JP2003318314A - Multi-cavity circuit substrate - Google Patents

Multi-cavity circuit substrate

Info

Publication number
JP2003318314A
JP2003318314A JP2002122076A JP2002122076A JP2003318314A JP 2003318314 A JP2003318314 A JP 2003318314A JP 2002122076 A JP2002122076 A JP 2002122076A JP 2002122076 A JP2002122076 A JP 2002122076A JP 2003318314 A JP2003318314 A JP 2003318314A
Authority
JP
Japan
Prior art keywords
wiring
wiring board
metallized
layer
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002122076A
Other languages
Japanese (ja)
Other versions
JP3838935B2 (en
Inventor
Wataru Miyanohara
亘 宮之原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002122076A priority Critical patent/JP3838935B2/en
Publication of JP2003318314A publication Critical patent/JP2003318314A/en
Application granted granted Critical
Publication of JP3838935B2 publication Critical patent/JP3838935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-cavity circuit substrate which can deposit a plating metal layer on an independent metallized wiring conductor of each wiring substrate region arranged on a ceramic base substrate by an electrolytic plating method. <P>SOLUTION: The multi-cavity circuit substrate comprises wiring substrate regions 2 each having a recess 2a for housing an electronic component and arranged to be formed laterally and longitudinally at the central part of the ceramic base substrate 1 on an upper surface, and non-connected independent metallized wiring conductors 6c, 6d deposited and formed on a sealing metallized layer 7 in each region 2 from the layer 7 and the recess 2a of the region 2 electrically connected to each other on the upper surface of the region 2 to the outer periphery. In this substrate, the conductors 6c, 6d are electrically connected to the layer 7 of the region 2 via connecting conductors 11a, 11b. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、複数の絶縁層を積
層して成るセラミック母基板の中央部に、各々が電子部
品を収容するための小型の配線基板となる略四角形状の
多数の配線基板領域を縦横の並びに一体的に配列形成し
て成る多数個取り配線基板に関するものである。 【0002】 【従来の技術】従来、例えば半導体素子や水晶振動子等
の電子部品を収容するための電子部品収納用パッケージ
に用いられる小型の配線基板は、例えば酸化アルミニウ
ム質焼結体等のセラミックスから成る絶縁層を複数積層
して成り、上面に電子部品を収容するための凹部を有す
る略四角形状の絶縁基体と、この絶縁基体の凹部底面か
ら絶縁層間を通り外周辺を介して下面に導出する複数の
メタライズ配線導体と、前記絶縁基体の上面に前記凹部
を取り囲むようにして被着された枠状の封止用メタライ
ズ層とを具備している。なお、前記メタライズ配線導体
のうちのいくつかは前記封止用メタライズ層に電気的に
接続されており、他のいくつかは封止用メタライズ層か
ら電気的に独立している。封止用メタライズ層に接続さ
れたメタライズ配線導体は、通常は接地用のメタライズ
配線導体であり、封止用メタライズ層から電気的に独立
したメタライズ配線導体は、信号用のメタライズ配線導
体である。 【0003】そして、この配線基板によれば、絶縁基体
の凹部内に電子部品を収容するとともに、電子部品の電
極を凹部底面のメタライズ配線導体に導電性接着剤やボ
ンディングワイヤを介して電気的に接続し、しかる後、
絶縁基体の上面の封止用メタライズ層に金属蓋体を凹部
を塞ぐようにして接合させて凹部内に電子部品を気密に
収容することによって製品としての電子装置となり、こ
の電子装置は、絶縁基体の外周辺から下面にかけて導出
したメタライズ配線層を外部の電気回路基板の配線導体
に半田を介して接続することにより外部電気回路基板に
実装されるとともに収容する電子部品の電極が外部電気
回路に電気的に接続されることとなる。 【0004】ところで、このような配線基板は近時の電
子装置の小型化の要求に伴い、その大きさが数mm角程
度の極めて小さなものとなってきており、多数個の配線
基板の取り扱いを容易とするために、また配線基板およ
び電子装置の製作を効率よくするために、一枚の広面積
のセラミック母基板中から多数個の配線基板を同時集約
的に得るようになした、いわゆる多数個取り配線基板の
形態で製作されている。 【0005】この多数個取り配線基板は、複数の絶縁層
を積層して成る略平板状のセラミック母基板の中央部
に、各々がその上面に電子部品を収容するための凹部を
有するとともに、その凹部底面からその外周辺を介して
底面に導出する複数のメタライズ配線導体および凹部を
取り囲む上面に枠状の封止用メタライズ層が被着された
略四角形の多数の配線基板領域を縦横の並びに一体的に
配列形成して成り、各配線基板領域の接地用のメタライ
ズ配線導体と封止用メタライズ層とは、その配線基板領
域内で互いに電気的に接続されている。そして、各配線
基板領域の凹部内に電子部品を収容する前、または収容
した後にセラミック母基板を各配線基板領域に分割する
ことによって多数個の配線基板または電子装置が同時集
約的に製作される。 【0006】なお、このような多数個取り配線基板にお
いては、各メタライズ配線導体や封止用メタライズ層が
酸化腐食するのを防止するとともにメタライズ配線導体
と電子部品の電極や外部電気回路基板の配線導体との電
気的な接続および封止用メタライズ層と金属蓋体との接
合を良好なものとするために、各メタライズ配線導体や
封止用メタライズ層の露出表面には例えば厚みが1〜1
0μm程度のニッケルめっき層と厚みが0.1〜3μm
程度の金めっき層とが電解めっき法により順次被着され
ている。 【0007】従来、このような多数個取り配線基板にお
いて、各メタライズ配線導体や封止用メタライズ層に電
解めっき法によりニッケルめっき層や金めっき層を被着
させるには、セラミック母基板を構成する絶縁層間に、
各配線基板領域内の隣接するメタライズ配線導体同士を
各配線基板領域の境界を横断して互いに電気的に接続す
るめっき導通用の複数の接続導体を設けることにより全
てのメタライズ配線導体を電気的に共通に接続しておく
とともに、この接続導体を介して電解めっきのための電
荷を供給することによって各メタライズ配線導体や封止
用メタライズ層の露出表面に電解めっきを行なう方法が
採用されていた。 【0008】なお、各配線基板領域の隣接するメタライ
ズ配線導体同士は各配線基板領域の境界を横断してめっ
き導通用の接続導体により電気的に接続されていること
から、セラミック母基板を各配線基板領域に分割した
後、それぞれが互いに電気的に独立することとなる。 【0009】 【発明が解決しようとする課題】しかしながら、近時の
配線基板は小型化、高密度化が進んでおり、そのため、
隣接するメタライズ配線導体同士の間隔が極めて狭いも
のとなってきている。そして、そのような配線基板を得
るための多数個取り配線基板においても、互いに隣接す
るメタライズ配線導体同士を各配線基板領域の境界を横
断して電気的に接続するめっき導通用の複数の接続導体
を設けることが極めて困難となってきている。したがっ
て、そのような接続導体により各メタライズ配線導体同
士を電気的に共通に接続して各メタライズ配線導体や封
止用メタライズ層に電解めっきによりめっき金属層を被
着させることが困難となってきた。 【0010】本発明は、かかる従来の問題点に鑑み案出
されたものであり、その目的は、セラミック母基板に配
列された各配線基板領域内の隣接するメタライズ配線導
体同士を各配線基板領域の境界線を横断して互いに電気
的に接続するめっき導通用の接続導体を設けることな
く、各メタライズ配線導体および封止用メタライズ層に
電解めっき法によりめっき金属層を被着させることが可
能な多数個取り配線基板を提供することにある。 【0011】 【課題を解決するための手段】本発明の多数個取り配線
基板は、複数の絶縁層を積層して成るセラミック母基板
の中央部に、各々が上面に電子部品を収容するための凹
部を有する略四角形状の多数の配線基板領域を縦横の並
びに配列形成するとともに、前記各配線基板領域の上面
に互いに電気的に接続されて前記凹部をそれぞれ取り囲
む枠状の封止用メタライズ層および前記各配線基板領域
の凹部内から外周辺にかけて、前記各配線基板領域内に
おいて前記封止用メタライズ層に非接続の独立メタライ
ズ配線導体を被着形成して成る多数個取り配線基板であ
って、前記独立メタライズ配線導体は、該独立メタライ
ズ配線導体が被着形成された配線基板領域に隣接する配
線基板領域の前記封止用メタライズ層に、前記セラミッ
ク母基板の内部を前記独立メタライズ配線導体から前記
隣接する配線基板領域の封止用メタライズ層まで延びる
接続導体により電気的に接続されていることを特徴とす
るものである。 【0012】本発明の多数個取り配線基板によれば、各
配線基板領域の封止用メタライズ層同士を互いに電気的
に接続するとともに、各配線基板領域内において封止用
メタライズ層に非接続の独立メタライズ配線導体を、そ
の独立メタライズ配線導体が被着形成された配線基板領
域に隣接する配線基板領域の封止用メタライズ層にセラ
ミック母基板の内部を前記独立メタライズ配線導体から
前記隣接する配線基板領域の封止用メタライズ層まで延
びる接続導体により電気的に接続したことから、独立メ
タライズ配線導体には隣接する配線基板領域の封止用メ
タライズ層から電解めっきのための電荷を供給して電解
めっきを行なうことができるので、各配線基板領域内の
互いに隣接するメタライズ配線導体同士の間に各配線基
板領域の境界線を横断して両者間を電気的に接続する接
続導体を設けることなく、全てのメタライズ配線導体お
よび封止用メタライズ層に電解めっきによるめっき金属
層を被着させることができる。 【0013】 【発明の実施の形態】本発明の多数個取り配線基板につ
いて添付の図面を基に説明する。図1は本発明の多数個
取り配線基板の実施の形態の一例を示す上面図であり、
図2は図1に示す多数個取り配線基板のA−A線におけ
る断面図である。図中、1はセラミック母基板、2は配
線基板領域である。 【0014】セラミック母基板1は、例えば酸化アルミ
ニウム質焼結体や窒化アルミニウム質焼結体、ムライト
質焼結体、ガラス−セラミックス等のセラミックス材料
から成る二層の絶縁層1a、1bが積層されて成る略四
角形の平板であり、その中央部に略四角形状の多数の配
線基板領域2が境界線3で区切られて縦横の並びに一体
的に配列形成されており、各配線基板領域2の境界線3
の交点上には、円形の貫通孔4が形成されている。ま
た、その外周部には枠状の捨代領域5が形成されてい
る。 【0015】このようなセラミック母基板1は、セラミ
ックグリーンシート積層法によって製作されており、具
体的には、絶縁層1a、1b用のセラミックグリーンシ
ートをそれぞれ準備するとともに、これらのセラミック
グリーンシートに貫通孔4用の打ち抜き孔等を打ち抜き
加工した後に積層し、それを高温で焼成することによっ
て製作される。 【0016】セラミック母基板1の中央部に配列形成さ
れた各配線基板領域2は、それぞれが電子装置用の小型
の配線基板となる領域であり、それぞれの上面中央部に
電子部品を収容するための略四角形の凹部2aを有して
おり、凹部2aの底面から相対向する外周辺を介して下
面に導出する複数のメタライズ配線導体6が、凹部2a
を取り囲む上面には凹部2aを気密に封止するための金
属蓋体が接合される封止用メタライズ層7が被着形成さ
れている。また、各配線基板領域2を区切る境界線3上
に形成された貫通孔4の内壁には、各封止用メタライズ
層7を互いに接続する内壁メタライズ(不図示)がその
全周にわたり被着形成されている。なお、これらのメタ
ライズ配線導体6や封止用メタライズ層7や内壁メタラ
イズは、タングステンやモリブデン、銅、銀等の金属粉
末メタライズから形成されている。 【0017】なお、このような各配線基板領域2の凹部
2aは、絶縁層1b用のセラミックグリーンシートに凹
部2a用の略四角形の貫通孔を打ち抜いておくことによ
って形成され、各メタライズ配線導体6や封止用メタラ
イズ層7、内壁メタライズは、絶縁層1a、1b用のセ
ラミックグリーンシートの上面や下面あるいは貫通孔4
用の打ち抜き孔の側面にメタライズ配線導体6や封止用
メタライズ層7や内壁メタライズ用のメタライズペース
トを所定のパターンに印刷塗布しておくことによって形
成される。 【0018】そして、各配線基板領域2は、その凹部2
a内に半導体素子や水晶振動子等の電子部品が収容され
るとともに、凹部2a内のメタライズ配線導体6に電子
部品の各電極が例えば半田バンプやボンディングワイヤ
を介して電気的に接続され、しかる後、各配線基板領域
2の上面の封止用メタライズ層7に金属蓋体をろう材を
介して接合することによって電子部品が凹部2a内に気
密に封止され、その後、セラミック母基板1を各配線基
板領域2の境界線3に沿って分割することによって、多
数個の電子装置となる。そして、この半導体装置は、そ
の外周辺から下面にかけて導出したメタライズ配線導体
6を外部電気回路基板の配線導体に半田を介して接続す
ることによって、外部電気回路基板に実装されるととも
に内部に収容する電子部品が外部電気回路に電気的に接
続されることとなる。なお、セラミック母基板1を各配
線基板領域2の境界線3に沿って分割するには、セラミ
ック母基板1の上下面の各配線基板領域2の境界線3上
に分割溝を形成しておき、その分割溝に沿って撓折する
方法や、セラミック母基板1を各配線基板領域2の境界
線3に沿ってダイアモンドカッターやレーザーカッター
等により切断する方法が採用される。 【0019】なお、この多数個取り配線基板において
は、各配線基板領域2の各メタライズ配線導体6および
封止用メタライズ層7および貫通孔4の内壁に被着され
た内壁メタライズの表面には、これらの各メタライズ配
線導体6および封止用メタライズ層7および内壁メタラ
イズが酸化腐食するのを防止するとともに各メタライズ
配線導体6と電子部品の電極や外部電気回路基板の配線
導体との接続および封止用メタライズ層7と金属蓋体と
の接合を良好なものとするために、通常であれば、1〜
10μm程度の厚みのニッケルめっき層と0.1〜3μ
m程度の厚みの金めっき層とが電解めっき法により順次
被着されている。 【0020】また、セラミック母基板1の外周部に形成
された捨て代領域5は、多数個取り配線基板の製造や搬
送等の際に多数個取り配線基板の取り扱いを容易とする
ための領域であり、その上面には、各貫通孔4の内壁に
被着された内壁メタライズのうちの最外周に位置するも
のに電気的に接続された枠状のめっき導通用メタライズ
層8が配設されており、さらにその外周側面にはめっき
導通用メタライズ層8に電気的に接続されためっき導通
用メタライズ端子9が被着形成されている。これらのめ
っき導通用メタライズ層8およびめっき導通用メタライ
ズ端子9は、各配線基板領域2の各メタライズ配線導体
6、封止用メタライズ層7および内壁メタライズに電解
めっきのための電荷を供給するための導電路として機能
し、めっき導通用メタライズ端子9からめっき導通用メ
タライズ層8を介して、各内壁メタライズおよび封止用
メタライズ層7およびメタライズ配線導体6に電解めっ
きのための電荷を供給して電解めっきを施すことによ
り、各メタライズ配線導体6および封止用メタライズ層
7および内壁メタライズの表面にニッケルめっき層およ
び金めっき層が順次被着される。このようなめっき導通
用メタライズ層8やめっき導通用メタライズ端子9は、
タングステンやモリブデン、銅、銀等の金属粉末メタラ
イズから形成されており、絶縁層1a、1b用のセラミ
ックグリーンシートにめっき導通用メタライズ層8やめ
っき導通用メタライズ端子9用のメタライズペーストを
所定のパターンに印刷塗布しておくことによって形成さ
れる。 【0021】なお、本発明の多数個取り配線基板におい
ては、図3に部分拡大上面図で示すように、各配線基板
領域2のメタライズ配線導体6は、その配線基板領域2
において封止用メタライズ層7に接続された接地用メタ
ライズ配線導体6aと、その配線基板領域2において封
止用メタライズ層7に非接続の独立メタライズ配線導体
6b、6c、6d、6eとを備えている。 【0022】各配線基板領域2の接地用メタライズ配線
導体6aは、その配線基板領域2において絶縁層1bを
貫通する貫通導体10により封止用メタライズ層7に接
続されており、この接地用メタライズ配線導体6aに
は、封止用メタライズ層7から貫通導体10を介して電
解めっきのための電荷を供給して電解めっきを施すこと
によりニッケルめっき層および金めっき層が被着され
る。なお、貫通導体10はタングステンやモリブデン、
銅、銀等の金属粉末メタライズから形成されており、絶
縁層1b用のセラミックグリーンシートに貫通導体10
を設けるための貫通孔を穿孔しておくとともにその貫通
孔内に貫通導体10用のメタライズペーストを充填して
おくことによって形成される。 【0023】また、独立メタライズ配線導体6のうち、
6bは隣接する配線基板領域2の接地用メタライズ配線
導体6aに接続されており、この独立メタライズ配線導
体6bには、隣接する配線基板領域2の接地用メタライ
ズ配線導体6aを介して電解めっきのための電荷を供給
して電解めっきを施すことによりニッケルめっき層およ
び金めっき層が被着される。 【0024】また、独立メタライズ配線導体6のうち、
6cと6dは隣接する配線基板領域2の封止用メタライ
ズ層7に接続導体11a、11bを介して接続されてお
り、これらの独立メタライズ配線導体6cと6dには、
隣接する配線基板領域2の封止用メタライズ層7から接
続導体11a、11bを介して電解めっきのための電荷
を供給して電解めっきを施すことによりニッケルめっき
層および金めっき層が被着される。なお接続導体11
a、11bは、タングステンやモリブデン、銅、銀等の
金属粉末メタライズから形成されており、独立メタライ
ズ層6c、6dから絶縁層1a、1b間を隣接する配線
基板領域2に延びる水平導体と絶縁層1bを貫通する貫
通導体とから成る。そして、絶縁層1b用のセラミック
グリーンシートに貫通導体を設けるための貫通孔を穿孔
し、その貫通孔内に貫通導体用のメタライズペーストを
充填しておくとともに絶縁層1a用のセラミックグリー
ンシートの上面に水平導体用のメタライズペーストを所
定のパターンに印刷塗布しておくことによって形成され
る。 【0025】さらに、独立メタライズ配線導体のうち、
6eは隣接する配線基板領域2の独立メタライズ配線導
体6dに接続されており、この独立メタライズ配線導体
6eには、隣接する配線基板領域2の独立メタライズ配
線導体6dを介して電解めっきのための電荷を供給して
電解めっきを施すことによりニッケルめっき層および金
めっき層が被着される。 【0026】このように、本発明の多数個取り配線基板
によれば、セラミック母基板1の内部を独立メタライズ
配線導体6c、6dから隣接する配線基板領域2の封止
用メタライズ層7に延びる接続導体11a、11bを設
けたことから、各配線基板領域2の接地用メタライズ配
線導体6aにはその配線基板領域2の封止用メタライズ
層7から貫通導体10を介して、独立メタライズ配線導
体6bには隣接する配線基板領域2の接地用メタライズ
配線導体6aを介して、独立メタライズ配線導体6c、
6dには隣接する配線基板領域2の封止用メタライズ層
7から接続導体11a、11bを介して、独立メタライ
ズ配線導体6eには隣接する配線基板領域2の独立メタ
ライズ配線導体6dを介してそれぞれ電解めっきのため
の電荷を供給して電解めっきを施すことによりニッケル
めっき層および金めっき層を被着させることができる。
したがって、各配線基板領域2内の互いに隣接するメタ
ライズ配線導体6同士を各配線基板領域2の境界線3を
横断して電気的に接続するめっき導通用の接続導体を各
配線基板領域2内の互いに隣接するメタライズ配線導体
6同士の間に設ける必要はなく、メタライズ配線導体6
同士の間隔が極めて狭いものであっても、各メタライズ
配線導体6および封止用メタライズ層7に電解めっき法
によりめっき金属層を被着させることができる。また、
独立メタライズ配線導体6bは隣接する配線基板領域2
の接地用メタライズ配線導体6aに、独立メタライズ配
線導体6c、6dは隣接する配線基板領域2の封止用メ
タライズ層7に、独立メタライズ配線導体6eは隣接す
る配線基板領域2の独立メタライズ配線導体6dにそれ
ぞれ接続されていることから、セラミック母基板1を境
界線3に沿って各配線基板領域2に分割すると、分割さ
れた各配線基板領域2の各独立メタライズ配線導体6
b、6c、6d、6eはいずれも電気的に独立したメタ
ライズ配線導体6となる。 【0027】かくして、本発明の多数個取り配線基板に
よれば、各配線基板領域2の凹部2a内に電子部品を搭
載固定するとともに、この電子部品の電極と各メタライ
ズ配線導体6とを電気的に接続した後、各配線基板領域
2の上面の封止用メタライズ層7に金属蓋体をろう材を
介して接合するとともに、セラミック母基板1を境界線
3に沿って各配線基板領域2に分割することにより、多
数個の電子装置が同時集約的に製作される。 【0028】なお、本発明は上述の実施の形態の一例に
限定されるものではなく、本発明の要旨を逸脱しない範
囲であれば、種々の変更は可能であり、例えば上述の実
施の形態の一例では、セラミック母基板1は2層の絶縁
層1a、1bを積層して形成されていたが、セラミック
母基板1は3層以上の絶縁層を積層することにより形成
されていてもよい。 【0029】 【発明の効果】本発明の多数個取り配線基板によれば、
各配線基板領域の封止用メタライズ層同士を互いに電気
的に接続するとともに、各配線基板領域内において封止
用メタライズ層に非接続の独立メタライズ配線導体を、
その独立メタライズ配線導体が被着形成された配線基板
領域に隣接する配線基板領域の封止用メタライズ層にセ
ラミック母基板の内部を前記独立メタライズ配線導体か
ら前記隣接する配線基板領域の封止用メタライズ層まで
延びる接続導体により電気的に接続したことから、独立
メタライズ配線導体には隣接する配線基板領域の封止用
メタライズ層から電解めっきのための電荷を供給して電
解めっきを行なうことができるので、各配線基板領域内
で隣接するメタライズ配線導体同士の間に各配線基板領
域の境界線を横断して両者間を電気的に接続する接続導
体を設けることなく、全てのメタライズ配線導体および
封止用メタライズ層に電解めっきによるめっき金属層を
被着させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-sized wiring for accommodating electronic components in a central portion of a ceramic mother substrate formed by laminating a plurality of insulating layers. The present invention relates to a multi-cavity wiring board in which a large number of substantially rectangular wiring board regions serving as substrates are formed vertically and horizontally and integrally arranged. 2. Description of the Related Art Conventionally, a small-sized wiring board used for an electronic component housing package for housing an electronic component such as a semiconductor element or a quartz oscillator is made of, for example, a ceramic such as an aluminum oxide sintered body. Consisting of a plurality of insulating layers consisting of a plurality of layers and having a concave portion for accommodating an electronic component on the upper surface, and a substantially square-shaped insulating substrate. A plurality of metallized wiring conductors, and a frame-shaped metallizing layer for sealing, which is attached to the upper surface of the insulating base so as to surround the recess. Some of the metallized wiring conductors are electrically connected to the encapsulation metallization layer, and others are electrically independent of the encapsulation metallization layer. The metallized wiring conductor connected to the metallizing layer for sealing is usually a metallized wiring conductor for grounding, and the metallized wiring conductor electrically independent from the metallizing layer for sealing is a metallized wiring conductor for signals. According to this wiring board, the electronic component is accommodated in the concave portion of the insulating base, and the electrode of the electronic component is electrically connected to the metallized wiring conductor on the bottom surface of the concave portion via a conductive adhesive or a bonding wire. After connecting and then
An electronic device as a product is obtained by joining a metal lid to the sealing metallization layer on the upper surface of the insulating substrate so as to cover the concave portion and hermetically housing the electronic component in the concave portion. The metallized wiring layer derived from the outer periphery to the lower surface is connected to the wiring conductor of the external electric circuit board via solder, so that the electrodes of the electronic components mounted on the external electric circuit board and accommodated are electrically connected to the external electric circuit. Will be connected. [0004] In recent years, with the recent demand for miniaturization of electronic devices, the size of such a wiring board has become extremely small, about several mm square, and a large number of wiring boards must be handled. In order to facilitate the manufacture of the wiring board and the electronic device, and to efficiently manufacture the wiring board and the electronic device, a large number of wiring boards are simultaneously and intensively obtained from one large-area ceramic mother board. It is manufactured in the form of an individual wiring board. This multi-cavity wiring board has a concave portion for accommodating an electronic component on an upper surface thereof in a central portion of a substantially flat ceramic mother substrate formed by laminating a plurality of insulating layers. A large number of substantially rectangular wiring board regions in which a plurality of metallized wiring conductors extending from the bottom surface of the concave portion to the bottom surface through the outer periphery to the bottom surface and a frame-shaped encapsulating metallization layer on the upper surface surrounding the concave portion are integrated vertically and horizontally. The metallized wiring conductor for grounding and the metallization layer for sealing in each wiring board area are electrically connected to each other in the wiring board area. Then, before or after accommodating the electronic component in the recess of each wiring board area, a large number of wiring boards or electronic devices are simultaneously and intensively manufactured by dividing the ceramic mother board into each wiring board area. . In such a multi-cavity wiring board, the metallized wiring conductors and the metallization layer for sealing are prevented from being oxidized and corroded, and the metallized wiring conductors and the electrodes of the electronic components and the wiring of the external electric circuit board are prevented. In order to improve the electrical connection with the conductor and the bonding between the metallizing layer for sealing and the metal cover, the exposed surface of each metallized wiring conductor and the metallizing layer for sealing has a thickness of 1 to 1 for example.
Nickel plating layer of about 0 μm and thickness of 0.1 to 3 μm
Gold plating layers are sequentially applied by electrolytic plating. Heretofore, in such a multi-cavity wiring board, a ceramic mother board is required to apply a nickel plating layer or a gold plating layer to each metallized wiring conductor or metallizing layer for encapsulation by electrolytic plating. Between the insulating layers,
All metallized wiring conductors are electrically connected by providing a plurality of connection conductors for plating conduction that electrically connect adjacent metallized wiring conductors in each wiring board area to each other across the boundary of each wiring board area. A method has been adopted in which a common connection is made, and an electric charge for electrolytic plating is supplied through the connection conductor to perform electrolytic plating on the exposed surfaces of each metallized wiring conductor and the metallized layer for sealing. Since the metallized wiring conductors adjacent to each wiring board region are electrically connected to each other by the plating conductive connection conductors across the boundary of each wiring board region, the ceramic mother board is connected to each wiring board wiring. After being divided into substrate regions, each will be electrically independent of the other. [0009] However, recent wiring boards have been miniaturized and densified.
The distance between adjacent metallized wiring conductors has become extremely narrow. Also, in a multi-cavity wiring board for obtaining such a wiring board, a plurality of metallized wiring conductors adjacent to each other are electrically connected to each other across the boundary of each wiring board region, and a plurality of connection conductors for plating conduction are provided. Has become extremely difficult. Therefore, it has become difficult to electrically connect the metallized wiring conductors in common with such connection conductors and to apply a plating metal layer to each metallized wiring conductor or the metallization layer for sealing by electrolytic plating. . The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to connect adjacent metallized wiring conductors in each wiring board area arranged on a ceramic mother board to each wiring board area. It is possible to apply a plating metal layer to each metallized wiring conductor and encapsulation metallized layer by an electrolytic plating method without providing a plating conductive connection conductor that electrically connects with each other across the boundary line of An object of the present invention is to provide a multi-cavity wiring board. According to the present invention, there is provided a multi-piece wiring board for accommodating electronic components on a top surface of a ceramic mother board formed by laminating a plurality of insulating layers. A large number of substantially rectangular wiring board regions having recesses are formed vertically and horizontally in an array, and a frame-shaped sealing metallization layer electrically connected to the upper surface of each of the wiring board regions and surrounding the recesses respectively. A multi-cavity wiring board formed by applying a non-connected independent metallized wiring conductor to the sealing metallization layer in each of the wiring board areas from the inside of the recess to the outer periphery of the wiring board area, The independent metallized wiring conductor is provided on the sealing metallization layer in a wiring board area adjacent to a wiring board area on which the independent metallized wiring conductor is formed. The inside of the substrate is electrically connected by a connection conductor extending from the independent metallized wiring conductor to the metallization layer for sealing in the adjacent wiring substrate region. According to the multi-cavity wiring board of the present invention, the metallization layers for sealing in the respective wiring board regions are electrically connected to each other, and the metallization layers in the respective wiring board regions are not connected to the metallization layers for sealing. The inside of the ceramic motherboard is separated from the independent metallized wiring conductor by the metallization layer for sealing in the wiring board area adjacent to the wiring board area on which the independent metallized wiring conductor is formed. Since the connection is made electrically by the connection conductor extending to the metallization layer for encapsulation of the region, the charge for electrolytic plating is supplied to the independent metallized wiring conductor from the metallization layer for encapsulation of the adjacent wiring board region, and the electrolytic plating is performed. Can be performed, so that a boundary line of each wiring board area is formed between adjacent metallized wiring conductors in each wiring board area. Sectional and without providing a connection conductor for electrically connecting therebetween, it is possible to deposit a plated metal layer by electrolytic plating on all metallized wiring conductor and the sealing metallized layer. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A multi-cavity wiring board according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a top view showing an example of an embodiment of a multi-cavity wiring board of the present invention,
FIG. 2 is a cross-sectional view of the multi-piece wiring board shown in FIG. In the figure, reference numeral 1 denotes a ceramic mother board, and 2 denotes a wiring board area. The ceramic mother substrate 1 is formed by laminating two insulating layers 1a and 1b made of a ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, and a glass-ceramic. A plurality of substantially rectangular wiring board regions 2 are formed at the center of the plate, and are vertically and horizontally arranged in a line at a center portion of the wiring board region 2 by a boundary line 3. Line 3
A circular through-hole 4 is formed on the intersection of. Further, a frame-shaped waste area 5 is formed in the outer peripheral portion. The ceramic mother substrate 1 is manufactured by a ceramic green sheet laminating method. Specifically, ceramic green sheets for the insulating layers 1a and 1b are prepared, and the ceramic green sheets are formed on the ceramic green sheets. It is manufactured by punching a punched hole or the like for the through hole 4 and then laminating and firing it at a high temperature. Each of the wiring board regions 2 arranged in the center of the ceramic mother substrate 1 is a region that becomes a small wiring board for an electronic device, and accommodates electronic components in the center of the upper surface of each. A plurality of metallized wiring conductors 6 extending from the bottom surface of the concave portion 2a to the lower surface via opposed outer peripheries are formed in the concave portion 2a.
A sealing metallization layer 7 to which a metal lid for hermetically sealing the recess 2a is bonded is formed on the upper surface surrounding the recess 2a. An inner wall metallization (not shown) connecting the sealing metallization layers 7 to each other is formed on the inner wall of the through hole 4 formed on the boundary line 3 separating the wiring board regions 2 over the entire circumference. Have been. The metallized wiring conductor 6, the metallizing layer 7 for sealing, and the metallization on the inner wall are formed from metal powders of metal such as tungsten, molybdenum, copper and silver. The recess 2a of each wiring board region 2 is formed by punching a substantially rectangular through hole for the recess 2a in a ceramic green sheet for the insulating layer 1b. Metallization layer 7 for sealing and inner wall metallization are formed on the upper and lower surfaces or through holes 4 of ceramic green sheets for insulating layers 1a and 1b.
The metallized wiring conductor 6, the metallized layer 7 for sealing, and the metallized paste for metallizing the inner wall are printed and applied in a predetermined pattern on the side surfaces of the punched holes for metallization. Each wiring board region 2 has its recess 2
a, electronic components such as a semiconductor element and a quartz oscillator are accommodated, and each electrode of the electronic component is electrically connected to the metallized wiring conductor 6 in the recess 2a via, for example, a solder bump or a bonding wire. Thereafter, the electronic component is hermetically sealed in the recess 2a by joining a metal lid to the sealing metallization layer 7 on the upper surface of each wiring board region 2 via a brazing material. By dividing the wiring board area 2 along the boundary 3, a large number of electronic devices are obtained. The semiconductor device is mounted on the external electric circuit board and housed therein by connecting the metallized wiring conductor 6 extending from the outer periphery to the lower surface to the wiring conductor of the external electric circuit board via solder. The electronic component will be electrically connected to the external electric circuit. In order to divide the ceramic mother substrate 1 along the boundary 3 between the wiring substrate regions 2, division grooves are formed on the upper and lower surfaces of the ceramic mother substrate 1 on the boundary 3 between the wiring substrate regions 2. A method of bending along the dividing groove or a method of cutting the ceramic mother substrate 1 along a boundary 3 of each wiring board region 2 by a diamond cutter, a laser cutter or the like is adopted. In this multi-cavity wiring board, the surface of each metallized wiring conductor 6 in each wiring board region 2, the metallization layer 7 for sealing, and the inner wall metallized on the inner wall of the through hole 4 are provided. These metallized wiring conductors 6, sealing metallization layer 7 and inner wall metallization are prevented from being oxidized and corroded, and each metallized wiring conductor 6 is connected to an electrode of an electronic component or a wiring conductor of an external electric circuit board and sealed. In order to improve the bonding between the metallizing layer 7 for metal and the metal lid, it is usually 1 to
Nickel plating layer of about 10 μm thickness and 0.1 to 3 μm
A gold plating layer having a thickness of about m is sequentially applied by an electrolytic plating method. The disposal area 5 formed on the outer peripheral portion of the ceramic mother substrate 1 is an area for facilitating the handling of the multi-piece wiring board when manufacturing or transporting the multi-piece wiring board. On the upper surface thereof, there is provided a frame-shaped plating conduction metallization layer 8 electrically connected to the innermost metallization layer of the inner wall metallization applied to the inner wall of each through hole 4. Further, a metallizing terminal 9 for plating conduction electrically connected to the metallizing layer 8 for plating conduction is formed on the outer peripheral side surface thereof. These plating conductive metallization layers 8 and plating conductive metallized terminals 9 are used to supply electric charges for electrolytic plating to each metallized wiring conductor 6, sealing metallized layer 7 and inner wall metallized in each wiring board region 2. It functions as a conductive path, and supplies a charge for electrolytic plating to each inner wall metallization / sealing metallization layer 7 and metallization wiring conductor 6 from the plating metallization terminal 9 via the plating metallization layer 8 to perform electrolysis. By plating, a nickel plating layer and a gold plating layer are sequentially applied to the surfaces of each metallized wiring conductor 6, sealing metallization layer 7, and inner wall metallization. Such a metallization layer 8 for plating conduction and a metallized terminal 9 for plating conduction are
A metallized metal powder of tungsten, molybdenum, copper, silver, etc., is formed from a metallized metallized paste. It is formed by printing and coating on the surface. In the multi-cavity wiring board of the present invention, the metallized wiring conductor 6 in each wiring board area 2 is connected to the wiring board area 2 as shown in FIG.
And a metallized wiring conductor 6a for grounding connected to the metallizing layer 7 for sealing, and independent metallized wiring conductors 6b, 6c, 6d and 6e not connected to the metallizing layer 7 for sealing in the wiring board region 2. I have. The ground metallized wiring conductor 6a in each wiring board region 2 is connected to the sealing metallized layer 7 by a through conductor 10 penetrating through the insulating layer 1b in the wiring board region 2, and this ground metallized wiring is provided. A nickel plating layer and a gold plating layer are applied to the conductor 6a by supplying a charge for electrolytic plating from the sealing metallized layer 7 through the through conductor 10 and performing electrolytic plating. The through conductor 10 is made of tungsten, molybdenum,
It is made of metallized metal powder such as copper, silver, and the like.
And a metallizing paste for the through conductor 10 is filled in the through hole. Further, of the independent metallized wiring conductors 6,
6b is connected to the metallized wiring conductor 6a for grounding in the adjacent wiring board region 2 and the independent metallized wiring conductor 6b is connected to the metallized wiring conductor 6a for grounding in the adjacent wiring board region 2 for electrolytic plating. The nickel plating layer and the gold plating layer are deposited by supplying the electric charges and performing the electrolytic plating. In the independent metallized wiring conductor 6,
6c and 6d are connected to the sealing metallization layer 7 of the adjacent wiring board region 2 via connection conductors 11a and 11b, and these independent metallization wiring conductors 6c and 6d have
A nickel plating layer and a gold plating layer are deposited by supplying a charge for electrolytic plating from the sealing metallization layer 7 of the adjacent wiring board region 2 via the connection conductors 11a and 11b and performing electrolytic plating. . The connection conductor 11
a and 11b are formed from metal powders of metal such as tungsten, molybdenum, copper, silver, etc., and extend from the independent metallization layers 6c and 6d to the adjacent wiring board region 2 between the insulating layers 1a and 1b and the insulating layer. 1b. Then, a through hole for providing a through conductor is formed in the ceramic green sheet for the insulating layer 1b, a metallizing paste for the through conductor is filled in the through hole, and an upper surface of the ceramic green sheet for the insulating layer 1a is formed. Is formed by printing and applying a metallization paste for a horizontal conductor in a predetermined pattern. Further, among the independent metallized wiring conductors,
Reference numeral 6e is connected to the independent metallized wiring conductor 6d of the adjacent wiring board region 2, and the independent metallized wiring conductor 6e is connected to the charge for electrolytic plating via the independent metallized wiring conductor 6d of the adjacent wiring board region 2. The nickel plating layer and the gold plating layer are adhered by supplying and supplying electrolytic plating. As described above, according to the multi-cavity wiring board of the present invention, the connection extending inside the ceramic mother substrate 1 from the independent metallized wiring conductors 6c and 6d to the sealing metallized layer 7 in the adjacent wiring board area 2. Since the conductors 11a and 11b are provided, the metallized wiring conductor 6a for grounding in each wiring board area 2 is connected to the independent metallized wiring conductor 6b from the sealing metallization layer 7 in the wiring board area 2 via the through conductor 10. Are independent metallized wiring conductors 6c, via the metallized wiring conductors 6a for grounding in the adjacent wiring board region 2,
Electrodes 6d are formed from the metallization layer 7 for sealing in the adjacent wiring board region 2 via the connection conductors 11a and 11b, and the independent metallized wiring conductor 6e is formed via the independent metallized wiring conductor 6d in the adjacent wiring board region 2. The nickel plating layer and the gold plating layer can be deposited by supplying an electric charge for plating and performing electrolytic plating.
Accordingly, the metallized wiring conductors 6 adjacent to each other in each wiring board region 2 are electrically connected to each other by electrically connecting the metallized wiring conductors 6 across the boundary 3 of each wiring board region 2. It is not necessary to provide between metallized wiring conductors 6 adjacent to each other.
Even if the distance between the metallized wiring conductors is extremely small, a plated metal layer can be applied to each metallized wiring conductor 6 and the sealing metallized layer 7 by an electrolytic plating method. Also,
The independent metallized wiring conductor 6b is connected to the adjacent wiring board region 2
The independent metallized wiring conductors 6c and 6d are connected to the sealing metallization layer 7 in the adjacent wiring board region 2, and the independent metallized wiring conductor 6e is connected to the independent metallized wiring conductor 6d in the adjacent wiring board region 2. When the ceramic mother substrate 1 is divided into the respective wiring board regions 2 along the boundary line 3, each of the independent metallized wiring conductors 6 in each of the divided wiring board regions 2 is connected.
Each of b, 6c, 6d and 6e becomes an electrically independent metallized wiring conductor 6. Thus, according to the multi-cavity wiring board of the present invention, the electronic component is mounted and fixed in the concave portion 2a of each wiring board region 2, and the electrode of the electronic component and each metallized wiring conductor 6 are electrically connected. After the connection, the metal cover is joined to the sealing metallization layer 7 on the upper surface of each wiring board region 2 via a brazing material, and the ceramic mother substrate 1 is connected to each wiring board region 2 along the boundary line 3. By dividing, a large number of electronic devices are simultaneously and intensively manufactured. The present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the gist of the present invention. In one example, the ceramic mother substrate 1 is formed by laminating two insulating layers 1a and 1b, but the ceramic mother substrate 1 may be formed by laminating three or more insulating layers. According to the multi-cavity wiring board of the present invention,
While electrically connecting the sealing metallization layers of each wiring board region to each other, an independent metallized wiring conductor not connected to the sealing metallization layer in each wiring board region,
The inside of the ceramic mother board is sealed from the independent metallized wiring conductor to the metallizing layer for sealing the adjacent wiring board region on the sealing metallization layer in the wiring substrate region adjacent to the wiring substrate region on which the independent metallized wiring conductor is formed. Since the electrical connection is made by the connection conductor extending to the layer, the independent metallized wiring conductor can be supplied with the charge for the electrolytic plating from the metallization layer for sealing in the adjacent wiring substrate region, so that the electrolytic plating can be performed. All metallized wiring conductors and sealing are provided between adjacent metallized wiring conductors in each wiring board area without providing a connection conductor that traverses the boundary of each wiring board area and electrically connects the two. A plating metal layer by electrolytic plating can be applied to the metallizing layer for use.

【図面の簡単な説明】 【図1】本発明の多数個取り配線基板の実施の形態の一
例を示す上面図である。 【図2】図1に示す多数個取り配線基板のA−Aにおけ
る断面図である。 【図3】図1に示す多数個取り配線基板の部分拡大上面
図である。 【符号の説明】 1・・・・・・・セラミック母基板 2・・・・・・・配線基板領域 2a・・・・・・電子部品を収容するための凹部 3・・・・・・・境界線 6・・・・・・・メタライズ配線導体 6b、6c、6d、6e・・・独立メタライズ配線導体 7・・・・・・・封止用メタライズ層 11a、11b・・・接続導体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top view showing an example of an embodiment of a multi-piece wiring board according to the present invention. FIG. 2 is a cross-sectional view of the multi-piece wiring board shown in FIG. FIG. 3 is a partially enlarged top view of the multi-piece wiring board shown in FIG. 1; [Description of Signs] 1 ... Ceramic mother board 2 ... Wiring board area 2a ... Recess 3 for accommodating electronic components ... Boundary line 6 Metallized wiring conductors 6b, 6c, 6d, 6e Independent metallized wiring conductor 7 Metallizing layers 11a, 11b for sealing Connection conductor

Claims (1)

【特許請求の範囲】 【請求項1】 複数の絶縁層を積層して成るセラミック
母基板の中央部に、各々が上面に電子部品を収容するた
めの凹部を有する略四角形状の多数の配線基板領域を縦
横の並びに配列形成するとともに、前記各配線基板領域
の上面に互いに電気的に接続されて前記凹部をそれぞれ
取り囲む枠状の封止用メタライズ層および前記各配線基
板領域の凹部内から外周辺にかけて、前記各配線基板領
域内において前記封止用メタライズ層に非接続の独立メ
タライズ配線導体を被着形成して成る多数個取り配線基
板であって、前記独立メタライズ配線導体は、該独立メ
タライズ配線導体が被着形成された配線基板領域に隣接
する配線基板領域の前記封止用メタライズ層に、前記セ
ラミック母基板の内部を前記独立メタライズ配線導体か
ら前記隣接する配線基板領域の封止用メタライズ層まで
延びる接続導体により電気的に接続されていることを特
徴とする多数個取り配線基板。
Claims: 1. A large number of substantially rectangular wiring boards each having a concave portion for accommodating an electronic component in a central portion of a ceramic mother substrate formed by laminating a plurality of insulating layers. The regions are arranged vertically and horizontally, and are electrically connected to the upper surface of each of the wiring substrate regions, and each has a frame-shaped sealing metallization layer that surrounds the concave portion. A multi-cavity wiring board formed by applying a non-connected independent metallized wiring conductor to the sealing metallization layer in each of the wiring board regions, wherein the independent metallized wiring conductor is In the encapsulation metallization layer in the wiring board area adjacent to the wiring board area on which the conductors are formed, the inside of the ceramic motherboard is separated into the independent metallized wiring conductors. Multiple patterning wiring board, characterized in that it is electrically connected by a connection conductor extending to the sealing metallized layer of the wiring substrate region et said adjacent.
JP2002122076A 2002-04-24 2002-04-24 Multi-wiring board Expired - Fee Related JP3838935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122076A JP3838935B2 (en) 2002-04-24 2002-04-24 Multi-wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122076A JP3838935B2 (en) 2002-04-24 2002-04-24 Multi-wiring board

Publications (2)

Publication Number Publication Date
JP2003318314A true JP2003318314A (en) 2003-11-07
JP3838935B2 JP3838935B2 (en) 2006-10-25

Family

ID=29537789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122076A Expired - Fee Related JP3838935B2 (en) 2002-04-24 2002-04-24 Multi-wiring board

Country Status (1)

Country Link
JP (1) JP3838935B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093566A (en) * 2004-09-27 2006-04-06 Kyocera Corp Multiple-piece arranged wiring board, package for housing electronic component and electronic equipment
JP2006210615A (en) * 2005-01-27 2006-08-10 Kyocera Corp Multiple pattern wiring board
JP2008034494A (en) * 2006-07-27 2008-02-14 Kyocera Corp Electronic-component mounting package, and electronic device and its manufacturing method
JP2008258195A (en) * 2007-03-30 2008-10-23 Kyocera Corp Wiring board, channel formation wiring board, structure, and process for producing channel formation wiring board
JP2009010103A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Multiple patterning ceramic substrate
JP2010056513A (en) * 2008-07-28 2010-03-11 Kyocera Corp Method for manufacturing multi-piece wiring board, and multi-piece wiring board, wiring board and electronic device
JP2011159705A (en) * 2010-01-29 2011-08-18 Kyocera Kinseki Corp Method of manufacturing element mounting member wafer, and method of manufacturing element mounting member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093566A (en) * 2004-09-27 2006-04-06 Kyocera Corp Multiple-piece arranged wiring board, package for housing electronic component and electronic equipment
JP4562473B2 (en) * 2004-09-27 2010-10-13 京セラ株式会社 Manufacturing method of electronic component storage package
JP2006210615A (en) * 2005-01-27 2006-08-10 Kyocera Corp Multiple pattern wiring board
JP4535893B2 (en) * 2005-01-27 2010-09-01 京セラ株式会社 Multiple wiring board
JP2008034494A (en) * 2006-07-27 2008-02-14 Kyocera Corp Electronic-component mounting package, and electronic device and its manufacturing method
JP2008258195A (en) * 2007-03-30 2008-10-23 Kyocera Corp Wiring board, channel formation wiring board, structure, and process for producing channel formation wiring board
JP2009010103A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Multiple patterning ceramic substrate
JP2010056513A (en) * 2008-07-28 2010-03-11 Kyocera Corp Method for manufacturing multi-piece wiring board, and multi-piece wiring board, wiring board and electronic device
JP2011159705A (en) * 2010-01-29 2011-08-18 Kyocera Kinseki Corp Method of manufacturing element mounting member wafer, and method of manufacturing element mounting member

Also Published As

Publication number Publication date
JP3838935B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP2000340687A (en) Package for storing semiconductor element
JP2003318314A (en) Multi-cavity circuit substrate
JP2005294697A (en) Electronic part and manufacturing method thereof
JP3404375B2 (en) Multi-cavity wiring board
JP4605945B2 (en) Multi-circuit board and method for manufacturing electronic device
JP2007173629A (en) Package for housing electronic part and electronic equipment
JP2003347689A (en) Multipiece wiring board
JP2002299520A (en) Wiring board and multi-product wiring board
JP2001274280A (en) Multipiece ceramic wiring substrate
JP2003303915A (en) Multipiece taking wiring boards
JP3842683B2 (en) Multi-wiring board
JP2003282764A (en) Wiring board of multiple allocation
JP4272506B2 (en) Multiple wiring board
JP5377138B2 (en) Multi-wiring board
JP7433766B2 (en) Circuit boards, electronic components and electronic modules
JP2004055985A (en) Ceramic package and electronic apparatus
JP2005317590A (en) Multiple wiring board
JP2010129661A (en) Mounting structure of electronic device
JP2003198310A (en) Accommodation package for piezoelectric vibrator
JP3950950B2 (en) Manufacturing method of ceramic wiring board
JP3894810B2 (en) Multiple wiring board
JP2005285865A (en) Multiple wiring board
JP2020136310A (en) Circuit board, electronic component, and electronic module
JP2003249589A (en) Wiring board for multiple units
JP2004022957A (en) Substrate for placing electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3838935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees