JP2003317806A - Nonaqueous lithium secondary cell, and manufacturing method of the same - Google Patents

Nonaqueous lithium secondary cell, and manufacturing method of the same

Info

Publication number
JP2003317806A
JP2003317806A JP2002123153A JP2002123153A JP2003317806A JP 2003317806 A JP2003317806 A JP 2003317806A JP 2002123153 A JP2002123153 A JP 2002123153A JP 2002123153 A JP2002123153 A JP 2002123153A JP 2003317806 A JP2003317806 A JP 2003317806A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
active material
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002123153A
Other languages
Japanese (ja)
Other versions
JP4023724B2 (en
Inventor
Kazuhiro Tachibana
和宏 立花
Takeaki Ozaki
健明 尾崎
Tatsuo Nishina
辰夫 仁科
Takashi Endo
孝志 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002123153A priority Critical patent/JP4023724B2/en
Publication of JP2003317806A publication Critical patent/JP2003317806A/en
Application granted granted Critical
Publication of JP4023724B2 publication Critical patent/JP4023724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous lithium secondary cell capable of charging and discharging at ultra-high speed. <P>SOLUTION: For the nonaqueous lithium secondary cell having a positive current collector electrode to which, positive active material is adhered, a ultra- high speed charge/discharge with excellent charging/discharging characteristic is obtained by adjusting the amount of positive active material m [g/cm<SP>2</SP>] adhered to the metallic surface of the positive current collector so as to satisfy the relation m≤(η/σ)×(1/CQ), on condition that η [V] represents the decomposition overpotential of the electrolytic solution, σ [Ωcm<SP>2</SP>] represents the contact resistance the between the positive current collector and the positive material including the positive current collector, Q [mAh/g] represents the theoretical quantity of electricity of the lithium compound oxide, and C [h<SP>-1</SP>] represents the C rate of the lithium cell. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超高速充放電を可
能にする非水電解質リチウム二次電池及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte lithium secondary battery that enables ultra-high speed charge / discharge and a method for manufacturing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとしている課題】従
来の非水電解質リチウム二次電池には、他の実用電池に
比べて充放電特性が劣るという欠点があった。すなわ
ち、現行(市販)のリチウム二次電池は、充電に時間が
かかり、放電電流が大きく取れない(Cレート:10程
度)という問題があった。その原因としては、非水電解
質リチウム二次電池に用いられる有機電解液が、他の実
用電池、すなわち水溶液系電解液に比して導電率が一桁
以上小さいことに加えて、非水電解質リチウム電池では
電荷移動がリチウムイオンであり、対して、水溶液系実
用電池の場合にはプロトンであることに比して、イオン
半径が大きく、そのため電解液への拡散が遅いことによ
る、と考えられている。
2. Description of the Related Art Conventional non-aqueous electrolyte lithium secondary batteries have a drawback that they are inferior in charge / discharge characteristics as compared with other practical batteries. That is, the current (commercially available) lithium secondary battery has a problem that it takes time to charge and a large discharge current cannot be obtained (C rate: about 10). The reason for this is that the organic electrolyte used in the non-aqueous electrolyte lithium secondary battery has a conductivity that is smaller than that of other practical batteries, that is, an aqueous electrolyte by one digit or more. It is thought that this is because the charge transfer in the battery is lithium ion, whereas in the case of the aqueous solution type practical battery, the ionic radius is larger than that in the case of the proton, and therefore the diffusion into the electrolyte is slow. There is.

【0003】本発明者等は、電気化学の研究に携わって
きた経験から上記理由以外にも、いくつかの重要な要因
がある、と考えてきた。従来の非水電解質リチウム二次
電池では、その正極集電体として、有機電解液中で耐食
性を持つアルミニウムが一般的に採用されている。アル
ミニウムは、耐食性に優れ、電気伝導性にも優れた材料
であり、集電体材料として優れた材料であるが、その耐
食性は、表面に形成された酸化物の不働態被膜によるも
のである。したがって、正極集電体に表面に付着される
正極活物質は、該不動態被膜によって隔てられてしま
い、活物質と集電体とが直接接する場合に比して接触抵
抗が極めて大きくなり、これも充放電特性を悪くする要
因の一つではないか、と考えてきた。
The inventors of the present invention have considered that there are some important factors other than the above reasons based on the experience of being involved in the research of electrochemistry. In a conventional non-aqueous electrolyte lithium secondary battery, aluminum having corrosion resistance in an organic electrolytic solution is generally adopted as a positive electrode current collector. Aluminum is a material that is excellent in corrosion resistance and electric conductivity and is an excellent material as a current collector material, but its corrosion resistance is due to the oxide passivation film formed on the surface. Therefore, the positive electrode active material adhered to the surface of the positive electrode current collector is separated by the passivation film, and the contact resistance becomes extremely large as compared with the case where the active material and the current collector are in direct contact. I wondered if this could be one of the factors that deteriorate the charge and discharge characteristics.

【0004】[0004]

【課題を解決するための手段】本発明者等は、接触抵抗
に影響を及ぼす種々の要因を検討し、この要因を制御す
ることによってリチウム二次電池の充放電特性の向上を
計ることは可能である、との観点に立って鋭意研究を重
ねた。従来の要因説にしたがって、電池の充放電特性を
改良しようとしても、有機電解液の導電率は、材料開発
から検討しなければならず、事実上制約があること、ま
たリチウムイオンの拡散速度は固有の性質であり、向上
は望めないので、これらの要因について検討するより
は、上記研究手法は、現実に即した有効な手法であると
の確信を抱くに至った。すなわち、充放電特性は、正極
集電体と正極材(正極活物質と助剤)との接触抵抗によ
って律せられているものと考え、この観点に沿って、こ
の接触抵抗に影響を与えている因子、要因を検討してき
た。
The inventors of the present invention can study various factors that affect the contact resistance and control the factors to improve the charge / discharge characteristics of a lithium secondary battery. From the viewpoint that, Even if the charge and discharge characteristics of the battery are to be improved according to the conventional theory of factors, the conductivity of the organic electrolyte must be considered from the material development, and there is a practical limitation. Since it is an inherent property and cannot be expected to improve, rather than examining these factors, I came to be convinced that the above research method is an effective method that matches reality. That is, it is considered that the charge / discharge characteristics are controlled by the contact resistance between the positive electrode current collector and the positive electrode material (the positive electrode active material and the auxiliary agent), and this contact resistance is influenced from this viewpoint. I have examined the factors that are present.

【0005】この検討の結果、前記接触抵抗σ[Ωcm
2]は、正極集電体の単位面積あたりの正極活物質付着
量m[g/cm2]、電解液の分解過電圧η[V]、正
極活物質の理論電気量Q[mAh/g]、リチウム電池
のCレート[h-1]等に依存し、これらとの間に一定の
関係があること、そして、こられの関係を、適宜調整す
ることによって、リチウム二次電池の充放電特性を向上
しうることが分かった。
As a result of this examination, the contact resistance σ [Ωcm
2 ] is the amount m [g / cm 2 ] of the positive electrode active material deposited per unit area of the positive electrode current collector, the decomposition overvoltage η [V] of the electrolytic solution, the theoretical amount of electricity Q [mAh / g] of the positive electrode active material, Depending on the C rate [h -1 ] of the lithium battery and the like, there is a certain relationship with these, and by appropriately adjusting these relationships, the charge / discharge characteristics of the lithium secondary battery can be determined. It turned out that it could be improved.

【0006】すなわち、接触抵抗σ[Ωcm2]、電解
液の分解過電圧η[V]、正極活物質付着量m[g/c
2]、正極活物質の理論電気量Q[mAh/g]、リ
チウム電池のCレート[h-1]の間には、下記(式1)
なる関係を満たすとき、充電特性が大幅に向上すること
を見いだした。 (式1) m≦(η/σ)・(1/CQ)
That is, the contact resistance σ [Ωcm 2 ], the decomposition overvoltage η [V] of the electrolytic solution, and the positive electrode active material adhesion amount m [g / c].
m 2 ], the theoretical amount of electricity Q [mAh / g] of the positive electrode active material, and the C rate [h -1 ] of the lithium battery, the following (Equation 1)
It has been found that the charging characteristics are significantly improved when satisfying the relationship. (Equation 1) m ≦ (η / σ) · (1 / CQ)

【0007】本発明は、上記知見に基づいてなされたも
のであり、以下に述べる構成を講ずることによって充放
電特性に優れた非水電解質リチウム二次電池を提供する
ことに成功したものである。
The present invention was made based on the above findings, and succeeded in providing a non-aqueous electrolyte lithium secondary battery excellent in charge / discharge characteristics by taking the constitution described below.

【0008】(1) 正極集電体に正極活物質が付着し
てなる非水電解質二次電池において、電解液の分解過電
圧η[V]、正極集電体と正極活物質を含めた正極材と
の接触抵抗σ[Ωcm2]、リチウム複合酸化物の理論
電気量Q[mAh/g]、リチウム電池のCレート[h
-1]としたとき、正極集電体金属表面に対する正極活物
質付着量m[g/cm2]を、η、σ、C、Qに対して
次式(式1)に示す関係を満たすように調整し、これに
よって超高速充電を可能としたことを特徴とした非水電
解質リチウム二次電池。 (式1) m≦(η/σ)・(1/CQ) (2) 正極活物質がリチウムと遷移金属との複合酸化
物よりなることを特徴とする前記(1)項記載の非水電
解質リチウム二次電池。 (3) 正極活物質が導電助剤を含んでなることを特徴
とする前記(2)項記載の非水電解質リチウム二次電
池。 (4) 導電助剤が炭素粉末であることを特徴とする前
記(3)項記載の非水電解質リチウム二次電池。 (5) 水溶性リチウム塩、水溶性遷移金属酸塩、及び
ヒドロキシル酸を含む有機物、を含む正極活物質前駆体
水溶液を調製し、この水溶液中に集電体金属を浸漬し
て、加熱し、重合し、正極集電体金属表面に予め正極活
物質前駆体被膜を密着して形成し、乾燥し、次いで集電
体金属ごと焼成して有機物を分解すると共に、集電体表
面にリチウムと遷移金属との複合酸化物を含む正極活物
質を、下記(式1)を満たすように付着量を調整し、密
着して形成し、これによって超高速充電可能にしてなる
ことを特徴とした前記(1)ないし(4)の何れか1項
記載の非水電解質リチウム二次電池。 (式1) m≦(η/σ)・(1/CQ) (6) 水溶性リチウム塩が硝酸塩であり、水溶性遷移
金属酸塩がリチウム塩であることを特徴とする、前記
(5)項記載の非水電解質リチウム二次電池。 (7) 水溶性リチウム塩、水溶性遷移金属塩、及びヒ
ドロキシル酸を含む有機物、を含む正極活物質前駆体水
溶液を調製し、この水溶液中に集電体金属を浸漬して、
加熱し、重合し、集電体金属表面に予め正極活物質前駆
体被膜を密着して形成し、乾燥し、次いで集電体金属ご
と焼成することによって有機物を分解すると共に、集電
体表面にリチウム複合酸塩を含む正極活物質を下記(式
1)に示す関係を満たすように密着して形成し、これに
よって超高速充電を可能としたことを特徴とする非水電
解質リチウム二次電池の製造方法。 (式1) m≦(η/σ)・(1/CQ) (8) 水溶性リチウム塩が硝酸塩であり、水溶性遷移
金属酸塩がリチウム塩であることを特徴とする、前記
(7)項記載の非水電解質リチウム二次電池の製造方
法。
(1) In a non-aqueous electrolyte secondary battery in which a positive electrode active material is attached to a positive electrode current collector, a decomposition overvoltage η [V] of an electrolytic solution, a positive electrode material including a positive electrode current collector and a positive electrode active material. Contact resistance σ [Ωcm 2 ] with, theoretical electric quantity Q [mAh / g] of lithium composite oxide, C rate [h] of lithium battery
−1 ], the amount m [g / cm 2 ] of the positive electrode active material deposited on the metal surface of the positive electrode current collector should satisfy the relationship shown in the following formula (formula 1) with respect to η, σ, C, and Q. The non-aqueous electrolyte lithium secondary battery is characterized in that it is adjusted to, and thereby enables ultra-fast charging. (Formula 1) m ≦ (η / σ) · (1 / CQ) (2) The nonaqueous electrolyte according to item (1), wherein the positive electrode active material is a composite oxide of lithium and a transition metal. Lithium secondary battery. (3) The non-aqueous electrolyte lithium secondary battery according to item (2), wherein the positive electrode active material contains a conductive auxiliary agent. (4) The non-aqueous electrolyte lithium secondary battery according to item (3), wherein the conductive additive is carbon powder. (5) A positive electrode active material precursor aqueous solution containing a water-soluble lithium salt, a water-soluble transition metal acid salt, and an organic substance containing hydroxyl acid is prepared, and a current collector metal is immersed in this aqueous solution and heated, It is polymerized to form a positive electrode active material precursor coating on the surface of the positive electrode current collector metal in advance, dried, and then baked together with the current collector metal to decompose organic substances, and at the same time, transition to lithium on the surface of the current collector. The positive electrode active material containing a complex oxide with a metal is formed by adhering and adhering the positive electrode active material so as to satisfy the following (formula 1), thereby enabling ultra-high-speed charging. The non-aqueous electrolyte lithium secondary battery according to any one of 1) to (4). (Formula 1) m ≦ (η / σ) · (1 / CQ) (6) The water-soluble lithium salt is a nitrate, and the water-soluble transition metal acid salt is a lithium salt, (5) above The non-aqueous electrolyte lithium secondary battery according to the item. (7) A positive electrode active material precursor aqueous solution containing a water-soluble lithium salt, a water-soluble transition metal salt, and an organic substance containing hydroxyl acid is prepared, and a current collector metal is immersed in the aqueous solution,
By heating, polymerizing, forming a positive electrode active material precursor coating in advance on the surface of the current collector metal, drying, and then firing together with the current collector metal to decompose organic substances, A non-aqueous electrolyte lithium secondary battery, characterized in that a positive electrode active material containing a lithium composite acid salt is formed in close contact so as to satisfy the relationship shown in (Formula 1) below, thereby enabling ultra-fast charging. Production method. (Formula 1) m ≦ (η / σ) · (1 / CQ) (8) The water-soluble lithium salt is a nitrate and the water-soluble transition metal salt is a lithium salt, (7) A method for manufacturing a non-aqueous electrolyte lithium secondary battery according to the item.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を下記実験に
基づいた実施例によって具体的に説明する。以下の説明
において使用した各図について、概要を説明する。図1
は、本発明の製造方法で調製した正極集電体を写真によ
って示した外観図であり、金ワイヤーの表面に正極活物
質としてマンガン酸リチウムがまだらに強固に密着して
付着した態様が示されている。図2は、図1に示したマ
ンガン酸リチウムを活物質とする金集電体の電極の実際
のボルタモグラムを示しているものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described with reference to Examples based on the following experiments. The outline of each of the drawings used in the following description will be described. Figure 1
FIG. 3 is an external view showing a photograph of a positive electrode current collector prepared by the production method of the present invention, showing a mode in which lithium manganate as a positive electrode active material is firmly and closely attached to the surface of a gold wire. ing. FIG. 2 shows an actual voltammogram of the electrode of the gold current collector using the lithium manganate shown in FIG. 1 as the active material.

【0010】(実施例) 正極集電体の調製;図1に示した本実施例の金集電体
は、以下に述べる手順、要領に基づき製造した。 (i)まず、正極集電体金属として直径0.03cmの
金ワイヤーを用意した。 (ii)次に、硝酸マンガン、硝酸リチウム、クエン酸
を、Mn:Li:クエン酸のモル比が2:1:2になる
ように採取し、これらに少量の蒸留水を加えて溶解させ
正極活物質前駆体溶液を調製した。 (iii)この前駆体水溶液に集電体となる金ワイヤ(直
径0.03mm)をその先端部分を浸漬し、ロータリエ
バポレータを用いて55℃で水分を蒸発し、脱ガスを行
った。 (iv)その結果、前記水溶液は約20分で高粘性を呈し
た液体となり、そこに浸漬した金ワイヤ先端に高粘性液
体が付着された。 (v)これをさらに真空乾燥(70℃で4時間)して、
嵩高い吸湿性の粉末(クエン酸錯体)と、前記リチウム
複合酸化物粉末が表面に付着された金ワイヤを得た。前
記粉末はX線回折からアモルファスであり、またSEM
観察から綿毛状を呈していることがわかった。 (vi)次いで、前記乾燥工程終了後、コーティングされ
た金ワイヤを、空気中で30秒間電気マッフル炉にて約
300℃にて仮焼した後、さらに800℃で2時間焼成
した。 その結果、クエン酸錯体は分解し、LiMn24から成
るリチウムの複合酸化物よりなる焼結体の薄層がコーテ
ィングされた金ワイヤを得た。該焼結体をX線回折装置
で確認したところ、結晶性の発達した単相のスピネルL
iMn24が形成されていることが確認された。
(Example) Preparation of Positive Electrode Current Collector: The gold current collector of this example shown in FIG. 1 was produced according to the procedure and procedures described below. (I) First, a gold wire having a diameter of 0.03 cm was prepared as a positive electrode current collector metal. (Ii) Next, manganese nitrate, lithium nitrate, and citric acid were sampled so that the molar ratio of Mn: Li: citric acid was 2: 1: 2, and a small amount of distilled water was added to these to dissolve them. An active material precursor solution was prepared. (Iii) A gold wire (0.03 mm in diameter) serving as a current collector was immersed in this precursor aqueous solution at its tip, and water was evaporated at 55 ° C. using a rotary evaporator for degassing. (Iv) As a result, the aqueous solution became a highly viscous liquid in about 20 minutes, and the highly viscous liquid was attached to the tip of the gold wire dipped therein. (V) This is further vacuum dried (70 ° C for 4 hours),
A bulky hygroscopic powder (citric acid complex) and a gold wire having the surface of the lithium composite oxide powder obtained were obtained. The powder is amorphous by X-ray diffraction, and also SEM
From the observation, it was found that the hair was fluffy. (Vi) Next, after the completion of the drying step, the coated gold wire was calcined in the air for 30 seconds in an electric muffle furnace at about 300 ° C., and then further calcined at 800 ° C. for 2 hours. As a result, the citric acid complex was decomposed, and a gold wire coated with a thin layer of a sintered body made of a lithium composite oxide made of LiMn 2 O 4 was obtained. When the sintered body was confirmed by an X-ray diffractometer, a single-phase spinel L with developed crystallinity was obtained.
It was confirmed that iMn 2 O 4 was formed.

【0011】以上の手順によって作製、調製された正極
集電体を図1に基づき説明すると、図1において白く見
える所は金集電体の表面が現れている部分、黒く見える
所がマンガン酸リチウムが金集電体に付着した部分であ
り、マンガン酸リチウムが金集電体に対して、まだら状
に強固に密着して付着していることが示されている。
この正極集電体設定の意義は、金を集電体として採用し
たことにより、正極活物質がアルミニウムの場合のよう
に、不働態被膜によって隔てられることもなく、また、
実験中を通じ、電解液との接触によっても腐食し、不働
態被膜が形成されることもなく、不働態被膜による接触
抵抗の影響を排除した試料を用意することができたこと
を意味するものである。また、正極活物質を集電体にま
だら状に強固に密着して付着したことにより、正極活集
電体と正極活物質との接触抵抗を少なくする意義に加え
て、その付着量の影響を受けやすい、標準化試料を用意
することができたことを意味するものである。
The positive electrode current collector prepared and prepared by the above procedure will be described with reference to FIG. 1. White parts in FIG. 1 are the parts where the surface of the gold current collector appears, and black parts are lithium manganate. Is a part attached to the gold current collector, and it is shown that lithium manganate is firmly adhered to the gold current collector in a mottled manner.
The significance of this positive electrode current collector setting is that by adopting gold as the current collector, it is not separated by a passive film unlike the case where the positive electrode active material is aluminum.
This means that during the experiment, it was possible to prepare a sample that did not corrode due to contact with the electrolytic solution and did not form a passivation film, eliminating the influence of contact resistance due to the passivation film. is there. In addition, since the positive electrode active material was firmly adhered to the current collector in a mottled manner, the contact resistance between the positive electrode active current collector and the positive electrode active material was reduced, and in addition, the influence of the amount of adhesion was affected. This means that we were able to prepare standardized samples that were easy to receive.

【0012】以上記載した実施例によって製造方法され
た正極集電体について、単位面積あたりの活物質塗着又
は圧着量m[g/cm2]、電解液の分解過電圧η
[V]、正極集電体と正極活物質との接触抵抗σ[Ωc
2]、リチウム複合酸化物の理論電気量Q[mAh/
g]等を求め、(式1)によって規定したモデルによる
二次電池の充放電特性及び数式1と充放電特性との関係
について以下検証する。
With respect to the positive electrode current collector manufactured by the above-described embodiment, the amount of active material coating or pressure-bonding per unit area m [g / cm 2 ], the decomposition overvoltage η of the electrolytic solution
[V], contact resistance σ [Ωc between positive electrode current collector and positive electrode active material
m 2 ], theoretical electric charge Q [mAh /
g] and the like are obtained, and the charge / discharge characteristics of the secondary battery according to the model defined by (Expression 1) and the relationship between Expression 1 and the charge / discharge characteristics are verified below.

【0013】図2には、図1に示されているマンガン酸
リチウムを合成密着させた金集電体のボルタモグラムを
示すものである。付着させた正極金集電体について、電
位掃引速度100mV/sの場合のボルタモグラムを示
すものである。この図2によると、正極の電位を掃引変
化させた場合には、電位掃引速度が100mV/sにて
アノード掃引すると、0.9V及び1.0Vvs.Ag
付近にマンガン酸リチウム特有のダブルピークが、また
電位反転して負極の電位を掃引変化させた場合にも0.
7V及び0.6V付近にダブルピークが現れている。
FIG. 2 shows a voltammogram of the gold current collector to which lithium manganate shown in FIG. 1 is synthetically adhered. FIG. 7 shows a voltammogram of the attached positive electrode gold current collector when the potential sweep rate is 100 mV / s. According to FIG. 2, when the potential of the positive electrode was swept and varied, 0.9 V and 1.0 Vvs. Ag
There is a double peak peculiar to lithium manganate in the vicinity.
Double peaks appear at around 7V and 0.6V.

【0014】以上、与えられた正極集電体のボルタモグ
ラム及び与えられた製造上の諸条件に基づいて、前記数
式による要件事項と充放電特性との関係を、以下検証す
る。電位掃引速度が100mV/sの場合、図2のボル
タモグラムの横軸の電圧差0.1Vは掃引時間の1秒に
換算できるので、ピーク電流の現れる5秒間の電気量は
この間の電流値を積分することで得られる。今計算を簡
便にするためピーク電圧が0.1mA前後であることか
ら0.1mAとし、またダブルピークを1つの三角形に
近似してその面積で示される電気量を求めると、5s×
0.1mA÷2=0.25mC、となる。
Based on the given voltammogram of the positive electrode current collector and given given manufacturing conditions, the relationship between the requirements by the above formula and the charge / discharge characteristics will be verified below. When the potential sweep speed is 100 mV / s, the voltage difference of 0.1 V on the horizontal axis of the voltammogram in FIG. 2 can be converted into the sweep time of 1 second, so the electric current for 5 seconds when the peak current appears integrates the current value during this period. It is obtained by doing. In order to simplify the calculation, the peak voltage is around 0.1 mA, so it is set to 0.1 mA, and if the double peak is approximated to one triangle and the amount of electricity indicated by the area is calculated, it is 5 s x
0.1 mA / 2 = 0.25 mC.

【0015】マンガン酸リチウムの理論容量は、以下の
ように求められる。マンガン酸リチウムの式量は、分子
式LiMn24に基づいて計算すると、180.814
6(g/mol)である。1電子反応で100%のリチ
ウムが反応すると、ファラデー定数=96485(C/
g)であるから、理論容量は、 96485(C/g)÷180.8146(g/mo
l)=533.6(C/g)、となる。 ここで、1C=1Asであるから、上記理論容量を慣習
的表示mAhに換算すると、 533.6(C/g)÷3600(s/h)×1000
(mA/A)=148(mAh/g)、 となる。以上から、正極集電体に与えられた電気量が、
0.25mCと与えられ、正極集電体を構成するマンガ
ン酸リチウムの理論容量が、148mAh/gで与えら
れると、集電体に塗布されていたマンガン酸リチウム
は、 0.25(mC)÷533.6(C/g)=0.47
(μg)、 となる。したがって単位体積あたりの正極活物質量は、
0.47/0.094=5μg/cm2 となる。
The theoretical capacity of lithium manganate is determined as follows. The formula weight of lithium manganate is 180.814 when calculated based on the molecular formula LiMn 2 O 4.
6 (g / mol). When 100% of lithium reacts in one-electron reaction, Faraday constant = 96485 (C /
g), the theoretical capacity is 96485 (C / g) ÷ 180.8146 (g / mo)
l) = 533.6 (C / g). Here, since 1C = 1As, when the above theoretical capacity is converted into the conventional display mAh, 533.6 (C / g) / 3600 (s / h) × 1000
(MA / A) = 148 (mAh / g). From the above, the amount of electricity given to the positive electrode current collector is
Given that the theoretical capacity of lithium manganate constituting the positive electrode current collector is 148 mAh / g, the lithium manganate applied to the current collector is 0.25 (mC) ÷ 533.6 (C / g) = 0.47
(Μg), Therefore, the amount of positive electrode active material per unit volume is
0.47 / 0.094 = 5 μg / cm 2 .

【0016】また、100mV/sという電位掃引速度
で0.5Vの電位範囲で電流のピーク値が観察されたと
いうことは、活物質が5秒で充放電されたことを意味す
る。Cレートの定義が活物質を1時間で充放電する電流
値であるから、この5秒という値をCレートに換算する
と、3600s÷5s=720にもなり、従来用いられ
ているリチウム二次電池のCレートの上限10h-1と比
べれば、720/10=72となり、図2に示した電極
は、その72倍の速さで充電ができる二次電池が設定さ
れたことを意味することになる。
The fact that the peak value of the current was observed in the potential range of 0.5 V at the potential sweep rate of 100 mV / s means that the active material was charged and discharged in 5 seconds. Since the definition of the C rate is the current value for charging and discharging the active material in 1 hour, when the value of 5 seconds is converted into the C rate, it becomes 3600s / 5s = 720, which is a conventionally used lithium secondary battery. Compared with the upper limit of C rate of 10 h −1 , 720/10 = 72, which means that the electrode shown in FIG. 2 is set to a secondary battery that can be charged 72 times faster than that. Become.

【0017】以上はボルタモグラムから導かれた本発明
のリチウム二次電池の充放電特性を説明、開示したが、
つぎにこの充放電特性と解決手段で規定した(式1)と
の関係について検討し、該式の意義、妥当性について言
及、検証する。
The charge / discharge characteristics of the lithium secondary battery of the present invention derived from the voltammogram have been described and disclosed above.
Next, the relationship between the charge / discharge characteristics and (Formula 1) defined by the solution means will be examined, and the significance and validity of the formula will be mentioned and verified.

【0018】実験例において用いられたマンガン酸リチ
ウムの正極活物質によるリチウム二次電池において、上
記材料からなる電解液の充電過電圧ηは、市販品と同様
約0.5Vであり、また図2のボルタモグラムに近似し
たデジタルシュミレーションによるボルタモグラムか
ら、金集電体の接触抵抗σを5Ω程度と見積もると、数
式1から求められる活物質としてのマンガン酸リチウム
の最大質量mは、 0.5V÷5Ωcm2÷(10h-1×148mAh/
g)=6.7×10-5g/cm2 であるので、図2のボルタモグラムから算出したマンガ
ン酸リチウムの質量5μg/cm2は、請求項1に記載
した条件を十分満たしていることがわかる。
In the lithium secondary battery using the positive electrode active material of lithium manganate used in the experimental example, the charging overvoltage η of the electrolytic solution made of the above material is about 0.5 V, which is the same as the commercially available product. When the contact resistance σ of the gold current collector is estimated to be about 5Ω from a voltammogram obtained by digital simulation similar to the voltammogram, the maximum mass m of lithium manganate as an active material obtained from Formula 1 is 0.5V ÷ 5Ωcm 2 ÷ (10h -1 × 148mAh /
g) = 6.7 × 10 −5 g / cm 2 , so that the mass of lithium manganate of 5 μg / cm 2 calculated from the voltammogram of FIG. 2 should satisfy the condition described in claim 1. Recognize.

【0019】以上に開示し、説明したように本発明は、
正極集電体に対する正極活物質の付着量、付着状態を適
正に制御することによって、極めて高いハイレートの充
放電特性を有する電解質リチウム二次電池を提供するこ
とに成功したことは明らかである。この適正な付着量、
ならびに付着状態は、あくまでも前示開示した特定の製
造プロセスによって得られたものであり、このプロセス
によって、集電体金属に正極活物質がまだら状に強固に
密着して付着したことによるものである。この本発明の
要件事項とする正極集電体による前示した特有な作用効
果は、以下に比較例として示した薄膜電極や、市販され
ているコンポジット電極における正極集電体と正極活物
質との関係をみれば、一層その意義は明らかである。
As disclosed and described above, the present invention provides
It is apparent that the electrolyte lithium secondary battery having extremely high high-rate charge / discharge characteristics was successfully provided by appropriately controlling the amount and state of attachment of the positive electrode active material to the positive electrode current collector. This proper amount of adhesion,
In addition, the adhered state is obtained only by the specific manufacturing process disclosed above, and due to this process, the positive electrode active material adheres firmly to the current collector metal in a mottled manner. . The above-described specific action and effect by the positive electrode current collector which is a requirement of the present invention, the thin film electrode shown as a comparative example below, and the positive electrode current collector and the positive electrode active material in the commercially available composite electrode Looking at the relationship, its significance is even clearer.

【0020】コンポジット電極とその調製方法;正極活
物質として、LiCoO2(古川電池工業株式会社 提
供)を用いた。この活物質30mgにアセチレンブラッ
ク(DENKA BLACK)5mgを良く混ぜ、テフ
ロン(登録商標)分散液(Du pont−Mitsu
i Fluorochemical 30−j)を1滴
加えてメノウ乳鉢上で良く混練し、ラバー状とし正極合
剤とした。正極集電体として、ステンレスメッシュ(S
US 304、100mesh)を直径8mmに打ち抜
き、ステンレスワイヤ(0.5mmφ)をスポット溶接
したものを用いた。この集電体に正極合剤を塗り込み、
最後に治具を用いて、1ton/cm2 、1minプレ
スし、試料電極とした。対極、参照電極にステンレスワ
イヤ(SUS 304)にLi箔を圧着した電極を用い
た。電解液にプロピレンカーボネイト(PC)と1,2
−ジメトキシエタン(DME)(1:1の体積比)を溶
媒とする1M過塩素酸リチウムLiClO4を用いた。
セルはアルゴンで満たされたグローブボックス〔(美和
製作所MDB−1K−O型(P)〕で組み立て密閉し
た。測定は25±0.5℃に保ったインキュベータ(S
ANYO MIR−152)で行った。
Composite electrode and its preparation method: LiCoO 2 (provided by Furukawa Battery Co., Ltd.) was used as the positive electrode active material. To 30 mg of this active material, 5 mg of acetylene black (DENKA BLACK) was thoroughly mixed, and a Teflon (registered trademark) dispersion liquid (Du Pont-Mitsu) was mixed.
One drop of i Fluorochemical 30-j) was added and kneaded well in an agate mortar to give a rubber-like mixture as a positive electrode mixture. A stainless steel mesh (S
US 304, 100 mesh) was punched into a diameter of 8 mm, and a stainless wire (0.5 mmφ) spot-welded was used. Apply the positive electrode mixture to this collector,
Finally, using a jig, it was pressed at 1 ton / cm 2 for 1 minute to obtain a sample electrode. An electrode obtained by pressure-bonding a Li foil on a stainless wire (SUS 304) was used as a counter electrode and a reference electrode. Propylene carbonate (PC) and 1, 2 in the electrolyte
1M lithium perchlorate LiClO 4 with dimethoxyethane (DME) (1: 1 volume ratio) as solvent was used.
The cell was assembled and sealed in a glove box [(Miwa Seisakusho MDB-1K-O type (P)] filled with argon, and the measurement was performed at an incubator (S of 25 ± 0.5 ° C).
ANYO MIR-152).

【0021】薄膜電極の調製;厚さ0.1mm金の箔を
φ8mmに打ち抜き、φ0.3mmの金のワイヤをスポ
ット溶接した。この電極上に0.4M塩化コバルト水溶
液でコバルトを電解鍍金した。電解電流密度は20mA
・cm-2とし、電解温度は25℃とした。また鍍金時の
対極には白金を用いた。このコバルト鍍金した電極を電
気炉(東洋化学産業 ESF2−ECP)で650℃で
アルミナ坩堝中に溶融した炭酸塩(LiCO3+KCO
3=43:57 mol%)に約2時間浸漬し、LiC
oO2薄膜電極を作成した。
Preparation of thin film electrode: A 0.1 mm thick gold foil was punched into a diameter of 8 mm, and a 0.3 mm diameter gold wire was spot-welded. Cobalt was electrolytically plated on this electrode with a 0.4 M aqueous cobalt chloride solution. Electrolytic current density is 20mA
-Cm -2 , and the electrolysis temperature was 25 ° C. Platinum was used as the counter electrode during plating. This cobalt-plated electrode was melted in an alumina crucible at 650 ° C. in an electric furnace (ESF2-ECP, Toyo Chemical Industry) to melt carbonate (LiCO3 + KCO).
3 = 43: 57 mol%) for about 2 hours, and then LiC
An oO 2 thin film electrode was prepared.

【0022】上記調製方法によって調製された各電極の
正極活物質付着量と充放電特性は、以下のとおりであっ
た。 コンポジット電極;正極活物質の付着量は30mgで
ある。電位掃引速度を0.1mV/sとしてもピークは
観察できなかった。仮に、電極構造を改良したとしても
1mV/s以上では、ピークは観察できなかった。した
がって、これはCレートにでは1を超えるものではない
と、考えられるが、若干の残余容量を犠牲にすることで
Cレートが1程度ぐらいの急速充電や急速放電能力は、
一応有しているものと評価することができる。 薄膜電極;正極活物質付着量は250μgであった。
なお、この薄膜電極は、特別な用途開発か研究の下で調
製されている程度で、実験的段階の先行技術といえるも
ので、公然と知られたものであるとはいえないものであ
る。ここに、今回紹介しためっきした金属を溶融塩中で
酸化する方法は、めっき厚みを電気量でコントロールす
ることで薄膜のあつみを制御しやすい特有な意義を有す
るものであるが、この方法は、どうしても核を中心に析
出するために、得られる薄膜の薄さには限度があり、ま
た本発明のように、まばらにつけることもできない。し
かし、コンポジット電極と対比する、はるかに高速に充
放電できることが、データからも裏付けられた。その性
能は、場合によっては、10mV/sぐらいまで充放電
可能であり、これはC=1から10程度に相当するもの
であった。
The amount of the positive electrode active material deposited and the charge / discharge characteristics of each electrode prepared by the above-mentioned preparation method were as follows. Composite electrode: The amount of the positive electrode active material deposited was 30 mg. No peak was observed even when the potential sweep rate was 0.1 mV / s. Even if the electrode structure was improved, no peak could be observed at 1 mV / s or higher. Therefore, it is considered that this does not exceed 1 at the C rate, but by sacrificing some residual capacity, the quick charge and quick discharge capacities at the C rate of about 1 are:
It can be evaluated as having one. Thin film electrode: The amount of the positive electrode active material deposited was 250 μg.
It should be noted that this thin film electrode is a prior art in an experimental stage and is not publicly known, to the extent that it is prepared under special application development or research. Here, the method of oxidizing the plated metal introduced in this time in a molten salt has a unique meaning that it is easy to control the thickness of the thin film by controlling the plating thickness by the amount of electricity. There is a limit to the thinness of the thin film that can be obtained because the nucleus is inevitably deposited, and it cannot be sparsely formed as in the present invention. However, the data also support the fact that it can be charged and discharged at a much higher speed than the composite electrode. In some cases, the performance was such that charging / discharging was possible up to about 10 mV / s, which was equivalent to C = 1 to about 10.

【0023】一方、本発明の正極集電体は、正極付着量
が5μg/cm2であり、電位掃引速度は、100mV
/sから1000mV/s(C=72から720)であ
ることは、前述したとおりである。すなわち、通常の市
販されているコンポジット電極よりも遙かに充放電特性
に優れている薄膜電極に比しても、本発明の正極集電体
電極は、更にその10倍から100倍のハイレートを実
現する電極であることが分かった。この結果を、以下
(表1)に示す。
On the other hand, the positive electrode current collector of the present invention has a positive electrode adhesion amount of 5 μg / cm 2 and a potential sweep rate of 100 mV.
/ S to 1000 mV / s (C = 72 to 720) is as described above. That is, the positive electrode current collector electrode of the present invention has a high rate 10 to 100 times higher than that of a thin film electrode which is far superior in charge / discharge characteristics to a normal commercially available composite electrode. It turned out to be an electrode to be realized. The results are shown below (Table 1).

【0024】[0024]

【表1】 [Table 1]

【0025】有機電解質リチウム二次電池の充放電特性
を考えるとき、従来は活物質内のリチウムイオンの拡散
などが該二次電池の律速過程であるとされていたり、コ
ンポジット電極のようにその塗布厚みが抵抗になってい
るなどと考えられていたが、今回提案した本発明によっ
て、上記従前の考え方は、必ずしも妥当とは言えず、む
しろ、単位面積あたりの活物質量をへらすと同時に活物
質と集電体の接触抵抗を減らすことが極めて大きな寄与
率を有していることが知見され、確認することができた
ものである。
When considering the charge / discharge characteristics of the organic electrolyte lithium secondary battery, it has been conventionally considered that diffusion of lithium ions in the active material is the rate-determining process of the secondary battery, or its application like a composite electrode. Although it was thought that the thickness is a resistance, the present invention proposed this time does not necessarily mean that the above conventional idea is valid, but rather reduces the amount of the active material per unit area and at the same time the active material. It was found and confirmed that reducing the contact resistance of the current collector has an extremely large contribution rate.

【0026】本発明は、あくまでも非水溶液系リチウム
二次電池である。したがって、その具体的な電池として
の構成には、正極活物質、正極集電体以外にも、有機電
解液、セパレーター、負極集電体等の要素は当然に含む
ものであることは云うまでもない。ただ本発明において
は、これらの要素については、敢えて記載するまでもな
いこととして省略したものにすぎない。
The present invention is just a non-aqueous solution type lithium secondary battery. Therefore, it goes without saying that, in addition to the positive electrode active material and the positive electrode current collector, the specific configuration of the battery naturally includes elements such as an organic electrolytic solution, a separator, and a negative electrode current collector. However, in the present invention, these elements are merely omitted because they are needless to describe.

【0027】本発明により有機電解質リチウム二次電池
を設計するにおいて使用される非水溶液電解質は、いず
れも従来非水電解質リチウム二次電池において使用され
ているものが使用される。すなわち、高誘電率溶媒にリ
チウムイオン源となる電解質を溶解してなるものであ
り、何れも従来使用されているものを使用し得ることは
言うまでもない。
As the non-aqueous electrolyte used in designing the organic electrolyte lithium secondary battery according to the present invention, those which have been conventionally used in non-aqueous electrolyte lithium secondary batteries are used. That is, it is needless to say that it is prepared by dissolving an electrolyte serving as a lithium ion source in a high dielectric constant solvent, and any of those conventionally used can be used.

【0028】具体的使用される高誘電率溶媒としては、
DEC(Diethyl carbonate)、DM
C(Dimethyl carbonate)、DME
(1,2−dimethoxyethane)、EC
(Ethylene carbonate)、EMC
(Ethyl methyl carbonate)、
NMP(N−Methyl−2−pyrrolidon
e)、PC(Propylene carbonat
e)、GBL(γ−butyrolactone)等が
挙げられる。これらは単独または適宜配合比に混合して
使用することができる。ここに挙げた溶媒は、あくまで
も、発明を実施する際の具体的態様を開示するための記
載にすぎず、これに限定するという意味ではない。
Specific examples of the high dielectric constant solvent used include:
DEC (Diethyl Carbonate), DM
C (Dimethyl carbonate), DME
(1,2-dimethoxyethane), EC
(Ethylene carbonate), EMC
(Ethyl methyl carbonate),
NMP (N-Methyl-2-pyrrolidone
e), PC (propyrene carbonat)
e), GBL (γ-butyrolactone) and the like. These can be used alone or in an appropriate mixture by mixing. The solvents listed here are merely for the purpose of disclosing specific modes for carrying out the invention, and are not meant to be limited thereto.

【0029】また、リチウムイオン源となる電解質とし
ては、これも従来使用されている各種リチウム塩を使用
することができ、具体的に例示すると、LiPF6、L
iBF4、LiClO4、LiCF3SO3、LiN(CF
3SO22等が挙げられる。そしてこの点も、これは、
あくまでも、発明を実施する際の具体的態様を開示する
ための記載にすぎず、これに限定するという意味ではな
いこと、前記成分と同様である。
As the electrolyte serving as a lithium ion source, various lithium salts that have been conventionally used can also be used. Specific examples thereof include LiPF 6 , L
iBF 4 , LiClO 4 , LiCF 3 SO 3 , LiN (CF
3 SO 2 ) 2 and the like. And this point, too,
It is just a description for disclosing specific modes for carrying out the invention, and is not meant to be limited to this, and is the same as the above-mentioned components.

【0030】加えて、有機電解質リチウム二次電池を構
成する各種手段、装置構造、関連する諸々の部品等は、
従来と同様に用いられ、設定されることは自明の理であ
り、これらを制限しなければならない理由はない。
In addition, various means constituting the organic electrolyte lithium secondary battery, the device structure, various related parts, etc. are
It is self-evident that it is used and set in the same way as in the past, and there is no reason to limit these.

【0031】[0031]

【発明の効果】現行のリチウム二次電池は充電に時間が
かかり、また放電電流が大きく取れない(Cレート:1
0程度ぐらいまで)という問題があった。この原因は有
機電解液の導電率が低く、かつLiイオンの拡散が遅い
ためと考えられている。本発明は、正極集電体と正極活
物質付着量mが、m=<( η/σ)・(1/CQ)g
/cm2 〔ただし、η:電解質の分解過電圧(V)、
σ:正極集電体と正極材の接触抵抗(Ωcm2)、C:
Cレートの単位で10C(h-1)、Q:正極活物質〕を
満たすように設定すると、Cレートをあげることができ
リチウム二次電池の充放電特性をこれまでのものに比し
大幅に向上し、電池の充放電時間を極めて短時間で急速
充放電をすることが可能になったこと、すなわち電流特
性が大幅に改善されたLi二次電池を提供することがで
きるようになったことは単に技術的のみならず社会的に
も大きな意義を有するものと考えられる。すなわち、今
日、モバイル系コンピュータ、モバイル系通信機器の普
及にともない電池の重要が伸び、リチウム系電池、特に
二次電池の普及には目覚ましいものがあり、その消費傾
向はますます大きくなっていくものと考えられている。
そして、近年では、環境重視型社会を目指しているなか
で、電力の一翼を担う二次電池の開発も期待され、現実
化していることを考えると、その意義は、ますます以て
重要であり、その観点からも充放電特性を大幅に向上し
得た本発明の意義は極めて大なるものがある。
The current lithium secondary battery takes a long time to charge and a large discharge current cannot be obtained (C rate: 1
There was a problem of (up to about 0). It is considered that this is because the conductivity of the organic electrolyte is low and the diffusion of Li ions is slow. In the present invention, the positive electrode current collector and the positive electrode active material adhesion amount m is m = <(η / σ) · (1 / CQ) g
/ Cm 2 [where η: decomposition overvoltage (V) of electrolyte,
σ: Contact resistance (Ωcm 2 ) between the positive electrode current collector and the positive electrode material, C:
If the unit is set so as to satisfy 10 C (h −1 ) in C rate unit, Q: positive electrode active material], the C rate can be increased, and the charging / discharging characteristics of the lithium secondary battery can be drastically improved as compared with the past. It has become possible to improve the charge and discharge time of the battery in an extremely short time, that is, to provide a Li secondary battery having significantly improved current characteristics. Is considered to have great significance not only technically but also socially. That is, with the spread of mobile computers and mobile communication devices, the importance of batteries is growing today, and the spread of lithium batteries, especially secondary batteries, is remarkable, and the trend of consumption is increasing. It is believed that.
In recent years, with the aim of becoming an environment-oriented society, the development of secondary batteries, which play a part in electric power, is expected and is becoming a reality, so its significance is even more important. From that point of view, the significance of the present invention, in which the charge / discharge characteristics are greatly improved, is extremely significant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法でマンガン酸リチウムを活物
質とする金集電体。
FIG. 1 is a gold current collector using lithium manganate as an active material in the production method of the present invention.

【図2】図1に示したマンガン酸リチウムを活物質とす
る金集電体の電極のボルタモグラム。
FIG. 2 is a voltammogram of an electrode of a gold current collector using the lithium manganate shown in FIG. 1 as an active material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 孝志 山形県米沢市館山1−1−155 Fターム(参考) 5H029 AJ02 AK03 AM06 DJ07 DJ08 HJ01 HJ18 HJ19 HJ20 5H050 AA02 BA17 CA07 DA04 EA08   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Endo             1-155 Tateyama, Yonezawa City, Yamagata Prefecture F term (reference) 5H029 AJ02 AK03 AM06 DJ07 DJ08                       HJ01 HJ18 HJ19 HJ20                 5H050 AA02 BA17 CA07 DA04 EA08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体に正極活物質が付着してなる
非水電解質二次電池において、電解液の分解過電圧η
[V]、正極集電体と正極活物質を含めた正極材との接
触抵抗σ[Ωcm2]、リチウム複合酸化物の理論電気
量Q[mAh/g]、リチウム電池のCレート[h-1
としたとき、正極集電体金属表面に対する正極活物質付
着量m[g/cm2]を、η、σ、C、Qに対して次式
の関係を満たすように調整し、これによって超高速充電
を可能としたことを特徴とした非水電解質リチウム二次
電池。 (式1) m≦(η/σ)・(1/CQ)
1. In a non-aqueous electrolyte secondary battery in which a positive electrode active material is attached to a positive electrode current collector, decomposition overvoltage η of an electrolytic solution
[V], contact resistance σ [Ωcm 2 ] between the positive electrode current collector and the positive electrode material including the positive electrode active material, theoretical electric quantity Q [mAh / g] of the lithium composite oxide, C rate [h − of lithium battery] 1 ]
Then, the amount m [g / cm 2 ] of the positive electrode active material deposited on the metal surface of the positive electrode current collector is adjusted so that the relations of η, σ, C, and Q are as follows: A non-aqueous electrolyte lithium secondary battery characterized by being rechargeable. (Equation 1) m ≦ (η / σ) · (1 / CQ)
【請求項2】 正極活物質がリチウムと遷移金属との複
合酸化物よりなることを特徴とする請求項1記載の非水
電解質リチウム二次電池。
2. The non-aqueous electrolyte lithium secondary battery according to claim 1, wherein the positive electrode active material is a composite oxide of lithium and a transition metal.
【請求項3】 正極活物質が導電助剤を含んでなること
を特徴とする請求項2記載の非水電解質リチウム二次電
池。
3. The non-aqueous electrolyte lithium secondary battery according to claim 2, wherein the positive electrode active material contains a conductive auxiliary agent.
【請求項4】 導電助剤が炭素粉末であることを特徴と
する請求項3記載の非水電解質リチウム二次電池。
4. The non-aqueous electrolyte lithium secondary battery according to claim 3, wherein the conductive additive is carbon powder.
【請求項5】 水溶性リチウム塩、水溶性遷移金属酸
塩、及びヒドロキシル酸を含む有機物、を含む正極活物
質前駆体水溶液を調製し、この水溶液中に集電体金属を
浸漬して、加熱し、重合し、正極集電体金属表面に予め
正極活物質前駆体被膜を密着して形成し、乾燥し、次い
で集電体金属ごと焼成して有機物を分解すると共に、集
電体表面にリチウムと遷移金属との複合酸化物を含む正
極活物質を、以下に示す(式1)を満たすように付着量
を調整し、密着して形成し、これによって超高速充電可
能にしてなることを特徴とした請求項1ないし4の何れ
か1項記載の非水電解質リチウム二次電池。 (式1) m≦(η/σ)・(1/CQ)
5. A positive electrode active material precursor aqueous solution containing a water-soluble lithium salt, a water-soluble transition metal acid salt, and an organic substance containing hydroxyl acid is prepared, and a current collector metal is immersed in this aqueous solution and heated. Then, the positive electrode active material precursor coating is formed by closely adhering to the surface of the positive electrode current collector metal, dried, and then baked together with the current collector metal to decompose organic substances, and at the same time, lithium is applied to the surface of the current collector. A positive electrode active material containing a complex oxide of a transition metal and a transition metal is formed so that the amount of adhesion is adjusted so as to satisfy (Equation 1) shown below, and they are adhered to each other, thereby enabling ultra-high-speed charging. The non-aqueous electrolyte lithium secondary battery according to any one of claims 1 to 4. (Equation 1) m ≦ (η / σ) · (1 / CQ)
【請求項6】 水溶性リチウム塩が硝酸塩であり、水溶
性遷移金属酸塩がリチウム塩であることを特徴とする、
請求項5記載の非水電解質リチウム二次電池。
6. The water-soluble lithium salt is a nitrate salt, and the water-soluble transition metal acid salt is a lithium salt,
The non-aqueous electrolyte lithium secondary battery according to claim 5.
【請求項7】 水溶性リチウム塩、水溶性遷移金属塩、
及びヒドロキシル酸を含む有機物、を含む正極活物質前
駆体水溶液を調製し、この水溶液中に集電体金属を浸漬
して、加熱し、重合し、集電体金属表面に予め正極活物
質前駆体被膜を密着して形成し、乾燥し、次いで集電体
金属ごと焼成することによって有機物を分解すると共
に、集電体表面にリチウム複合酸塩を含む正極活物質
を、以下に示す(式1)に規定する関係を満たすように
密着して形成し、これによって超高速充電を可能とした
ことを特徴とする非水電解質リチウム二次電池の製造方
法。 (式1) m≦(η/σ)・(1/CQ)
7. A water-soluble lithium salt, a water-soluble transition metal salt,
And an organic substance containing hydroxyl acid, a positive electrode active material precursor aqueous solution is prepared, and the current collector metal is immersed in this aqueous solution, heated and polymerized, and the positive electrode active material precursor is previously formed on the surface of the current collector metal. The organic substance is decomposed by forming a coating film by adhesion, drying, and then baking together with the current collector metal, and a positive electrode active material containing a lithium complex salt on the current collector surface is shown below (Formula 1). A method for producing a non-aqueous electrolyte lithium secondary battery, characterized in that the non-aqueous electrolyte lithium secondary battery is formed in close contact so as to satisfy the relationship defined in 1. above, thereby enabling ultra-high speed charging. (Equation 1) m ≦ (η / σ) · (1 / CQ)
【請求項8】 水溶性リチウム塩が硝酸塩であり、水溶
性遷移金属酸塩がリチウム塩であることを特徴とする、
請求項7記載の非水電解質リチウム二次電池の製造方
法。
8. The water-soluble lithium salt is a nitrate salt, and the water-soluble transition metal acid salt is a lithium salt,
The method for producing a non-aqueous electrolyte lithium secondary battery according to claim 7.
JP2002123153A 2002-04-24 2002-04-24 Non-aqueous electrolyte lithium secondary battery and manufacturing method thereof Expired - Fee Related JP4023724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123153A JP4023724B2 (en) 2002-04-24 2002-04-24 Non-aqueous electrolyte lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123153A JP4023724B2 (en) 2002-04-24 2002-04-24 Non-aqueous electrolyte lithium secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003317806A true JP2003317806A (en) 2003-11-07
JP4023724B2 JP4023724B2 (en) 2007-12-19

Family

ID=29538577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123153A Expired - Fee Related JP4023724B2 (en) 2002-04-24 2002-04-24 Non-aqueous electrolyte lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4023724B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546391A (en) * 2017-07-14 2018-01-05 中国第汽车股份有限公司 poly-dopamine and graphene composite coating
US9887430B2 (en) 2010-03-19 2018-02-06 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and positive electrode active material for the lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887430B2 (en) 2010-03-19 2018-02-06 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and positive electrode active material for the lithium secondary battery
CN107546391A (en) * 2017-07-14 2018-01-05 中国第汽车股份有限公司 poly-dopamine and graphene composite coating
CN107546391B (en) * 2017-07-14 2020-10-27 中国第一汽车股份有限公司 Polydopamine and graphene composite coating

Also Published As

Publication number Publication date
JP4023724B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP4794866B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4777593B2 (en) Method for producing lithium ion secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
CN108808072A (en) Lithium ion battery
CN105580171B (en) Anode for nonaqueous electrolyte secondary battery active material and the rechargeable nonaqueous electrolytic battery for having used the negative electrode active material
JP2014103098A (en) Nonaqueous electrolyte secondary battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
JP2009054596A (en) Lithium-ion secondary battery, and manufacturing method thereof
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JP6595007B2 (en) Negative electrode material for Li ion secondary battery and production method thereof, Li ion secondary battery negative electrode and Li ion secondary battery
JPH11283623A (en) Lithium ion battery and its manufacture
JP2005063731A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
CN108054385A (en) A kind of nano-metal-oxide coats LiFePO4Crystallite and preparation method thereof
JPH11120993A (en) Nonaqueous electrolyte secondary battery
CN115084471B (en) Layered halide double perovskite lithium ion battery anode material and preparation method thereof
CN106532031A (en) Li4Ti5O12 negative material and lithium titanate battery prepared from same
US20200388820A1 (en) Current collector and current collector-electrode assembly for an accumulator operating according to the principle of ion insertion and deinsertion
JP3870707B2 (en) Method for aging treatment of lithium secondary battery and method for producing lithium secondary battery including the same
JPH06349524A (en) Secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JP4023724B2 (en) Non-aqueous electrolyte lithium secondary battery and manufacturing method thereof
JP2003263979A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2005085716A (en) Manufacturing method of composite electrode of oxide and carbon material, and lithium secondary battery
JP7336055B1 (en) Positive electrode active materials for lithium ion batteries, positive electrode for lithium ion batteries, lithium ion batteries, positive electrode active materials for all-solid-state lithium-ion batteries, positive electrodes for all-solid-state lithium-ion batteries, all-solid-state lithium-ion batteries, positive electrode active materials for lithium-ion batteries Manufacturing method and manufacturing method of positive electrode active material for all-solid-state lithium-ion battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees