JP2003324068A - Layer structure of group iii-v nitride semiconductor and its manufacturing method - Google Patents

Layer structure of group iii-v nitride semiconductor and its manufacturing method

Info

Publication number
JP2003324068A
JP2003324068A JP2003029899A JP2003029899A JP2003324068A JP 2003324068 A JP2003324068 A JP 2003324068A JP 2003029899 A JP2003029899 A JP 2003029899A JP 2003029899 A JP2003029899 A JP 2003029899A JP 2003324068 A JP2003324068 A JP 2003324068A
Authority
JP
Japan
Prior art keywords
layer
substrate
buffer layer
nitride semiconductor
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003029899A
Other languages
Japanese (ja)
Other versions
JP4329984B2 (en
Inventor
Kiyoteru Yoshida
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2003029899A priority Critical patent/JP4329984B2/en
Priority to PCT/JP2003/001935 priority patent/WO2003073514A1/en
Publication of JP2003324068A publication Critical patent/JP2003324068A/en
Application granted granted Critical
Publication of JP4329984B2 publication Critical patent/JP4329984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a layer structure having a crystal growth layer of a high- quality GaN-based semiconductor and its manufacturing method. <P>SOLUTION: This layer structure A of a group III-V nitride semiconductor has a crystal growth layer 3 of a group III-V nitride semiconductor such as GaN formed on a substrate 1 via a buffer layer 2 comprising Al<SB>x</SB>Ga<SB>1-x</SB>N (0<x<1). This layer structure is manufactured by forming the crystal growth layer comprising the group III-V nitride semiconductor on the buffer layer after depositing the buffer layer comprising Al<SB>x</SB>Ga<SB>1-x</SB>N (0<x<1) on the substrate at a temperature of 600 to 900°C. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、GaN系半導体の
ようなIII−V族窒化物半導体から成る層構造体とその
製造方法に関し、更に詳しくは、前記窒化物半導体の成
長膜厚を厚くしてもそこにはクラックなどは発生してお
らず、表面は平滑であり、更には、製造した半導体デバ
イスを動作させた時に基板側へのリーク電流が生じにく
く、各種の半導体デバイスを製造する際の出発素材とし
て有用な層構造体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a layered structure composed of a III-V group nitride semiconductor such as a GaN-based semiconductor and a method for manufacturing the same, and more specifically, to increase the growth thickness of the nitride semiconductor. However, there are no cracks and the like, the surface is smooth, and further, when operating the manufactured semiconductor device, leakage current to the substrate side is unlikely to occur, and when manufacturing various semiconductor devices The present invention relates to a layered structure useful as a starting material and a method for producing the same.

【0002】[0002]

【従来の技術】例えばGaNの単結晶は、その融点が2
000℃を超え、しかもその融点における蒸気圧も10
0GPaを超える。そのため、GaAsの場合のように、
例えばゾーンメルティング法などを適用して、直接、単
結晶を製造することは極めて困難である。したがって、
GaNの単結晶を得るためには、GaNとは異種類の基
板材料を用い、その上に結晶成長を実施せざるを得な
い。
2. Description of the Related Art For example, a GaN single crystal has a melting point of 2
The vapor pressure exceeds 000 ° C and its melting point is 10
Over 0 GPa. Therefore, as with GaAs,
For example, it is extremely difficult to directly produce a single crystal by applying the zone melting method or the like. Therefore,
In order to obtain a GaN single crystal, it is necessary to use a substrate material different from that of GaN and perform crystal growth on it.

【0003】しかしながら、GaNと格子定数が一致す
る材料は全く存在しない。したがって、基板材料との格
子不整合性を緩和するために、用いる基板の表面に予め
バッファ層を形成し、そのバッファ層の上にGaNを結
晶成長させるという方法が一般的に行われている。その
場合、基板としては、従来からサファイア(Al23
基板が広く用いられている。しかし、サファイアとGa
Nとの格子不整合率は20%以上と大きい。
However, there is no material that has the same lattice constant as GaN. Therefore, in order to alleviate the lattice mismatch with the substrate material, a method of forming a buffer layer in advance on the surface of the substrate to be used and crystallizing GaN on the buffer layer is generally used. In that case, the substrate is conventionally made of sapphire (Al 2 O 3 )
Substrates are widely used. However, sapphire and Ga
The lattice mismatch rate with N is as large as 20% or more.

【0004】このようなことから、サファイア基板を用
いて、厚膜のGaNを結晶成長させる場合には、次のよ
うな2段階成長法が採用されている。第1の方法は、例
えば有機金属気相成長法(MOCVD法)により、ま
ず、トリメチルアルミニウム(TMA)とアンモニア
(NH3)を用い、水素をキャリアガスとし、成長温度
800℃で、サファイア基板の上に一旦厚み50nm程度
のAlN層をバッファ層として成膜し、ついで、成長温
度を1100℃に昇温して、トリメチルガリウム(TM
G)とアンモニア(NH3)を用いて前記バッファ層の
上にGaNを厚く結晶成長させる方法である(非特許文
献1を参照)。
For this reason, the following two-step growth method is adopted when crystallizing a thick GaN film using a sapphire substrate. The first method is, for example, a metal organic chemical vapor deposition method (MOCVD method), first using trimethylaluminum (TMA) and ammonia (NH 3 ) with hydrogen as a carrier gas at a growth temperature of 800 ° C. to form a sapphire substrate. An AlN layer having a thickness of about 50 nm is once formed as a buffer layer on the upper surface, and then the growth temperature is raised to 1100 ° C.
G) and ammonia (NH 3 ) are used to grow thick GaN crystals on the buffer layer (see Non-Patent Document 1).

【0005】第2の方法は、MOCVD法により、TM
GとNH3を用い、水素をキャリアガスとし、温度50
0〜600℃で厚み10〜20nm程度のアモルファスな
GaN層をバッファ層として成膜し、ついで成長温度を
1000℃に昇温して厚膜なGaNを結晶成長させる方
法である。また、ガスソース分子線エピタキシャル法
(GSMBE法)を用いた次のような方法も実施されて
いる。
The second method is the MOCVD method in which the TM
G and NH 3 are used, hydrogen is used as carrier gas, and temperature is 50
This is a method in which an amorphous GaN layer having a thickness of about 10 to 20 nm is formed as a buffer layer at 0 to 600 ° C., and then the growth temperature is raised to 1000 ° C. to grow thick GaN crystals. Further, the following method using the gas source molecular beam epitaxial method (GSMBE method) is also practiced.

【0006】すなわち、金属Gaとプラズマ化した窒素
を用いて、サファイア基板やSi基板の上に成長温度5
00〜550℃でGaNから成る薄いバッファ層を成膜
し、ついで成長温度を800℃に昇温してバッファ層の
上に厚膜のGaNを結晶成長させる方法である。ところ
で、上記した従来の方法では、バッファ層はAlNまた
はGaNで形成されているが、その場合には、そのバッ
ファ層の上に、厚み1μm以上の厚膜なGaN層を結晶
成長させると、当該GaN層にはクラックの発生するこ
とがある。
That is, a growth temperature of 5 is formed on a sapphire substrate or a Si substrate by using metallic Ga and nitrogen that is turned into plasma.
This is a method in which a thin buffer layer made of GaN is formed at 00 to 550 ° C., and then the growth temperature is raised to 800 ° C. to grow a thick film of GaN crystal on the buffer layer. By the way, in the above-mentioned conventional method, the buffer layer is made of AlN or GaN. Cracks may occur in the GaN layer.

【0007】また、基板としてSi基板を用いてAlN
またはGaNから成るバッファ層の成膜操作を行うと、
バッファ層は一様な膜状に成膜されず、島状模様をなし
て成膜される。したがって、この上に、更に厚膜のGa
Nを成長させた場合、形成された厚膜のGaN層の表面
には、下層のバッファ層の島状模様の影響を受けて微細
な凹凸が発生してくることがある。
In addition, using a Si substrate as the substrate, AlN
Or, when the film forming operation of the buffer layer made of GaN is performed,
The buffer layer is not formed in a uniform film shape, but is formed in an island pattern. Therefore, on top of this, a thicker Ga
When N is grown, fine unevenness may occur on the surface of the formed thick GaN layer due to the influence of the island pattern of the lower buffer layer.

【0008】このような層構造体は、いずれの場合であ
っても、バッファ層の上の厚膜のGaN層の品質が劣化
しており、各種デバイスの出発素材としては好ましくな
い。また、このようにして製造された層構造体は、その
後、GaN層の上にゲート電極、ソース電極、およびド
レイン電極などを配置して例えば電界効果トランジスタ
(FET)などに組み立てられるのであるが、その動作
時には、基板がSi基板である場合、基板側にmAオー
ダでリーク電流の流れることがある。
In any of these cases, such a layered structure is not preferable as a starting material for various devices because the quality of the thick GaN layer on the buffer layer is deteriorated. Further, the layer structure manufactured in this way is then assembled into a field effect transistor (FET), for example, by disposing a gate electrode, a source electrode, a drain electrode and the like on the GaN layer. During the operation, when the substrate is a Si substrate, a leak current may flow to the substrate side in the order of mA.

【0009】その理由は、抵抗率が真性Si半導体以上
の半導体Si基板を作製することができないため、充分
に高抵抗な半導体Si基板を得られず、ピンチオフの状
態であっても、空乏層によって阻止された電流が基板を
伝わって流れるためである(非特許文献1を参照)。
The reason for this is that a semiconductor Si substrate having a resistivity higher than that of an intrinsic Si semiconductor cannot be manufactured, so that a semiconductor Si substrate having a sufficiently high resistance cannot be obtained, and a depletion layer causes a depletion layer even in a pinch-off state. This is because the blocked current flows through the substrate (see Non-Patent Document 1).

【0010】[0010]

【非特許文献1】H. Amano, N. Sawaki, I. Akasaki, a
nd Y. Toyoda, Appl. Phys. Lett. 48 (1986) 353
[Non-Patent Document 1] H. Amano, N. Sawaki, I. Akasaki, a
nd Y. Toyoda, Appl. Phys. Lett. 48 (1986) 353

【0011】[0011]

【発明が解決しようとする課題】本発明は、バッファ層
がAlNまたはGaNから成る従来の層構造体における
上記した問題を解決し、バッファ層の上に形成した厚膜
の結晶成長層にクラックは発生せず、また形成した厚膜
の結晶成長層の表面に微細凹凸も発生しておらず、更に
は、製造した半導体デバイスの動作時に基板側へのリー
ク電流も生じにくいように設計されている新規な層構造
体とその製造方法の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the conventional layered structure in which the buffer layer is made of AlN or GaN, and the thick crystal growth layer formed on the buffer layer is free from cracks. It is designed so that it does not occur, fine irregularities do not occur on the surface of the formed thick film crystal growth layer, and furthermore, leakage current to the substrate side does not easily occur during operation of the manufactured semiconductor device. An object of the present invention is to provide a novel layered structure and a manufacturing method thereof.

【0012】[0012]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、基板と、前記基板の上に形
成されたAlxGa1-xN(0<x<1)から成るバッフ
ァ層と、前記バッファ層の上に形成されたIII−V族窒
化物半導体の結晶成長層とを有することを特徴とするII
I−V族窒化物半導体の層構造体(以下、層構造体Aと
いう)が提供される。
In order to achieve the above object, the present invention comprises a substrate and Al x Ga 1 -x N (0 <x <1) formed on the substrate. II. A buffer layer and a III-V nitride semiconductor crystal growth layer formed on the buffer layer.
A layered structure of a group IV nitride semiconductor (hereinafter referred to as a layered structure A) is provided.

【0013】また、本発明においては、基板と、前記基
板の上に形成され、下層部はAlxGa1-xN(0<x<
1)から成り、上層部はAlyGa1-yN(0.5<y≦
1,x<y)から成る2層構造のユニットバッファ層を
少なくとも1層含むバッファ層と、前記バッファ層の上
に形成されたIII−V族窒化物半導体の結晶成長層とを
有することを特徴とするIII−V族窒化物半導体の層構
造体(以下、層構造体Bという)が提供される。
In the present invention, the substrate and the lower layer formed on the substrate are made of Al x Ga 1 -x N (0 <x <
1) and the upper layer portion is Al y Ga 1-y N (0.5 <y ≦
1, a buffer layer including at least one unit buffer layer having a two-layer structure of x <y) and a III-V group nitride semiconductor crystal growth layer formed on the buffer layer. A layered structure of a III-V group nitride semiconductor (hereinafter referred to as a layered structure B) is provided.

【0014】更に、本発明においては、エピタキシャル
結晶成長法により、基板の上に、温度600〜900℃
で、AlxGa1-xN(0<x<1)から成るバッファ層
を成膜したのち、前記バッファ層の上にIII−V族窒化
物半導体から成る結晶成長層を形成することを特徴とす
る層構造体Aの製造方法(以下、製造方法Aという)が
提供される。
Further, in the present invention, a temperature of 600 to 900 ° C. is set on the substrate by the epitaxial crystal growth method.
Then, a buffer layer made of Al x Ga 1-x N (0 <x <1) is formed, and then a crystal growth layer made of a III-V group nitride semiconductor is formed on the buffer layer. A method for producing a layered structure A (hereinafter referred to as production method A) is provided.

【0015】また、本発明においては、エピタキシャル
結晶成長法により、基板の上に、温度600〜900℃
で、AlxGa1-xN(0<x<1)から成る下層部とA
yGa1-yN(0.5<y≦1,x<y)から成る上層
部とを順次成膜して2層構造のユニットバッファ層を少
なくとも1層形成したのち、前記バッファ層の上層部の
上にIII−V族窒化物半導体から成る結晶成長層を形成
することを特徴とする層構造体Bの製造方法が提供され
る。
Further, in the present invention, a temperature of 600 to 900 ° C. is set on the substrate by the epitaxial crystal growth method.
And a lower layer portion consisting of Al x Ga 1-x N (0 <x <1) and A
l y Ga 1-y N ( 0.5 <y ≦ 1, x <y) after the sequential units buffer layer of the formed two layers structure and a top portion comprising a formed, at least one layer, the buffer layer There is provided a method for manufacturing a layered structure B, which comprises forming a crystal growth layer made of a III-V group nitride semiconductor on an upper layer portion.

【0016】[0016]

【発明の実施の形態】本発明の層構造体Aの1例を図1
に示す。この層構造体Aは、基板1の上に、バッファ層
2を介して厚膜の結晶成長層3が形成されていること
と、これらの層の形成に用いる半導体材料がGaN系半
導体のようなIII−V族窒化物半導体であることは、既
に説明した従来の層構造体の場合と同じである。
BEST MODE FOR CARRYING OUT THE INVENTION One example of a layer structure A of the present invention is shown in FIG.
Shown in. In this layer structure A, a thick crystal growth layer 3 is formed on a substrate 1 via a buffer layer 2, and the semiconductor material used for forming these layers is a GaN-based semiconductor. The fact that it is a III-V group nitride semiconductor is the same as the case of the conventional layered structure described above.

【0017】しかしながら、この層構造体Aの場合は、
そのバッファ層2は、従来のようなAlNやGaNでは
なく、AlxGa1-xN(0<x<1)で形成されている
ところに最大の特徴がある。この層構造体Aは製造方法
Aによって製造される。具体的には、基板1の上に、M
OCVD法やGSMBE法のようなエピタキシャル結晶
成長法を適用してバッファ層(AlGaN層)2と結晶
成長層3を順次成膜して製造される。
However, in the case of this layer structure A,
The buffer layer 2 is most characterized in that it is formed of Al x Ga 1 -x N (0 <x <1) instead of AlN or GaN as in the prior art. The layer structure A is manufactured by the manufacturing method A. Specifically, on the substrate 1, M
It is manufactured by sequentially forming a buffer layer (AlGaN layer) 2 and a crystal growth layer 3 by applying an epitaxial crystal growth method such as an OCVD method or a GSMBE method.

【0018】このとき、バッファ層2の成膜時における
成長温度は600〜900℃に設定される。好ましく
は、650〜900℃に設定される。この製造方法Aの
場合、AlGaNから成るバッファ層2の成膜時におけ
る成長温度が高く設定されているので、基板1の表面で
は、AlGaNの成膜に用いる各原料の熱マイグレーシ
ョンは促進されることになる。そのため、基板1の全体
表面では各原料間の反応が進みやすくなり、その結果、
AlNやGaNによるバッファ層の成膜時に発生しやす
かった島状成長は起こらなくなり、基板表面の全面で均
一な成膜が進行する。したがって、このバッファ層の上
に成膜される結晶成長層の表面平滑性は向上する。
At this time, the growth temperature at the time of forming the buffer layer 2 is set to 600 to 900 ° C. It is preferably set to 650 to 900 ° C. In the case of this manufacturing method A, since the growth temperature at the time of forming the buffer layer 2 made of AlGaN is set high, the thermal migration of each raw material used for forming the AlGaN is promoted on the surface of the substrate 1. become. Therefore, the reaction between the raw materials easily proceeds on the entire surface of the substrate 1, and as a result,
The island-like growth that was likely to occur when forming the buffer layer of AlN or GaN does not occur, and uniform film formation proceeds on the entire surface of the substrate. Therefore, the surface smoothness of the crystal growth layer formed on this buffer layer is improved.

【0019】また、成長温度が高いので、成膜したAl
GaN層2の結晶品質も向上する。なお、バッファ層2
の成膜時に採用する成長温度は、AlGaNの組成との
関係で適宜に設定される。例えば、Al組成が低いAl
xGa1-xN(0<x≦0.5、より好ましくは、0<x
≦0.2)のバッファ層を形成する場合には、成長温度
を650〜850℃に設定することが好ましい。バッフ
ァ層2の均一性を実現することができるからである。
Since the growth temperature is high, the deposited Al
The crystal quality of the GaN layer 2 is also improved. The buffer layer 2
The growth temperature adopted during the film formation is appropriately set in relation to the composition of AlGaN. For example, Al with a low Al composition
x Ga 1-x N (0 <x ≦ 0.5, more preferably 0 <x
When forming a buffer layer of ≦ 0.2), the growth temperature is preferably set to 650 to 850 ° C. This is because the uniformity of the buffer layer 2 can be realized.

【0020】しかしながら、成長温度が900℃を超え
ると、バッファ層2は成長しにくくなり、仮に成長した
としても、そのバッファ層は島状模様を呈していて不均
一なものになってしまう。そのようなことから、成長温
度の最大値は900℃に設定される。また、AlGaN
のバッファ層を均一に成膜する場合には、N源(N
3)の導入に先立ち、予めAl源やGa源を導入して
基板1の表面に金属Alや金属Gaを、数原子層の厚み
だけ堆積しておき、その後、N源を導入して基板の上に
AlGaN層を成膜してもよい。
However, when the growth temperature exceeds 900 ° C., the buffer layer 2 becomes difficult to grow, and even if it grows, the buffer layer has an island pattern and becomes non-uniform. Therefore, the maximum growth temperature is set to 900 ° C. Also, AlGaN
In the case of uniformly forming the buffer layer of N, the N source (N
Prior to the introduction of H 3 ), an Al source or a Ga source is introduced in advance to deposit metal Al or a metal Ga on the surface of the substrate 1 in a thickness of several atomic layers, and then an N source is introduced to form the substrate. An AlGaN layer may be formed on top of.

【0021】本発明の層構造体の場合、基板としては、
従来のように、サファイア基板であってもよいが、Si
基板のようなダイヤモンド構造型のもの、また、GaA
s基板やGaP基板のような閃亜鉛鉱型のものを用いて
も、クラックのない厚膜のGaN系結晶成長層を成膜す
ることができる。また、バッファ層の成膜に先立ち、N
源(一般にNH3)を導入して当該基板の表面に窒化処
理を行い、その後、その窒化処理面にバッファ層を成膜
すると、そのバッファ層の均一性が向上するので好適で
ある。とくに、Si基板の場合には、その表面を温度8
00℃で5分間程度NH3に曝しながらNH3で窒化処理
を行うと、その後に成膜するバッファ層は非常に均一と
なるので好適である。
In the case of the layer structure of the present invention, the substrate is
It may be a sapphire substrate as in the past, but Si
Diamond structure type such as substrate, GaA
Even if a zincblende type substrate such as an s substrate or a GaP substrate is used, a thick GaN-based crystal growth layer without cracks can be formed. Also, prior to the formation of the buffer layer, N
It is preferable to introduce a source (generally NH 3 ) to perform a nitriding treatment on the surface of the substrate, and then form a buffer layer on the nitriding surface, because the uniformity of the buffer layer is improved. Especially, in the case of a Si substrate, the surface of
00 ℃ carried out in NH 3 while exposing approximately 5 minutes NH 3 nitriding at a suitable since then buffer layer deposited on is extremely uniform.

【0022】また、バッファ層2にはp型不純物をドー
プしてもよい。このようにすると、バッファ層2は高抵
抗となり、例えば層構造体AでFETを組立て、それを
作動させたしたときに当該バッファ層は高抵抗層として
機能するので、基板側へのリーク電流の発生が抑制され
るからである。このようなp型不純物としては、例え
ば、Mg,Zn,Cなどの1種または2種以上をあげる
ことができ、またそのドーピング濃度は、目的とする抵
抗値との関係で決められるが、概ね、1×1017〜1×
1021cm-3程度に設定すればよい。
The buffer layer 2 may be doped with p-type impurities. By doing so, the buffer layer 2 has a high resistance, and for example, when the FET is assembled in the layer structure A and the FET is operated, the buffer layer functions as a high resistance layer, so that the leakage current to the substrate side is reduced. This is because the generation is suppressed. As such p-type impurities, for example, one kind or two kinds or more of Mg, Zn, C, etc. can be mentioned, and the doping concentration thereof is determined in relation to the target resistance value, but in general, 1 x 10 17 to 1 x
It may be set to about 10 21 cm -3 .

【0023】また、上記したバッファ層2の上に成膜さ
れるIII−V族窒化物半導体としては、例えば、Ga
N,InN,InGaN,InAlGaN,AlGa
N,GaNAs,GaNP,InGaNAsP,InA
lGaNAsPの群から選ばれる1種または2種以上を
あげることができる。次に、層構造体Bについて説明す
る。
The III-V group nitride semiconductor formed on the buffer layer 2 is, for example, Ga.
N, InN, InGaN, InAlGaN, AlGa
N, GaNAs, GaNP, InGaNAsP, InA
One or two or more selected from the group of lGaNAsP can be mentioned. Next, the layer structure B will be described.

【0024】この層構造体Bは、バッファ層が後述する
ようなユニットバッファ層を1層以上積層した構造にな
っていることを除いては、層構造体Aと同じ構成になっ
ている。バッファ層が1個のユニットバッファ層2’で
形成されている場合の1例を図2に示す。
The layer structure B has the same structure as the layer structure A except that the buffer layer has a structure in which one or more unit buffer layers as described later are laminated. An example of the case where the buffer layer is formed of one unit buffer layer 2'is shown in FIG.

【0025】このユニットバッファ層2’は、下層部2
a’と上層部2b’とから成る2層構造になっていて、
いずれもAlGaNで構成されているが、上層部2b’
と下層部2a’のAlGaNにおけるAlNの混合比率
を対比すると、上層部2b’のAlN比率の方が下層部
2a’のそれよりも大きく、結晶組成でAlNリッチに
なっている。
This unit buffer layer 2'includes the lower layer portion 2
It has a two-layer structure consisting of a'and upper layer portion 2b ',
Both are made of AlGaN, but the upper layer 2b '
When comparing the mixing ratio of AlN in AlGaN of the lower layer portion 2a ′, the AlN ratio of the upper layer portion 2b ′ is larger than that of the lower layer portion 2a ′, and the crystal composition is AlN rich.

【0026】具体的には、下層部2a’の組成は、層構
造体Aの場合と同様に、AlxGa1 -xN(0<x<1)
である。そして、上層部2b’の組成を、AlyGa1-y
Nで表したとき、y値は、0.5<y≦1.0の関係を満
たし、かつ、x<yの関係を満たしている。したがっ
て、このユニットバッファ層2’の場合、その上層側が
AlNリッチであるため全体で高抵抗になっている。ま
た、表面は平滑になっている。
Specifically, as in the case of the layer structure A, the composition of the lower layer portion 2a 'is Al x Ga 1 -x N (0 <x <1).
Is. Then, the composition of the upper portion 2b ', Al y Ga 1- y
When represented by N, the y value satisfies the relationship of 0.5 <y ≦ 1.0 and the relationship of x <y. Therefore, in the case of this unit buffer layer 2 ', the upper layer side thereof is AlN-rich, so that the resistance is high as a whole. Moreover, the surface is smooth.

【0027】例えば、ユニットバッファ層2’の全体の
厚みが50nmであるとすれば、上記した上層部2b’の
厚みを10〜20nm程度に設定すれば、このユニットバ
ッファ層2’を高抵抗層として機能させて、基板1側へ
のリーク電流の発生を抑制することができる。この層構
造体Bは、製造方法Bによって製造される。具体的に
は、基板1の表面の全面を覆って、所定厚みの下層部2
a’と上層部2b’を順次成膜してユニットバッファ層
2’を形成する。このときの成長温度は、製造方法Aの
場合と同じ理由で、下層部、上層部のいずれの形成時に
おいても600〜900℃に設定される。なお、複数層
のユニットバッファ層を形成する場合には、下層部と上
層部の成膜操作を交互に必要回数だけ実施すればよい。
For example, assuming that the total thickness of the unit buffer layer 2'is 50 nm, if the thickness of the upper layer portion 2b 'is set to about 10 to 20 nm, the unit buffer layer 2'will be a high resistance layer. It is possible to suppress the generation of leak current to the substrate 1 side by functioning as. The layer structure B is manufactured by the manufacturing method B. Specifically, the entire lower surface of the substrate 1 is covered with the lower layer 2 having a predetermined thickness.
The unit buffer layer 2'is formed by sequentially depositing a'and the upper layer portion 2b '. The growth temperature at this time is set to 600 to 900 ° C. during formation of both the lower layer portion and the upper layer portion for the same reason as in the case of the manufacturing method A. When forming a plurality of unit buffer layers, the lower layer portion and the upper layer portion may be alternately formed as many times as necessary.

【0028】そして、形成されたバッファ層の上に、別
のIII−V族窒化物半導体を成膜して結晶成長層3を形
成する。この層構造体Bの場合も、ユニットバッファ層
2’の成膜時に上層部2b’や下層部2a’にp型不純
物ドーピングして高抵抗にしてもよい。また、基板1の
表面に前記した窒化処理を行ってユニットバッファ層
2’の表面を平滑化することもできる。
Then, another III-V group nitride semiconductor film is formed on the formed buffer layer to form the crystal growth layer 3. Also in the case of the layer structure B, the upper layer portion 2b ′ and the lower layer portion 2a ′ may be doped with p-type impurities at the time of forming the unit buffer layer 2 ′ to have a high resistance. Further, the surface of the substrate 1 may be subjected to the above-mentioned nitriding treatment to smooth the surface of the unit buffer layer 2 '.

【0029】なお、層構造体Bにおけるバッファ層は、
ユニットバッファ層1層だけで構成してもよいが、この
ユニットバッファ層を複数層(例えば、3〜5層)積層
して構成してもよい。
The buffer layer in the layer structure B is
The unit buffer layer may be composed of only one layer, or a plurality of unit buffer layers (for example, 3 to 5 layers) may be laminated.

【0030】[0030]

【実施例】実施例1 MOCVD装置を用い、フッ酸で化学エッチングしたS
i基板を用い、次のようにして層構造体Aを製造した。
まず、Si基板をMOCVD装置内にセットし、1×1
-6Torr以下の真空度にまで真空引きしたのち、真空度
を100Torrにまで下げて基板を800℃に昇温した。
基板を900rpmで回転させ、基板温度が安定した時点
で、TMG58nmol/min,TMA20n mol/min,N
312L/minの流量で4分間基板表面に導入してAl
0.3Ga0.7Nから成る厚み50nm程度のバッファ層を成
膜した。
Example 1 Using a MOCVD apparatus, S chemically etched with hydrofluoric acid was used.
Using the i substrate, the layer structure A was manufactured as follows.
First, the Si substrate is set in the MOCVD apparatus and 1 × 1
After vacuuming to a vacuum degree of 0 -6 Torr or less, the vacuum degree was lowered to 100 Torr and the substrate was heated to 800 ° C.
When the substrate is rotated at 900 rpm and the substrate temperature becomes stable, TMG 58 nmol / min, TMA 20 nmol / min, N
Introduced on the substrate surface for 4 minutes at a flow rate of H 3 12 L / min to form Al
A buffer layer of 0.3 Ga 0.7 N having a thickness of about 50 nm was formed.

【0031】ついで、Si基板の温度を1030℃に昇
温し、TMG58n mol/min,NH 312L/minを15
分間導入して厚み500nmのGaN層を成膜した。つい
で、装置から基板を取り出し、GaN層の表面を目視観
察した。金属光沢を有する鏡面になっていた。クラック
は全く認められず、良質な結晶になっていることを確認
することができた。
Then, the temperature of the Si substrate is raised to 1030 ° C.
Warm up, TMG 58n mol / min, NH 312 L / min to 15
It was introduced for a minute to form a GaN layer having a thickness of 500 nm. Just
To remove the substrate from the device and visually inspect the surface of the GaN layer.
I guessed. It had a mirror surface with metallic luster. crack
Was not observed at all, confirming that it was a good quality crystal
We were able to.

【0032】実施例2 実施例1におけるバッファ層の成膜時に、TMG,TM
A,NH3の外にシクロペタンジエニルマグネシウムを
5n mol/minの流量で同時に導入して厚み50nmのp−
Al0.3Ga0.7Nのバッファ層を成膜したのちシクロペ
タンジエニルマグネシウムの供給を絶ち、Si基板の温
度を1030℃に昇温し、TMG58nmol/min,NH3
12L/min、およびn型ドーパントのSiH42n mol
/minを15分間導入して、キャリア濃度2×1017cm
-3で、厚み500nmのn型GaN層を成膜した。このG
aN層にもクラックは全く認められず、表面は金属光沢
の鏡面になっていた。
Example 2 When forming the buffer layer in Example 1, TMG, TM
In addition to A and NH 3 , cyclopentanedienylmagnesium was simultaneously introduced at a flow rate of 5 nmol / min to obtain a p-thickness of 50 nm.
After forming a buffer layer of Al 0.3 Ga 0.7 N, the supply of cyclopetanedienyl magnesium was stopped, the temperature of the Si substrate was raised to 1030 ° C., and TMG 58 nmol / min, NH 3
12 L / min, and n-type dopant SiH 4 2n mol
/ Min for 15 minutes, carrier concentration 2 × 10 17 cm
-3 , an n-type GaN layer having a thickness of 500 nm was formed. This G
No crack was observed in the aN layer at all, and the surface was a mirror surface with metallic luster.

【0033】ついで、この層構造体にゲート電極、ソー
ス電極、およびドレイン電極を組み付けてGaN系ME
SFETを製作した。なお、ゲート電極はPt/Au、
ソース電極とドレイン電極はAl/Ti/Auをそれぞ
れ蒸着して形成した。ゲート長は2μmで、ゲート幅は
20cmに設定した。このMESFETの特性は、耐圧6
00V、動作電流10Aであり、リーク電流は1μA以
下であった。また、このMESFETは温度400℃に
おいても動作し続けた。
Then, a gate electrode, a source electrode, and a drain electrode are assembled to this layered structure to form a GaN-based ME.
I made an SFET. The gate electrode is Pt / Au,
The source electrode and the drain electrode were formed by vapor deposition of Al / Ti / Au, respectively. The gate length was 2 μm and the gate width was set to 20 cm. This MESFET has a withstand voltage of 6
The operating current was 00 V and the operating current was 10 A, and the leak current was 1 μA or less. The MESFET continued to operate even at a temperature of 400 ° C.

【0034】実施例3 MOCVD装置を用い、フッ酸で化学エッチングしたS
i基板を用い、次のようにして層構造体Bを製造した。
まず、Si基板をMOCVD装置内にセットし、1×1
-6Torr以下の真空度にまで真空引きしたのち、真空度
を160Torrにまで下げて基板を800℃に昇温した。
基板を800rpmで回転させ、基板温度が安定した時点
で、TMG58nmol/min,TMA20n mol/min,N
312L/minの流量を5分間基板表面に導入してAl
0.2Ga0.8Nから成る厚み40nm程度の下層部を成膜し
た。続いて、TMG30n mol/min,TMA70n mol
/min,NH312L/minに流量を切り換えて前記下層
部の表面に2分間導入してAl0.8Ga0.2Nから成る厚
み10nmの上層部を成膜してユニットバッファ層を形成
した。
Example 3 S chemically etched with hydrofluoric acid using an MOCVD apparatus
Using the i substrate, the layer structure B was manufactured as follows.
First, the Si substrate is set in the MOCVD apparatus and 1 × 1
After vacuuming to a vacuum degree of 0 -6 Torr or less, the vacuum degree was lowered to 160 Torr and the temperature of the substrate was raised to 800 ° C.
When the substrate was rotated at 800 rpm and the substrate temperature became stable, TMG 58 nmol / min, TMA 20 nmol / min, N
Introduce a flow rate of 12 L / min of H 3 to the substrate surface for 5 minutes
A lower layer portion made of 0.2 Ga 0.8 N and having a thickness of about 40 nm was formed. Subsequently, TMG 30n mol / min, TMA 70n mol
/ Min, NH 3 12 L / min and the flow rate was changed to introduce into the surface of the lower layer for 2 minutes to form an upper layer of Al 0.8 Ga 0.2 N having a thickness of 10 nm to form a unit buffer layer.

【0035】ついで、Si基板の温度を1050℃に昇
温し、TMG50n mol/min,NH 312L/minを15
分間導入し、前記ユニットバッファ層の上に、n型ドー
パントのSiH42n mol/minを15分間導入して、キ
ャリア濃度2×107cm-3で、厚み50nmのn型GaN
層を形成した。装置から基板を取り出し、GaN層の表
面を目視観察した。金属光沢を有する鏡面であった。ま
たGaN層にクラックは全く認められなかった。
Then, the temperature of the Si substrate is raised to 1050 ° C.
Warm, TMG 50 nmol / min, NH 312 L / min to 15
The unit buffer layer is placed on the unit buffer layer for
Punt SiHFourIntroduce 2n mol / min for 15 minutes and
Carrier concentration 2 × 107cm-3And n-type GaN with a thickness of 50 nm
Layers were formed. Remove the substrate from the device
The surface was visually observed. The mirror surface had a metallic luster. Well
No crack was observed in the GaN layer.

【0036】その後、この層構造体Bを用いてGaN系
MESFETを製作し、そのMESFETの特性を調べ
た。耐圧600V、動作電流は10Aを超え、リーク電
流は1μA以下であった。また、高温動作を調べたとこ
ろ、温度400℃でも動作し続けた。
Thereafter, a GaN-based MESFET was manufactured using this layer structure B, and the characteristics of the MESFET were investigated. The breakdown voltage was 600 V, the operating current exceeded 10 A, and the leak current was 1 μA or less. Further, when the high temperature operation was examined, the operation continued even at a temperature of 400 ° C.

【0037】実施例4 基板として、Si基板に代えてサファイア基板を用いた
ことを除いては、実施例1と同様の条件で層構造体Aを
製造した。この層構造体は、実施例1の場合と同様に、
表面は鏡面状態で、クラックは全く認められず、結晶性
も高品質であった。
Example 4 A layered structure A was manufactured under the same conditions as in Example 1 except that a sapphire substrate was used as the substrate instead of the Si substrate. This layer structure has the same structure as in Example 1,
The surface was mirror-like, no cracks were observed, and the crystallinity was high quality.

【0038】[0038]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、高品質で厚膜のGaN系結晶成長層を成膜する
ことができる。これは、半導体基板の上に成膜するバッ
ファ層がAlGaNであり、それを成膜するときの温度
を600〜900℃の高温に設定したことによって得ら
れる効果である。また、本発明によれば、バッファ層を
高抵抗にしてリーク電流の発生を抑制することも可能で
ある。
As is apparent from the above description, according to the present invention, it is possible to form a high-quality thick GaN-based crystal growth layer. This is the effect obtained by setting the buffer layer formed on the semiconductor substrate to AlGaN and setting the temperature for forming the film to a high temperature of 600 to 900 ° C. Further, according to the present invention, it is possible to increase the resistance of the buffer layer and suppress the generation of leak current.

【0039】したがって、本発明の層構造体を用いれ
ば、例えば高耐圧・低オン抵抗で動作するGaN系FE
Tのようなデバイスの素材を提供することができ、その
工業的価値は極めて大である。
Therefore, if the layered structure of the present invention is used, for example, a GaN-based FE that operates with high breakdown voltage and low on-resistance.
It is possible to provide materials for devices such as T, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の層構造体の1例Aを示す断面図であ
る。
FIG. 1 is a sectional view showing an example A of a layered structure of the present invention.

【図2】本発明の層構造体の1例Bを示す断面図であ
る。
FIG. 2 is a sectional view showing an example B of the layer structure of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファ層 2’ ユニットバッファ層 2a’ 下層部 2b’ 上層部 3 結晶成長層 1 substrate 2 buffer layers 2'unit buffer layer 2a 'lower layer 2b 'Upper layer 3 Crystal growth layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 基板と、前記基板の上に形成されたAl
xGa1-xN(0<x<1)から成るバッファ層と、前記
バッファ層の上に形成されたIII−V族窒化物半導体の
結晶成長層とを有することを特徴とするIII−V族窒化
物半導体の層構造体。
1. A substrate and Al formed on the substrate
III-V having a buffer layer made of x Ga 1-x N (0 <x <1) and a III-V group nitride semiconductor crystal growth layer formed on the buffer layer. Group nitride semiconductor layered structure.
【請求項2】 基板と、前記基板の上に形成され、下層
部はAlxGa1-xN(0<x<1)から成り、上層部は
AlyGa1-yN(0.5<y≦1,x<y)から成る2
層構造のユニットバッファ層を少なくとも1層含むバッ
ファ層と、前記バッファ層の上に形成されたIII−V族
窒化物半導体の結晶成長層とを有することを特徴とする
III−V族窒化物半導体の層構造体。
2. A substrate, and a lower layer portion formed on the substrate, Al x Ga 1-x N (0 <x <1), and an upper layer portion Al y Ga 1-y N (0.5. 2 consisting of <y ≦ 1, x <y)
A buffer layer including at least one unit buffer layer having a layered structure, and a III-V group nitride semiconductor crystal growth layer formed on the buffer layer.
III-V group nitride semiconductor layered structure.
【請求項3】 前記基板がSi基板であり、前記III−
V族窒化物半導体が、GaN,InN,InGaN,I
nAlGaN,AlGaN,GaNAs,GaNP,I
nGaNAsP,InAlGaNAsPの群から選ばれ
る少なくとも1種である請求項1または2のIII−V族
窒化物半導体の層構造体。
3. The substrate is a Si substrate, and the III-
Group V nitride semiconductors include GaN, InN, InGaN, I
nAlGaN, AlGaN, GaNAs, GaNP, I
The layered structure of the III-V group nitride semiconductor according to claim 1, which is at least one selected from the group consisting of nGaNAsP and InAlGaNAsP.
【請求項4】 前記基板の表面が窒化処理されている請
求項1または2のIII−V族窒化物半導体の層構造体。
4. The layered structure of a III-V group nitride semiconductor according to claim 1, wherein the surface of the substrate is nitrided.
【請求項5】 前記バッファ層は、p型不純物がドープ
されて高抵抗化されている請求項1または2のIII−V
族窒化物半導体の層構造体。
5. The III-V according to claim 1, wherein the buffer layer has a high resistance by being doped with p-type impurities.
Group nitride semiconductor layered structure.
【請求項6】 エピタキシャル結晶成長法により、基板
の上に、温度600〜900℃で、AlxGa1-xN(0
<x<1)から成るバッファ層を成膜したのち、前記バ
ッファ層の上にIII−V族窒化物半導体から成る結晶成
長層を形成することを特徴とするIII−V族窒化物半導
体の層構造体の製造方法。
6. An Al x Ga 1 -x N (0) film is formed on a substrate at a temperature of 600 to 900 ° C. by an epitaxial crystal growth method.
A layer of III-V group nitride semiconductor, characterized in that after forming a buffer layer of <x <1), a crystal growth layer made of III-V group nitride semiconductor is formed on the buffer layer. Structure manufacturing method.
【請求項7】 エピタキシャル結晶成長法により、基板
の上に、温度600〜900℃で、AlxGa1-xN(0
<x<1)から成る下層部とAlyGa1-yN(0.5<
y≦1,x<y)から成る上層部とを順次成膜して2層
構造のユニットバッファ層を少なくとも1層形成したの
ち、前記バッファ層の上層部の上にIII−V族窒化物半
導体から成る結晶成長層を形成することを特徴とするII
I−V族窒化物半導体の層構造体の製造方法。
7. An Al x Ga 1 -x N (0) film is formed on a substrate at a temperature of 600 to 900 ° C. by an epitaxial crystal growth method.
<X <1) lower layer and Al y Ga 1-y N (0.5 <
An upper layer portion consisting of y ≦ 1 and x <y) is sequentially formed to form at least one unit buffer layer having a two-layer structure, and a III-V group nitride semiconductor is formed on the upper layer portion of the buffer layer. II characterized by forming a crystal growth layer consisting of
A method for manufacturing a layered structure of an IV nitride semiconductor.
【請求項8】 前記バッファ層の成膜に先立ち、前記基
板の上に、金属Alまたは金属Gaから成る原子層を複
数層形成する請求項6または7のIII−V族窒化物半導
体の層構造体の製造方法。
8. The layer structure of a III-V group nitride semiconductor according to claim 6, wherein a plurality of atomic layers made of metal Al or metal Ga are formed on the substrate prior to forming the buffer layer. Body manufacturing method.
【請求項9】 前記バッファ層の成膜に先立ち、前記基
板の表面に窒化処理を行う請求項6または7のIII−V
族窒化物半導体の層構造体の製造方法。
9. The III-V according to claim 6, wherein the surface of the substrate is subjected to a nitriding treatment prior to the formation of the buffer layer.
Method for manufacturing layered structure of group nitride semiconductor.
【請求項10】 前記バッファ層の成膜時に、p型不純
物をドーピングする請求項6または7のIII−V族窒化
物半導体の層構造体の製造方法。
10. The method for manufacturing a layered structure of a III-V group nitride semiconductor according to claim 6, wherein a p-type impurity is doped when the buffer layer is formed.
JP2003029899A 2002-02-28 2003-02-06 III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same Expired - Lifetime JP4329984B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003029899A JP4329984B2 (en) 2002-02-28 2003-02-06 III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same
PCT/JP2003/001935 WO2003073514A1 (en) 2002-02-28 2003-02-21 Group iii-v nitride semiconductor multilayer structure and its production process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002054527 2002-02-28
JP2002-54527 2002-02-28
JP2003029899A JP4329984B2 (en) 2002-02-28 2003-02-06 III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same

Publications (2)

Publication Number Publication Date
JP2003324068A true JP2003324068A (en) 2003-11-14
JP4329984B2 JP4329984B2 (en) 2009-09-09

Family

ID=29552150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029899A Expired - Lifetime JP4329984B2 (en) 2002-02-28 2003-02-06 III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same

Country Status (1)

Country Link
JP (1) JP4329984B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324573A (en) * 2006-05-30 2007-12-13 Sharp Corp Compound semiconductor-on-silicon wafer with thermally softened insulator
JP2009040657A (en) * 2007-08-10 2009-02-26 Mitsubishi Chemicals Corp Method for manufacturing epitaxial wafer
US20120273759A1 (en) * 2008-11-27 2012-11-01 Dowa Electronics Materials Co., Ltd. Epitaxial substrate for electronic device and method of producing the same
CN104541359A (en) * 2012-05-16 2015-04-22 三垦电气株式会社 Method for manufacturing nitride semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324573A (en) * 2006-05-30 2007-12-13 Sharp Corp Compound semiconductor-on-silicon wafer with thermally softened insulator
JP2009040657A (en) * 2007-08-10 2009-02-26 Mitsubishi Chemicals Corp Method for manufacturing epitaxial wafer
US20120273759A1 (en) * 2008-11-27 2012-11-01 Dowa Electronics Materials Co., Ltd. Epitaxial substrate for electronic device and method of producing the same
EP2613341A1 (en) * 2008-11-27 2013-07-10 DOWA Electronics Materials Co., Ltd. Epitaxial substrate for electronic device and method of producing the same
KR101527638B1 (en) * 2008-11-27 2015-06-09 도와 일렉트로닉스 가부시키가이샤 Epitaxial substrate for electronic device and manufacturing method thereof
US10388517B2 (en) 2008-11-27 2019-08-20 Dowa Electronics Materials Co., Ltd. Epitaxial substrate for electronic device and method of producing the same
CN104541359A (en) * 2012-05-16 2015-04-22 三垦电气株式会社 Method for manufacturing nitride semiconductor device

Also Published As

Publication number Publication date
JP4329984B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP4792814B2 (en) High electron mobility transistor, field effect transistor, epitaxial substrate, method for producing epitaxial substrate, and method for producing group III nitride transistor
JP5374011B2 (en) Nitride semiconductor device
WO2010095550A1 (en) Method for forming epitaxial wafer and method for manufacturing semiconductor element
JP5242156B2 (en) III-V nitride compound semiconductor device and electrode forming method
US20170256407A1 (en) Method for producing nitride semiconductor stacked body and nitride semiconductor stacked body
US6696306B2 (en) Methods of fabricating layered structure and semiconductor device
JP2011023677A (en) Compound semiconductor epitaxial wafer, and method of manufacturing the same
CN109599329B (en) Method for growing nitrogen polar III-nitride semiconductor layer on silicon substrate
US7625447B2 (en) Method of growing semiconductor crystal
CN108231556B (en) Method for manufacturing III-V nitride semiconductor epitaxial wafer
JP4468744B2 (en) Method for producing nitride semiconductor thin film
JP4449357B2 (en) Method for manufacturing epitaxial wafer for field effect transistor
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
KR100974048B1 (en) Compound semiconductor light emitting device with hybrid buffer layer and method for fabricating the same
JP4423011B2 (en) Method of manufacturing nitride film including high resistivity GaN layer
JP2018101701A (en) Semiconductor substrate and method of manufacturing the same
JP2003178976A (en) Semiconductor device, and method for manufacturing it
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP2006032524A (en) Nitride semiconductor heterostructure field-effect transistor and its manufacturing method
JP4329984B2 (en) III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same
JP2004289005A (en) Epitaxial substrate, semiconductor device, and high electron mobility transistor
JP2003224072A (en) Semiconductor structure and manufacturing method therefor
JP6819009B2 (en) Manufacturing method of semiconductor substrate
US6555167B2 (en) Method for growing high quality group-III nitride thin film by metal organic chemical vapor deposition
RU2316075C1 (en) Method for growing multilayer semiconductor nitride heterostructure

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

R151 Written notification of patent or utility model registration

Ref document number: 4329984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term