JP2003313645A - Non-oriented silicon steel plate and its production method - Google Patents

Non-oriented silicon steel plate and its production method

Info

Publication number
JP2003313645A
JP2003313645A JP2002124112A JP2002124112A JP2003313645A JP 2003313645 A JP2003313645 A JP 2003313645A JP 2002124112 A JP2002124112 A JP 2002124112A JP 2002124112 A JP2002124112 A JP 2002124112A JP 2003313645 A JP2003313645 A JP 2003313645A
Authority
JP
Japan
Prior art keywords
less
content
mno
inclusions
feo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002124112A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Numata
光裕 沼田
Hiroshi Fujimura
浩志 藤村
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002124112A priority Critical patent/JP2003313645A/en
Publication of JP2003313645A publication Critical patent/JP2003313645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented silicon steel plate of which the magnetic characteristics can be improved and the product performance can be stabilized simultaneously by applying magnetic annealing to the plate, and its production method. <P>SOLUTION: The non-oriented silicon steel plate has the content of C: 0.004% or less, Si: 0.1-1.0%, Mn: 0.2-0.6%, sol.Al: less than 0.0006%, P: 0.03-0.2%, S: 0.035% or less, N: 0.004% or less, O (oxygen): 0.0025-0.012% in mass percent, and the ratio (MnO/FeO) of MnO and FeO content (mass percent) in inclusion in steel is 2 or less. The plate can be manufactured by employing the mass ratio (added Al amount/added Si amount) of 0.85 or less for Al and Si added into molten steel after finish decarbonization conducted at vacuum degassing apparatus. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、無方向性電磁鋼
板、詳しくは、出荷後、ユーザーで打ち抜き等の加工が
施され、鉄心に組み立てられた後、磁気特性を改善する
ための磁性焼鈍が施される無方向性電磁鋼板(いわゆる
セミプロセス材)、およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet, more specifically, after shipping, it is punched by a user, assembled into an iron core, and then subjected to magnetic annealing for improving magnetic properties. The present invention relates to a non-oriented electrical steel sheet (so-called semi-processed material) to be applied, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】変圧器やモーターに用いる鉄心の素材で
ある電磁鋼板は、低鉄損、高磁束密度などの高い磁気特
性を有することが求められてきた。このため、高い磁気
特性を有する電磁鋼板およびその製造方法が数多く提案
されてきた。
2. Description of the Related Art Magnetic steel sheets, which are the materials for iron cores used in transformers and motors, have been required to have high magnetic properties such as low iron loss and high magnetic flux density. Therefore, many electromagnetic steel sheets having high magnetic properties and methods for manufacturing the same have been proposed.

【0003】特開昭63−195217号公報には、Si:0.1〜
1.0%、Mn:1.5%以下、sol.Al:0.001〜0.005%を含有
し、鋼中のSiO、MnO、Alの3種の介在物の総
質量に対するMnOの質量の割合が15%以下である鉄損の
低い電磁鋼板が開示されている。
In Japanese Patent Laid-Open No. 63-195217, Si: 0.1-
1.0%, Mn: 1.5% or less, sol.Al: 0.001 to 0.005%, and the ratio of the mass of MnO to the total mass of three kinds of inclusions of SiO 2 , MnO, and Al 2 O 3 in steel is 15 A magnetic steel sheet having a low iron loss of less than 100% is disclosed.

【0004】また、特開平7−150248号公報では、Si:
0.1〜1.0%、Mn:1.5%以下、sol.Al:0.0005〜0.001%
で、介在物中のMnO含有量が15%以下、介在物中のSiO
含有量が75%以上である鉄損の低い電磁鋼板が提案さ
れている。
In Japanese Patent Laid-Open No. 7-150248, Si:
0.1-1.0%, Mn: 1.5% or less, sol.Al: 0.0005-0.001%
And the content of MnO in the inclusions is 15% or less,
2 Magnetic steel sheets with a low iron loss having a content of 75% or more have been proposed.

【0005】さらに、特開平10−147849号公報には、質
量%で、Si:0.05〜0.55%、Mn:0.1%以上で、かつ、M
n−Si≦0.5%、Al:0.004%以下を含み、介在物中のMn
O質量%とSiO質量%の比MnO/SiOが0.3以下で
ある無方向性電磁鋼板が提案され、スケール性欠陥の少
ない表面形状に優れた電磁鋼板が得られるとしている。
Further, in JP-A-10-147849, mass%, Si: 0.05 to 0.55%, Mn: 0.1% or more, and M
n-Si ≦ 0.5%, including Al: 0.004% or less, Mn in inclusions
A non-oriented electrical steel sheet in which the ratio MnO / SiO 2 of O mass% to SiO 2 mass% is 0.3 or less is proposed, and it is said that a magnetic steel sheet excellent in surface shape with few scale defects can be obtained.

【0006】これらの技術は、鋼材の化学組成に加え介
在物組成を適正に制御することにより磁気特性を向上さ
せるもので、介在物中のSiO含有量、MnO含有量等の
適正範囲が示されている。
These techniques improve the magnetic properties by appropriately controlling the chemical composition of the steel material in addition to the chemical composition of the steel material, and show the proper range of the SiO 2 content and MnO content in the inclusions. Has been done.

【0007】ところが、近年では省エネルギー化が重要
な課題となり、従来以上に効率の高い電気機器が求めら
れており、このため、従来よりも高い磁気特性を有する
電磁鋼板が必要とされている。また、製造された電磁鋼
板の磁気特性が安定しないと、製品歩留まりの低下を招
き、電磁鋼板のコストが上昇するので、性能(磁気特
性)が安定していることも重要である。
However, in recent years, energy saving has become an important issue, and electric equipment having higher efficiency than ever has been demanded. Therefore, an electromagnetic steel sheet having higher magnetic properties than ever before is required. Further, if the magnetic properties of the manufactured electromagnetic steel sheet are not stable, the product yield is lowered and the cost of the electromagnetic steel plate is increased, so that stable performance (magnetic properties) is also important.

【0008】このように、従来以上の高い、しかも安定
した磁気特性を確保することがますます重要となってき
ているが、これまでの技術では、このような要求に十分
対応することができなかった。
As described above, it is becoming more and more important to secure magnetic characteristics that are higher and more stable than ever before. However, the conventional technology cannot sufficiently meet such requirements. It was

【0009】[0009]

【発明が解決しようとする課題】本発明は、磁性焼鈍を
施すことによって磁気特性を高めると同時に、製品性能
を安定させる無方向性電磁鋼板、およびその製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-oriented electrical steel sheet which enhances magnetic properties by performing magnetic annealing and at the same time stabilizes product performance, and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、下記
(1)の無方向性電磁鋼板、および下記(2)のその製
造方法にある。
The gist of the present invention resides in the following (1) non-oriented electrical steel sheet and the following (2) manufacturing method thereof.

【0011】(1)質量%で、C:0.004%以下、Si:
0.1〜1.0%、Mn:0.2〜0.6%、sol.Al:0.0006%未満、
P:0.03〜0.2%、S:0.035%以下、N:0.004%以
下、O(酸素):0.0025〜0.012%を含有し、残部がFeお
よび不可避的不純物からなり、鋼中に存在する介在物中
のMnOとFeOの含有量(質量%)の比MnO/FeOが2以
下である無方向性電磁鋼板。なお、ここで、酸素の含有
量を表す「O」は「T.O」を意味する。
(1) C: 0.004% or less, Si:
0.1-1.0%, Mn: 0.2-0.6%, sol.Al: less than 0.0006%,
P: 0.03 to 0.2%, S: 0.035% or less, N: 0.004% or less, O (oxygen): 0.0025 to 0.012%, the balance consisting of Fe and unavoidable impurities, in inclusions present in steel A non-oriented electrical steel sheet having a MnO / FeO ratio of MnO / FeO of 2 or less. Here, “O” indicating the oxygen content means “TO”.

【0012】(2)転炉で粗脱炭し、真空脱ガス装置に
て仕上げ脱炭を行い、その後成分調整を行った溶鋼を連
続鋳造した鋳片を素材とする無方向性電磁鋼板の製造方
法であって、前記仕上げ脱炭後に溶鋼に添加するAlとSi
の質量比(添加Al量/添加Si量)を0.85以下とする上記
(1)に記載の無方向性電磁鋼板の製造方法。
(2) Manufacture of non-oriented electrical steel sheet made from a slab made by continuous casting of molten steel with rough decarburization in a converter, final decarburization with a vacuum degassing device, and then composition adjustment A method of adding Al and Si to molten steel after the final decarburization.
The manufacturing method of the non-oriented electrical steel sheet according to (1) above, wherein the mass ratio (additional Al amount / additional Si amount) is 0.85 or less.

【0013】本発明者らは、先に述べた課題を解決する
ために下記に示す試験を行った。試験方法は次のとおり
である。なお、以下、鋼の化学組成および介在物組成を
表す「%」は「質量%」を意味する。また、鋼中の化学
成分または介在物の含有量は「質量%」で表した量であ
る。
The present inventors conducted the following tests in order to solve the above-mentioned problems. The test method is as follows. In the following, “%” indicating the chemical composition and inclusion composition of steel means “mass%”. The content of chemical components or inclusions in steel is the amount expressed in "mass%".

【0014】まず、磁性焼鈍によって磁気特性を高め、
製品性能を安定させる電磁鋼板が満たすべき化学組成お
よび介在物の組成を見いだすべく、C:0.002%未満、S
i:0.2〜0.8%、Mn:0.25〜0.5%、sol.Al:0.0006%未
満、P:0.09%、S:0.005〜0.02%、N:0.003%未
満、O:0.0025〜0.015%を含有する鋼200kgを実験室で
溶解し、鋼塊を得た。なお、溶解中にAl、Si、Mnの添加
量、添加時期、保持時間を任意に変化させ、鋼中の介在
物組成を変化させた。
First, the magnetic properties are enhanced by magnetic annealing,
In order to find the chemical composition and the composition of inclusions that the electrical steel sheet that stabilizes product performance should satisfy, C: less than 0.002%, S
Steel containing i: 0.2-0.8%, Mn: 0.25-0.5%, sol.Al: less than 0.0006%, P: 0.09%, S: 0.005-0.02%, N: less than 0.003%, O: 0.0025-0.015% 200 kg was melted in the laboratory to obtain a steel ingot. The composition of inclusions in the steel was changed by arbitrarily changing the amounts of addition of Al, Si, and Mn, the timing of addition, and the holding time during melting.

【0015】この鋼塊から、厚さ15mmの鋼片を切り出
し、1200℃で1時間均熱処理を行った。その後、3パス
の圧延を施し、850℃で熱間仕上圧延を行い、厚さ3mm
の熱延鋼板とした。次いで、この熱延鋼板の両面を研削
して厚さ2.3mmとし、さらに冷間圧延を行って厚さ0.5mm
の冷延鋼板とした。この冷延鋼板を750℃に急速加熱し
て30秒間保持する焼鈍を施して無方向性電磁鋼板とし
た。
A steel piece having a thickness of 15 mm was cut out from this steel ingot and subjected to soaking at 1200 ° C. for 1 hour. After that, it is rolled in 3 passes and hot-finish rolled at 850 ° C to obtain a thickness of 3 mm.
Of hot rolled steel sheet. Next, both sides of this hot-rolled steel sheet are ground to a thickness of 2.3 mm, and further cold-rolled to a thickness of 0.5 mm.
Cold rolled steel sheet. This cold rolled steel sheet was rapidly heated to 750 ° C. and annealed for 30 seconds to obtain a non-oriented electrical steel sheet.

【0016】この鋼板から、30mm×100mmの試験片を、
半数は圧延方向に平行に、他の半数は圧延方向に直角に
なるように打ち抜き、750℃、2時間の磁性焼鈍を行っ
た。
From this steel plate, a 30 mm × 100 mm test piece was prepared.
Half of them were punched in parallel with the rolling direction and the other half were punched perpendicularly to the rolling direction, and magnetic annealing was performed at 750 ° C. for 2 hours.

【0017】このようにして得られた試験片について、
エプスタイン試験器を用い、JIS C2550に規定される方
法に準じて磁気特性(鉄損)を測定した。また、Br−メ
タノール法により鋼中の介在物を抽出し、それに含まれ
る元素の分析およびEPMA観察により介在物の組成分
析を行い、介在物組成と磁気特性の関係を調査した。
Regarding the test piece thus obtained,
Using an Epstein tester, magnetic properties (iron loss) were measured according to the method specified in JIS C2550. Further, inclusions in the steel were extracted by the Br-methanol method, the elements contained therein were analyzed, and the composition of the inclusions was analyzed by EPMA observation to investigate the relationship between the composition of the inclusions and the magnetic properties.

【0018】図1は、介在物中のSiO含有量と鉄損
(W15/50)の関係を示す図である。SiO含有量
と鉄損の関係は不明瞭であり、SiO 含有量が同一で
も鉄損のばらつきが大きい。この結果から、SiO
有量のみを指標としても、製品の磁気特性を確実に向上
させ、かつ製品性能の安定化を図って歩留まりを向上さ
せるのは難しいことがわかる。
FIG. 1 is a diagram showing the relationship between the SiO 2 content in inclusions and iron loss (W 15/50 ). The relationship between the SiO 2 content and the iron loss is unclear, and even if the SiO 2 content is the same, the variation in the iron loss is large. From this result, it can be seen that it is difficult to surely improve the magnetic properties of the product and to stabilize the product performance to improve the yield even if only the SiO 2 content is used as an index.

【0019】図2は、介在物中のMnO含有量と鉄損(W
15/50)の関係を示す図である。MnO含有量が15
%以上でも鉄損が低い場合もあり、MnO含有量が15%未
満でも高い鉄損となる場合があり、SiO 含有量と同
様、MnO含有量を指標とするのには限界があることがわ
かる。
FIG. 2 shows the MnO content in the inclusions and the iron loss (W
15/50 ) FIG. MnO content is 15
%, The iron loss may be low, and the MnO content may be high even if the MnO content is less than 15%. As with the SiO 2 content, there is a limit in using the MnO content as an index. Recognize.

【0020】図3は、介在物中のSiOの含有量に対す
るMnOの含有量の比(MnO/SiO)と鉄損(W
15/50)との関係を示す図である。この場合もMnO
含有量やSiO含有量の場合と同様、明確な関係は得ら
れない。
FIG. 3 shows the ratio of the content of MnO to the content of SiO 2 in the inclusions (MnO / SiO 2 ) and the core loss (W
15/50 ). Also in this case MnO
As with the case of the content or the content of SiO 2 , a clear relationship cannot be obtained.

【0021】以上述べたように、従来提案されているMn
O含有量やSiO含有量に基づく指標を用いるのでは、
磁気特性(鉄損)にばらつきが生じ、鉄損を確実に小さ
くすることは困難であると考えられる。
As described above, the conventionally proposed Mn
If an index based on O content or SiO 2 content is used,
It is considered difficult to reliably reduce the iron loss due to variations in magnetic properties (iron loss).

【0022】そこで、本発明者らは介在物の磁気特性
(鉄損)に及ぼす影響についてさらに調査した。
Therefore, the present inventors further investigated the effect of inclusions on the magnetic properties (iron loss).

【0023】従来は、介在物組成と磁気特性の関係を調
べるにあたり、介在物中のSiO、MnOおよびAl
のみに着目して試験結果の整理、検討が試みられてき
た。しかし、本発明者らがBr−メタノール法による鋼中
介在物の抽出およびそれに含まれる元素の分析、ならび
にEPMA観察を行った結果、以下に述べるように、so
l.Alの含有量が0.0006%未満の鋼中では、介在物中に第
4成分としてFeOが存在していること、さらに、このFe
OとMnOの存在状態(存在比)が鉄損に大きく影響する
ことが判明した。
Conventionally, when investigating the relationship between the composition of inclusions and the magnetic characteristics, SiO 2 , MnO and Al 2 O 3 in the inclusions were investigated.
Attempts have been made to sort out and examine the test results, focusing only on this. However, as a result of the inventors performing extraction of inclusions in steel by the Br-methanol method and analysis of elements contained therein, and EPMA observation, as described below,
In steel containing less than 0.0006% of l.Al, FeO is present as a fourth component in the inclusions.
It was found that the existing state (abundance ratio) of O and MnO greatly affects the iron loss.

【0024】試験に用いた前述の鋼塊に含まれるsol.Al
は0.0006%未満であるが、このとき生成する介在物はSi
、MnO、Alおよび1〜10%のFeOからなるこ
とが確認された。FeOが存在するのは、脱酸元素である
鋼中Al含有量が低いためと推測される。
Sol.Al contained in the steel ingot used in the test
Is less than 0.0006%, but the inclusions generated at this time are Si
It was confirmed to consist of O 2 , MnO, Al 2 O 3 and 1-10% FeO. The presence of FeO is presumed to be due to the low Al content in the steel, which is a deoxidizing element.

