21 2008-06-05 Toshiba Corp Ultrasonic flowmeter
CN110295886A (en) * 2019-08-05 2019-10-01 辽宁瑞邦石油技术发展有限公司 A kind of oil well electromagnetism weighing intelligent gauge
KR102557471B1 (en) * 2023-01-04 2023-07-20 주식회사 대한계전 Ultrasonic water meter for backflow prevention

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230364367A1 (en) * 2022-05-11 2023-11-16 Erich J. Barischoff System and method for improved flow detection during high frequency ventilation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128825A (en) * 2006-11-21 2008-06-05 Toshiba Corp Ultrasonic flowmeter
CN110295886A (en) * 2019-08-05 2019-10-01 辽宁瑞邦石油技术发展有限公司 A kind of oil well electromagnetism weighing intelligent gauge
KR102557471B1 (en) * 2023-01-04 2023-07-20 주식회사 대한계전 Ultrasonic water meter for backflow prevention

Also Published As

Publication number Publication date
JP3941585B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
EP1812774B1 (en) Method and apparatus for determining flow
US8452551B2 (en) Method and apparatus for monitoring multiphase fluid flow
EP1816442A3 (en) Ultrasonic flow meter
US11549841B2 (en) Ultrasonic meter employing two or more dissimilar chordal multipath integration methods in one body
US20120255368A1 (en) Flow rate measuring device
JP2003329494A (en) Flow rate measuring device
JP6134899B2 (en) Flow measurement unit
JP2011180055A (en) Ultrasonic-wave gas meter
AU2011202538B2 (en) Method and apparatus for determining flow
WO2007008245A3 (en) Analyte recognition system
JP2000292233A (en) Flow-rate measuring apparatus
JP2003227740A (en) Flow measuring apparatus and gas meter
JP2004132929A (en) Flow-rate measuring instrument
JP4942254B2 (en) Gas meter
JP4561071B2 (en) Flow measuring device
JPH06300599A (en) Ultrasonic flowmeter unit
JP3122981B2 (en) Reversible flow measurement device
US20240255340A1 (en) Detecting a measurement bias of a reference zero-flow value
JP2003307443A (en) Flowmeter
JP2004257744A (en) Flow rate measuring device
JP4087648B2 (en) Ultrasonic fluid measuring device
JPH11281439A (en) Pulsation absorbing structure for flow meter
JP2004069519A (en) Flow rate measurement device
JPH11281437A (en) Pulsation absorbing structure for flow meter
AU2005304280B2 (en) Method and apparatus for determining flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees