JP4329984B2 - III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same - Google Patents

III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same Download PDF

Info

Publication number
JP4329984B2
JP4329984B2 JP2003029899A JP2003029899A JP4329984B2 JP 4329984 B2 JP4329984 B2 JP 4329984B2 JP 2003029899 A JP2003029899 A JP 2003029899A JP 2003029899 A JP2003029899 A JP 2003029899A JP 4329984 B2 JP4329984 B2 JP 4329984B2
Authority
JP
Japan
Prior art keywords
layer
buffer layer
substrate
nitride semiconductor
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003029899A
Other languages
Japanese (ja)
Other versions
JP2003324068A (en
Inventor
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2003029899A priority Critical patent/JP4329984B2/en
Priority to PCT/JP2003/001935 priority patent/WO2003073514A1/en
Publication of JP2003324068A publication Critical patent/JP2003324068A/en
Application granted granted Critical
Publication of JP4329984B2 publication Critical patent/JP4329984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type

Description

【0001】
【発明の属する技術分野】
本発明は、GaN系半導体のようなIII−V族窒化物半導体から成る層構造体とその製造方法に関し、更に詳しくは、前記窒化物半導体の成長膜厚を厚くしてもそこにはクラックなどは発生しておらず、表面は平滑であり、更には、製造した半導体デバイスを動作させた時に基板側へのリーク電流が生じにくく、各種の半導体デバイスを製造する際の出発素材として有用な層構造体とその製造方法に関する。
【0002】
【従来の技術】
例えばGaNの単結晶は、その融点が2000℃を超え、しかもその融点における蒸気圧も100GPaを超える。そのため、GaAsの場合のように、例えばゾーンメルティング法などを適用して、直接、単結晶を製造することは極めて困難である。したがって、GaNの単結晶を得るためには、GaNとは異種類の基板材料を用い、その上に結晶成長を実施せざるを得ない。
【0003】
しかしながら、GaNと格子定数が一致する材料は全く存在しない。したがって、基板材料との格子不整合性を緩和するために、用いる基板の表面に予めバッファ層を形成し、そのバッファ層の上にGaNを結晶成長させるという方法が一般的に行われている。その場合、基板としては、従来からサファイア(Al23)基板が広く用いられている。しかし、サファイアとGaNとの格子不整合率は20%以上と大きい。
【0004】
このようなことから、サファイア基板を用いて、厚膜のGaNを結晶成長させる場合には、次のような2段階成長法が採用されている。第1の方法は、例えば有機金属気相成長法(MOCVD法)により、まず、トリメチルアルミニウム(TMA)とアンモニア(NH3)を用い、水素をキャリアガスとし、成長温度800℃で、サファイア基板の上に一旦厚み50nm程度のAlN層をバッファ層として成膜し、ついで、成長温度を1100℃に昇温して、トリメチルガリウム(TMG)とアンモニア(NH3)を用いて前記バッファ層の上にGaNを厚く結晶成長させる方法である(非特許文献1を参照)。
【0005】
第2の方法は、MOCVD法により、TMGとNH3を用い、水素をキャリアガスとし、温度500〜600℃で厚み10〜20nm程度のアモルファスなGaN層をバッファ層として成膜し、ついで成長温度を1000℃に昇温して厚膜なGaNを結晶成長させる方法である。また、ガスソース分子線エピタキシャル法(GSMBE法)を用いた次のような方法も実施されている。
【0006】
すなわち、金属Gaとプラズマ化した窒素を用いて、サファイア基板やSi基板の上に成長温度500〜550℃でGaNから成る薄いバッファ層を成膜し、ついで成長温度を800℃に昇温してバッファ層の上に厚膜のGaNを結晶成長させる方法である。ところで、上記した従来の方法では、バッファ層はAlNまたはGaNで形成されているが、その場合には、そのバッファ層の上に、厚み1μm以上の厚膜なGaN層を結晶成長させると、当該GaN層にはクラックの発生することがある。
【0007】
また、基板としてSi基板を用いてAlNまたはGaNから成るバッファ層の成膜操作を行うと、バッファ層は一様な膜状に成膜されず、島状模様をなして成膜される。したがって、この上に、更に厚膜のGaNを成長させた場合、形成された厚膜のGaN層の表面には、下層のバッファ層の島状模様の影響を受けて微細な凹凸が発生してくることがある。
【0008】
このような層構造体は、いずれの場合であっても、バッファ層の上の厚膜のGaN層の品質が劣化しており、各種デバイスの出発素材としては好ましくない。また、このようにして製造された層構造体は、その後、GaN層の上にゲート電極、ソース電極、およびドレイン電極などを配置して例えば電界効果トランジスタ(FET)などに組み立てられるのであるが、その動作時には、基板がSi基板である場合、基板側にmAオーダでリーク電流の流れることがある。
【0009】
その理由は、抵抗率が真性Si半導体以上の半導体Si基板を作製することができないため、充分に高抵抗な半導体Si基板を得られず、ピンチオフの状態であっても、空乏層によって阻止された電流が基板を伝わって流れるためである(非特許文献1を参照)。
【0010】
【非特許文献1】
H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48 (1986) 353
【0011】
【発明が解決しようとする課題】
本発明は、バッファ層がAlNまたはGaNから成る従来の層構造体における上記した問題を解決し、バッファ層の上に形成した厚膜の結晶成長層にクラックは発生せず、また形成した厚膜の結晶成長層の表面に微細凹凸も発生しておらず、更には、製造した半導体デバイスの動作時に基板側へのリーク電流も生じにくいように設計されている新規な層構造体とその製造方法の提供を目的とする。
【0012】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、Si基板と、前記Si基板の上に形成され、下層部はAlxGa1-xN(0<x<1)から成り、上層部はAlyGa1-yN(0.5<y≦1,x<y)から成る2層構造のユニットバッファ層を少なくとも1層含むバッファ層と、前記バッファ層の上に形成されたIII−V族窒化物半導体の結晶成長層とを有することを特徴とするIII−V族窒化物半導体の層構造体(以下、層構造体Bという)が提供される。
【0013】
また、本発明においては、エピタキシャル結晶成長法により、Si基板の上に、温度600〜900℃で、AlxGa1-xN(0<x<1)から成る下層部とAlyGa1-yN(0.5<y≦1,x<y)から成る上層部とを順次成膜して2層構造のユニットバッファ層を少なくとも1層形成したのち、前記バッファ層の上層部の上にIII−V族窒化物半導体から成る結晶成長層を形成することを特徴とする層構造体Bの製造方法が提供される。
【0014】
【発明の実施の形態】
本発明の層構造体Aの1例を図1に示す。この層構造体Aは、基板1の上に、バッファ層2を介して厚膜の結晶成長層3が形成されていることと、これらの層の形成に用いる半導体材料がGaN系半導体のようなIII−V族窒化物半導体であることは、既に説明した従来の層構造体の場合と同じである。
【0015】
しかしながら、この層構造体Aの場合は、そのバッファ層2は、従来のようなAlNやGaNではなく、AlxGa1-xN(0<x<1)で形成されているところに最大の特徴がある。この層構造体Aは製造方法Aによって製造される。具体的には、基板1の上に、MOCVD法やGSMBE法のようなエピタキシャル結晶成長法を適用してバッファ層(AlGaN層)2と結晶成長層3を順次成膜して製造される。
【0016】
このとき、バッファ層2の成膜時における成長温度は600〜900℃に設定される。好ましくは、650〜900℃に設定される。この製造方法Aの場合、AlGaNから成るバッファ層2の成膜時における成長温度が高く設定されているので、基板1の表面では、AlGaNの成膜に用いる各原料の熱マイグレーションは促進されることになる。そのため、基板1の全体表面では各原料間の反応が進みやすくなり、その結果、AlNやGaNによるバッファ層の成膜時に発生しやすかった島状成長は起こらなくなり、基板表面の全面で均一な成膜が進行する。したがって、このバッファ層の上に成膜される結晶成長層の表面平滑性は向上する。
【0017】
また、成長温度が高いので、成膜したAlGaN層2の結晶品質も向上する。なお、バッファ層2の成膜時に採用する成長温度は、AlGaNの組成との関係で適宜に設定される。例えば、Al組成が低いAlxGa1-xN(0<x≦0.5、より好ましくは、0<x≦0.2)のバッファ層を形成する場合には、成長温度を650〜850℃に設定することが好ましい。バッファ層2の均一性を実現することができるからである。
【0018】
しかしながら、成長温度が900℃を超えると、バッファ層2は成長しにくくなり、仮に成長したとしても、そのバッファ層は島状模様を呈していて不均一なものになってしまう。そのようなことから、成長温度の最大値は900℃に設定される。また、AlGaNのバッファ層を均一に成膜する場合には、N源(NH3)の導入に先立ち、予めAl源やGa源を導入して基板1の表面に金属Alや金属Gaを、数原子層の厚みだけ堆積しておき、その後、N源を導入して基板の上にAlGaN層を成膜してもよい。
【0019】
本発明の層構造体の場合、基板としては、従来のように、サファイア基板であってもよいが、Si基板のようなダイヤモンド構造型のもの、また、GaAs基板やGaP基板のような閃亜鉛鉱型のものを用いても、クラックのない厚膜のGaN系結晶成長層を成膜することができる。また、バッファ層の成膜に先立ち、N源(一般にNH3)を導入して当該基板の表面に窒化処理を行い、その後、その窒化処理面にバッファ層を成膜すると、そのバッファ層の均一性が向上するので好適である。とくに、Si基板の場合には、その表面を温度800℃で5分間程度NH3に曝しながらNH3で窒化処理を行うと、その後に成膜するバッファ層は非常に均一となるので好適である。
【0020】
また、バッファ層2にはp型不純物をドープしてもよい。このようにすると、バッファ層2は高抵抗となり、例えば層構造体AでFETを組立て、それを作動させたしたときに当該バッファ層は高抵抗層として機能するので、基板側へのリーク電流の発生が抑制されるからである。このようなp型不純物としては、例えば、Mg,Zn,Cなどの1種または2種以上をあげることができ、またそのドーピング濃度は、目的とする抵抗値との関係で決められるが、概ね、1×1017〜1×1021cm-3程度に設定すればよい。
【0021】
また、上記したバッファ層2の上に成膜されるIII−V族窒化物半導体としては、例えば、GaN,InN,InGaN,InAlGaN,AlGaN,GaNAs,GaNP,InGaNAsP,InAlGaNAsPの群から選ばれる1種または2種以上をあげることができる。次に、層構造体Bについて説明する。
【0022】
この層構造体Bは、バッファ層が後述するようなユニットバッファ層を1層以上積層した構造になっていることを除いては、層構造体Aと同じ構成になっている。バッファ層が1個のユニットバッファ層2’で形成されている場合の1例を図2に示す。
【0023】
このユニットバッファ層2’は、下層部2a’と上層部2b’とから成る2層構造になっていて、いずれもAlGaNで構成されているが、上層部2b’と下層部2a’のAlGaNにおけるAlNの混合比率を対比すると、上層部2b’のAlN比率の方が下層部2a’のそれよりも大きく、結晶組成でAlNリッチになっている。
【0024】
具体的には、下層部2a’の組成は、層構造体Aの場合と同様に、AlxGa1-xN(0<x<1)である。そして、上層部2b’の組成を、AlyGa1-yNで表したとき、y値は、0.5<y≦1.0の関係を満たし、かつ、x<yの関係を満たしている。したがって、このユニットバッファ層2’の場合、その上層側がAlNリッチであるため全体で高抵抗になっている。また、表面は平滑になっている。
【0025】
例えば、ユニットバッファ層2’の全体の厚みが50nmであるとすれば、上記した上層部2b’の厚みを10〜20nm程度に設定すれば、このユニットバッファ層2’を高抵抗層として機能させて、基板1側へのリーク電流の発生を抑制することができる。この層構造体Bは、製造方法Bによって製造される。具体的には、基板1の表面の全面を覆って、所定厚みの下層部2a’と上層部2b’を順次成膜してユニットバッファ層2’を形成する。このときの成長温度は、製造方法Aの場合と同じ理由で、下層部、上層部のいずれの形成時においても600〜900℃に設定される。なお、複数層のユニットバッファ層を形成する場合には、下層部と上層部の成膜操作を交互に必要回数だけ実施すればよい。
【0026】
そして、形成されたバッファ層の上に、別のIII−V族窒化物半導体を成膜して結晶成長層3を形成する。この層構造体Bの場合も、ユニットバッファ層2’の成膜時に上層部2b’や下層部2a’にp型不純物ドーピングして高抵抗にしてもよい。また、基板1の表面に前記した窒化処理を行ってユニットバッファ層2’の表面を平滑化することもできる。
【0027】
なお、層構造体Bにおけるバッファ層は、ユニットバッファ層1層だけで構成してもよいが、このユニットバッファ層を複数層(例えば、3〜5層)積層して構成してもよい。
【0028】
【実施例】
実施例1MOCVD装置を用い、フッ酸で化学エッチングしたSi基板を用い、次のようにして層構造体Aを製造した。まず、Si基板をMOCVD装置内にセットし、1×10-6Torr以下の真空度にまで真空引きしたのち、真空度を100Torrにまで下げて基板を800℃に昇温した。基板を900rpmで回転させ、基板温度が安定した時点で、TMG58nmol/min,TMA20n mol/min,NH312L/minの流量で4分間基板表面に導入してAl0.3Ga0.7Nから成る厚み50nm程度のバッファ層を成膜した。
【0029】
ついで、Si基板の温度を1030℃に昇温し、TMG58n mol/min,NH312L/minを15分間導入して厚み500nmのGaN層を成膜した。ついで、装置から基板を取り出し、GaN層の表面を目視観察した。金属光沢を有する鏡面になっていた。クラックは全く認められず、良質な結晶になっていることを確認することができた。
【0030】
実施例2実施例1におけるバッファ層の成膜時に、TMG,TMA,NH3の外にシクロペタンジエニルマグネシウムを5n mol/minの流量で同時に導入して厚み50nmのp−Al0.3Ga0.7Nのバッファ層を成膜したのちシクロペタンジエニルマグネシウムの供給を絶ち、Si基板の温度を1030℃に昇温し、TMG58n mol/min,NH312L/min、およびn型ドーパントのSiH42n mol/minを15分間導入して、キャリア濃度2×1017cm-3で、厚み500nmのn型GaN層を成膜した。このGaN層にもクラックは全く認められず、表面は金属光沢の鏡面になっていた。
【0031】
ついで、この層構造体にゲート電極、ソース電極、およびドレイン電極を組み付けてGaN系MESFETを製作した。なお、ゲート電極はPt/Au、ソース電極とドレイン電極はAl/Ti/Auをそれぞれ蒸着して形成した。ゲート長は2μmで、ゲート幅は20cmに設定した。このMESFETの特性は、耐圧600V、動作電流10Aであり、リーク電流は1μA以下であった。また、このMESFETは温度400℃においても動作し続けた。
【0032】
実施例3MOCVD装置を用い、フッ酸で化学エッチングしたSi基板を用い、次のようにして層構造体Bを製造した。まず、Si基板をMOCVD装置内にセットし、1×10-6Torr以下の真空度にまで真空引きしたのち、真空度を160Torrにまで下げて基板を800℃に昇温した。基板を800rpmで回転させ、基板温度が安定した時点で、TMG58n mol/min,TMA20n mol/min,NH312L/minの流量を5分間基板表面に導入してAl0.2Ga0.8Nから成る厚み40nm程度の下層部を成膜した。続いて、TMG30n mol/min,TMA70n mol/min,NH312L/minに流量を切り換えて前記下層部の表面に2分間導入してAl0.8Ga0.2Nから成る厚み10nmの上層部を成膜してユニットバッファ層を形成した。
【0033】
ついで、Si基板の温度を1050℃に昇温し、TMG50n mol/min,NH312L/minを15分間導入し、前記ユニットバッファ層の上に、n型ドーパントのSiH42n mol/minを15分間導入して、キャリア濃度2×107cm-3で、厚み50nmのn型GaN層を形成した。装置から基板を取り出し、GaN層の表面を目視観察した。金属光沢を有する鏡面であった。またGaN層にクラックは全く認められなかった。
【0034】
その後、この層構造体Bを用いてGaN系MESFETを製作し、そのMESFETの特性を調べた。耐圧600V、動作電流は10Aを超え、リーク電流は1μA以下であった。また、高温動作を調べたところ、温度400℃でも動作し続けた。
【0035】
実施例4
基板として、Si基板に代えてサファイア基板を用いたことを除いては、実施例1と同様の条件で層構造体Aを製造した。この層構造体は、実施例1の場合と同様に、表面は鏡面状態で、クラックは全く認められず、結晶性も高品質であった。
【0036】
【発明の効果】
以上の説明で明らかなように、本発明によれば、高品質で厚膜のGaN系結晶成長層を成膜することができる。これは、半導体基板であるSi基板の上に成膜するバッファ層が、下層部はAl x Ga 1-x N(0<x<1)から成り、上層部はAl y Ga 1-y N(0.5<y≦1,x<y)から成る2層構造のユニットバッファ層を少なくとも1層含む構成であり、それを成膜するときの温度を600〜900℃の高温に設定したことによって得られる効果である。また、本発明によれば、バッファ層を高抵抗にしてリーク電流の発生を抑制することも可能である。
【0037】
したがって、本発明の層構造体を用いれば、例えば高耐圧・低オン抵抗で動作するGaN系FETのようなデバイスの素材を提供することができ、その工業的価値は極めて大である。
【図面の簡単な説明】
【図1】本発明の層構造体の1例Aを示す断面図である。
【図2】本発明の層構造体の1例Bを示す断面図である。
【符号の説明】
1 基板(Si基板)
2 バッファ層
2’ ユニットバッファ層
2a’ 下層部
2b’ 上層部
3 結晶成長層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a layer structure made of a group III-V nitride semiconductor such as a GaN-based semiconductor and a method for manufacturing the same, and more specifically, even if the growth thickness of the nitride semiconductor is increased, there are cracks and the like. Is not generated, and the surface is smooth. Further, when the manufactured semiconductor device is operated, a leakage current to the substrate side hardly occurs, and this layer is useful as a starting material when manufacturing various semiconductor devices. The present invention relates to a structure and a manufacturing method thereof.
[0002]
[Prior art]
For example, a single crystal of GaN has a melting point exceeding 2000 ° C. and a vapor pressure at the melting point exceeding 100 GPa. Therefore, as in the case of GaAs, it is extremely difficult to directly manufacture a single crystal by applying, for example, a zone melting method. Therefore, in order to obtain a single crystal of GaN, it is necessary to use a different kind of substrate material from GaN and carry out crystal growth thereon.
[0003]
However, there is no material whose lattice constant matches that of GaN. Therefore, in order to alleviate the lattice mismatch with the substrate material, a method in which a buffer layer is formed in advance on the surface of the substrate to be used and GaN is crystal-grown on the buffer layer is generally performed. In that case, a sapphire (Al 2 O 3 ) substrate has been widely used as the substrate. However, the lattice mismatch rate between sapphire and GaN is as large as 20% or more.
[0004]
For this reason, the following two-step growth method is employed when a thick GaN crystal is grown using a sapphire substrate. The first method is, for example, by metal organic vapor phase epitaxy (MOCVD), using trimethylaluminum (TMA) and ammonia (NH 3 ), hydrogen as a carrier gas, a growth temperature of 800 ° C., and a sapphire substrate. An AlN layer having a thickness of about 50 nm is formed as a buffer layer on the top, and then the growth temperature is raised to 1100 ° C., and trimethylgallium (TMG) and ammonia (NH 3 ) are used to form the buffer layer on the buffer layer. This is a method of growing GaN thickly (see Non-Patent Document 1).
[0005]
The second method uses TMG and NH 3 by MOCVD, hydrogen as a carrier gas, an amorphous GaN layer having a thickness of about 10 to 20 nm at a temperature of 500 to 600 ° C. as a buffer layer, and then a growth temperature. Is a method of growing a thick GaN crystal by raising the temperature to 1000 ° C. Moreover, the following method using the gas source molecular beam epitaxial method (GSMBE method) is also implemented.
[0006]
That is, a thin buffer layer made of GaN is formed on a sapphire substrate or Si substrate at a growth temperature of 500 to 550 ° C. using metal Ga and plasma nitrogen, and then the growth temperature is increased to 800 ° C. In this method, a thick GaN crystal is grown on the buffer layer. By the way, in the conventional method described above, the buffer layer is formed of AlN or GaN. In this case, when a GaN layer having a thickness of 1 μm or more is grown on the buffer layer, Cracks may occur in the GaN layer.
[0007]
Further, when a buffer layer made of AlN or GaN is formed using a Si substrate as a substrate, the buffer layer is not formed into a uniform film but is formed in an island pattern. Therefore, when a thicker GaN layer is grown on this, fine irregularities are generated on the surface of the formed thick GaN layer due to the influence of the island pattern of the lower buffer layer. May come.
[0008]
In any case, such a layer structure is not preferable as a starting material for various devices because the quality of the thick GaN layer on the buffer layer is deteriorated. In addition, the layer structure manufactured in this manner is then assembled into, for example, a field effect transistor (FET) by arranging a gate electrode, a source electrode, a drain electrode, and the like on the GaN layer. During the operation, if the substrate is a Si substrate, a leakage current may flow in the order of mA on the substrate side.
[0009]
The reason is that a semiconductor Si substrate having a resistivity equal to or higher than that of an intrinsic Si semiconductor cannot be manufactured, so that a sufficiently high-resistance semiconductor Si substrate cannot be obtained, and even in a pinch-off state, the depletion layer has prevented it. This is because current flows through the substrate (see Non-Patent Document 1).
[0010]
[Non-Patent Document 1]
H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48 (1986) 353
[0011]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems in the conventional layer structure in which the buffer layer is made of AlN or GaN, and no crack is generated in the thick crystal growth layer formed on the buffer layer, and the formed thick film A novel layer structure that is designed such that no fine irregularities are generated on the surface of the crystal growth layer of the semiconductor device, and that a leakage current to the substrate side is less likely to occur during operation of the manufactured semiconductor device, and a method for manufacturing the same The purpose is to provide.
[0012]
[Means for Solving the Problems]
In order to achieve the above-described object, in the present invention, a Si substrate and the Si substrate are formed, the lower layer portion is made of Al x Ga 1-x N (0 <x <1), and the upper layer portion is A buffer layer including at least one unit buffer layer having a two-layer structure made of Al y Ga 1-y N (0.5 <y ≦ 1, x <y), and III-V formed on the buffer layer A group III-V nitride semiconductor layer structure (hereinafter referred to as a layer structure B) is provided, which has a group nitride semiconductor crystal growth layer.
[0013]
In the present invention, a lower layer portion made of Al x Ga 1-x N (0 <x <1) and Al y Ga 1− are formed on a Si substrate at a temperature of 600 to 900 ° C. by an epitaxial crystal growth method. After sequentially forming at least one unit buffer layer having a two-layer structure by sequentially forming y N (0.5 <y ≦ 1, x <y), an upper layer portion is formed on the upper layer portion of the buffer layer. There is provided a method for producing a layered structure B, wherein a crystal growth layer made of a III-V nitride semiconductor is formed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An example of the layer structure A of the present invention is shown in FIG. In this layer structure A, a thick crystal growth layer 3 is formed on a substrate 1 via a buffer layer 2, and a semiconductor material used for forming these layers is a GaN-based semiconductor. The fact that it is a group III-V nitride semiconductor is the same as the case of the conventional layer structure described above.
[0015]
However, in the case of this layer structure A, the buffer layer 2 is the largest in the place where it is formed of Al x Ga 1-x N (0 <x <1), not AlN or GaN as in the past. There are features. This layer structure A is manufactured by the manufacturing method A. Specifically, the buffer layer (AlGaN layer) 2 and the crystal growth layer 3 are sequentially formed on the substrate 1 by applying an epitaxial crystal growth method such as MOCVD method or GSMBE method.
[0016]
At this time, the growth temperature during the formation of the buffer layer 2 is set to 600 to 900 ° C. Preferably, it is set to 650 to 900 ° C. In the case of this manufacturing method A, since the growth temperature at the time of film formation of the buffer layer 2 made of AlGaN is set high, thermal migration of each raw material used for film formation of AlGaN is promoted on the surface of the substrate 1. become. For this reason, the reaction between the raw materials tends to proceed on the entire surface of the substrate 1, and as a result, the island-like growth that is likely to occur during the formation of the buffer layer of AlN or GaN does not occur, and uniform formation is achieved on the entire surface of the substrate. The film progresses. Therefore, the surface smoothness of the crystal growth layer formed on this buffer layer is improved.
[0017]
Moreover, since the growth temperature is high, the crystal quality of the deposited AlGaN layer 2 is also improved. Note that the growth temperature employed when forming the buffer layer 2 is appropriately set in relation to the composition of AlGaN. For example, when forming a buffer layer of Al x Ga 1-x N (0 <x ≦ 0.5, more preferably 0 <x ≦ 0.2) having a low Al composition, the growth temperature is set to 650 to 850. It is preferable to set to ° C. This is because the uniformity of the buffer layer 2 can be realized.
[0018]
However, if the growth temperature exceeds 900 ° C., the buffer layer 2 becomes difficult to grow, and even if it grows, the buffer layer has an island pattern and becomes non-uniform. Therefore, the maximum growth temperature is set to 900 ° C. Further, when the AlGaN buffer layer is formed uniformly, prior to the introduction of the N source (NH 3 ), an Al source or a Ga source is introduced in advance, and a number of metallic Al or metallic Ga are introduced on the surface of the substrate 1. The thickness of the atomic layer may be deposited, and then an N source may be introduced to form an AlGaN layer on the substrate.
[0019]
In the case of the layer structure of the present invention, the substrate may be a sapphire substrate as in the conventional case, but is of a diamond structure type such as a Si substrate, or zinc flash such as a GaAs substrate or a GaP substrate. Even if an ore type is used, a thick GaN-based crystal growth layer without cracks can be formed. Prior to the formation of the buffer layer, an N source (generally NH 3 ) is introduced to perform nitriding treatment on the surface of the substrate, and after that, when the buffer layer is formed on the nitriding surface, the buffer layer becomes uniform. This is preferable because the property is improved. In particular, in the case of a Si substrate, it is preferable to perform nitriding treatment with NH 3 while exposing the surface to NH 3 at a temperature of 800 ° C. for about 5 minutes because the buffer layer to be formed thereafter becomes very uniform. .
[0020]
Further, the buffer layer 2 may be doped with a p-type impurity. In this way, the buffer layer 2 has a high resistance. For example, when an FET is assembled with the layer structure A and operated, the buffer layer functions as a high resistance layer. This is because generation is suppressed. Examples of such a p-type impurity include one or more of Mg, Zn, C, and the like, and the doping concentration is determined in relation to the target resistance value. What is necessary is just to set to about 1 * 10 < 17 > -1 * 10 < 21 > cm < -3 >.
[0021]
The group III-V nitride semiconductor film formed on the buffer layer 2 is, for example, one selected from the group of GaN, InN, InGaN, InAlGaN, AlGaN, GaNAs, GaNP, InGaNAsP, and InAlGaNAsP. Or 2 or more types can be mentioned. Next, the layer structure B will be described.
[0022]
This layer structure B has the same configuration as the layer structure A except that the buffer layer has a structure in which one or more unit buffer layers as described later are stacked. An example in which the buffer layer is formed of one unit buffer layer 2 ′ is shown in FIG.
[0023]
This unit buffer layer 2 ′ has a two-layer structure composed of a lower layer portion 2a ′ and an upper layer portion 2b ′, both of which are made of AlGaN, but the upper layer portion 2b ′ and the lower layer portion 2a ′ are made of AlGaN. When the mixing ratio of AlN is compared, the AlN ratio of the upper layer portion 2b ′ is larger than that of the lower layer portion 2a ′, and the crystal composition is rich in AlN.
[0024]
Specifically, the composition of the lower layer portion 2a ′ is Al x Ga 1-x N (0 <x <1) as in the case of the layer structure A. When the composition of the upper layer portion 2b ′ is expressed by Al y Ga 1-y N, the y value satisfies the relationship of 0.5 <y ≦ 1.0 and satisfies the relationship of x <y. Yes. Therefore, in the case of this unit buffer layer 2 ′, the upper layer side is rich in AlN, and therefore has a high resistance as a whole. Moreover, the surface is smooth.
[0025]
For example, if the overall thickness of the unit buffer layer 2 ′ is 50 nm, the unit buffer layer 2 ′ can function as a high resistance layer if the thickness of the upper layer 2b ′ is set to about 10 to 20 nm. Thus, the occurrence of a leakage current toward the substrate 1 side can be suppressed. This layer structure B is manufactured by the manufacturing method B. Specifically, a unit buffer layer 2 ′ is formed by sequentially forming a lower layer portion 2a ′ and an upper layer portion 2b ′ having a predetermined thickness so as to cover the entire surface of the substrate 1. The growth temperature at this time is set to 600 to 900 ° C. during the formation of both the lower layer portion and the upper layer portion for the same reason as in the manufacturing method A. In the case where a plurality of unit buffer layers are formed, the film forming operation of the lower layer portion and the upper layer portion may be performed alternately as many times as necessary.
[0026]
Then, another III-V nitride semiconductor is formed on the formed buffer layer to form the crystal growth layer 3. Also in the case of this layer structure B, p-type impurity doping may be performed on the upper layer portion 2b ′ and the lower layer portion 2a ′ during the formation of the unit buffer layer 2 ′ to increase the resistance. Further, the surface of the unit buffer layer 2 ′ can be smoothed by performing the nitriding treatment on the surface of the substrate 1.
[0027]
In addition, although the buffer layer in the layer structure B may be composed of only one unit buffer layer, the unit buffer layer may be composed by laminating a plurality of layers (for example, 3 to 5 layers).
[0028]
【Example】
Example 1 A layer structure A was manufactured using a MOCVD apparatus and a Si substrate chemically etched with hydrofluoric acid as follows. First, the Si substrate was set in an MOCVD apparatus and evacuated to a vacuum level of 1 × 10 −6 Torr or less, and then the vacuum level was lowered to 100 Torr and the substrate was heated to 800 ° C. When the substrate is rotated at 900 rpm and the substrate temperature is stabilized, it is introduced into the substrate surface for 4 minutes at a flow rate of TMG 58 nmol / min, TMA 20 nmol / min, NH 3 12 L / min, and a thickness of about 50 nm made of Al 0.3 Ga 0.7 N. The buffer layer was formed.
[0029]
Next, the temperature of the Si substrate was raised to 1030 ° C., and TMG 58 nmol / min and NH 3 12 L / min were introduced for 15 minutes to form a GaN layer having a thickness of 500 nm. Next, the substrate was taken out from the apparatus, and the surface of the GaN layer was visually observed. The mirror surface had a metallic luster. No cracks were observed and it was confirmed that the crystals were of good quality.
[0030]
During deposition of the buffer layer in Example 2 Example 1, TMG, TMA, simultaneously introduced to thickness 50nm cyclo Petain dienyl magnesium outside of NH 3 at a flow rate of 5n mol / min p-Al 0.3 Ga 0.7 N After the buffer layer was formed, the supply of cyclopentanedienylmagnesium was stopped, the temperature of the Si substrate was raised to 1030 ° C., TMG 58 nmol / min, NH 3 12 L / min, and n-type dopant SiH 4 2 nmol / Min was introduced for 15 minutes to form an n-type GaN layer having a carrier concentration of 2 × 10 17 cm −3 and a thickness of 500 nm. No cracks were observed in this GaN layer, and the surface was a metallic luster mirror.
[0031]
Next, a gate electrode, a source electrode, and a drain electrode were assembled to this layer structure to manufacture a GaN-based MESFET. The gate electrode was formed by vapor deposition of Pt / Au, and the source electrode and the drain electrode were formed by vapor deposition of Al / Ti / Au. The gate length was 2 μm and the gate width was set to 20 cm. The characteristics of this MESFET were a withstand voltage of 600 V, an operating current of 10 A, and a leakage current of 1 μA or less. The MESFET continued to operate even at a temperature of 400 ° C.
[0032]
Example 3 A layer structure B was manufactured as follows using a Si substrate chemically etched with hydrofluoric acid using an MOCVD apparatus. First, the Si substrate was set in an MOCVD apparatus and evacuated to a vacuum degree of 1 × 10 −6 Torr or less, and then the vacuum degree was lowered to 160 Torr and the substrate was heated to 800 ° C. When the substrate was rotated at 800 rpm and the substrate temperature was stabilized, the flow rate of TMG 58 nmol / min, TMA 20 nmol / min, NH 3 12 L / min was introduced into the substrate surface for 5 minutes, and the thickness 40 nm of Al 0.2 Ga 0.8 N was formed. A lower layer portion of a degree was formed. Subsequently, the flow rate was switched to TMG 30 nmol / min, TMA 70 nmol / min, NH 3 12 L / min and introduced into the surface of the lower layer for 2 minutes to form an upper layer portion of 10 nm thick composed of Al 0.8 Ga 0.2 N. A unit buffer layer was formed.
[0033]
Next, the temperature of the Si substrate was raised to 1050 ° C., TMG 50 nmol / min, NH 3 12 L / min were introduced for 15 minutes, and the n-type dopant SiH 4 2 nmol / min was 15 on the unit buffer layer. Then, an n-type GaN layer having a carrier concentration of 2 × 10 7 cm −3 and a thickness of 50 nm was formed. The substrate was taken out from the apparatus, and the surface of the GaN layer was visually observed. The mirror surface had a metallic luster. In addition, no cracks were observed in the GaN layer.
[0034]
Thereafter, a GaN-based MESFET was manufactured using this layer structure B, and the characteristics of the MESFET were examined. The breakdown voltage was 600 V, the operating current exceeded 10 A, and the leakage current was 1 μA or less. Further, when the high temperature operation was examined, it continued to operate even at a temperature of 400 ° C.
[0035]
Example 4
Layer structure A was manufactured under the same conditions as in Example 1 except that a sapphire substrate was used instead of the Si substrate. As in Example 1, this layer structure had a mirror surface, no cracks were observed, and the crystallinity was high quality.
[0036]
【The invention's effect】
As is clear from the above description, according to the present invention, a high-quality and thick GaN-based crystal growth layer can be formed. This is because a buffer layer formed on a Si substrate , which is a semiconductor substrate , has a lower layer portion made of Al x Ga 1-x N (0 <x <1) and an upper layer portion made of Al y Ga 1-y N ( The structure includes at least one unit buffer layer having a two-layer structure of 0.5 <y ≦ 1, x <y) , and the temperature when forming the unit buffer layer is set to a high temperature of 600 to 900 ° C. This is an obtained effect. Further, according to the present invention, it is possible to suppress the occurrence of leakage current by making the buffer layer have a high resistance.
[0037]
Therefore, if the layer structure of the present invention is used, a material for a device such as a GaN-based FET that operates with a high breakdown voltage and a low on-resistance can be provided, and its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example A of a layered structure of the present invention.
FIG. 2 is a cross-sectional view showing an example B of the layer structure of the present invention.
[Explanation of symbols]
1 Substrate (Si substrate)
2 Buffer layer 2 ′ Unit buffer layer 2a ′ Lower layer 2b ′ Upper layer 3 Crystal growth layer

Claims (8)

Si基板と、
前記Si基板の上に形成され、下層部はAlxGa1-xN(0<x<1)から成り、上層部はAlyGa1-yN(0.5<y≦1,x<y)から成る2層構造のユニットバッファ層を少なくとも1層含むバッファ層と、
前記バッファ層の上に形成されたIII−V族窒化物半導体の結晶成長層と
を有することを特徴とするIII−V族窒化物半導体の層構造体。
A Si substrate;
Formed on the Si substrate, the lower layer portion is made of Al x Ga 1-x N (0 <x <1), and the upper layer portion is Al y Ga 1-y N (0.5 <y ≦ 1, x < a buffer layer including at least one unit buffer layer having a two-layer structure consisting of y);
A III-V group nitride semiconductor layer structure comprising a group III-V nitride semiconductor crystal growth layer formed on the buffer layer.
前記III−V族窒化物半導体が、GaN,InN,InGaN,InAlGaN,AlGaN,GaNAs,GaNP,InGaNAsP,InAlGaNAsPの群から選ばれる少なくとも1種である
請求項のIII−V族窒化物半導体の層構造体。
The III-V nitride semiconductors, GaN, InN, InGaN, InAlGaN , AlGaN, GaNAs, GaNP, InGaNAsP, at least one layer of group III-V nitride semiconductor according to claim 1 which is selected from the group consisting of InAlGaNAsP Structure.
前記Si基板の表面が窒化処理されている
請求項のIII−V族窒化物半導体の層構造体。
The layer structure of a group III-V nitride semiconductor according to claim 1 , wherein the surface of the Si substrate is nitrided.
前記バッファ層は、p型不純物がドープされて高抵抗化されている
請求項1のIII−V族窒化物半導体の層構造体。
The III-V group nitride semiconductor layer structure according to claim 1, wherein the buffer layer is doped with a p-type impurity to increase resistance.
エピタキシャル結晶成長法により、Si基板の上に、温度600〜900℃で、AlxGa1-xN(0<x<1)から成る下層部とAlyGa1-yN(0.5<y≦1,x<y)から成る上層部とを順次成膜して2層構造のユニットバッファ層を少なくとも1層形成したのち、
前記バッファ層の上層部の上にIII−V族窒化物半導体から成る結晶成長層を形成する
ことを特徴とするIII−V族窒化物半導体の層構造体の製造方法。
By epitaxial crystal growth, a lower layer portion made of Al x Ga 1-x N (0 <x <1) and Al y Ga 1-y N (0.5 <0.5) are formed on a Si substrate at a temperature of 600 to 900 ° C. After sequentially forming an upper layer portion composed of y ≦ 1, x <y) to form at least one unit buffer layer having a two-layer structure,
A method for producing a layered structure of a group III-V nitride semiconductor, comprising forming a crystal growth layer made of a group III-V nitride semiconductor on an upper layer portion of the buffer layer.
前記バッファ層の成膜に先立ち、前記Si基板の上に、金属Alまたは金属Gaから成る原子層を複数層形成する
請求項のIII−V族窒化物半導体の層構造体の製造方法。
6. The method for producing a layered structure of a group III-V nitride semiconductor according to claim 5 , wherein a plurality of atomic layers made of metal Al or metal Ga are formed on the Si substrate prior to forming the buffer layer.
前記バッファ層の成膜に先立ち、前記Si基板の表面に窒化処理を行う
請求項のIII−V族窒化物半導体の層構造体の製造方法。
6. The method for producing a layered structure of a group III-V nitride semiconductor according to claim 5 , wherein nitriding treatment is performed on the surface of the Si substrate prior to forming the buffer layer.
前記バッファ層の成膜時に、p型不純物をドーピングする
請求項のIII−V族窒化物半導体の層構造体の製造方法。
6. The method for producing a layered structure of a group III-V nitride semiconductor according to claim 5 , wherein a p-type impurity is doped when the buffer layer is formed.
JP2003029899A 2002-02-28 2003-02-06 III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same Expired - Lifetime JP4329984B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003029899A JP4329984B2 (en) 2002-02-28 2003-02-06 III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same
PCT/JP2003/001935 WO2003073514A1 (en) 2002-02-28 2003-02-21 Group iii-v nitride semiconductor multilayer structure and its production process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002054527 2002-02-28
JP2002-54527 2002-02-28
JP2003029899A JP4329984B2 (en) 2002-02-28 2003-02-06 III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same

Publications (2)

Publication Number Publication Date
JP2003324068A JP2003324068A (en) 2003-11-14
JP4329984B2 true JP4329984B2 (en) 2009-09-09

Family

ID=29552150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029899A Expired - Lifetime JP4329984B2 (en) 2002-02-28 2003-02-06 III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same

Country Status (1)

Country Link
JP (1) JP4329984B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070278574A1 (en) * 2006-05-30 2007-12-06 Sharp Laboratories Of America, Inc. Compound semiconductor-on-silicon wafer with a thermally soft insulator
JP4877144B2 (en) * 2007-08-10 2012-02-15 三菱化学株式会社 Epitaxial wafer manufacturing method
JP4519196B2 (en) * 2008-11-27 2010-08-04 Dowaエレクトロニクス株式会社 Epitaxial substrate for electronic device and manufacturing method thereof
JP5934575B2 (en) * 2012-05-16 2016-06-15 サンケン電気株式会社 Manufacturing method of nitride semiconductor device

Also Published As

Publication number Publication date
JP2003324068A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP4530171B2 (en) Semiconductor device
JP5099008B2 (en) Compound semiconductor device using SiC substrate and manufacturing method thereof
JP3866540B2 (en) Nitride semiconductor device and manufacturing method thereof
WO2010090262A1 (en) Epitaxial wafer, method for manufacturing gallium nitride semiconductor device, gallium nitride semiconductor device and gallium oxide wafer
JP5242156B2 (en) III-V nitride compound semiconductor device and electrode forming method
WO2006126319A1 (en) High-electron-mobility transistor, field-effect transistor, epitaxial substrate, method for manufacturing epitaxial substrate, and method for manufacturing group iii nitride transistor
TW200822409A (en) Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AIN and their alloys by metal organic chemical vapor deposition
US8754419B2 (en) Semiconductor device
US20170256407A1 (en) Method for producing nitride semiconductor stacked body and nitride semiconductor stacked body
JP2005019872A (en) Method of manufacturing nitride semiconductor, semiconductor wafer, and semiconductor device
JP4458223B2 (en) Compound semiconductor device and manufacturing method thereof
JP2010239034A (en) Method of fabricating semiconductor device and semiconductor device
JPWO2007116517A1 (en) Compound semiconductor structure and manufacturing method thereof
CN111406306B (en) Method for manufacturing semiconductor device and semiconductor device
JP2007112633A (en) Nitride semiconductor wafer and nitride semiconductor element
US7981744B2 (en) Field-effect transistor, semiconductor device, a method for manufacturing them, and a method of semiconductor crystal growth
JP3977659B2 (en) Heterojunction field effect transistor
JP4468744B2 (en) Method for producing nitride semiconductor thin film
CN108231556B (en) Method for manufacturing III-V nitride semiconductor epitaxial wafer
JP5914999B2 (en) Manufacturing method of semiconductor device
JP2927768B1 (en) Semiconductor device and manufacturing method thereof
US20150340562A1 (en) Light emitting device and method of fabricating the same
JP4329984B2 (en) III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same
JP2018101701A (en) Semiconductor substrate and method of manufacturing the same
JP2004289005A (en) Epitaxial substrate, semiconductor device, and high electron mobility transistor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

R151 Written notification of patent or utility model registration

Ref document number: 4329984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term