JP4461516B2 - Removal method of heat-resistant polymer protective film - Google Patents

Removal method of heat-resistant polymer protective film Download PDF

Info

Publication number
JP4461516B2
JP4461516B2 JP20409599A JP20409599A JP4461516B2 JP 4461516 B2 JP4461516 B2 JP 4461516B2 JP 20409599 A JP20409599 A JP 20409599A JP 20409599 A JP20409599 A JP 20409599A JP 4461516 B2 JP4461516 B2 JP 4461516B2
Authority
JP
Japan
Prior art keywords
heat
protective film
film
resistant polymer
polymer protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20409599A
Other languages
Japanese (ja)
Other versions
JP2001031786A (en
Inventor
友規 釼持
孝 平野
敏夫 番場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP20409599A priority Critical patent/JP4461516B2/en
Publication of JP2001031786A publication Critical patent/JP2001031786A/en
Application granted granted Critical
Publication of JP4461516B2 publication Critical patent/JP4461516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性高分子保護膜の除去方法に関するものであり、特に半導体装置上にコーティングした耐熱性高分子保護膜の除去方法に関するものである。
【0002】
【従来の技術】
従来、半導体素子の表面保護膜、層間絶縁膜には耐熱性が優れ、又卓越した電気特性、機械特性等を有するポリイミド樹脂が用いられているが、近年半導体素子の高集積化、大型化、パッケージの薄型化、小型化、半田リフローによる表面実装への移行等により耐熱サイクル性、耐熱ショック性等の著しい向上の要求があり、更に高性能の樹脂が必要とされるようになってきた。
一方、ポリイミド樹脂自身に感光性を付与する技術が最近注目を集めてきており、これを用いるとパターン作成工程の一部が簡略化でき、工程短縮および歩留まり向上の効果はあるが、現像の際にN−メチル−2−ピロリドン等の溶剤が必要となるため、安全性、取扱い性に問題がある。
【0003】
そこで最近、アルカリ水溶液で現像ができるポジ型の感光性樹脂が開発されている。例えば、特公平1−46862号公報においてはポリベンゾオキサゾール前駆体とジアゾキノン化合物より構成されるポジ型感光性樹脂が開示されている。これは高い耐熱性、優れた電気特性、微細加工性を有し、ウェハーコート用のみならず層間絶縁用樹脂としての可能性も有している。
【0004】
このような感光性樹脂は半導体素子の表面保護膜あるいは層間絶縁膜として近年広く利用されるようになってきたが、半導体装置を製造する側では工程中の不具合等によって、基板上に形成したポリベンゾオキサゾール膜等をしばしば除去する必要がある。しかしながらポリベンゾオキサゾール膜は通常300℃〜400℃での加熱処理が施されているため、除去が非常に困難である。
従って、通常加熱処理後はポリベンゾオキサゾール膜の除去は行わなれておらず、工程中に不具合が生じた製品は不良品として廃棄処理されてきたが、近年製造コストの削減等の目的で、不良品となったポリベンゾオキサゾール膜を除去して再び塗布して使用することが出来る、いわゆるリワーク性が強く要求されてきた。
【0005】
【発明が解決しようとする課題】
本発明は、コーティングされた耐熱性高分子保護膜の除去方法に関するものである。
【0006】
【課題を解決するための手段】
本発明は、加熱処理を施した耐熱性高分子保護膜をドライエッチング処理した後ジメチルスルホキシドとモノエタノールアミンの混合有機溶剤に浸漬する工程により保護膜を除去する耐熱性高分子保護膜の除去方法である。更には、好ましい形態としては、該ドライエッチング処理する工程が酸素プラズマを使用する処理であり、該ジメチルスルホキシドとモノエタノールアミンの混合割合が重量比で3:97から90:10であり、該耐熱性高分子保護膜が下記の一般式で示されるポリベンゾオキサゾール膜、またはポリイミド膜であり、該耐熱性高分子保護膜が半導体装置に形成された保護膜である耐熱性高分子保護膜の除去方法である。
【0007】
【化1】

Figure 0004461516
【0008】
【発明の実施の形態】
ポリベンゾオキサゾール膜等の耐熱性高分子保護膜を剥離するためのドライエッチング処理は、半導体装置上のポリベンゾオキサゾール膜をある程度の膜厚まで削る目的で行う。ドライエッチング処理には酸素プラズマを使用する処理が好ましく、この場合は基板上の有機膜や有機溶剤のみをエッチングするので、無機膜である基板は影響を受けない。フッ素や塩素のラジカルを利用した反応性ガスによるドライエッチング処理の場合、Si、SiO2、Si34、Al等の基板がエッチングされてしまうので好ましくない。酸素プラズマによるドライエッチングは、高出力で行えばより短時間での有機物の除去が可能である。またエッチング装置槽内の温度は高い程好ましく、窒素や窒素と水素の混合ガスによるプレヒートを行えば、より短時間での除去が可能となる。
【0009】
有機溶剤への浸漬処理は、ドライエッチング処理後に半導体装置上に残存するポリベンゾオキサゾール膜を完全に除去する目的で行う。ポリベンゾオキサゾール膜を除去するための溶解力の強い溶剤としては、パッケージ不良解析等に用いられる発煙硝酸、ハロゲン系溶剤、フェノールを含有している溶剤やフッ化水素の水溶液であるフッ酸等が挙げられるが、これらの材料は環境問題や人体への有害性等の問題が懸念される。そこで、より安全性の高い溶剤を使用した方が好ましいと考え、種々の溶剤を検討した結果、ジメチルスルホキシドとモノエタノールアミンの混合溶剤がポリベンゾオキサゾール膜等の溶解に優れることを見出した。更にモノエタノールアミンの含有量が多いものが好ましい。これは強いアルカリ性を有するモノエタノールアミンがオキサゾール環を分解して溶解するメカニズムを有しているためであると考えられる。この混合有機溶剤は加熱して使用することで、ポリベンゾオキサゾール膜等の除去をより短時間で行うことが出来る。更に好ましくは半導体装置の量産工場で広く使用されている、複数の洗浄槽および蒸気洗浄装置を備えたウエハ洗浄装置を利用することにより、非常に少ないパーティクルレベルを達成することが可能である。
【0010】
ジメチルスルホキシドとモノエタノールアミンの混合割合は重量比で3:97から90:10であり、好ましくは4:96から50:50である。ジメチルスルホキシドの割合が3未満になると取り扱い性が少し悪くなり、90を越えると溶解の時間が長くなるという問題が起こる。
【0011】
本発明では酸素プラズマによるドライエッチング処理とジメチルスルホキシドとモノエタノールアミンからなる混合有機溶剤による浸漬処理を組み合わせる事により、ポリベンゾオキサゾール膜を除去することが出来、パーティクルを非常に少ないレベルまで低減することが可能である。ドライエッチング処理のみの場合、高温・高出力での処理により短時間での除去が可能である反面、除去された膜の有機物が槽内に残存していることがあり、ウエハ基板上に再付着する問題が懸念され好ましくない。一方、混合有機溶剤の浸漬による処理のみの場合は、膜を完全に溶解除去するまで長時間を要するばかりでなく、浸漬槽内の有機溶剤の汚染が著しくなるといった不具合が生じる。特に半導体装置の量産品に対してウエハ洗浄装置を使用する場合には、有機溶剤の汚染が早くなり溶解力が低下するため好ましくない。本発明においてはドライエッチング処理により短時間で膜厚を減少させた後、ジメチルスルホキシドとモノエタノールアミンからなる混合有機溶剤による浸漬処理を組み合わせる事により、効率よく、洗浄装置槽内の有機溶剤を著しく汚染させずに膜を除去することが出来、パーティクルを非常に少ないレベルまで低減することを特徴とするものである。
【0012】
【実施例】
以下、実施例により本発明を具体的に説明する。
《実施例1》
* ポリベンゾオキサゾール前駆体の作成
テレフタル酸132.8g(0.8モル)、イソフタル酸33.2g(0.2モル)と1−ヒドロキシ−1,2,3−ベンゾトリアゾール270.3g(2モル)とを反応させて得られたジカルボン酸誘導体360.4g(0.9モル)とヘキサフルオロ−2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン366.3g(1.0モル)とを温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに入れ、N−メチル−2−ピロリドン3000gを加えて溶解させた。その後オイルバスを用いて75℃にて12時間反応させた。
【0013】
次にN−メチル−2−ピロリドン500gに溶解させた5−ノルボルネン−2,3−ジカルボン酸無水物32.8g(0.2モル)を加え、更に12時間攪拌して反応を終了した。反応混合物をろ過した後、水/メタノール=3/1の混合溶液中に投入して沈殿物を濾集し、水で十分ろ過した後、真空下で乾燥し、一般式(1)で表され、Xが下記式X−1、Yが下記式Y−1及びY−2、Eが下記式E−1であるポリアミド(A−1)を得た。
【化2】
Figure 0004461516
【0014】
*ポジ型感光性樹脂組成物の作製
合成したポリアミド(A−1)100g、下記式の構造を有するジアゾキノン(Q−1)25gをN−メチル−2−ピロリドン200gに溶解し、3時間攪拌した。その後攪拌を止めて室温で放置し、3時間後に目視により外観の観察を行ったところ、気泡は見られなかった。その後、0.2μmのテフロンフィルターで濾過し感光性樹脂組成物を得た。
【化3】
Figure 0004461516
【0015】
*ポリベンゾオキサゾール硬化膜の作成
前記方法により合成したポリベンゾオキサゾール前駆体を含有するポジ型感光性樹脂組成物を用いて、シリコンウェハー上にスピンコーターで塗布した後、ホットプレートにて120℃で4分間乾燥し、膜厚約11μmの塗膜を得た。この塗膜にi線ステッパー露光機NSR−2205i12C(ニコン(株)製)によりレチクルを通して500mJ/cm2の露光量で露光を行い、2.38%のテトラメチルヒドロキシド水溶液に100秒浸漬することによって露光部を溶解除去した後、純水で30秒間リンスし、パターン形成を行った。このウエハをオーブン中で150℃で30分、320℃で30分加熱してポリベンゾオキサゾール閉環反応を行い、最終膜厚が約8μmのポリベンゾオキサゾ―ル硬化膜を得た。
【0016】
*ポリベンゾオキサゾール硬化膜の除去
前記のポリベンゾオキサゾール硬化膜を形成したウエハをエッチング装置OPM−EM1000(東京応化工業(株)製)を用いて、窒素と水素の混合ガスと酸素を用いて槽内温度を200℃まで昇温させた後、1000Wで3分間の酸素プラズマ処理を行い、膜厚を0.2μmまで減少させた。
【0017】
続いてカイジョー製のウエットステーションにて有機溶剤による洗浄処理を行った。ウエハーフローのステップは、1槽目で組成がジメチルスルホキシド/モノエタノールアミン=4/6である混合有機溶剤(以下剥離液という)を使用して100℃・30分間の処理を行い、2槽目で1槽目と同じ剥離液で100℃・30分間の処理を行い、3槽目でN−メチル−2−ピロリドンで常温10分間のリンス処理を行い、4槽目で純水で100℃・1分間の処理を行い、5槽目で純水で常温3分間の処理を行い、6槽目でイソプロピルアルコールのベーパー乾燥を4分間行い、最後にスピンドライを行うという工程であり、前記の酸素プラズマ処理によって膜厚を減少させたポリベンゾオキサゾール硬化膜をウエットステーションにて処理した。
【0018】
*ポリベンゾオキサゾール硬化膜の除去後の評価
剥離液への浸漬処理後のウエハについて、レーザ表面検査装置LS−5000(日立電子エンジニアリング(株)製)を用いて粒径が1μm以上のパーティクル数を計測した結果21であった。
【0019】
《実施例2》
実施例1におけるポリベンゾオキサゾール膜をポリイミド膜に替えた他は実施例1と同様の評価を行った。以下にポリイミド前駆体及び硬化膜の作成方法を記す。
【0020】
*ポリイミド前駆体の作成
温度計、攪拌機、原料仕込口及び乾燥窒素ガス導入口を備えた四ツ口セパラブルフラスコに4,4’−ジアミノジフェニルエーテル190.2g(0.95モル)、1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラメチルジシロキサン12.4g(0.05モル)をとり、これに無水のN−メチル−2−ピロリドンを全仕込原料中の固形分割合が15重量%になるだけの量を加えて溶解した。次いで0〜50℃の水溶中にフラスコを浸漬し、発熱を抑制しながら、精製したピロメリット酸二無水物218.1g(1モル)を投入した。テトラカルボン酸二無水物が溶解した後、系の温度を20℃に保ち、10時間反応を続けた。尚乾燥窒素ガスは反応の準備段階より生成物の取り出しまでの全行程にわたり流しておいた。得られた生成物は淡黄色の粘調な溶液であり、N−メチル−2−ピロリドン0.5重量%溶液の固有粘度は1.1(30℃)であった。
【0021】
*ポリイミド硬化膜の作成
合成したポリイミド前駆体をシリコンウエハ上にスピンコーターで塗布した後、ホットプレートにて145℃で1分間乾燥し、膜厚約11μmの塗膜を得た。この塗膜にポジ型フォトレジストOFPR−800(東京応化工業(株)製)を用いてスピンコーターで塗布した後、100℃で1分間乾燥し、さらにレチクルを通して200mJ/cm2の紫外線を照射して露光を行い、次いで2.38%のテトラメチルヒドロキシド水溶液に60秒間浸漬することによって露光部を溶解除去した後、純水で30秒間リンスし、パターン形成を行った。その後酢酸ブチルに1分間浸漬することによりレジストを剥離した。このウエハをオーブン中で150℃で30分、230℃で30分、350℃で30分加熱してポリイミド閉環反応を行い、最終膜厚が約6μmのポリイミド硬化膜を得た。
【0022】
《実施例3》
実施例1においてポリベンゾオキサゾール膜の硬化温度を350℃に替えた他は実施例1と同様の評価を行った。
《実施例4》
実施例1において、ウエットステーションで使用した1槽目および2槽目の剥離液を組成がジメチルスルホキシド/モノエタノールアミン=6/4であるものに替え、更に剥離液の加熱温度を120℃に替えた他は実施例1と同様の評価を行った。
《実施例5》
実施例1において、ウエットステーションで使用した1槽目および2槽目の剥離液を組成がジメチルスルホキシド/モノエタノールアミン=4/96である剥離液を使用した以外は実施例1と同様の処理を行い、実施例1と同様の評価を行った。
【0023】
《比較例1》
実施例1において酸素プラズマ処理工程を行わずにポリベンゾオキサゾール硬化膜の除去を試みた。
《比較例2》
実施例1において、本発明による剥離液の処理を行わずに、酸素プラズマ処理のみでポリベンゾオキサゾール硬化膜の除去を試みた。
《比較例3》
実施例1においてウエットステーションで使用した1槽目および2槽目の剥離液を主成分がO,O’−ジクロロベンゼンである剥離液に替えた他は実施例1と同様の評価を行った。
《比較例4》
実施例1においてウエットステーションで使用した1槽目および2槽目の剥離液をジメチルスルホキシド単独の剥離液に替えた他は実施例1と同様の評価を行った。
以上、実施例1〜5、比較例1〜4の評価結果を表1に示す。
【0024】
【表1】
Figure 0004461516
【0025】
【発明の効果】
本発明によって、耐熱性高分子膜の除去を効率よく、しかも有機溶剤を汚染することなく安全に容易に行うことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing a heat-resistant polymer protective film, and more particularly to a method for removing a heat-resistant polymer protective film coated on a semiconductor device.
[0002]
[Prior art]
Conventionally, polyimide resin having excellent heat resistance and excellent electrical characteristics, mechanical characteristics, etc. has been used for the surface protection film and interlayer insulation film of semiconductor elements. There has been a demand for significant improvement in heat cycle resistance, heat shock resistance, and the like due to the thinning and downsizing of packages, and the transition to surface mounting by solder reflow, and higher performance resins have been required.
On the other hand, a technology for imparting photosensitivity to the polyimide resin itself has recently attracted attention, and it can be used to simplify a part of the pattern creation process, shortening the process and improving the yield. In addition, since a solvent such as N-methyl-2-pyrrolidone is required, there are problems in safety and handling.
[0003]
Therefore, a positive photosensitive resin that can be developed with an aqueous alkali solution has recently been developed. For example, Japanese Patent Publication No. 1-468662 discloses a positive photosensitive resin composed of a polybenzoxazole precursor and a diazoquinone compound. This has high heat resistance, excellent electrical properties, and fine processability, and has the potential not only for wafer coating but also as a resin for interlayer insulation.
[0004]
In recent years, such a photosensitive resin has been widely used as a surface protective film or an interlayer insulating film of a semiconductor element. However, on the side of manufacturing a semiconductor device, a polycrystal formed on a substrate due to problems in the process or the like. It is often necessary to remove the benzoxazole film or the like. However, since the polybenzoxazole film is usually subjected to heat treatment at 300 ° C. to 400 ° C., it is very difficult to remove.
Therefore, the polybenzoxazole film is not normally removed after the heat treatment, and products that have failed during the process have been discarded as defective products, but in recent years, for the purpose of reducing production costs, etc. There has been a strong demand for so-called reworkability in which a polybenzoxazole film that has become a non-defective product can be removed and applied again.
[0005]
[Problems to be solved by the invention]
The present invention relates to a method for removing a coated heat-resistant polymer protective film.
[0006]
[Means for Solving the Problems]
The present invention relates to a method for removing a heat-resistant polymer protective film in which a heat-resistant polymer protective film subjected to a heat treatment is dry-etched and then is removed by a step of immersing in a mixed organic solvent of dimethyl sulfoxide and monoethanolamine. It is. Furthermore, as a preferred embodiment, the dry etching process is a process using oxygen plasma, and the mixing ratio of the dimethyl sulfoxide and monoethanolamine is from 3:97 to 90:10, and the heat resistance The heat-resistant polymer protective film is a polybenzoxazole film or polyimide film represented by the following general formula, and the heat-resistant polymer protective film is a protective film formed on a semiconductor device. Is the method.
[0007]
[Chemical 1]
Figure 0004461516
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The dry etching process for removing the heat-resistant polymer protective film such as the polybenzoxazole film is performed for the purpose of cutting the polybenzoxazole film on the semiconductor device to a certain thickness. In the dry etching process, a process using oxygen plasma is preferable. In this case, only the organic film or the organic solvent on the substrate is etched, so that the substrate which is an inorganic film is not affected. In the case of dry etching treatment with a reactive gas using fluorine or chlorine radicals, substrates such as Si, SiO 2 , Si 3 N 4 , and Al are etched, which is not preferable. When dry etching using oxygen plasma is performed at a high output, organic substances can be removed in a shorter time. Further, the temperature in the etching apparatus tank is preferably as high as possible. If preheating is performed with nitrogen or a mixed gas of nitrogen and hydrogen, the removal can be performed in a shorter time.
[0009]
The immersion treatment in the organic solvent is performed for the purpose of completely removing the polybenzoxazole film remaining on the semiconductor device after the dry etching treatment. Solvents with strong dissolving power for removing polybenzoxazole films include fuming nitric acid, halogen-based solvents, phenol-containing solvents and hydrofluoric acid, which are used for analysis of package defects, etc. Although these materials are mentioned, there are concerns about problems such as environmental problems and harmfulness to human bodies. Accordingly, it was considered preferable to use a safer solvent, and as a result of examining various solvents, it was found that a mixed solvent of dimethyl sulfoxide and monoethanolamine is excellent in dissolving a polybenzoxazole film or the like. Furthermore, the thing with much content of monoethanolamine is preferable. This is presumably because monoethanolamine having strong alkalinity has a mechanism for decomposing and dissolving the oxazole ring. By using the mixed organic solvent by heating, the polybenzoxazole film and the like can be removed in a shorter time. More preferably, it is possible to achieve a very low particle level by using a wafer cleaning apparatus having a plurality of cleaning tanks and vapor cleaning apparatuses widely used in mass production factories of semiconductor devices.
[0010]
The mixing ratio of dimethyl sulfoxide and monoethanolamine is from 3:97 to 90:10, preferably from 4:96 to 50:50, by weight. When the ratio of dimethyl sulfoxide is less than 3, the handleability is slightly deteriorated, and when it exceeds 90, the dissolution time becomes longer.
[0011]
In the present invention, by combining dry etching treatment with oxygen plasma and immersion treatment with a mixed organic solvent composed of dimethyl sulfoxide and monoethanolamine, the polybenzoxazole film can be removed and the particles can be reduced to a very low level. Is possible. In the case of only dry etching processing, it can be removed in a short time by processing at high temperature and high output, but the organic matter of the removed film may remain in the tank and reattach on the wafer substrate. This is not preferable because of concern. On the other hand, in the case of only the treatment by the immersion of the mixed organic solvent, not only a long time is required until the film is completely dissolved and removed, but there is a problem that the organic solvent in the immersion tank is significantly contaminated. In particular, when a wafer cleaning apparatus is used for a mass-produced product of a semiconductor device, the organic solvent is quickly contaminated and the dissolving power is lowered, which is not preferable. In the present invention, after reducing the film thickness in a short time by dry etching treatment, combining the immersion treatment with a mixed organic solvent composed of dimethyl sulfoxide and monoethanolamine, the organic solvent in the cleaning apparatus tank is remarkably reduced. The film can be removed without being contaminated, and the particles are reduced to a very low level.
[0012]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
Example 1
* Preparation of polybenzoxazole precursor 132.8 g (0.8 mol) terephthalic acid, 33.2 g (0.2 mol) isophthalic acid and 270.3 g (2 mol) 1-hydroxy-1,2,3-benzotriazole ) And 366.3 g (1.0 mol) of hexafluoro-2,2-bis (3-amino-4-hydroxyphenyl) propane. Were put into a four-necked separable flask equipped with a thermometer, a stirrer, a raw material inlet, and a dry nitrogen gas inlet tube, and 3000 g of N-methyl-2-pyrrolidone was added and dissolved. Thereafter, the mixture was reacted at 75 ° C. for 12 hours using an oil bath.
[0013]
Next, 32.8 g (0.2 mol) of 5-norbornene-2,3-dicarboxylic anhydride dissolved in 500 g of N-methyl-2-pyrrolidone was added, and the mixture was further stirred for 12 hours to complete the reaction. After filtering the reaction mixture, it was put into a mixed solution of water / methanol = 3/1, and the precipitate was collected by filtration, sufficiently filtered with water, dried under vacuum, and represented by the general formula (1). A polyamide (A-1) in which X is the following formula X-1, Y is the following formula Y-1 and Y-2, and E is the following formula E-1.
[Chemical formula 2]
Figure 0004461516
[0014]
* Preparation of positive photosensitive resin composition 100 g of synthesized polyamide (A-1) and 25 g of diazoquinone (Q-1) having the structure of the following formula were dissolved in 200 g of N-methyl-2-pyrrolidone and stirred for 3 hours. . Thereafter, stirring was stopped and the mixture was allowed to stand at room temperature. After 3 hours, the appearance was visually observed. As a result, no bubbles were observed. Then, it filtered with the 0.2 micrometer Teflon filter, and obtained the photosensitive resin composition.
[Chemical 3]
Figure 0004461516
[0015]
* Creation of cured polybenzoxazole film Using a positive photosensitive resin composition containing a polybenzoxazole precursor synthesized by the above method, a silicon wafer was coated with a spin coater and then heated at 120 ° C on a hot plate. The film was dried for 4 minutes to obtain a coating film having a thickness of about 11 μm. This coating film is exposed at an exposure amount of 500 mJ / cm 2 through a reticle with an i-line stepper exposure machine NSR-2205i12C (manufactured by Nikon Corporation) and immersed in an aqueous 2.38% tetramethyl hydroxide solution for 100 seconds. Then, the exposed portion was dissolved and removed, and then rinsed with pure water for 30 seconds to form a pattern. This wafer was heated in an oven at 150 ° C. for 30 minutes and at 320 ° C. for 30 minutes to carry out a polybenzoxazole ring closure reaction to obtain a cured polybenzoxazole film having a final film thickness of about 8 μm.
[0016]
* Removal of polybenzoxazole cured film Wafer on which the above-mentioned cured polybenzoxazole film is formed using an etching apparatus OPM-EM1000 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), using a mixed gas of nitrogen and hydrogen and oxygen. After raising the internal temperature to 200 ° C., oxygen plasma treatment was performed at 1000 W for 3 minutes to reduce the film thickness to 0.2 μm.
[0017]
Subsequently, washing with an organic solvent was performed at a wet station manufactured by Kaijo. In the wafer flow step, the first tank is processed at 100 ° C. for 30 minutes using a mixed organic solvent (hereinafter referred to as a stripping solution) whose composition is dimethyl sulfoxide / monoethanolamine = 4/6. In the 3rd tank, rinse with N-methyl-2-pyrrolidone for 10 minutes at room temperature, and in the 4th tank with pure water at 100 ° C for 30 minutes. It is a process of performing a treatment for 1 minute, performing a treatment for 3 minutes at room temperature with pure water in the 5th tank, performing a vapor drying of isopropyl alcohol for 4 minutes in the 6th tank, and finally performing spin drying. A polybenzoxazole cured film whose thickness was reduced by plasma treatment was treated in a wet station.
[0018]
* Evaluation after removal of the cured polybenzoxazole film For the wafer after the immersion treatment in the stripping solution, the number of particles having a particle size of 1 μm or more was measured using a laser surface inspection device LS-5000 (manufactured by Hitachi Electronics Engineering Co., Ltd.). The measurement result was 21.
[0019]
Example 2
The same evaluation as in Example 1 was performed except that the polybenzoxazole film in Example 1 was replaced with a polyimide film. A method for preparing a polyimide precursor and a cured film is described below.
[0020]
* Preparation of polyimide precursor A four-neck separable flask equipped with a thermometer, a stirrer, a raw material charging port, and a dry nitrogen gas inlet, 190.2 g (0.95 mol) of 4,4′-diaminodiphenyl ether, 1,3 -12.4 g (0.05 mol) of bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane is taken, and anhydrous N-methyl-2-pyrrolidone is added to this An amount sufficient for the solid content ratio to be 15% by weight was added and dissolved. Next, the flask was immersed in an aqueous solution of 0 to 50 ° C., and 218.1 g (1 mol) of purified pyromellitic dianhydride was added while suppressing heat generation. After the tetracarboxylic dianhydride was dissolved, the temperature of the system was kept at 20 ° C. and the reaction was continued for 10 hours. The dry nitrogen gas was allowed to flow throughout the entire process from the preparation stage of the reaction to the removal of the product. The obtained product was a pale yellow viscous solution, and the intrinsic viscosity of a 0.5 wt% N-methyl-2-pyrrolidone solution was 1.1 (30 ° C.).
[0021]
* Preparation of cured polyimide film A synthesized polyimide precursor was applied onto a silicon wafer by a spin coater and then dried at 145 ° C for 1 minute on a hot plate to obtain a coating film having a thickness of about 11 µm. This coating film was coated with a positive photoresist OFPR-800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) with a spin coater, dried at 100 ° C. for 1 minute, and further irradiated with 200 mJ / cm 2 ultraviolet rays through a reticle. Then, the exposed portion was dissolved and removed by immersing in a 2.38% aqueous tetramethyl hydroxide solution for 60 seconds, and then rinsed with pure water for 30 seconds to form a pattern. Thereafter, the resist was peeled off by being immersed in butyl acetate for 1 minute. This wafer was heated in an oven at 150 ° C. for 30 minutes, 230 ° C. for 30 minutes, and 350 ° C. for 30 minutes to perform a polyimide ring-closing reaction, thereby obtaining a cured polyimide film having a final film thickness of about 6 μm.
[0022]
Example 3
The same evaluation as in Example 1 was performed except that the curing temperature of the polybenzoxazole film in Example 1 was changed to 350 ° C.
Example 4
In Example 1, the stripping solution in the first and second tanks used in the wet station was replaced with one having a composition of dimethyl sulfoxide / monoethanolamine = 6/4, and the heating temperature of the stripping solution was changed to 120 ° C. Otherwise, the same evaluation as in Example 1 was performed.
Example 5
In Example 1, the same treatment as in Example 1 was performed except that the stripping solution in the first and second tanks used in the wet station was a stripping solution having a composition of dimethyl sulfoxide / monoethanolamine = 4/96. And the same evaluation as in Example 1 was performed.
[0023]
<< Comparative Example 1 >>
In Example 1, an attempt was made to remove the cured polybenzoxazole film without performing the oxygen plasma treatment step.
<< Comparative Example 2 >>
In Example 1, the removal of the polybenzoxazole cured film was attempted only by the oxygen plasma treatment without performing the treatment of the stripping solution according to the present invention.
<< Comparative Example 3 >>
The same evaluation as in Example 1 was performed except that the stripping solution in the first and second tanks used in the wet station in Example 1 was replaced with a stripping solution whose main component was O, O′-dichlorobenzene.
<< Comparative Example 4 >>
The same evaluation as in Example 1 was performed except that the stripping solution in the first and second tanks used in the wet station in Example 1 was replaced with a stripping solution of dimethyl sulfoxide alone.
The evaluation results of Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1 above.
[0024]
[Table 1]
Figure 0004461516
[0025]
【The invention's effect】
According to the present invention, the heat-resistant polymer film can be efficiently removed easily and safely without contaminating the organic solvent.

Claims (5)

ポリベンゾオキサゾール膜またはポリイミド膜である耐熱性高分子保護膜をドライエッチング処理した後ジメチルスルホキシドとモノエタノールアミンの混合有機溶剤に浸漬する工程からなることを特徴とする耐熱性高分子保護膜の除去方法。Removal of heat-resistant polymer protective film characterized by comprising a process of dry-etching a heat-resistant polymer protective film, which is a polybenzoxazole film or polyimide film, and then immersing it in a mixed organic solvent of dimethyl sulfoxide and monoethanolamine Method. 該ドライエッチング処理が、酸素プラズマを使用するドライエッチング処理である請求項1記載の耐熱性高分子保護膜の除去方法。2. The method for removing a heat-resistant polymer protective film according to claim 1, wherein the dry etching process is a dry etching process using oxygen plasma. 該ジメチルスルホキシドとモノエタノールアミンの混合割合が重量比で3:97から90:10である請求項1記載の耐熱性高分子保護膜の除去方法。The method for removing a heat-resistant polymer protective film according to claim 1, wherein the mixing ratio of dimethyl sulfoxide and monoethanolamine is from 3:97 to 90:10 by weight. 該耐熱性高分子保護膜が半導体装置に形成された保護膜である請求項1記載の耐熱性高分子保護膜の除去方法。2. The method for removing a heat resistant polymer protective film according to claim 1, wherein the heat resistant polymer protective film is a protective film formed on a semiconductor device. 該耐熱性高分子保護膜が加熱処理された保護膜である請求項1記載の耐熱性高分子保護膜の除去方法。The method for removing a heat-resistant polymer protective film according to claim 1, wherein the heat-resistant polymer protective film is a heat-treated protective film.
JP20409599A 1999-07-19 1999-07-19 Removal method of heat-resistant polymer protective film Expired - Fee Related JP4461516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20409599A JP4461516B2 (en) 1999-07-19 1999-07-19 Removal method of heat-resistant polymer protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20409599A JP4461516B2 (en) 1999-07-19 1999-07-19 Removal method of heat-resistant polymer protective film

Publications (2)

Publication Number Publication Date
JP2001031786A JP2001031786A (en) 2001-02-06
JP4461516B2 true JP4461516B2 (en) 2010-05-12

Family

ID=16484720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20409599A Expired - Fee Related JP4461516B2 (en) 1999-07-19 1999-07-19 Removal method of heat-resistant polymer protective film

Country Status (1)

Country Link
JP (1) JP4461516B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294279B2 (en) * 2005-03-17 2007-11-13 Taiwan Semiconductor Manufacturing Co., Ltd. Method for releasing a micromechanical structure

Also Published As

Publication number Publication date
JP2001031786A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
EP0478321B1 (en) Photosenstive resin composition for forming polyimide film pattern and method of forming polyimide film pattern
KR101247622B1 (en) Positive type photosensitive resin composition
KR100766648B1 (en) Positive photosensitive resin composition, process for its preparation, and semiconductor devices
TW201039386A (en) Compositions and methods for removing organic substances
KR20050110955A (en) Stripper composition for photoresist and using method thereof
US6613699B2 (en) Process for producing a semiconductor device
JP3449925B2 (en) Positive photosensitive resin composition
JP4461516B2 (en) Removal method of heat-resistant polymer protective film
JP3064579B2 (en) Pattern formation method
JP4752902B2 (en) Method for reducing impurities in insulating film or protective film
JP2008103660A (en) Resin film forming method, method of manufacturing relief pattern, and electronic component
JPH04284455A (en) Photosensitive resin composition
JP4359993B2 (en) Method for processing photosensitive resin composition and semiconductor device using the method
JP3682898B2 (en) Positive photosensitive resin composition
JP2000178596A (en) Removal of heat-resistant polymer protective film
JP2000162787A (en) Method for removing meat-resistant polymer protective film
WO1995004305A1 (en) Photosensitive fluorinated poly(amic acid) aminoacrylate salt
JPH07311469A (en) Removing solution for residue of resist after removal on polyimide resin film and production of pattern of polyimide resin film
JP3779170B2 (en) Manufacturing method of multilayer wiring semiconductor device
JPH11258787A (en) Positive photosensitive resin composition and semiconductor device using the same
JP2001249454A (en) Positive type photosensitive resin composition
JP2003324093A (en) Method for manufacturing semiconductor device and the semiconductor device
WO2008156190A1 (en) Process for producing semiconductor device
JP4622281B2 (en) Positive photosensitive resin composition, semiconductor device and display element
JP4752903B2 (en) Method for reducing impurities in insulating film or protective film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees