JP2003324093A - Method for manufacturing semiconductor device and the semiconductor device - Google Patents

Method for manufacturing semiconductor device and the semiconductor device

Info

Publication number
JP2003324093A
JP2003324093A JP2002128280A JP2002128280A JP2003324093A JP 2003324093 A JP2003324093 A JP 2003324093A JP 2002128280 A JP2002128280 A JP 2002128280A JP 2002128280 A JP2002128280 A JP 2002128280A JP 2003324093 A JP2003324093 A JP 2003324093A
Authority
JP
Japan
Prior art keywords
semiconductor device
film
manufacturing
etching
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002128280A
Other languages
Japanese (ja)
Inventor
Tomonori Kenmochi
友規 釼持
Takashi Hirano
孝 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002128280A priority Critical patent/JP2003324093A/en
Publication of JP2003324093A publication Critical patent/JP2003324093A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an etching method in which no deposition is left when etching an inorganic film to which a heat resistant polymer protection film is applied. <P>SOLUTION: In a semiconductor manufacturing method that comprises forming an inorganic film on the surface of a semiconductor element, applying a heat resistant polymer protection film on the inorganic film, patterning the protection film, and then performing the dry-etching of the exposed inorganic film; the dry-etching is performed by mixed gas consisting of fluorinated methane and oxygen or hydrogen. The fouorinated methane is selected from tetrafluoromethane, trifluoromethane, difluoromethane, and fluoromethane. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性高分子保護
膜をコーティングした半導体装置の製造方法に関するも
のであり、特に半導体素子上にコーティングした耐熱性
高分子保護膜を介する無機膜のエッチング方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device coated with a heat-resistant polymer protective film, and more particularly to a method for etching an inorganic film via the heat-resistant polymer protective film coated on a semiconductor element. It is about.

【0002】[0002]

【従来の技術】従来、半導体素子の表面保護膜、層間絶
縁膜には耐熱性が優れ、又卓越した電気特性、機械特性
等を有するポリイミド樹脂が用いられているが、近年半
導体素子の高集積化、大型化、パッケージの薄型化、小
型化、半田リフローによる表面実装への移行等により耐
熱サイクル性、耐熱ショック性等の著しい向上の要求が
あり、更に高性能の樹脂が必要とされるようになってき
た。一方、ポリイミド樹脂自身に感光性を付与する技術
が最近注目を集めてきており、これを用いるとパターン
作成工程の一部が簡略化でき、工程短縮および歩留まり
向上の効果はあるが、現像の際にN−メチル−2−ピロ
リドン等の溶剤が必要となるため、安全性、取扱い性に
問題がある。
2. Description of the Related Art Conventionally, a polyimide resin having excellent heat resistance and excellent electrical and mechanical properties has been used for a surface protective film and an interlayer insulating film of a semiconductor device. There is a demand for significantly improved heat resistance cycle resistance, heat shock resistance, etc. due to the trend toward larger size, larger size, thinner package, smaller size, and surface mounting by solder reflow. Has become. On the other hand, a technique of imparting photosensitivity to the polyimide resin itself has recently attracted attention, and if this is used, a part of the pattern forming process can be simplified and there is an effect of shortening the process and improving the yield, but at the time of development. Since a solvent such as N-methyl-2-pyrrolidone is required, there is a problem in safety and handleability.

【0003】そこで最近、アルカリ水溶液で現像ができ
るポジ型の感光性樹脂が開発されている。例えば、特公
平1−46862号公報においてはポリベンゾオキサゾ
ール前駆体とジアゾキノン化合物より構成されるポジ型
感光性樹脂が開示されている。これは高い耐熱性、優れ
た電気特性、微細加工性を有し、ウェハーコート用のみ
ならず層間絶縁用樹脂としての可能性も有している。
Therefore, recently, a positive type photosensitive resin which can be developed with an alkaline aqueous solution has been developed. For example, Japanese Patent Publication No. 1-46862 discloses a positive photosensitive resin composed of a polybenzoxazole precursor and a diazoquinone compound. It has high heat resistance, excellent electrical characteristics, and fine workability, and has potential as a resin for not only wafer coating but also interlayer insulation.

【0004】このような感光性樹脂は半導体素子の表面
保護膜あるいは層間絶縁膜として近年広く利用されるよ
うになってきており、特に高解像度を有するポリベンゾ
オキサゾール前駆体とジアゾキノン化合物より構成され
るポジ型感光性樹脂の場合は、配線上に形成した無機膜
を加工する際に、ポジ型感光性樹脂を介してドライエッ
チングする方法が適用可能である。しかしながら無機膜
を加工する際には層構成が複雑である場合に、エッチン
グ時に使用したガスとの反応物である堆積物が残存する
現象があり、外観不良等の問題となる。この堆積物は一
般的にデポジションと呼ばれるものであり除去が困難で
ある為、薬液処理等による除去工程が必要とされる。
Such a photosensitive resin has been widely used in recent years as a surface protective film or an interlayer insulating film of a semiconductor device, and is composed of a polybenzoxazole precursor and a diazoquinone compound having a particularly high resolution. In the case of a positive type photosensitive resin, a method of dry etching through the positive type photosensitive resin is applicable when processing the inorganic film formed on the wiring. However, when the inorganic film is processed, when the layer structure is complicated, there is a phenomenon that a deposit, which is a reaction product with the gas used at the time of etching, remains, which causes a problem such as poor appearance. This deposit is generally called deposition and is difficult to remove. Therefore, a removing process such as chemical treatment is required.

【0005】[0005]

【発明が解決しようとする課題】本発明は、耐熱性高分
子保護膜をコーティングした半導体装置の製造方法に関
するものであり、特に耐熱性高分子保護膜を被膜した無
機膜のエッチングにおいて、デポジションが残ることな
くドライエッチング処理を行うことを特徴とする半導体
装置の製造方法を提供することを目的とする。
The present invention relates to a method for manufacturing a semiconductor device coated with a heat-resistant polymer protective film, and particularly to a deposition method for etching an inorganic film coated with the heat-resistant polymer protective film. It is an object of the present invention to provide a method for manufacturing a semiconductor device, which is characterized in that dry etching treatment is performed without leaving any residue.

【0006】[0006]

【課題を解決するための手段】本発明は、半導体素子上
に無機膜が施され、該無機膜上に耐熱性高分子保護膜が
施され、該耐熱性高分子保護膜がパターン加工された後
露出された該無機膜をドライエッチングする製造方法に
おいて、フッ素化メタンと酸素もしくは水素とからなる
混合ガスによりドライエッチング処理を行う半導体装置
の製造方法である。更に好ましい形態としては、フッ素
化メタンがテトラフルオロメタン、トリフルオロメタ
ン、ジフルオロメタン、フルオロメタンの中から選ば
れ、混合ガスがフッ素化メタンと酸素からなり、酸素が
フッ素化メタンに対して4〜25容積%であり、又は混
合ガスがフッ素化メタンと水素からなり、水素がフッ素
化メタンに対して10〜30容積%であり、 耐熱性高
分子保護膜がポリベンゾオキサゾール膜またはポリイミ
ド膜であり、耐熱性高分子保護膜が加熱処理された保護
膜であり、ドライエッチング処理時の系内の圧力が0.
5〜5Paである半導体装置の製造方法である。また、
上記の半導体装置の製造方法を用いて製作された半導体
装置である。
According to the present invention, a semiconductor element is provided with an inorganic film, a heat-resistant polymer protective film is applied on the inorganic film, and the heat-resistant polymer protective film is patterned. In the method of dry etching the post-exposed inorganic film, a semiconductor device is manufactured by dry etching with a mixed gas of fluorinated methane and oxygen or hydrogen. In a further preferred embodiment, the fluorinated methane is selected from tetrafluoromethane, trifluoromethane, difluoromethane and fluoromethane, the mixed gas is composed of fluorinated methane and oxygen, and the oxygen is 4 to 25 relative to the fluorinated methane. % By volume, or the mixed gas is composed of fluorinated methane and hydrogen, hydrogen is 10 to 30% by volume with respect to the fluorinated methane, and the heat resistant polymer protective film is a polybenzoxazole film or a polyimide film, The heat-resistant polymer protective film is a heat-treated protective film, and the pressure in the system during the dry etching treatment is 0.
It is a method of manufacturing a semiconductor device having a pressure of 5 to 5 Pa. Also,
A semiconductor device manufactured by using the above-described semiconductor device manufacturing method.

【0007】[0007]

【発明の実施の形態】本発明の半導体装置の製造方法
は、耐熱性高分子保護膜を有する無機膜のエッチング
に、エッチング雰囲気を一定のプロセス圧力に保ち、ガ
スをプラズマ化して使用するドライエッチング処理によ
り加工する方法である。耐熱性高分子保護膜としては、
ポリベンゾオキサゾール、ポリイミド、ベンゾシクロブ
テンなどが用いられる。中でも本発明はポリベンゾオキ
サゾール、ポリイミドに適している。例えば、ポリベン
ゾオキサゾールは次の式で表される。
BEST MODE FOR CARRYING OUT THE INVENTION A method of manufacturing a semiconductor device according to the present invention is a dry etching method in which an etching atmosphere is kept at a constant process pressure and a gas is made into plasma for etching an inorganic film having a heat-resistant polymer protective film. This is a method of processing. As a heat resistant polymer protective film,
Polybenzoxazole, polyimide, benzocyclobutene, etc. are used. Above all, the present invention is suitable for polybenzoxazole and polyimide. For example, polybenzoxazole is represented by the following formula.

【0008】[0008]

【化1】 [Chemical 1]

【0009】無機膜としてはSi、SiO2、Si
34、Ta、Ti、Ta25、TaN、Al等からなる
基板が挙げられる。ドライエッチングは、高出力で行う
のが好ましい。装置によって設定出来る最大出力の仕様
は異なるが、より高出力条件で行うことにより、デポジ
ションを残すことなく加工出来、またエッチングレート
が向上する為、より短時間でエッチング処理を行うこと
が出来る。
As the inorganic film, Si, SiO 2 , Si
Substrates made of 3 N 4 , Ta, Ti, Ta 2 O 5 , TaN, Al and the like can be mentioned. Dry etching is preferably performed at high output. Although the maximum output specification that can be set differs depending on the device, by performing the process under a higher output condition, processing can be performed without leaving deposition and the etching rate is improved, so that the etching process can be performed in a shorter time.

【0010】エッチング時に使用するガスとしては、フ
ッ素化メタンと酸素もしくは水素とからなる混合ガスが
好ましい。フッ素化メタンとしては、テトラフルオロメ
タン、トリフルオロメタン、ジフルオロメタン、フルオ
ロメタンが挙げられるが、これらの中で特に好ましいも
のは、テトラフルオロメタン、トリフルオロメタン、ジ
フルオロメタンである。これらのフッ素化メタンは、単
独で用いても混合して用いてもよい。
The gas used during etching is preferably a mixed gas of fluorinated methane and oxygen or hydrogen. Examples of the fluorinated methane include tetrafluoromethane, trifluoromethane, difluoromethane and fluoromethane, and among these, particularly preferable ones are tetrafluoromethane, trifluoromethane and difluoromethane. These fluorinated methanes may be used alone or as a mixture.

【0011】さらに、フッ素化メタンと酸素からなる混
合ガスの場合、酸素の割合がフッ素化メタンに対して4
〜25容積%が好ましい。また、フッ素化メタンと水素
からなる混合ガスの場合、水素の割合はフッ素化メタン
に対して10〜30容積%が好ましい。フッ素化メタン
に対する酸素の割合が4容積%未満又は水素の割合が1
0容積%未満の場合にはエッチング時に発生したデポジ
ションが除去されず、フッ素化メタンに対する酸素の割
合が25容積%を越える又は水素の割合が30容積%を
越える場合には耐熱性高分子保護膜の表面が荒れる為に
外観上の問題を生じる可能性がある。Si、SiO2
Si34、Ta、Ti、Ta25、TaN等の無機膜に
対して、最適なドライエッチング処理条件を選択する事
によって、デポジションを残すことなくエッチング加工
が可能である。
Further, in the case of a mixed gas composed of fluorinated methane and oxygen, the proportion of oxygen is 4 to fluorinated methane.
-25% by volume is preferred. In the case of a mixed gas composed of fluorinated methane and hydrogen, the proportion of hydrogen is preferably 10 to 30% by volume with respect to fluorinated methane. The ratio of oxygen to fluorinated methane is less than 4% by volume or the ratio of hydrogen is 1
When the content is less than 0% by volume, the deposition generated during etching is not removed, and when the ratio of oxygen to fluorinated methane exceeds 25% by volume or the ratio of hydrogen exceeds 30% by volume, heat-resistant polymer protection Roughness of the surface of the membrane can cause cosmetic problems. Si, SiO 2 ,
By selecting the optimum dry etching processing conditions for the inorganic film such as Si 3 N 4 , Ta, Ti, Ta 2 O 5 , TaN, etc., etching processing can be performed without leaving deposition.

【0012】エッチング時に設定するプロセス圧力に関
しては、低い方が好ましい。系内の圧力を低く抑えるこ
とによって、エッチング時の反応生成物であるデポジシ
ョンを留めることなく排出することが出来る。系内のプ
ロセス圧力は0.5Paから5Paであり、好ましくは
1Paから4Paである。下限値未満の場合は、プラズ
マが立たなくなる為エッチング処理を行うことが出来
ず、上限値を越えると場合はエッチング時に発生したデ
ポジションが、除去出来なくなる可能性がある。その他
の半導体装置の製造方法は公知の方法を用いることがで
きる。
The lower the process pressure set during etching, the better. By keeping the pressure in the system low, it is possible to discharge the reaction product, which is a reaction product during etching, without stopping it. The process pressure in the system is 0.5 Pa to 5 Pa, preferably 1 Pa to 4 Pa. If it is less than the lower limit, plasma cannot stand up, and etching cannot be performed. If it is more than the upper limit, the deposition generated during etching may not be removed. Known methods can be used for other methods of manufacturing the semiconductor device.

【0013】[0013]

【実施例】以下、実施例により本発明を具体的に説明す
る。 《実施例1》 *ポリベンゾオキサゾール前駆体の作成 テレフタル酸132.8g(0.8モル)、イソフタル
酸33.2g(0.2モル)と1−ヒドロキシ−1,
2,3−ベンゾトリアゾール270.3g(2モル)と
を反応させて得られたジカルボン酸誘導体360.4g
(0.9モル)とヘキサフルオロ−2,2−ビス(3−
アミノ−4−ヒドロキシフェニル)プロパン366.3
g(1.0モル)とを温度計、攪拌機、原料投入口、乾
燥窒素ガス導入管を備えた4つ口のセパラブルフラスコ
に入れ、N−メチル−2−ピロリドン3000gを加え
て溶解させた。その後オイルバスを用いて75℃にて1
2時間反応させた。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 * Preparation of Polybenzoxazole Precursor 132.8 g (0.8 mol) of terephthalic acid, 33.2 g (0.2 mol) of isophthalic acid and 1-hydroxy-1,
360.4 g of dicarboxylic acid derivative obtained by reacting with 270.3 g (2 mol) of 2,3-benzotriazole
(0.9 mol) and hexafluoro-2,2-bis (3-
Amino-4-hydroxyphenyl) propane 366.3
g (1.0 mol) was placed in a 4-neck separable flask equipped with a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube, and 3000 g of N-methyl-2-pyrrolidone was added and dissolved. . After that, use an oil bath at 75 ° C for 1
The reaction was carried out for 2 hours.

【0014】次にN−メチル−2−ピロリドン500g
に溶解させた5−ノルボルネン−2,3−ジカルボン酸
無水物32.8g(0.2モル)を加え、更に12時間
攪拌して反応を終了した。反応混合物をろ過した後、水
/メタノール=3/1の混合溶液中に投入して沈殿物を
濾集し、水で十分ろ過した後、真空下で乾燥し、一般式
(1)で表され、Xが下記式X−1、Yが下記式Y−1
及びY−2、Eが下記式E−1であるポリアミド(A−
1)を得た。
Next, 500 g of N-methyl-2-pyrrolidone
32.8 g (0.2 mol) of 5-norbornene-2,3-dicarboxylic acid anhydride dissolved in was added, and the reaction was terminated by further stirring for 12 hours. After filtering the reaction mixture, the mixture was poured into a mixed solution of water / methanol = 3/1, the precipitate was collected by filtration, sufficiently filtered with water, and then dried under vacuum to be represented by the general formula (1). , X is the following formula X-1, and Y is the following formula Y-1.
And a polyamide (A- in which Y-2 and E are the following formula E-1:
1) got.

【0015】[0015]

【化2】 [Chemical 2]

【0016】*ポジ型感光性樹脂組成物の作製 合成したポリアミド(A−1)100g、下記式の構造
を有するジアゾキノン(Q−1)25gをN−メチル−
2−ピロリドン200gに溶解し、3時間攪拌した。そ
の後攪拌を止めて室温で放置し、3時間後に目視により
外観の観察を行ったところ、気泡は見られなかった。そ
の後、0.2μmのフッ素樹脂製フィルターで濾過し感
光性樹脂組成物を得た。
Preparation of Positive Photosensitive Resin Composition 100 g of the synthesized polyamide (A-1) and 25 g of diazoquinone (Q-1) having the structure of the following formula were added to N-methyl-
It was dissolved in 200 g of 2-pyrrolidone and stirred for 3 hours. Thereafter, the stirring was stopped, the mixture was allowed to stand at room temperature, and the appearance was visually observed after 3 hours. No bubbles were observed. Then, it filtered with the 0.2-micrometer fluororesin filter and obtained the photosensitive resin composition.

【0017】[0017]

【化3】 [Chemical 3]

【0018】*ポリベンゾオキサゾール硬化膜の作成 前記方法により合成したポリベンゾオキサゾール前駆体
を含有する耐熱性高分子保護膜用の樹脂前駆体ワニスを
用いて、ウエハ基板上にプラズマCVD法により成膜し
た7000ÅのSi34膜上にスピンコーター等で塗布
した後、ホットプレート等で乾燥し、塗膜を得た。この
塗膜に露光・現像処理を行い、パターン形成を行った。
更にこのウエハをオーブン中で150℃で30分、32
0℃で30分加熱してポリベンゾオキサゾール樹脂前駆
体の閉環反応を行い、ポリベンゾオキサゾ―ル硬化膜と
する。
* Preparation of cured film of polybenzoxazole The film was formed on the wafer substrate by the plasma CVD method using the resin precursor varnish for the heat-resistant polymer protective film containing the polybenzoxazole precursor synthesized by the above method. A coating film was obtained by coating the coated 7000Å Si 3 N 4 film with a spin coater or the like and then drying it with a hot plate or the like. This coating film was exposed and developed to form a pattern.
Further, this wafer is placed in an oven at 150 ° C. for 30 minutes for 32
The polybenzoxazole resin precursor is ring-closed by heating at 0 ° C. for 30 minutes to form a polybenzoxazole cured film.

【0019】*無機膜のエッチング 次いでウエハをエッチング装置L−210D−L(アネ
ルバ(株)製;最大出力300W)を用いて、酸素:テ
トラフルオロメタン=7.7:92.3の容積%の比か
らなる混合ガスにより、出力250W、プロセス圧力1
Paで7分間無機膜のエッチング処理を行った。このと
きのポリベンゾオキサゾール硬化膜の膜厚の減少は約
0.8μmであった。
* Etching of inorganic film Next, the wafer was etched by using an etching apparatus L-210D-L (manufactured by Anerva Co., Ltd .; maximum output 300 W) to obtain oxygen: tetrafluoromethane = 7.7: 92.3 volume%. Output power of 250 W, process pressure of 1 due to mixed gas
The inorganic film was etched at Pa for 7 minutes. At this time, the decrease in the thickness of the polybenzoxazole cured film was about 0.8 μm.

【0020】*無機膜エッチング処理後の評価 10μm×10μmの正方形パターン開口部を走査型電
子顕微鏡を用いて観察し、デポジションの残存を確認し
た結果、デポジションは観察されなかった。
* Evaluation after Inorganic Film Etching Treatment A square pattern opening of 10 μm × 10 μm was observed using a scanning electron microscope, and as a result of confirming the residual deposition, no deposition was observed.

【0021】《実施例2》実施例1におけるポリベンゾ
オキサゾール膜をポリイミド膜に替えた他は実施例1と
同様の評価を行った。以下にポリイミド前駆体及び硬化
膜の作成方法を記す。
Example 2 The same evaluation as in Example 1 was conducted except that the polybenzoxazole film in Example 1 was replaced with a polyimide film. The method for forming the polyimide precursor and the cured film will be described below.

【0022】*ポリイミド前駆体の作成 温度計、攪拌機、原料仕込口及び乾燥窒素ガス導入口を
備えた四ツ口セパラブルフラスコに4,4’−ジアミノ
ジフェニルエーテル190.2g(0.95モル)、
1,3−ビス(3−アミノプロピル)−1,1,3,3
−テトラメチルジシロキサン12.4g(0.05モ
ル)をとり、これに無水のN−メチル−2−ピロリドン
を全仕込原料中の固形分割合が15重量%になるだけの
量を加えて溶解した。次いで0〜50℃の水溶中にフラ
スコを浸漬し、発熱を抑制しながら、精製したピロメリ
ット酸二無水物218.1g(1モル)を投入した。テ
トラカルボン酸二無水物が溶解した後、系の温度を20
℃に保ち、10時間反応を続けた。尚乾燥窒素ガスは反
応の準備段階より生成物の取り出しまでの全行程にわた
り流しておいた。得られた生成物は淡黄色の粘調な溶液
であり、N−メチル−2−ピロリドン0.5重量%溶液
の固有粘度は1.10(30℃)であった。
* Preparation of Polyimide Precursor In a four-necked separable flask equipped with a thermometer, a stirrer, a raw material charging port and a dry nitrogen gas inlet port, 4,4'-diaminodiphenyl ether (190.2 g, 0.95 mol) was added.
1,3-bis (3-aminopropyl) -1,1,3,3
-12.4 g (0.05 mol) of tetramethyldisiloxane was taken, and anhydrous N-methyl-2-pyrrolidone was added thereto and dissolved in such an amount that the solid content ratio of the total raw materials became 15% by weight. did. Then, the flask was immersed in an aqueous solution at 0 to 50 ° C., and 218.1 g (1 mol) of purified pyromellitic dianhydride was added while suppressing heat generation. After the tetracarboxylic dianhydride was dissolved, the system temperature was raised to 20
The temperature was kept at 0 ° C. and the reaction was continued for 10 hours. The dry nitrogen gas was allowed to flow throughout the entire process from the preparation of the reaction to the removal of the product. The obtained product was a pale yellow viscous solution, and the intrinsic viscosity of a 0.5% by weight N-methyl-2-pyrrolidone solution was 1.10 (30 ° C.).

【0023】*ポリイミド硬化膜の作成 合成したポリイミド前駆体を含有する耐熱性高分子保護
膜用の樹脂前駆体ワニスを用いて、ウエハ基板上に成膜
した無機膜上にスピンコーター等で塗布した後、ホット
プレート等で乾燥し、塗膜を得た。この塗膜に露光・現
像処理を行い、パターン形成を行った。更にこのウエハ
をオーブン中で150℃で30分、320℃で30分加
熱してポリイミド樹脂前駆体の閉環反応を行い、ポリイ
ミド硬化膜とする。シリコンウエハ上にスピンコーター
で塗布した後、ホットプレートにて145℃で1分間乾
燥し、膜厚約14μmの塗膜を得た。この塗膜にポジ型
フォトレジストOFPR−800(東京応化工業(株)
製)を用いてスピンコーターで塗布した後、100℃で
1分間乾燥し、さらにレチクルを通して200mJ/c
2の紫外線を照射して露光を行い、次いで2.38%
のテトラメチルヒドロキシド水溶液に60秒間浸漬する
ことによって露光部を溶解除去した後、純水で30秒間
リンスし、パターン形成を行った。その後酢酸ブチルに
1分間浸漬することによりレジストを剥離した。このウ
エハをオーブン中で150℃で30分、230℃で30
分、350℃で30分加熱してポリイミド閉環反応を行
い、最終膜厚が約8μmのポリイミド硬化膜を得た。
* Preparation of Polyimide Cured Film A resin precursor varnish for a heat-resistant polymer protective film containing the synthesized polyimide precursor was used to coat an inorganic film formed on a wafer substrate with a spin coater or the like. Then, it dried with a hot plate etc. and obtained the coating film. This coating film was exposed and developed to form a pattern. Further, this wafer is heated in an oven at 150 ° C. for 30 minutes and 320 ° C. for 30 minutes to cause a ring closure reaction of the polyimide resin precursor to form a polyimide cured film. After coating on a silicon wafer with a spin coater, it was dried on a hot plate at 145 ° C. for 1 minute to obtain a coating film having a film thickness of about 14 μm. Positive photoresist OFPR-800 (Tokyo Ohka Kogyo Co., Ltd.)
Applied by a spin coater, dried at 100 ° C. for 1 minute, and passed through a reticle to obtain 200 mJ / c.
Exposure is performed by irradiating m 2 of ultraviolet rays, and then 2.38%
The exposed portion was dissolved and removed by immersing it in the tetramethyl hydroxide aqueous solution for 60 seconds, and then rinsed with pure water for 30 seconds to form a pattern. Then, the resist was peeled off by immersing in butyl acetate for 1 minute. This wafer is placed in an oven at 150 ° C for 30 minutes and 230 ° C for 30 minutes.
Min., Heating at 350 ° C. for 30 minutes to perform a polyimide ring closure reaction to obtain a polyimide cured film having a final film thickness of about 8 μm.

【0024】《実施例3》実施例1において、酸素:テ
トラフルオロメタンの容積%の比を20:80に替えた
他は実施例1と同様の評価を行った。 《実施例4》実施例1において、プロセス圧力を3Pa
に変えた他は実施例1と同様の評価を行った。 《実施例5》実施例1において、水素:テトラフルオロ
メタン=14.3:85.7の容積%の比で出力250
W、プロセス圧力3Paで11分間エッチング処理を行
った以外は実施例1と同様の処理・評価を行った。 《実施例6》実施例1において、水素:テトラフルオロ
メタン=25:75の容積%の比で出力250W、プロ
セス圧力3Paで11分間エッチング処理を行った以外
は実施例1と同様の処理・評価を行った。
Example 3 The same evaluation as in Example 1 was carried out except that the ratio of oxygen: tetrafluoromethane volume% was changed to 20:80. << Example 4 >> In Example 1, the process pressure was set to 3 Pa.
The same evaluation as in Example 1 was carried out except that << Example 5 >> In Example 1, the output was 250 at a volume ratio of hydrogen: tetrafluoromethane = 14.3: 85.7.
The same treatment and evaluation as in Example 1 were performed except that the etching treatment was performed for 11 minutes at W and a process pressure of 3 Pa. Example 6 The same processing and evaluation as in Example 1 except that etching was performed for 11 minutes at an output of 250 W and a process pressure of 3 Pa at a volume ratio of hydrogen: tetrafluoromethane = 25: 75. I went.

【0025】《比較例1》実施例1において、出力を1
50Wに設定してエッチング処理を行った他は実施例1
と同様の評価を行った。 《比較例2》実施例1において、プロセス圧力を8Pa
に設定してエッチング処理を行った他は実施例1と同様
の評価を行った。 《比較例3》実施例1において、酸素:テトラフルオロ
メタン=33.3:66.7の容積%の比でエッチング
処理を行った他は実施例1と同様の評価を行った。 《比較例4》実施例5において、水素:テトラフルオロ
メタン=7.7:92.3の容積%の比でエッチング処
理を行った他は実施例1と同様の評価を行った。
<< Comparative Example 1 >> In Example 1, the output is 1
Example 1 except that the etching treatment was performed by setting to 50 W.
The same evaluation as was done. << Comparative Example 2 >> In Example 1, the process pressure was 8 Pa.
The same evaluations as in Example 1 were carried out except that the etching treatment was carried out by setting to 1. << Comparative Example 3 >> The same evaluation as in Example 1 was performed except that the etching treatment was performed in Example 1 at a volume% ratio of oxygen: tetrafluoromethane = 33.3: 66.7. << Comparative Example 4 >> The same evaluation as in Example 1 was performed, except that the etching treatment was performed in Example 5 at a volume ratio of hydrogen: tetrafluoromethane = 7.7: 92.3.

【0026】評価結果を表1に示す。The evaluation results are shown in Table 1.

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明によって、耐熱性高分子保護膜を
被膜した無機膜のエッチング時にデポジションが残るこ
となくエッチング処理を行うことが出来る。
According to the present invention, an etching treatment can be performed without leaving deposition during etching of an inorganic film coated with a heat-resistant polymer protective film.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H025 AA10 AB16 CB25 DA40 FA41 2H096 AA25 HA24 5F004 AA04 AA05 AA14 CA02 CA03 DA00 DA01 DA15 DA16 DA24 DA26 DB00 DB01 DB03 DB07 DB08 DB09 DB12 DB13 EA03   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H025 AA10 AB16 CB25 DA40 FA41                 2H096 AA25 HA24                 5F004 AA04 AA05 AA14 CA02 CA03                       DA00 DA01 DA15 DA16 DA24                       DA26 DB00 DB01 DB03 DB07                       DB08 DB09 DB12 DB13 EA03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子上に無機膜が施され、該無機
膜上に耐熱性高分子保護膜が施され、該耐熱性高分子保
護膜がパターン加工された後露出された該無機膜をドラ
イエッチングする製造方法において、フッ素化メタンと
酸素もしくは水素とからなる混合ガスによりドライエッ
チング処理を行うことを特徴とする半導体装置の製造方
法。
1. A semiconductor element is provided with an inorganic film, a heat-resistant polymer protective film is applied on the inorganic film, and the heat-resistant polymer protective film is pattern-processed and then exposed. A method of manufacturing a semiconductor device, characterized in that in the method of dry etching, a dry etching process is performed with a mixed gas of fluorinated methane and oxygen or hydrogen.
【請求項2】 フッ素化メタンがテトラフルオロメタ
ン、トリフルオロメタン、ジフルオロメタン、フルオロ
メタンの中から選ばれる請求項1記載の半導体装置の製
造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the fluorinated methane is selected from tetrafluoromethane, trifluoromethane, difluoromethane and fluoromethane.
【請求項3】 混合ガスがフッ素化メタンと酸素からな
り、酸素がフッ素化メタンに対して4〜25容積%であ
る請求項1記載の半導体装置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein the mixed gas is composed of fluorinated methane and oxygen, and oxygen is 4 to 25% by volume with respect to the fluorinated methane.
【請求項4】 混合ガスがフッ素化メタンと水素からな
り、水素がフッ素化メタンに対して10〜30容積%で
ある請求項1記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the mixed gas is composed of fluorinated methane and hydrogen, and hydrogen is 10 to 30% by volume with respect to the fluorinated methane.
【請求項5】 耐熱性高分子保護膜がポリベンゾオキサ
ゾール膜またはポリイミド膜である請求項1記載の半導
体装置の製造方法。
5. The method for manufacturing a semiconductor device according to claim 1, wherein the heat-resistant polymer protective film is a polybenzoxazole film or a polyimide film.
【請求項6】 耐熱性高分子保護膜が加熱処理された保
護膜である請求項1記載の半導体装置の製造方法。
6. The method for manufacturing a semiconductor device according to claim 1, wherein the heat-resistant polymer protective film is a heat-treated protective film.
【請求項7】 ドライエッチング処理時の系内の圧力が
0.5〜5Paである請求項1記載の半導体装置の製造
方法。
7. The method of manufacturing a semiconductor device according to claim 1, wherein the pressure in the system during the dry etching treatment is 0.5 to 5 Pa.
【請求項8】 請求項1〜7のいずれかに記載の半導体
装置の製造方法を用いて製作された半導体装置。
8. A semiconductor device manufactured by using the method for manufacturing a semiconductor device according to claim 1.
JP2002128280A 2002-04-30 2002-04-30 Method for manufacturing semiconductor device and the semiconductor device Pending JP2003324093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002128280A JP2003324093A (en) 2002-04-30 2002-04-30 Method for manufacturing semiconductor device and the semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002128280A JP2003324093A (en) 2002-04-30 2002-04-30 Method for manufacturing semiconductor device and the semiconductor device

Publications (1)

Publication Number Publication Date
JP2003324093A true JP2003324093A (en) 2003-11-14

Family

ID=29542086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002128280A Pending JP2003324093A (en) 2002-04-30 2002-04-30 Method for manufacturing semiconductor device and the semiconductor device

Country Status (1)

Country Link
JP (1) JP2003324093A (en)

Similar Documents

Publication Publication Date Title
KR101247622B1 (en) Positive type photosensitive resin composition
TWI670297B (en) Photosensitive resin composition, production method of patterned hardened film using the same, hardened film, patterned hardened film and semiconductor device
JP4001569B2 (en) Soluble polyimide for photosensitive polyimide precursor and photosensitive polyimide precursor composition containing the same
WO2007034604A1 (en) Negative photosensitive resin composition, method of pattern forming and electronic part
WO2002037184A1 (en) Positive photosensitive resin composition, process for its preparation, and semiconductor devices
JP3658562B2 (en) Polypenzo-oxazole precursor
KR20160124082A (en) Resin composition containing polyimide precursormethod for manufacturing cured filmand electronic component
TWI625361B (en) Photosensitive resin composition, production method of patterned hardened film using the same and semiconductor device
JP3449925B2 (en) Positive photosensitive resin composition
JP4760026B2 (en) Positive photosensitive resin composition, semiconductor device and display element using the positive photosensitive resin composition, and manufacturing method of semiconductor device and display element
US20030036292A1 (en) Process for producing a semiconductor device
JPH04284455A (en) Photosensitive resin composition
JP3064579B2 (en) Pattern formation method
JP2005242328A (en) Positive photosensitive resin composition, semiconductor device and display component using the positive photosensitive resin composition, and method for producing semiconductor device and display component
JP2003324093A (en) Method for manufacturing semiconductor device and the semiconductor device
JP2003114538A (en) Rinsing liquid, washing method using the same and photosensitive resin precursor composition to be washed off
JP3682898B2 (en) Positive photosensitive resin composition
JPH0572736A (en) Production of fluorine-contained polyimide resin film pattern
JP4461516B2 (en) Removal method of heat-resistant polymer protective film
JP3422704B2 (en) Positive photosensitive resin composition
JP2008111929A (en) Photosensitive resin composition, insulation film, protection layer, and electronic equipment
JP2001242640A (en) Processing method for photosensitive resin composition and semiconductor device using same
JP3779170B2 (en) Manufacturing method of multilayer wiring semiconductor device
JP4622281B2 (en) Positive photosensitive resin composition, semiconductor device and display element
JP2000162787A (en) Method for removing meat-resistant polymer protective film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121