【0025】図4は、介在物中のFeO含有量に対するMn
O含有量の比(MnO/FeO)と鉄損(W15/50)と
の関係を示す図である。MnO/FeOが2を超えて高くな
ると、鉄損は大きくなり、2以下であれば鉄損が小さく
かつ安定していることがわかる。これは、FeOに対して
MnOが相対的に多いと介在物が低融点化し、介在物が大
きくなりやすいため、鉄損が劣化するものと考えられ
る。
FIG. 4 shows Mn with respect to FeO content in inclusions.
It is a figure which shows the relationship between the ratio (MnO / FeO) of O content, and iron loss ( W15 / 50 ). It can be seen that when MnO / FeO exceeds 2 and becomes high, the iron loss becomes large, and when it is 2 or less, the iron loss is small and stable. This is for FeO
When MnO is relatively large, the inclusions have a low melting point, and the inclusions are likely to become large, so that iron loss is considered to deteriorate.

【0026】上記(1)に記載の発明は、上述した試験
により得られた知見に基づいてなされたものである。
The invention described in (1) above was made based on the knowledge obtained by the above-mentioned test.

【0027】次に、上記本発明の無方向性電磁鋼板を得
るために不可欠な介在物中のMnO含有量とFeO含有量の
制御を効率よく実施する方法を検討するため、以下に示
す試験を行った。
Next, in order to examine a method for efficiently controlling the MnO content and the FeO content in the inclusions, which are indispensable for obtaining the above-mentioned non-oriented electrical steel sheet of the present invention, the following tests are conducted. went.

【0028】溶鋼180kgを真空溶解炉で溶解し、溶鋼温
度を1600℃とし、P:0.03〜0.2%、S:0.003〜0.035
%、N:0.004%以下に調整した。その後、溶解雰囲気
をArガスとし、670Paまで減圧して脱炭処理を行い、
C:0.004%未満、O:0.04〜0.08%とした。
180 kg of molten steel is melted in a vacuum melting furnace, the molten steel temperature is set to 1600 ° C., P: 0.03 to 0.2%, S: 0.003 to 0.035
%, N: 0.004% or less. After that, the melting atmosphere is Ar gas, decarburization is performed by reducing the pressure to 670 Pa,
C: less than 0.004%, O: 0.04 to 0.08%.

【0029】その後、Al、SiおよびMnを添加し、sol.A
l:0.0006%以下、Si:0.1〜1.0%、Mn:0.2〜0.6%に
調整した。その際、溶鋼に添加したAl、SiおよびMnのそ
れぞれの量と介在物組成の関係を調査し、さらに、介在
物中のMnO/FeOとの関係を調査した。このような調査
を行ったのは、Al、SiおよびMnはいずれも脱酸元素で、
介在物中のAl、SiO、MnOの組成を決定するも
のであるから、これら脱酸元素の添加量を調整すること
により介在物組成を制御でき、特に、上記本発明の電磁
鋼板において着目したFeOおよびMnOはAlやSiで容易に
還元されやすく、その含有量を制御するに際しては、Mn
の添加量よりもAl、Siの添加量が重要と考えたからであ
る。
After that, Al, Si and Mn are added, and sol.
l: 0.0006% or less, Si: 0.1 to 1.0%, Mn: 0.2 to 0.6%. At that time, the relationship between the amounts of Al, Si and Mn added to the molten steel and the composition of the inclusions was investigated, and further the relationship between MnO / FeO in the inclusions was investigated. Al, Si and Mn are all deoxidizing elements,
Since the composition of Al 2 O 3 , SiO 2 , and MnO in the inclusions is determined, the composition of the inclusions can be controlled by adjusting the addition amount of these deoxidizing elements, and in particular, the electromagnetic steel sheet of the present invention described above. FeO and MnO, which were noted in Section 3, are easily reduced by Al and Si.
This is because it was considered that the addition amounts of Al and Si were more important than the addition amount of.

【0030】試験結果を図5に示す。図5は、AlとSiの
添加量(質量)の比と介在物中のMnO/FeOとの関係を
示す図で、この結果から、Al添加量/Si添加量(以下、
「R」と記す)を0.85以下とすることにより、MnO/Fe
Oを制御できることがわかる。Rが0.85を超えて高い
と、介在物量に対するAl添加量が過剰となり、Al量が多
くなると、FeOの還元が進行しやすく、FeO含有量が低
くなる。従って、MnO/FeOが高くなりやすい。すなわ
ち、本発明の電磁鋼板において規定する介在物中のMnO
/FeOを2以下に制御するには、前記の減圧下で行う脱
炭(後述する仕上げ脱炭に相当する)処理後に溶鋼に添
加するAlとSiの添加量の比が0.85以下となるように調整
することが必要である。
The test results are shown in FIG. FIG. 5 is a diagram showing the relationship between the ratio of the added amount (mass) of Al and Si and MnO / FeO in the inclusions. From this result, Al added amount / Si added amount (hereinafter,
By setting "R") to 0.85 or less, MnO / Fe
It can be seen that O can be controlled. When R is higher than 0.85, the amount of Al added is excessive with respect to the amount of inclusions, and when the amount of Al is large, the reduction of FeO easily proceeds and the FeO content becomes low. Therefore, MnO / FeO tends to be high. That is, MnO in inclusions specified in the electromagnetic steel sheet of the present invention
In order to control / FeO to 2 or less, the ratio of the added amount of Al and Si added to the molten steel after the decarburization (corresponding to the final decarburization described below) performed under the above-mentioned reduced pressure is 0.85 or less It needs to be adjusted.

【0031】このように、本発明者らは、上記(1)に
記載の電磁鋼板を製造するに際し、製錬工程でAl添加量
とSi添加量を調整することによりMnO/FeOを安定して
制御できることを見いだした。上記(2)に記載の本発
明の無方向性電磁鋼板の製造方法は、この知見に基づい
てなされたものである。
As described above, the inventors of the present invention stably manufacture MnO / FeO by adjusting the amount of Al added and the amount of Si added in the smelting process when producing the electromagnetic steel sheet described in (1) above. I found that I could control it. The method for manufacturing a non-oriented electrical steel sheet according to the present invention described in (2) above is based on this finding.

【0032】[0032]

【発明の実施の形態】最初に、上記(1)に記載の本発
明の無方向性電磁鋼板において、鋼板の化学組成および
介在物の組成を上記のように限定した理由について説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION First, in the non-oriented electrical steel sheet of the present invention described in (1) above, the reason why the chemical composition of the steel sheet and the composition of inclusions are limited as described above will be explained.

【0033】C:0.004%以下 Cは炭化物として析出し、鋼板の磁気特性を低下させる
ので、その含有量は低いほどよい。特に、含有量が0.00
4%を超えて高くなると磁気時効が生じるので、Cの含
有量は0.004%以下とする。なお、磁気特性にとって好
ましくない(111)結晶方位粒の成長を抑制するため、
その含有量は0.0003%以上とするのが望ましい。
C: 0.004% or less C precipitates as carbides and deteriorates the magnetic properties of the steel sheet. Therefore, the lower the content, the better. In particular, the content is 0.00
When it exceeds 4% and becomes high, magnetic aging occurs, so the content of C is made 0.004% or less. In order to suppress the growth of (111) crystallographically oriented grains, which is not desirable for magnetic properties,
The content is preferably 0.0003% or more.

【0034】Si:0.1〜1.0% Siは鋼板の固有抵抗を高めるので、その含有量が高いほ
ど鉄損は小さくなる。しかしながら、Si含有量が1%を
超えて高くなると窒化物が形成され、これにより鉄損が
劣化するので、その含有量は1.0%以下とする。一方、S
i含有量が0.1%未満では、製鋼時の脱酸が弱くなり、介
在物中のFeO含有量が増大しやすく、前述したMnO/Fe
Oの制御が不可能となるので、Si含有量の下限は0.1%
とする。
Si: 0.1 to 1.0% Since Si increases the specific resistance of the steel sheet, the higher the content, the smaller the iron loss. However, when the Si content exceeds 1% and becomes high, a nitride is formed, which causes the iron loss to deteriorate, so the content is made 1.0% or less. On the other hand, S
If the i content is less than 0.1%, the deoxidation during steelmaking becomes weak, and the FeO content in inclusions tends to increase, and the above-mentioned MnO / Fe
Since the control of O becomes impossible, the lower limit of Si content is 0.1%.
And

【0035】Mn:0.2〜0.6% Mnも鋼板の固有抵抗を高める効果があるので、Mn含有量
は高い方がよい。Mn含有量が0.2%未満となると、MnS
が微細に析出分散して磁気特性が著しく劣化するので、
Mn含有量は0.2%以上とすることが必要である。一方、M
n含有量が0.6%を超えて高くなると、コストが増大する
一方で効果の増大がそれほど顕著ではなくなるので、Mn
含有量の上限は0.6%とする。
Mn: 0.2 to 0.6% Mn also has the effect of increasing the specific resistance of the steel sheet, so the higher the Mn content is, the better. If the Mn content is less than 0.2%, MnS
Finely precipitates and disperses and the magnetic properties are significantly deteriorated.
The Mn content needs to be 0.2% or more. On the other hand, M
When the n content exceeds 0.6%, the cost increases while the increase in the effect becomes less significant, so Mn
The upper limit of the content is 0.6%.

【0036】sol.Al:0.0006%以下 Alは鋼の脱酸に有効な元素であるが、窒化物等を形成し
やすいので、その含有量は低い程よい。また、磁気特性
のばらつきの原因となるので、その含有量は0.0006%以
下とする。
Sol.Al: 0.0006% or less Al is an element effective for deoxidizing steel, but since it is easy to form nitrides and the like, the lower the content, the better. Further, the content thereof is set to 0.0006% or less because it causes variations in magnetic properties.

【0037】P:0.03〜0.2% Pは0.2%を超えて高くなると鋼の脆化が著しくなり、
0.03%未満になると打ち抜き性が低下する。従って、P
の含有量は、0.03〜0.2%とする。
P: 0.03 to 0.2% When P exceeds 0.2% and becomes high, the embrittlement of the steel becomes remarkable,
If it is less than 0.03%, the punching property deteriorates. Therefore, P
Content of 0.03 to 0.2%.

【0038】S:0.035%以下 Sは0.035%を超えて高くなると、MnSを形成して鉄損
が十分向上しないので、その含有量は0.035%以下とす
る。望ましくは、0.008%以下である。
S: 0.035% or less When S exceeds 0.035% and becomes high, MnS is formed and iron loss is not sufficiently improved, so the content is made 0.035% or less. Desirably, it is 0.008% or less.

【0039】N:0.004%以下 NはSi、Mn、Al、Ti等と窒化物を形成し、磁性焼鈍時の
粒成長を妨げるので、その含有量は0.004%以下とす
る。なお、Cと同様に、磁気特性にとって好ましくない
(111)結晶方位粒の成長を抑制するため、その含有量
は0.0003%以上とするのが望ましい。
N: 0.004% or less N forms a nitride with Si, Mn, Al, Ti, etc. and hinders grain growth during magnetic annealing, so the content is made 0.004% or less. Note that, similarly to C, the content thereof is preferably 0.0003% or more in order to suppress the growth of (111) crystallographically oriented grains which are not preferable for magnetic properties.

【0040】O(酸素):0.0025〜0.012% Oは鋼中で酸化物を形成し、結晶粒の成長を抑制するの
で、その含有量は0.012%以下とする。望ましくは、0.0
085%以下である。一方、Oの含有量を0.0025%未満に
しようとすると、脱酸コストが上昇するので、含有量の
下限は0.0025%とする。
O (oxygen): 0.0025 to 0.012% O forms an oxide in steel and suppresses the growth of crystal grains, so its content is made 0.012% or less. Desirably 0.0
It is 085% or less. On the other hand, if the O content is set to less than 0.0025%, the deoxidizing cost increases, so the lower limit of the content is made 0.0025%.

【0041】本発明の電磁鋼板は、上記の成分を含有
し、他はFeおよび製造の過程で混入する不可避の不純物
であって、さらに、介在物中のFeOの含有量に対するMn
Oの含有量の比MnO/FeOが2以下の鋼板である。な
お、介在物中のMnO/FeOを2以下とするのは、前述し
たように、磁性焼鈍後の鉄損が小さく、かつ安定するか
らである。MnO/FeOの下限は特に限定しないが、Mn
は、前述したように、少なくとも0.2%含有させるの
で、介在物中のMnOが皆無ということはなく、MnO/Fe
Oが2以下の範囲に0は含まれない。
The electrical steel sheet of the present invention contains the above-mentioned components, the other components are Fe and unavoidable impurities mixed in during the manufacturing process, and further, Mn relative to the content of FeO in the inclusions.
A steel sheet having an O content ratio MnO / FeO of 2 or less. The MnO / FeO content in the inclusions is set to 2 or less because the iron loss after magnetic annealing is small and stable, as described above. The lower limit of MnO / FeO is not particularly limited, but Mn
As described above, since it is contained at least 0.2%, the MnO in the inclusions is not completely nonexistent, and MnO / Fe
0 is not included in the range where O is 2 or less.

【0042】次に、前記(2)に記載の本発明の無方向
性電磁鋼板の製造方法について、転炉、RH式真空脱ガ
ス装置(以下、RHと略記する)および連続鋳造機を用
いて製造する場合を例として説明する。
Next, regarding the method for producing a non-oriented electrical steel sheet according to the present invention described in (2) above, a converter, an RH type vacuum degassing apparatus (hereinafter abbreviated as RH) and a continuous casting machine are used. The case of manufacturing will be described as an example.

【0043】転炉での脱炭、脱硫等の精錬が終了した溶
鋼を転炉から取鍋内へ出鋼した後、取鍋をRHへ移動す
る。RHで減圧下で仕上げ脱炭を行い、溶鋼中のC含有
量を0.004%以下まで低減させる。Al、Siは脱酸元素
で、RH脱炭前にこれらの元素を添加すると脱炭速度が
著しく低下するので、この仕上げ脱炭処理時には添加し
ない。
After the molten steel that has been subjected to refining such as decarburization and desulfurization in the converter is tapped from the converter into the ladle, the ladle is moved to RH. Finish decarburization is performed under reduced pressure at RH to reduce the C content in molten steel to 0.004% or less. Al and Si are deoxidizing elements, and if these elements are added before RH decarburization, the decarburization rate will be significantly reduced, so they are not added during this final decarburization treatment.

【0044】RHでの脱炭後、溶鋼中のS、P含有量を
調整し、Al、Si、Mnを添加する。S、Pを溶鋼に添加す
る場合、添加時期はAl、Si、Mnの添加前でも添加後でも
よい。
After decarburization at RH, the S and P contents in the molten steel are adjusted, and Al, Si and Mn are added. When S and P are added to the molten steel, they may be added before or after the addition of Al, Si and Mn.

【0045】Mnは、RHでの脱炭後であればどの時点で
添加してもよい。
Mn may be added at any time after decarburization at RH.

【0046】Al、Siは同時に添加してもよいが、Siを添
加してからAlを添加することが望ましい。先にAlを添加
すると、アルミナ介在物またはFeO−MnO−Al
在物が生成し、この後、Siを添加しても、SiはAlよりも
脱酸力が弱いこと、FeO−MnO−Al介在物中のFe
O、MnO活量が低下するためSiによるFeO、MnOの還元
速度が低下すること、等の理由で、介在物中のFeO、Mn
Oの含有量を短時間で制御することが困難となり、処理
時間を長くしなければならない。一方、Si添加後にAlを
添加すれば、Alの方が脱酸力が強いので、反応速度が速
く、短時間で処理できる。ただし、いずれの方法でも、
前述したように、R(Al添加量/Si添加量)が0.85以下
となるように添加することによって、介在物制御(つま
り、介在物中のMnO/FeOの制御)の精度が向上する。
Al and Si may be added at the same time, but it is desirable to add Si before adding Al. If earlier addition of Al, alumina inclusions or FeO-MnO-Al 2 O 3 inclusions is produced, thereafter, be added to Si, Si may be deoxidizing force weaker than Al, FeO-MnO -Al 2 O 3 Fe inclusions in
FeO and Mn in the inclusions are reduced because the reduction rate of FeO and MnO by Si decreases due to the decrease in O and MnO activities.
It becomes difficult to control the O content in a short time, and the processing time must be lengthened. On the other hand, if Al is added after Si is added, since Al has a stronger deoxidizing power, the reaction rate is faster and the treatment can be performed in a shorter time. However, with either method,
As described above, the accuracy of inclusion control (that is, control of MnO / FeO in inclusions) is improved by adding R (Al addition amount / Si addition amount) so as to be 0.85 or less.

【0047】続いて、成分調整を行った溶鋼を連続鋳造
機により鋳造して鋳片とし、この鋳片を素材として熱間
圧延、続いて冷間圧延を行って電磁鋼板とする。
Subsequently, the molten steel having the adjusted composition is cast by a continuous casting machine to obtain a slab, which is hot-rolled and then cold-rolled to obtain an electromagnetic steel sheet.

【0048】熱間圧延の条件は通常の電磁鋼板の製造の
際に行われている条件でよいが、熱間圧延の仕上げ温度
は800〜(880+50×[%Si])℃であることが望ましい
(前記の[%Si]は鋼板のSi含有量を表す)。仕上げ温
度が800℃未満であるとミクロ組織が微細な未再結晶組
織となって磁束密度が低下し、(880+50×[%Si])℃
を超えて高いとA変態により微細な組織が生じて磁束
密度が低下する傾向がみられるからである。なお、冷間
圧延、およびその後行われる熱処理等は、通常用いられ
ている条件で行えばよい。
The hot rolling conditions may be the same as those used in the production of ordinary magnetic steel sheets, but the finishing temperature of hot rolling is preferably 800 to (880 + 50 × [% Si]) ° C. (The above [% Si] represents the Si content of the steel plate). If the finishing temperature is less than 800 ° C, the microstructure will become a fine unrecrystallized structure and the magnetic flux density will decrease, resulting in (880 + 50 × [% Si]) ° C.
This is because if it is higher than 1.0, a fine structure is generated due to A 3 transformation, and the magnetic flux density tends to decrease. The cold rolling, the heat treatment to be performed thereafter, and the like may be performed under commonly used conditions.

【0049】[0049]

【実施例】転炉で脱炭および脱硫した溶鋼230tを取鍋
内に出鋼し、取鍋をRH式真空脱ガス装置に移動した。
RHで減圧下で仕上げ脱炭処理を行い、溶鋼中のC含有
量を0.004%以下とした後に、溶鋼中のS含有量を0.018
〜0.021%、P含有量を0.089〜0.092%、Mn含有量を0.2
5〜0.3%に調整した。成分調整後、AlとSiをほぼ同時に
添加し、R(Al添加量/Si添加量)を0.12〜1.98の範囲
で変化させた。なお、溶鋼温度が低い場合は引き続き、
酸素ガスを付与して昇温処理を行った。
Example: 230 t of molten steel decarburized and desulfurized in a converter was tapped into a ladle, and the ladle was moved to an RH type vacuum degassing device.
After finishing decarburization treatment under reduced pressure at RH and setting the C content in molten steel to 0.004% or less, the S content in molten steel is 0.018%.
~ 0.021%, P content 0.089-0.092%, Mn content 0.2
Adjusted to 5 to 0.3%. After adjusting the components, Al and Si were added almost at the same time, and R (Al addition amount / Si addition amount) was changed in the range of 0.12 to 1.98. If the molten steel temperature is low,
Oxygen gas was applied and the temperature rising process was performed.

【0050】上記処理後の溶鋼を、連続鋳造機により鋳
片(スラブ)とした。この鋳片を加熱炉で1200℃まで加
熱し、仕上げ温度860〜870℃で熱間圧延し、厚さ2.5mm
とした。次いで、0.5mmまで冷間圧延し、770℃で仕上げ
焼鈍した。仕上げ焼鈍後、約0.2μmの絶縁皮膜を塗布し
た。
The molten steel after the above treatment was made into a slab (slab) by a continuous casting machine. This slab is heated to 1200 ° C in a heating furnace and hot-rolled at a finishing temperature of 860 to 870 ° C, with a thickness of 2.5 mm.
And Then, it was cold rolled to 0.5 mm and finish annealed at 770 ° C. After finishing annealing, an insulating film of about 0.2 μm was applied.

【0051】この鋼板から28cmエプスタイン試験片を採
取し、窒素雰囲気中、750℃で2時間保持する磁性焼鈍
を施した後、JIS C 2550に規定される方法により磁気特
性(鉄損W15/50)を測定し、同時に、Br−メタノ
ール法による鋼中介在物の抽出およびそれに含まれる元
素の分析により介在物組成を調べた。
A 28 cm Epstein test piece was taken from this steel sheet, magnetically annealed at 750 ° C. for 2 hours in a nitrogen atmosphere, and then subjected to magnetic properties (iron loss W 15/50 by the method specified in JIS C 2550). ) Was measured, and at the same time, the composition of inclusions was examined by extracting inclusions in steel by the Br-methanol method and analyzing the elements contained therein.

【0052】表1に鋼(鋼板)の化学組成、R(Al添加
量/Si添加量)、介在物中のMnO/FeOおよび鉄損の測
定結果を示す。
Table 1 shows the measurement results of the chemical composition of steel (steel plate), R (Al addition amount / Si addition amount), MnO / FeO in inclusions and iron loss.

【0053】[0053]

【表1】 [Table 1]

【0054】前記(1)の本発明の電磁鋼板で規定する
化学組成を有し、かつ、MnO/FeOが2以下であれば、
鉄損が小さくなっていることがわかる。また、MnO/Fe
Oが2以下であるという条件は、仕上げ脱炭後に溶鋼に
添加するAlとSiの質量比Rを0.85以下とする本発明の方
法により達成されることが確認された。
If it has the chemical composition defined by the electromagnetic steel sheet of the present invention of the above (1) and MnO / FeO is 2 or less,
It can be seen that the iron loss is small. Also, MnO / Fe
It has been confirmed that the condition that O is 2 or less can be achieved by the method of the present invention in which the mass ratio R of Al and Si added to the molten steel after finish decarburization is 0.85 or less.

【0055】[0055]

【発明の効果】本発明の無方向性電磁鋼板は、磁性焼鈍
を施すことによって磁気特性を高めると同時に、製品性
能を安定させることができる。この電磁鋼板は、本発明
の方法により容易に製造することができる。
INDUSTRIAL APPLICABILITY The non-oriented electrical steel sheet of the present invention can be magnetically annealed to enhance the magnetic properties and stabilize the product performance. This electromagnetic steel sheet can be easily manufactured by the method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】介在物中のSiO含有量と鉄損の関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the content of SiO 2 in inclusions and iron loss.

【図2】介在物中のMnO含有量と鉄損の関係を示す図で
ある。
FIG. 2 is a diagram showing a relationship between MnO content in inclusions and iron loss.

【図3】介在物中のSiOの含有量に対するMnOの含有
量の比(MnO/SiO)と鉄損との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the ratio of the content of MnO to the content of SiO 2 in the inclusions (MnO / SiO 2 ) and the iron loss.

【図4】介在物中のFeOの含有量に対するMnOの含有量
の比(MnO/FeO)と鉄損との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the ratio of the content of MnO to the content of FeO in the inclusions (MnO / FeO) and the iron loss.

【図5】溶鋼精錬時に添加するAlとSiの質量比(Al添加
量/Si添加量)とMnO/FeOとの関係を示す図である。
FIG. 5 is a diagram showing a relationship between a mass ratio of Al and Si (amount of Al added / amount of Si added) and MnO / FeO added during molten steel refining.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 A (72)発明者 樋口 善彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 Fターム(参考) 4K013 AA04 BA08 BA14 EA19 EA28 FA02 5E041 AA02 CA02 CA04 NN01 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 1/16 H01F 1/16 A (72) Inventor Yoshihiko Higuchi 4-53-3 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal industry Co., Ltd. F term (reference) 4K013 AA04 BA08 BA14 EA19 EA28 FA02 5E041 AA02 CA02 CA04 NN01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.004%以下、Si:0.1〜1.
0%、Mn:0.2〜0.6%、sol.Al:0.0006%未満、P:0.0
3〜0.2%、S:0.035%以下、N:0.004%以下、O:0.
0025〜0.012%を含有し、残部がFeおよび不可避的不純
物からなり、鋼中に存在する介在物中のMnOとFeOの含
有量(質量%)の比MnO/FeOが2以下であることを特
徴とする無方向性電磁鋼板。
1. In mass%, C: 0.004% or less, Si: 0.1-1.
0%, Mn: 0.2-0.6%, sol.Al: less than 0.0006%, P: 0.0
3 to 0.2%, S: 0.035% or less, N: 0.004% or less, O: 0.
[0025] The content of MnO / FeO in the inclusions present in the steel (% by mass), MnO / FeO, is 2 or less. Non-oriented electrical steel sheet.
【請求項2】転炉で粗脱炭し、真空脱ガス装置にて仕上
げ脱炭を行い、その後成分調整を行った溶鋼を連続鋳造
した鋳片を素材とする無方向性電磁鋼板の製造方法であ
って、前記仕上げ脱炭後に溶鋼に添加するAlとSiの質量
比(添加Al量/添加Si量)を0.85以下とすることを特徴
とする請求項1に記載の無方向性電磁鋼板の製造方法。
2. A method for producing a non-oriented electrical steel sheet using a slab as a raw material, which is obtained by roughly decarburizing in a converter, performing final decarburization in a vacuum degassing device, and then continuously casting molten steel whose composition has been adjusted. In addition, the mass ratio of Al and Si added to the molten steel after the final decarburization (added Al amount / added Si amount) is 0.85 or less, and the non-oriented electrical steel sheet according to claim 1, Production method.
JP2002124112A 2002-04-25 2002-04-25 Non-oriented silicon steel plate and its production method Pending JP2003313645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124112A JP2003313645A (en) 2002-04-25 2002-04-25 Non-oriented silicon steel plate and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002124112A JP2003313645A (en) 2002-04-25 2002-04-25 Non-oriented silicon steel plate and its production method

Publications (1)

Publication Number Publication Date
JP2003313645A true JP2003313645A (en) 2003-11-06

Family

ID=29539217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124112A Pending JP2003313645A (en) 2002-04-25 2002-04-25 Non-oriented silicon steel plate and its production method

Country Status (1)

Country Link
JP (1) JP2003313645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119022B1 (en) * 2004-06-30 2012-03-12 주식회사 포스코 Electric steel sheet and refining method for electric steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119022B1 (en) * 2004-06-30 2012-03-12 주식회사 포스코 Electric steel sheet and refining method for electric steel sheet

Similar Documents

Publication Publication Date Title
RU2696887C1 (en) Sheet from non-textured electrical steel and method of manufacturing thereof
US11377705B2 (en) Grain-oriented electrical steel sheet
EP3037565B1 (en) Non-oriented electrical steel sheet having high magnetic flux density and motor
CN113166869B (en) Non-oriented electromagnetic steel sheet and method for producing same
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JPS6245285B2 (en)
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP3687644B2 (en) Method for producing non-oriented electrical steel sheet
JP3852419B2 (en) Non-oriented electrical steel sheet
CN114277309A (en) High magnetic induction oriented silicon steel and manufacturing method thereof
JP3843955B2 (en) Non-oriented electrical steel sheet
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP2004339537A (en) High magnetic flux density nonoriented silicon steel sheet having high strength and excellent workability and recycling property, and production method therefor
CN114540711A (en) High-grade non-oriented electrical steel and preparation method thereof
JPH055126A (en) Production of nonoriented silicon steel sheet
CN114901850A (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheet
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP2003313645A (en) Non-oriented silicon steel plate and its production method
JPH07122090B2 (en) Method of melting directional silicon steel material
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP2003183734A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in cold-rolling property
KR102528345B1 (en) Manufacturing method of non-oriented electrical steel sheet and slab cast steel as its material
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911