JP2003303589A - Negative electrode for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the same - Google Patents

Negative electrode for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the same

Info

Publication number
JP2003303589A
JP2003303589A JP2002109358A JP2002109358A JP2003303589A JP 2003303589 A JP2003303589 A JP 2003303589A JP 2002109358 A JP2002109358 A JP 2002109358A JP 2002109358 A JP2002109358 A JP 2002109358A JP 2003303589 A JP2003303589 A JP 2003303589A
Authority
JP
Japan
Prior art keywords
negative electrode
metal
sheet
secondary battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002109358A
Other languages
Japanese (ja)
Inventor
Takeshi Sakurai
健 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002109358A priority Critical patent/JP2003303589A/en
Publication of JP2003303589A publication Critical patent/JP2003303589A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of a gap at an interface between a solid electrolyte and an electrode caused by the movement of ion at the inside of the electrolyte, and to cope with the mechanical deformation in a state of keeping the electric bonding of the electrolyte and the electrode. <P>SOLUTION: This invention is made to improve a negative electrode for a lithium secondary battery mounted in a state of being kept into contact with the lithium ion conductive solid electrolyte 13. The negative electrode is composed of a negative electrode collector 21, and a Cs-Rb alloy 26 including metallic lithium 16 and mounted at a solid electrolyte 13 side of the negative electrode collector 21, and a weight ratio of metallic lithium 16 included in the Cs-Rb alloy 26, to the Cs-Rb alloy 26 is Li:Cs-Rb=5:1 through 1:8. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン伝
導性固体電解質と接して構成されるリチウム二次電池用
負極及びこの負極を用いたリチウム二次電池並びにその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium secondary battery formed in contact with a lithium ion conductive solid electrolyte, a lithium secondary battery using this negative electrode, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、リチウム二次電池の電解質とし
て、リチウム塩を有機溶媒に溶解した電解液が使用され
ている。この電解液を用いた電池は、構成材料である電
解液が有機電解液で構成されているため、イオン導電率
が高く電池容量が大きい特性を有する。しかし、有機電
解液は可燃性であるため、高電圧になるに従って、安全
性の確保が大きな課題となっている。こうした問題に対
し、可燃性の有機電解液に代えて不燃性の固体電解質を
用いた固体電池が高信頼性の電池の開発に繋がることか
ら注目されている。この固体電解質には無機材質や高分
子材質を用いたものが開発され、その特性を発揮させる
ために結晶質や非晶質の状態で使用される。固体電解質
を塗布等の方法で積層することにより薄型化が可能とな
るため、ビデオ撮影装置、ノートパソコンや携帯電話等
の携帯用情報端末機器に代表される各種電子応用機器の
薄型かつ軽量小型化の要求に応じることができる。
2. Description of the Related Art Conventionally, as an electrolyte of a lithium secondary battery, an electrolytic solution in which a lithium salt is dissolved in an organic solvent has been used. A battery using this electrolytic solution has characteristics of high ionic conductivity and large battery capacity because the electrolytic solution as a constituent material is composed of an organic electrolytic solution. However, since the organic electrolytic solution is flammable, ensuring safety is a major issue as the voltage becomes higher. With respect to these problems, a solid-state battery using a non-flammable solid electrolyte instead of a flammable organic electrolyte is attracting attention because it leads to the development of a highly reliable battery. As the solid electrolyte, one using an inorganic material or a polymer material has been developed, and is used in a crystalline or amorphous state in order to exert its characteristics. Thinning is possible by stacking solid electrolytes by methods such as coating, so thin and lightweight miniaturization of various electronic application devices such as video recording devices, notebook personal computers and portable information terminal devices such as mobile phones. Can meet the demands of

【0003】電極と電解質とからなる界面で電解質を伝
導するイオンと電子との酸化還元反応が安定的に継続す
ることが、電池が機能する原理であり、反応にはイオン
の物質移動が伴うために、反応した結果、界面の移動が
起きる。電解質に電解液を用いていたリチウム二次電池
では電解液が流動することによって電極体積の変化を補
償出来ていたので、電極と電解質との界面が移動しても
電解液は常に電極に接していることが可能であったが、
電解質に固体電解質を用いた二次電池では、電極と電解
質との界面を常に接触させておくことが重要な技術的課
題となっている。それは電極と電解質との界面に隙間が
生じると、電気化学反応が止まり、イオンの動きが阻害
されるため、所定の性能が維持できなくなり、充電や放
電の際に規格通りの電流量が取れなくなるといった問題
が生じるためである。従来の固体電解質を用いた二次電
池では、その製造時には接合界面が電気化学的に良好な
接触を保っているが、イオンのインターカレート、デイ
ンターカレートに伴う膨張収縮等により電極に体積変化
が起こると、固体電解質と電極との間に歪みが蓄積され
イオン伝達経路の遮断を招き、サイクル充放電特性を損
ねるという問題があった。
It is the principle of battery function that the redox reaction of ions and electrons conducting through the electrolyte at the interface between the electrode and the electrolyte continues stably, and the reaction involves mass transfer of ions. Then, as a result of the reaction, movement of the interface occurs. In a lithium secondary battery that used an electrolyte solution as the electrolyte, the change in the electrode volume could be compensated for by the flow of the electrolyte solution, so the electrolyte solution is always in contact with the electrode even if the interface between the electrode and the electrolyte moves. It was possible to
In a secondary battery using a solid electrolyte as an electrolyte, it is an important technical issue to keep the interface between the electrode and the electrolyte in contact with each other. If a gap is created at the interface between the electrode and the electrolyte, the electrochemical reaction will stop and the movement of ions will be hindered, so it will not be possible to maintain the prescribed performance, and it will not be possible to obtain the standard current amount during charging and discharging. This is a problem. In a conventional secondary battery using a solid electrolyte, the bonding interface keeps good electrochemical contact at the time of its manufacture, but the volume of the electrode is increased due to expansion / contraction caused by intercalation and deintercalation of ions. When the change occurs, there is a problem that strain is accumulated between the solid electrolyte and the electrode, which interrupts the ion transfer path and impairs the cycle charge / discharge characteristics.

【0004】このような問題を解決するために、電極と
固体電解質との剥離を抑止して、界面の良好な密着性を
継続的に維持し、伝導イオンの酸化還元反応を安定的に
継続させる方法が研究、開発されている。固体電解質と
活物質の膨張収縮による歪みのミスマッチによって発生
するイオン伝達経路の遮断を極力低減した固体二次電池
が開示されている(特開2000−331684)。こ
の公報では、充電終止状態に対する放電終止状態の体積
変化率が1.5%以内の無機酸化物の焼結体からなる活
物質を用い、活物質と固体電解質との接合界面をホット
プレスによる焼成等で形成することにより密着性を上げ
て、イオン伝達経路の遮断を極力低減している。また、
正極側の固体電解質に正極活物質に含まれる遷移金属元
素が拡散し、負極側に固体電解質に負極活物質に含まれ
る遷移金属元素が拡散している固体電解質電池が開示さ
れている(特開2001−093535)。この技術で
は、電極の活物質に含まれる遷移金属元素を固体電解質
に拡散させることにより電極と固体電解質の接合を強固
にしている。また、結着剤を含有する正極材料と固体電
解質と負極材料を積層した生成形体をマイクロ波加熱し
て焼成する全固体二次電池の製造方法が開示されている
(特開2001−210360)。この製造方法では、
マイクロ波を短時間照射して結着剤を選択的に溶解する
ことにより、粒子との緻密な接合界面を形成することが
できる。
In order to solve such a problem, peeling between the electrode and the solid electrolyte is suppressed, good adhesion at the interface is continuously maintained, and the oxidation-reduction reaction of conduction ions is stably continued. Methods are being researched and developed. A solid secondary battery has been disclosed in which blocking of an ion transfer path caused by a mismatch of strain due to expansion and contraction of a solid electrolyte and an active material is reduced as much as possible (Japanese Patent Laid-Open No. 2000-331684). In this publication, an active material made of a sintered body of an inorganic oxide having a volume change rate of 1.5% or less in a discharge terminated state with respect to a charge terminated state is used, and a bonding interface between the active material and the solid electrolyte is fired by hot pressing. The adhesiveness is increased and the blocking of the ion transfer path is reduced as much as possible. Also,
A solid electrolyte battery is disclosed in which a transition metal element contained in a positive electrode active material is diffused into a solid electrolyte on the positive electrode side, and a transition metal element contained in a negative electrode active material is diffused into a solid electrolyte on the negative electrode side (Japanese Patent Application Laid-Open No. 2000-242242). 2001-093535). In this technique, the transition metal element contained in the active material of the electrode is diffused into the solid electrolyte to strengthen the bond between the electrode and the solid electrolyte. Also disclosed is a method for producing an all-solid secondary battery in which a green formed body obtained by laminating a positive electrode material containing a binder, a solid electrolyte, and a negative electrode material is heated by microwaves and fired (JP-A-2001-210360). In this manufacturing method,
By irradiating microwaves for a short time to selectively dissolve the binder, a dense bonding interface with the particles can be formed.

【0005】また、化学的に接着を助ける方法として、
固体電解質の降伏応力に比較して小さい降伏応力をもつ
モノマーでゲル化されたゲル状高分子固体電解質接着層
を界面に介在させた電池が開示されている(特開200
1−023695)。この電池では、固体電解質の降伏
応力よりも小さい降伏応力をもつゲル状高分子固体電解
質接着層を界面に介在させることにより、ゲル状固体電
解質層のゲル化に伴う体積変化や充放電時の電極の体積
変化等に起因する電極とゲル状高分子固体電解質層との
剥離が抑止されるため、放電容量を大きくすることが可
能になるなど、電池特性を向上することができる。更
に、電解質表面に特定のシクロヘキサン誘導体をゲル化
剤として含むゲル状電解質組成物及びその利用方法が開
示されている(特開2000−030528)。固体電
解質薄膜の表面に特定のシクロヘキサン誘導体をゲル化
剤として含むゲル状電解質組成物の層が積層されること
により、電極表面に良好に密着させることができる。
Further, as a method of chemically assisting adhesion,
A battery in which a gel polymer solid electrolyte adhesive layer gelled with a monomer having a yield stress smaller than that of the solid electrolyte is interposed at the interface is disclosed (JP-A-200).
1-023695). In this battery, by interposing a gel-like polymer solid electrolyte adhesive layer having a yield stress smaller than that of the solid electrolyte at the interface, the volume change due to gelation of the gel-like solid electrolyte layer and the electrode during charge / discharge Since peeling between the electrode and the gelled polymer solid electrolyte layer due to the volume change of the battery is suppressed, the battery characteristics can be improved such that the discharge capacity can be increased. Furthermore, a gel electrolyte composition containing a specific cyclohexane derivative as a gelling agent on the surface of the electrolyte and a method of using the same have been disclosed (Japanese Patent Laid-Open No. 2000-030528). By stacking a layer of a gel electrolyte composition containing a specific cyclohexane derivative as a gelling agent on the surface of the solid electrolyte thin film, it can be brought into good contact with the electrode surface.

【0006】[0006]

【発明が解決しようとする課題】しかし、固体電解質や
電極材料は、それぞれイオンや電子の輸送特性を最大限
に引き出せるように設計されているので、上述した公報
にそれぞれ示される技術のように、反応や表面修飾によ
って界面付近の組成を連続的に変化させて機械的な密着
性を向上させた場合、界面近傍は、電解質や電極材料の
組成とは異なった化学組成となることは避けられず、界
面近傍の組成の変化は、電池全体の機能を制限してしま
う問題があった。本発明の目的は、イオンの電解質内部
の移動により、固体電解質と電極との界面に隙間が生じ
ることを防ぐことができるとともに、電解質と電極との
電気的な接合を保ちながら機械的な変形に対応できるリ
チウム二次電池用負極及びこれを用いたリチウム二次電
池並びにその製造方法を提供することにある。
However, since the solid electrolyte and the electrode material are designed so as to maximize the transport characteristics of ions and electrons, as in the techniques disclosed in the above-mentioned publications, When the composition near the interface is continuously changed by reaction or surface modification to improve the mechanical adhesion, it is inevitable that the composition near the interface will be different from the composition of the electrolyte or electrode material. The change in the composition near the interface has a problem of limiting the function of the entire battery. The object of the present invention is to prevent the occurrence of a gap at the interface between the solid electrolyte and the electrode due to the movement of ions inside the electrolyte, and to prevent mechanical deformation while maintaining electrical contact between the electrolyte and the electrode. An object of the present invention is to provide a corresponding negative electrode for a lithium secondary battery, a lithium secondary battery using the same, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、リチウムイオン伝導性固体電解質1
3と接して設けられるリチウム二次電池用負極27の改
良である。その特徴ある構成は、負極集電体21と、負
極集電体21の固体電解質13側に設けられ金属リチウ
ム16を含むCs−Rb合金26とにより構成され、C
s−Rb合金26に含まれる金属リチウム16とCs−
Rb合金26との重量比がLi:Cs−Rb=5:1〜
1:8であるところにある。請求項1に係る発明では、
負極集電体21と、負極集電体21の固体電解質13側
に設けられ金属リチウム16を含むCs−Rb合金26
とにより負極27が構成される。負極27に用いられる
Cs−Rb合金26は、室温で液体であり、電気伝導性
を有し、酸化還元電位性がリチウムよりも貴であり、金
属リチウムとは固溶体を形成しないという特徴を有す
る。電解質と電極との電気的な接合を保ちながら機械的
な変形に対応できるように金属リチウム16を含み室温
で液体であるCs−Rb合金26からなる液体負極27
としたため、稼働イオンの電解質内部の移動により、固
体電解質と電極との界面に隙間が生じて剥離するという
問題を解消することができる。また、固体電解質の負極
側界面に金属リチウムがデンドライト状に析出しても、
従来の負極と異なり、この液体負極は流動変形するので
電気的な接合が保たれる。
The invention according to claim 1 is
As shown in FIG. 1, a lithium ion conductive solid electrolyte 1
3 is an improvement of the negative electrode 27 for a lithium secondary battery provided in contact with No. 3. Its characteristic configuration is constituted by a negative electrode current collector 21 and a Cs-Rb alloy 26 containing metallic lithium 16 provided on the solid electrolyte 13 side of the negative electrode current collector 21, and C
Metallic lithium 16 and Cs- contained in the s-Rb alloy 26
The weight ratio with the Rb alloy 26 is Li: Cs-Rb = 5: 1 to
It is at 1: 8. In the invention according to claim 1,
A negative electrode current collector 21 and a Cs-Rb alloy 26 provided on the solid electrolyte 13 side of the negative electrode current collector 21 and containing metallic lithium 16.
And constitute the negative electrode 27. The Cs-Rb alloy 26 used for the negative electrode 27 is characterized in that it is liquid at room temperature, has electrical conductivity, has a redox potential higher than that of lithium, and does not form a solid solution with metallic lithium. A liquid negative electrode 27 composed of a Cs-Rb alloy 26 which is liquid at room temperature and which contains metallic lithium 16 so as to cope with mechanical deformation while maintaining electrical connection between the electrolyte and the electrode.
Therefore, it is possible to solve the problem that a gap is generated at the interface between the solid electrolyte and the electrode due to the movement of the working ions inside the electrolyte, resulting in separation. In addition, even if metallic lithium is deposited on the negative electrode side interface of the solid electrolyte in the form of dendrite,
Unlike the conventional negative electrode, this liquid negative electrode is fluidized and deformed, so that electrical contact is maintained.

【0008】請求項2に係る発明は、請求項1に係る発
明であって、Cs−Rb合金26がCs30〜80重量
%とRb70〜20重量%からなるリチウム二次電池用
負極である。請求項3に係る発明は、図1に示すよう
に、正極12と、負極27と、正極12と負極27の間
に設けられたリチウムイオン伝導性固体電解質13とを
備えたリチウム二次電池28の改良である。その特徴あ
る構成は、負極27が負極集電体21と、負極集電体2
1の固体電解質13側に設けられ金属リチウム16を含
むCs−Rb合金26とにより構成され、Cs−Rb合
金26に含まれる金属リチウム16とCs−Rb合金2
6との重量比がLi:Cs−Rb=5:1〜1:8であ
るところにある。請求項3に係る発明では、従来の二次
電池では充放電を行うことにより、固体電解質と電極と
の界面に隙間が生じて剥離状態になったり、界面に生じ
るデンドライト状の析出物に起因して剥離する問題が生
じていたが、本発明の二次電池28では、電解質と電極
との電気的な接合を保ちながら機械的な変形に対応でき
るように電解質にリチウムイオン伝導性固体電解質13
を採用し、負極27に負極集電体21と、負極集電体2
1の固体電解質13側に設けられ金属リチウム16を含
む室温で液体のCs−Rb合金26とにより構成した。
このような構成を有する二次電池は負極と固体電解質と
の界面の剥離という問題を解消することができる。
The invention according to claim 2 is the invention according to claim 1, which is a negative electrode for a lithium secondary battery in which the Cs-Rb alloy 26 comprises 30 to 80% by weight of Cs and 70 to 20% by weight of Rb. The invention according to claim 3 is, as shown in FIG. 1, a lithium secondary battery 28 including a positive electrode 12, a negative electrode 27, and a lithium ion conductive solid electrolyte 13 provided between the positive electrode 12 and the negative electrode 27. Is an improvement. The characteristic configuration is that the negative electrode 27 has the negative electrode current collector 21 and the negative electrode current collector 2
1 and the Cs-Rb alloy 26 that is provided on the solid electrolyte 13 side and that contains the metallic lithium 16, and the metallic lithium 16 and the Cs-Rb alloy 2 that are included in the Cs-Rb alloy 26.
The weight ratio with 6 is Li: Cs-Rb = 5: 1 to 1: 8. In the invention according to claim 3, when the conventional secondary battery is charged and discharged, a gap is formed at the interface between the solid electrolyte and the electrode to cause a peeling state, or a dendrite-like precipitate is generated at the interface. However, in the secondary battery 28 of the present invention, the lithium ion conductive solid electrolyte 13 is used as the electrolyte so that the electrolyte can be mechanically deformed while maintaining electrical contact between the electrolyte and the electrode.
The negative electrode current collector 21 and the negative electrode current collector 2 are used for the negative electrode 27.
1 and a Cs-Rb alloy 26 which is provided on the side of the solid electrolyte 13 and which contains metallic lithium 16 and is liquid at room temperature.
The secondary battery having such a structure can solve the problem of peeling at the interface between the negative electrode and the solid electrolyte.

【0009】請求項4に係る発明は、図2に示すよう
に、シート又は箔状の正極集電体11とシート又は箔状
の正極12とシート状のリチウムイオン伝導性固体電解
質13とをこの順に積層して正極用シート状物14を形
成する工程と、温度0℃以下の不活性ガス雰囲気でLi
金属16とRb金属17とCs金属18を重量比で10
〜1:1〜4:1〜4の割合で含む金属層19をシート
状の負極集電体21の片面に設けて負極用シート状物2
2を形成する工程と、温度0℃以下の不活性ガス雰囲気
で正極用シート状物14と負極用シート状物22とを正
極集電体11及び負極集電体21がそれぞれ外側になる
ように重ね合わせて積層体23を形成する工程と、図3
に示すように、温度0℃以下の不活性ガス雰囲気で正極
用シート状物の一部14a及び負極用シート状物の一部
22aを露出するように積層体23をアルミ蒸着フィル
ム24,24で被包して真空封着する工程と、図4に示
すように、真空封着された積層体23を室温の雰囲気に
配置してRb金属17とCs金属18とを合金化するこ
とにより液体負極27を形成する工程と、それぞれ露出
した正極用シート状物の一部14a及び負極用シート状
物の一部22aに電圧を印加して初期充電を行う工程
と、図5に示すように、それぞれ露出した正極用シート
状物の一部14a及び負極用シート状物の一部22aか
ら電力を消費して初期放電を行う工程とを含むリチウム
二次電池の製造方法である。請求項5に係る発明は、請
求項4に係る発明であって、図2に示すように、箔状の
Li金属16、箔状のRb金属17及び箔状のCs金属
18を積層することにより金属層19が形成されるリチ
ウム二次電池の製造方法である。請求項6に係る発明
は、請求項4に係る発明であって、粒状のLi金属、粒
状のRb金属及び粒状のCs金属を有機溶媒に分散さ
せ、有機溶媒をシート状物の負極集電体の片面に塗布
し、塗布層から有機溶媒を脱離することにより金属層が
形成されるリチウム二次電池の製造方法である。
In the invention according to claim 4, as shown in FIG. 2, a sheet or foil-shaped positive electrode current collector 11, a sheet or foil-shaped positive electrode 12, and a sheet-shaped lithium ion conductive solid electrolyte 13 are provided. The steps of stacking in order to form the positive electrode sheet material 14, and Li in an inert gas atmosphere at a temperature of 0 ° C. or less.
The weight ratio of metal 16, Rb metal 17, and Cs metal 18 is 10
A sheet of negative electrode current collector 21 is provided with a metal layer 19 in a ratio of 1: 1 to 4: 1 to 4 on one side thereof.
2 and the positive electrode sheet material 14 and the negative electrode sheet material 22 in an inert gas atmosphere at a temperature of 0 ° C. or less so that the positive electrode current collector 11 and the negative electrode current collector 21 are on the outside. A step of forming the laminated body 23 by stacking the layers, and FIG.
As shown in FIG. 5, the laminate 23 is formed by aluminum vapor deposition films 24 and 24 so that the positive electrode sheet-like portion 14a and the negative electrode sheet-like portion 22a are exposed in an inert gas atmosphere at a temperature of 0 ° C. or less. The step of encapsulating and vacuum-sealing, and as shown in FIG. 4, by placing the vacuum-sealed laminate 23 in an atmosphere at room temperature and alloying the Rb metal 17 and the Cs metal 18, the liquid negative electrode 27, a step of applying a voltage to the exposed positive electrode sheet-like portion 14a and the exposed negative electrode sheet-like portion 22a to carry out initial charging, respectively, as shown in FIG. And a step of consuming electric power from the exposed portion 14a of the positive electrode sheet-shaped portion and the exposed portion of the negative electrode sheet-shaped material 22a to perform an initial discharge. The invention according to claim 5 is the invention according to claim 4, wherein as shown in FIG. 2, a foil-shaped Li metal 16, a foil-shaped Rb metal 17, and a foil-shaped Cs metal 18 are laminated. This is a method for manufacturing a lithium secondary battery in which the metal layer 19 is formed. The invention according to claim 6 is the invention according to claim 4, wherein granular Li metal, granular Rb metal and granular Cs metal are dispersed in an organic solvent, and the organic solvent is a sheet-shaped negative electrode current collector. Is a method for producing a lithium secondary battery, in which a metal layer is formed by applying the organic solvent to the coated layer and removing the organic solvent from the coated layer.

【0010】請求項7に係る発明は、請求項4ないし6
いずれかに係る発明であって、Cs金属及びRb金属の
どちらか一方又は双方の金属が金属を含む飛灰より回収
した金属である製造方法である。請求項8に係る発明
は、請求項7に係る発明であって、飛灰がセメントキル
ン灰、産業廃棄物溶融炉灰又は一般廃棄物焼却炉灰であ
る製造方法である。
The invention according to claim 7 relates to claims 4 to 6.
The invention according to any one of the aspects, wherein the one or both of the Cs metal and the Rb metal is a metal recovered from fly ash containing the metal. The invention according to claim 8 is the invention according to claim 7, wherein the fly ash is cement kiln ash, industrial waste melting furnace ash, or general waste incinerator ash.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、本発明のリチウ
ム二次電池用負極27は、リチウムイオン伝導性固体電
解質13と接して設けられる。その特徴ある構成は、負
極集電体21と、負極集電体21の固体電解質13側に
設けられ金属リチウム16を含むCs−Rb合金26と
により構成され、Cs−Rb合金26に含まれる金属リ
チウム16とCs−Rb合金26との重量比がLi:C
s−Rb=5:1〜1:8である負極である。Cs−R
b合金は、室温で液体であり、電気伝導性を有し、酸化
還元電位性がリチウムよりも0.1V程度貴であり、金
属リチウムとは固溶体を形成しないという特徴を備えて
いるため、リチウム二次電池の電極としてふさわしい。
二次電池を形成した時点では、Cs−Rb合金26中に
はわずかな金属リチウム16が懸濁した状態となってい
る。固体電解質と電極との電気的な接合を保ちながら機
械的な変形に対応できるように金属リチウムを含み室温
で液体であるCs−Rb合金からなる液体負極27とし
たため、稼働イオンの電解質内部の移動により、固体電
解質と電極との界面に隙間が生じて剥離するという問題
を解消することができる。また、固体電解質の負極側界
面に金属リチウムがデンドライト状に析出しても、従来
の負極と異なり、液体負極は流動変形するので電気的な
接合が保たれる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the lithium secondary battery negative electrode 27 of the present invention is provided in contact with the lithium ion conductive solid electrolyte 13. The characteristic configuration is that the negative electrode current collector 21 and the Cs-Rb alloy 26 that is provided on the solid electrolyte 13 side of the negative electrode current collector 21 and contains the metallic lithium 16 are included in the Cs-Rb alloy 26. The weight ratio of lithium 16 and Cs-Rb alloy 26 is Li: C.
The negative electrode has s-Rb of 5: 1 to 1: 8. Cs-R
The alloy b is a liquid at room temperature, has electrical conductivity, has a redox potential of about 0.1 V more than lithium, and is characterized by not forming a solid solution with metallic lithium. Suitable as an electrode for secondary batteries.
At the time of forming the secondary battery, a small amount of metallic lithium 16 is suspended in the Cs-Rb alloy 26. Since the liquid negative electrode 27 is made of a Cs-Rb alloy that contains metallic lithium and is liquid at room temperature so as to cope with mechanical deformation while maintaining electrical connection between the solid electrolyte and the electrode, movement of working ions inside the electrolyte is achieved. As a result, it is possible to solve the problem that a gap is created at the interface between the solid electrolyte and the electrode, and peeling occurs. Further, even if metallic lithium is deposited on the negative electrode side interface of the solid electrolyte in the form of dendrite, unlike the conventional negative electrode, the liquid negative electrode is flow-deformed, so that electrical connection is maintained.

【0012】Cs−Rb合金26に含まれる金属リチウ
ム16とCs−Rb合金26との重量比はLi:Cs−
Rb=5:1〜1:8である。好ましい重量比はLi:
Cs−Rb=5:1〜1:5である。金属リチウム16
とCs−Rb合金26との重量比が5:1未満ではデン
ドライト成長による層間剥離の抑制に効果を示さない。
重量比が1:8を越えるとCs−Rb合金中に懸濁して
いる金属リチウムの濃度が低下し、電池を放電する際の
過電圧が高くなる問題が生じる。Cs−Rb合金はCs
30〜80重量%とRb70〜20重量%からなる合金
である。Cs45〜60重量%とRb55〜40重量%
からなる合金が好ましい。Csが30重量%未満でも8
0重量%を越えてもCs−Rb合金は二次電池の動作温
度で液体化せず、層間剥離が防げない。
The weight ratio of the metallic lithium 16 contained in the Cs-Rb alloy 26 to the Cs-Rb alloy 26 is Li: Cs-.
Rb = 5: 1 to 1: 8. The preferred weight ratio is Li:
Cs-Rb = 5: 1 to 1: 5. Metallic lithium 16
If the weight ratio of Cs-Rb alloy 26 to Cs-Rb alloy is less than 5: 1, it is not effective in suppressing delamination due to dendrite growth.
When the weight ratio exceeds 1: 8, the concentration of metallic lithium suspended in the Cs-Rb alloy decreases, and there is a problem that the overvoltage when discharging the battery increases. Cs-Rb alloy is Cs
It is an alloy composed of 30 to 80% by weight and Rb of 70 to 20% by weight. Cs 45-60 wt% and Rb 55-40 wt%
Alloys consisting of are preferred. 8 even if Cs is less than 30% by weight
Even if it exceeds 0% by weight, the Cs-Rb alloy does not liquefy at the operating temperature of the secondary battery, and delamination cannot be prevented.

【0013】本発明のリチウム二次電池の製造方法につ
いて図面を用いて説明する。先ず、図2に示すように、
シート状の正極集電体11とシート状の正極12とシー
ト状のリチウムイオン伝導性固体電解質13とをこの順
に積層して正極用シート状物14を形成する。シート状
の正極集電体11にはAl金属板が用いられる。シート
状の正極12としては、LiCoO2を代表とするリチ
ウムコバルト系複合酸化物、LiNiO2を代表とする
リチウムニッケル系複合酸化物、LiMn24を代表と
するリチウムマンガン系複合酸化物等の公知の正極活物
質を導電助剤(アセチレンブラック)とポリマーとで混
合し、ペースト状にしたものを用いる。リチウムイオン
伝導性固体電解質13には、無機物質又は有機物質から
なる結晶質又は非晶質のイオン伝導性物質が用いられ、
結晶性固体電解質としては、LiPO4、LiZr2(P
4)3、LiSiO4、Li0.5La0.5TiO3、Li
3(Ge,V)O4、LiN3やLISICON型、β-Fe2
(SO4)型化合物等が例示される。また非晶質無機材料
としては、LiI-Li20-P25、Li2S-SiS2
LiCl−Li2O等が例示される。リチウムイオン伝
導性固体電解質13の負極側には液体電極が形成される
ため、固体電解質13には予め方形状の底板13aとそ
の底板13aの周囲に形成された周壁13bとを備えた
形状を付けて焼結して形成するか、又は機械加工を施す
ことにより上記形状を形成する。
A method for manufacturing the lithium secondary battery of the present invention will be described with reference to the drawings. First, as shown in FIG.
A sheet-shaped positive electrode current collector 11, a sheet-shaped positive electrode 12, and a sheet-shaped lithium ion conductive solid electrolyte 13 are laminated in this order to form a positive-electrode sheet-shaped material 14. An Al metal plate is used for the sheet-shaped positive electrode current collector 11. Examples of the sheet-shaped positive electrode 12 include a lithium cobalt-based composite oxide typified by LiCoO 2 , a lithium nickel-based composite oxide typified by LiNiO 2 , and a lithium manganese-based composite oxide typified by LiMn 2 0 4 . A known positive electrode active material is mixed with a conductive additive (acetylene black) and a polymer to form a paste, which is used. As the lithium ion conductive solid electrolyte 13, a crystalline or amorphous ion conductive substance made of an inorganic substance or an organic substance is used,
As the crystalline solid electrolyte, LiPO 4 , LiZr 2 (P
O 4 ) 3 , LiSiO 4 , Li 0.5 La 0.5 TiO 3 , Li
3 (Ge, V) O 4 , LiN 3 and LISION type, β-Fe 2
Examples thereof include (SO 4 ) type compounds. Examples of the amorphous inorganic material, LiI-Li 2 0-P 2 0 5, Li 2 S-SiS 2,
LiCl-Li 2 O, and the like. Since the liquid electrode is formed on the negative electrode side of the lithium ion conductive solid electrolyte 13, the solid electrolyte 13 has a shape including a rectangular bottom plate 13a and a peripheral wall 13b formed around the bottom plate 13a in advance. The above shape is formed by sintering and forming, or by machining.

【0014】図1に示すように、固体電解質13の周壁
13aの高さDは、後述するCs金属箔とRb金属箔と
の液体化によって形成されるCs−Rb合金の体積膨張
を考慮して次の式を満たすような高さに設定する。D≧
(Li箔の厚さ)+[(Rb箔の厚さ)+(Cs箔の厚さ)]×
1.07 …(1)周壁13aの高さDが上記式(1)
を満たさない高さであると、後に形成される液体負極が
流れ出し、短絡等の不具合を生じる。
As shown in FIG. 1, the height D of the peripheral wall 13a of the solid electrolyte 13 is set in consideration of the volume expansion of the Cs-Rb alloy formed by liquefaction of the Cs metal foil and the Rb metal foil which will be described later. Set the height to satisfy the following formula. D ≧
(Li foil thickness) + [(Rb foil thickness) + (Cs foil thickness)] ×
1.07 (1) The height D of the peripheral wall 13a is the above formula (1).
If the height is not satisfied, the liquid negative electrode that will be formed later will flow out, causing a problem such as a short circuit.

【0015】図2に戻って、温度0℃以下の不活性ガス
雰囲気でLi金属箔16とRb金属箔17とCs金属箔
18を重量比で10〜1:1〜4:1〜4の割合で含む
金属層19をシート状の負極集電体21の片面に設けて
負極用シート状物22を形成する。金属層19は、箔状
のLi金属16、箔状のRb金属17及び箔状のCs金
属18を積層することにより形成される。Csの融点は
28.5℃であり、Rbの融点は39.0℃であるが、
個々の金属の融点よりも低い温度である約9℃でCs−
Rb合金は合金化するため、その取扱いにおける温度は
0℃以下で行う。好ましくは−15〜−5℃である。
Returning to FIG. 2, the Li metal foil 16, the Rb metal foil 17, and the Cs metal foil 18 are in a weight ratio of 10: 1 to 1: 1 to 4: 1 to 4 in an inert gas atmosphere at a temperature of 0 ° C. or less. The metal layer 19 containing the above is provided on one surface of a sheet-shaped negative electrode current collector 21 to form a negative electrode sheet-shaped material 22. The metal layer 19 is formed by stacking a foil-shaped Li metal 16, a foil-shaped Rb metal 17, and a foil-shaped Cs metal 18. Cs has a melting point of 28.5 ° C. and Rb has a melting point of 39.0 ° C.
Cs-at about 9 ° C, which is a temperature lower than the melting point of each metal.
Since the Rb alloy is alloyed, the handling temperature is 0 ° C. or lower. It is preferably -15 to -5 ° C.

【0016】次に、温度0℃以下の不活性ガス雰囲気で
正極用シート状物14と負極用シート状物22とを正極
集電体11及び負極集電体21がそれぞれ外側になるよ
うに重ね合わせて積層体23を形成する。図3に示すよ
うに、温度0℃以下の不活性ガス雰囲気で正極用シート
状物の一部14a及び負極用シート状物の一部22aを
露出するように積層体23をアルミ蒸着フィルム24,
24で被包して真空封着する。図4(a)及び図4
(b)に示すように、真空封着された積層体23を室温
の雰囲気に配置してRb金属箔17とCs金属箔18と
を合金化してCs−Rb合金26を形成する。この工程
においてLi金属箔16は特に変化せず、そのまま存在
している。
Next, the positive electrode sheet material 14 and the negative electrode sheet material 22 are stacked in an inert gas atmosphere at a temperature of 0 ° C. or less so that the positive electrode current collector 11 and the negative electrode current collector 21 are on the outside. Together, the laminated body 23 is formed. As shown in FIG. 3, the laminated body 23 is formed by the aluminum vapor deposition film 24 so that the positive electrode sheet-shaped portion 14a and the negative electrode sheet-shaped portion 22a are exposed in an inert gas atmosphere at a temperature of 0 ° C. or less.
Encapsulate with 24 and vacuum seal. 4 (a) and 4
As shown in (b), the vacuum-sealed laminated body 23 is placed in an atmosphere at room temperature, and the Rb metal foil 17 and the Cs metal foil 18 are alloyed to form a Cs-Rb alloy 26. In this step, the Li metal foil 16 remains unchanged without any change.

【0017】それぞれ露出した正極用シート状物の一部
14a及び負極用シート状物の一部22aに電圧を印加
して初期充電を行う。初期充電を行うと、図4(c)に
示すように、正極側からリチウムイオン(Li+)が固
体電解質13を通って負極27に向かって移動する。負
極27と固体電解質13との界面では固体電解質中のリ
チウムイオンとCs-Rb合金26からなる液体負極2
7を伝わってきた電子(e-)とで還元反応が進み、固
体電解質13表面上に金属リチウム16が析出する。析
出した金属リチウム16は、ある程度の大きさに成長す
ると固体電解質13表面から剥離し、Cs-Rb合金2
6からなる液体負極27中に拡散して行く。液体負極2
7中の金属リチウムの濃度勾配が拡散の駆動力となる。
初期充電が終了すると、Cs−Rb合金中の金属リチウ
ム濃度は初期状態より充電した電気量に相当する分だけ
高くなる。
Initial charging is performed by applying a voltage to the exposed portion 14a of the positive electrode sheet and the portion 22a of the negative electrode sheet. When the initial charge is performed, lithium ions (Li + ) move from the positive electrode side toward the negative electrode 27 through the solid electrolyte 13 as shown in FIG. 4C. At the interface between the negative electrode 27 and the solid electrolyte 13, the liquid negative electrode 2 composed of lithium ions in the solid electrolyte and the Cs-Rb alloy 26
The reduction reaction proceeds with the electrons (e ) transmitted through the metal 7, and metallic lithium 16 is deposited on the surface of the solid electrolyte 13. When the deposited metallic lithium 16 grows to a certain size, it peels off from the surface of the solid electrolyte 13, and the Cs-Rb alloy 2
It diffuses into the liquid negative electrode 27 composed of 6. Liquid negative electrode 2
The concentration gradient of metallic lithium in 7 serves as a driving force for diffusion.
When the initial charging is completed, the concentration of metallic lithium in the Cs-Rb alloy becomes higher than that in the initial state by an amount corresponding to the amount of electricity charged.

【0018】次に、それぞれ露出した正極用シート状物
の一部14a及び負極用シート状物の一部22aから電
力を消費して初期放電を行う。初期放電を行うと、図4
(d)に示すように、固体電解質13界面付近の金属リ
チウム16は固体電解質界面で酸化されリチウムイオン
(Li+)となって固体電解質13中を正極側に向かっ
て移動する。Cs−Rb合金中の電解質近傍では金属リ
チウムの濃度勾配が生じるので、これが金属リチウムを
電解質界面へ供給する駆動力となる。この時、Cs-R
b合金の酸化還元電位は金属リチウムより僅かではある
が貴であるために安定に存在可能である。このような上
記工程を経ることにより本発明のリチウム二次電池28
が製造される。一般に、従来の電解液を用いたリチウム
二次電池では急速充電をすると負極上に金属リチウムが
樹脂状に成長するため、電解液を突き破り正極とショー
トしたり、電解質層と負極層との間に隙間を生じさせて
電池としての性能を損ねたりするという問題があった
が、本発明の金属リチウムを含みCs−Rb合金からな
る液体負極を適用することでこのような問題も同時に解
決することができる。
Next, electric power is consumed from the exposed positive electrode sheet-like portion 14a and negative electrode sheet-like portion 22a to perform the initial discharge. When the initial discharge is performed,
As shown in (d), the metallic lithium 16 near the interface of the solid electrolyte 13 is oxidized at the interface of the solid electrolyte to become lithium ions (Li + ) and moves in the solid electrolyte 13 toward the positive electrode side. Since a concentration gradient of metallic lithium occurs near the electrolyte in the Cs-Rb alloy, this serves as a driving force for supplying metallic lithium to the electrolyte interface. At this time, Cs-R
Since the redox potential of the alloy b is slightly less than that of metallic lithium, it can exist stably. Through the above steps, the lithium secondary battery 28 of the present invention
Is manufactured. Generally, in a lithium secondary battery using a conventional electrolytic solution, metallic lithium grows like a resin on the negative electrode when rapidly charged, so the electrolytic solution is pierced and short-circuited with the positive electrode, or between the electrolyte layer and the negative electrode layer. Although there is a problem that a gap is generated and the performance as a battery is impaired, such a problem can be solved at the same time by applying the liquid negative electrode containing Cs-Rb alloy containing metallic lithium of the present invention. it can.

【0019】なお、本実施の形態ではLi金属箔とCs
金属箔とRb金属箔とを積層させて金属層を形成した後
に、室温で合金化させてCs−Rb合金からなる液体負
極を形成したが、粒状のLi金属、粒状のRb金属及び
粒状のCs金属を有機溶媒に分散させ、この分散液をシ
ート状物の負極集電体の片面に塗布し、塗布層から有機
溶媒を脱離することにより金属層を形成してもよい。使
用される有機溶媒としては揮発性の高いエチルアルコー
ル、ヘキサン、ヘキサノール等が挙げられる。また、有
機溶媒とともに揮発性を有する分散剤を添加してもよ
い。また、Cs金属及びRb金属のどちらか一方又は双
方の金属はこれらの金属を含む飛灰から回収した金属を
用いてもよい。この場合の飛灰はセメントキルン灰、産
業廃棄物溶融炉灰又は一般廃棄物焼却炉灰である。
In this embodiment, Li metal foil and Cs are used.
After laminating the metal foil and the Rb metal foil to form a metal layer, the metal negative electrode was alloyed at room temperature to form a liquid negative electrode composed of a Cs-Rb alloy, and granular Li metal, granular Rb metal and granular Cs were formed. A metal layer may be formed by dispersing a metal in an organic solvent, applying this dispersion liquid to one surface of a sheet-shaped negative electrode current collector, and removing the organic solvent from the coating layer. Examples of the organic solvent used include highly volatile ethyl alcohol, hexane, hexanol and the like. Further, a volatile dispersant may be added together with the organic solvent. Further, as one or both of the Cs metal and the Rb metal, a metal recovered from fly ash containing these metals may be used. The fly ash in this case is cement kiln ash, industrial waste melting furnace ash, or general waste incinerator ash.

【0020】[0020]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>先ず、正極集電体としてAl金属板を、正
極活物質としてシート状のLiCo 0.3Ni0.72を、
リチウムイオン伝導性固体電解質として予め方形状の底
板とその底板の周囲に形成された周壁とを備えるような
形状を付けて焼結したLi2S−SiS2を、負極集電体
としてCu金属板を、負極材料としてLi金属箔とRb
金属箔とCs金属箔をそれぞれ用意した。次いで、図2
に示すように、正極集電体と正極活物質と固体電解質と
をこの順に積層して正極用シート状物を形成した。温度
0℃以下の不活性ガス雰囲気で、Rb金属箔とCs金属
箔が重量比で50重量%:50重量%となり、Li金属
箔とCs−Rb合金との重量比(Li:Cs−Rb)が
1:0.5の割合となるように、Li金属箔とRb金属
箔とCs金属箔とを積層してなる金属層を負極集電体の
片面に設けて負極用シート状物を形成した。温度0℃以
下の不活性ガス雰囲気で正極用シート状物と負極用シー
ト状物とを正極集電体及び負極集電体がそれぞれ外側に
なるように重ね合わせて積層体を形成した。温度0℃以
下の不活性ガス雰囲気で正極用シート状物の一部及び負
極用シート状物の一部を露出するように積層体をアルミ
蒸着フィルムで被包して真空封着した。この真空封着さ
れた積層体を室温である27℃の雰囲気に配置してRb
金属箔とCs金属箔とを合金化させ液体負極を形成し
た。次に、それぞれ露出した正極用シート状物の一部及
び負極用シート状物の一部に電圧を印加して初期充電を
行い、それぞれ露出した正極用シート状物の一部及び負
極用シート状物の一部から電力を消費して初期放電を行
って二次電池を得た。なお、放電電流密度を1020μ
A/cm2とし、カットオフ電圧を4.1〜2.3Vと
した。この二次電池に1回、5回及び10回充放電を繰
返し行った際の放電容量と、平均放電電位を測定した。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples.
explain. <Example 1> First, an Al metal plate was used as a positive electrode current collector.
Sheet-like LiCo as a polar active material 0.3Ni0.7O2To
Pre-rectangular bottom as lithium ion conductive solid electrolyte
Such as having a plate and a peripheral wall formed around the bottom plate
Shaped and sintered Li2S-SiS2The negative electrode current collector
Cu metal plate as the negative electrode material, and Li metal foil and Rb as the negative electrode material
A metal foil and a Cs metal foil were prepared respectively. Then, FIG.
As shown in, the positive electrode current collector, the positive electrode active material, and the solid electrolyte
Were laminated in this order to form a positive electrode sheet. temperature
Rb metal foil and Cs metal in an inert gas atmosphere of 0 ° C or less
The weight ratio of the foil is 50% by weight: 50% by weight.
The weight ratio of the foil and the Cs-Rb alloy (Li: Cs-Rb) is
Li metal foil and Rb metal in a ratio of 1: 0.5
A metal layer formed by laminating a foil and a Cs metal foil is used as a negative electrode current collector.
The sheet was provided on one surface to form a sheet for negative electrode. Temperature 0 ° C or higher
Under the inert gas atmosphere below, the sheet for positive electrode and the sheet for negative electrode
The positive electrode current collector and the negative electrode current collector are placed outside
To form a laminated body. Temperature 0 ° C or higher
In the inert gas atmosphere below, part of the sheet material for the positive electrode and negative
The laminated body is made of aluminum so as to expose a part of the sheet for poles.
It was covered with a vapor deposition film and vacuum-sealed. This vacuum sealed
The laminated body is placed in an atmosphere of room temperature of 27 ° C. and Rb
Metal foil and Cs metal foil are alloyed to form a liquid negative electrode
It was Next, a part of the exposed positive electrode sheet-like material
And a part of the negative electrode sheet-like material for initial charging by applying voltage.
The exposed sheet of positive electrode material and negative
The initial discharge is performed by consuming electric power from a part of the electrode sheet.
I got a secondary battery. The discharge current density is 1020μ
A / cm2And the cutoff voltage is 4.1 to 2.3V.
did. Charge and discharge this secondary battery once, five times and ten times.
The discharge capacity at the time of returning and the average discharge potential were measured.

【0021】<実施例2>負極のLi金属とCs−Rb
合金との重量比(Li:Cs−Rb)を1:1とした以
外は実施例1と同様にして二次電池を作製し、放電電流
密度を64μA/cm2とした以外は実施例1と同様に
して測定した。 <実施例3>負極のLi金属とCs−Rb合金との重量
比(Li:Cs−Rb)を1:1とした以外は実施例1
と同様にして二次電池を作製し、放電電流密度を510
μA/cm2とした以外は実施例1と同様にして測定し
た。 <実施例4>負極のLi金属とCs−Rb合金との重量
比(Li:Cs−Rb)を1:1とした以外は実施例1
と同様にして二次電池を作製し、実施例1と同様にして
測定した。 <実施例5>負極のLi金属とCs−Rb合金との重量
比(Li:Cs−Rb)を1:5とした以外は実施例1
と同様にして二次電池を作製し、実施例1と同様にして
測定した。
<Example 2> Li metal of the negative electrode and Cs-Rb
A secondary battery was produced in the same manner as in Example 1 except that the weight ratio with the alloy (Li: Cs-Rb) was set to 1: 1, and the discharge current density was set to 64 μA / cm 2, and Example 1 was obtained. It measured similarly. <Example 3> Example 1 except that the weight ratio (Li: Cs-Rb) of Li metal and Cs-Rb alloy of the negative electrode was set to 1: 1.
A secondary battery was prepared in the same manner as in, and the discharge current density was 510
The measurement was performed in the same manner as in Example 1 except that the value was μA / cm 2 . <Example 4> Example 1 except that the weight ratio (Li: Cs-Rb) of Li metal and Cs-Rb alloy of the negative electrode was set to 1: 1.
A secondary battery was produced in the same manner as in Example 1 and measured in the same manner as in Example 1. <Example 5> Example 1 except that the weight ratio (Li: Cs-Rb) of Li metal and Cs-Rb alloy of the negative electrode was 1: 5.
A secondary battery was produced in the same manner as in Example 1 and measured in the same manner as in Example 1.

【0022】<比較例1>負極のLi金属とCs−Rb
合金との重量比(Li:Cs−Rb)を1:0.1とし
た以外は実施例1と同様にして二次電池を作製し、実施
例1と同様にして測定した。 <比較例2>負極のLi金属とCs−Rb合金との重量
比(Li:Cs−Rb)を1:10とした以外は実施例
1と同様にして二次電池を作製し、実施例1と同様にし
て測定した。 <比較例3>負極材料としてLi4.4Siを用いた以外
は実施例1と同様の材料を用い、正極集電体、正極活物
質、シート状のリチウムイオン伝導性固体電解質、負極
集電体及び負極材料をこの順に積層し、正極用シート状
物の一部及び負極用シート状物の一部を露出するように
積層体をアルミ蒸着フィルムで被包して真空封着して二
次電池を作製した。このようにして得られた二次電池を
放電電流密度を64μA/cm2とした以外は実施例1
と同様にして測定した。 <比較例4>放電電流密度を510μA/cm2とした
以外は比較例3と同様にして二次電池を作製し、放電電
流密度を510μA/cm2とした以外は実施例1と同
様にして測定した。
<Comparative Example 1> Li metal of the negative electrode and Cs-Rb
A secondary battery was produced in the same manner as in Example 1 except that the weight ratio with the alloy (Li: Cs-Rb) was 1: 0.1, and the measurement was performed in the same manner as in Example 1. <Comparative Example 2> A secondary battery was prepared in the same manner as in Example 1 except that the weight ratio (Li: Cs-Rb) of the Li metal and the Cs-Rb alloy of the negative electrode was set to 1:10. It measured similarly to. Comparative Example 3 The same materials as in Example 1 were used except that Li 4.4 Si was used as the negative electrode material, and a positive electrode current collector, a positive electrode active material, a sheet-like lithium ion conductive solid electrolyte, a negative electrode current collector, and Negative electrode materials are laminated in this order, and the laminate is covered with an aluminum vapor deposition film so as to expose a part of the positive electrode sheet material and a part of the negative electrode sheet material, and vacuum-sealed to form a secondary battery. It was made. Example 1 was repeated except that the secondary battery thus obtained had a discharge current density of 64 μA / cm 2.
It measured similarly to. <Comparative Example 4> Except that the discharge current density was set to 510μA / cm 2 A secondary battery was prepared in the same manner as in Comparative Example 3, the discharge current density except that the 510μA / cm 2 and in the same manner as in Example 1 It was measured.

【0023】<比較試験及び評価>実施例1〜5及び比
較例1〜4でそれぞれ得られた放電容量と平均放電電位
を表1にそれぞれ示す。
<Comparative Test and Evaluation> Table 1 shows the discharge capacities and average discharge potentials obtained in Examples 1 to 5 and Comparative Examples 1 to 4, respectively.

【0024】[0024]

【表1】 [Table 1]

【0025】表1より明らかなように、比較例1及び2
では充放電回数が進むにつれて放電容量が急激に低下し
ている。放電電流密度が64μA/cm2と小さい比較
例3では、充放電回数が進んでも放電容量及び平均放電
電位は低下せず安定しているが、放電電流密度を510
μA/cm2にした比較例4では充放電回数が進むにつ
れて放電容量が急激に低下し、10回の充放電を行った
場合、放電容量が得られなくなった。これらに対して実
施例1〜5では充放電回数が進んでも放電容量及び平均
放電電位は下がらず安定していることが判る。
As is clear from Table 1, Comparative Examples 1 and 2
In, the discharge capacity drastically decreases as the number of charge and discharge increases. In Comparative Example 3 in which the discharge current density is as small as 64 μA / cm 2 , the discharge capacity and the average discharge potential are stable and do not decrease even if the number of charge / discharge cycles is advanced, but the discharge current density is 510
In Comparative Example 4 in which μA / cm 2 was set, the discharge capacity drastically decreased as the number of charge / discharge cycles increased, and when the charge / discharge was performed 10 times, the discharge capacity could not be obtained. On the other hand, in Examples 1 to 5, it can be seen that the discharge capacity and the average discharge potential do not decrease and are stable even if the number of times of charging and discharging progresses.

【0026】[0026]

【発明の効果】以上述べたように、本発明はリチウムイ
オン伝導性固体電解質と接して設けられるリチウム二次
電池用負極の改良であり、その特徴ある構成は、負極集
電体と、負極集電体の固体電解質側に設けられ金属リチ
ウムを含むCs−Rb合金とにより構成され、Cs−R
b合金に含まれる金属リチウムとCs−Rb合金との重
量比がLi:Cs−Rb=5:1〜1:8であるところ
にある。電解質と電極との電気的な接合を保ちながら機
械的な変形に対応できるように金属リチウムを含み室温
で液体であるCs−Rb合金からなる液体負極としたた
め、稼働イオンの電解質内部の移動により、固体電解質
と電極との界面に隙間が生じて剥離するという問題を解
消することができる。
As described above, the present invention is an improvement of a negative electrode for a lithium secondary battery, which is provided in contact with a lithium ion conductive solid electrolyte. Its characteristic constitution is a negative electrode current collector and a negative electrode current collector. Cs-Rb alloy provided on the solid electrolyte side of the electric body and containing metallic lithium.
The weight ratio of the metallic lithium contained in the b alloy to the Cs-Rb alloy is Li: Cs-Rb = 5: 1 to 1: 8. Since it was a liquid negative electrode composed of a Cs-Rb alloy that was liquid at room temperature and contained metallic lithium so as to be able to cope with mechanical deformation while maintaining electrical connection between the electrolyte and the electrode, movement of working ions inside the electrolyte resulted in It is possible to solve the problem that a gap is generated at the interface between the solid electrolyte and the electrode, and peeling occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施の形態におけるリチウム二次電池の断面
図。
FIG. 1 is a cross-sectional view of a lithium secondary battery in the present embodiment.

【図2】リチウム二次電池における製造工程を示す図。FIG. 2 is a diagram showing a manufacturing process in a lithium secondary battery.

【図3】真空蒸着を終えた積層体の断面図。FIG. 3 is a cross-sectional view of a laminated body that has undergone vacuum deposition.

【図4】本発明の製造工程における部分構成断面図。FIG. 4 is a partial configuration cross-sectional view in the manufacturing process of the present invention.

【図5】本発明の製造工程における部分構成断面図。FIG. 5 is a partial configuration cross-sectional view in the manufacturing process of the present invention.

【符号の説明】[Explanation of symbols]

11 正極集電体 12 正極 13 固体電解質 14 正極用シート状物 14a 正極用シート状物の一部 16 Li金属 17 Rb金属 18 Cs金属 19 金属層 21 負極集電体 22 負極用シート状物 22a 負極用シート状物の一部 23 積層体 24 アルミ蒸着フィルム 26 Cs−Rb合金 27 液体負極 28 リチウム二次電池 11 Positive electrode current collector 12 Positive electrode 13 Solid electrolyte 14 Sheet-like material for positive electrode 14a Part of sheet material for positive electrode 16 Li metal 17 Rb metal 18 Cs metal 19 Metal layer 21 Negative electrode current collector 22 Sheet-like material for negative electrode 22a Part of sheet material for negative electrode 23 Stack 24 Aluminum vapor deposition film 26 Cs-Rb alloy 27 Liquid negative electrode 28 Lithium secondary battery

フロントページの続き Fターム(参考) 5H029 AJ11 AK03 AL11 AL12 AM12 AM16 BJ04 CJ12 CJ16 CJ22 CJ24 CJ28 HJ01 HJ12 HJ14 5H050 AA14 BA17 CA08 CA09 CB11 CB12 GA12 GA17 GA18 GA22 GA24 GA27 HA01 HA12 Continued front page    F term (reference) 5H029 AJ11 AK03 AL11 AL12 AM12                       AM16 BJ04 CJ12 CJ16 CJ22                       CJ24 CJ28 HJ01 HJ12 HJ14                 5H050 AA14 BA17 CA08 CA09 CB11                       CB12 GA12 GA17 GA18 GA22                       GA24 GA27 HA01 HA12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオン伝導性固体電解質(13)と
接して設けられるリチウム二次電池用負極において、 負極集電体(21)と、前記負極集電体(21)の前記固体電解
質(13)側に設けられ金属リチウム(16)を含むCs−Rb
合金(26)とにより構成され、 前記Cs−Rb合金(26)に含まれる金属リチウム(16)と
前記Cs−Rb合金(26)との重量比がLi:Cs−Rb
=5:1〜1:8であることを特徴とするリチウム二次
電池用負極。
1. A negative electrode for a lithium secondary battery provided in contact with a lithium ion conductive solid electrolyte (13), comprising: a negative electrode current collector (21); and the solid electrolyte (13) of the negative electrode current collector (21). ) Side and contains Cs-Rb containing metallic lithium (16)
Alloy (26), wherein the weight ratio of the lithium metal (16) contained in the Cs-Rb alloy (26) to the Cs-Rb alloy (26) is Li: Cs-Rb.
= 5: 1 to 1: 8, the negative electrode for a lithium secondary battery.
【請求項2】 Cs−Rb合金(26)がCs30〜80重
量%とRb70〜20重量%からなる請求項1記載のリ
チウム二次電池用負極。
2. The negative electrode for a lithium secondary battery according to claim 1, wherein the Cs-Rb alloy (26) comprises 30 to 80% by weight of Cs and 70 to 20% by weight of Rb.
【請求項3】 正極(12)と、負極(27)と、前記正極(12)
と負極(27)の間に設けられたリチウムイオン伝導性固体
電解質(13)とを備えたリチウム二次電池において、 前記負極(27)が負極集電体(21)と、前記負極集電体(21)
の前記固体電解質(13)側に設けられ金属リチウム(16)を
含むCs−Rb合金(26)とにより構成され、 前記Cs−Rb合金(26)に含まれる金属リチウム(16)と
前記Cs−Rb合金(26)との重量比がLi:Cs−Rb
=5:1〜1:8であることを特徴とするリチウム二次
電池。
3. A positive electrode (12), a negative electrode (27), and the positive electrode (12)
In a lithium secondary battery comprising a lithium ion conductive solid electrolyte (13) provided between the negative electrode (27) and the negative electrode (27), the negative electrode (27) is a negative electrode current collector (21), the negative electrode current collector (twenty one)
And a Cs-Rb alloy (26) containing metallic lithium (16) provided on the solid electrolyte (13) side of the metallic lithium (16) and the Cs-Rb alloy (26). The weight ratio with the Rb alloy (26) is Li: Cs-Rb.
= 5: 1 to 1: 8, a lithium secondary battery.
【請求項4】 シート又は箔状の正極集電体(11)とシー
ト又は箔状の正極(12)とシート状のリチウムイオン伝導
性固体電解質(13)とをこの順に積層して正極用シート状
物(14)を形成する工程と、 温度0℃以下の不活性ガス雰囲気でLi金属(16)とRb
金属(17)とCs金属(18)を重量比で10〜1:1〜4:
1〜4の割合で含む金属層(19)をシート状の負極集電体
(21)の片面に設けて負極用シート状物(22)を形成する工
程と、 温度0℃以下の不活性ガス雰囲気で前記正極用シート状
物(14)と前記負極用シート状物(22)とを正極集電体(11)
及び負極集電体(21)がそれぞれ外側になるように重ね合
わせて積層体(23)を形成する工程と、 温度0℃以下の不活性ガス雰囲気で前記正極用シート状
物の一部(14a)及び負極用シート状物の一部(22a)を露出
するように前記積層体(23)をアルミ蒸着フィルムで被包
して真空封着する工程と、 前記真空封着された積層体(23)を室温の雰囲気に配置し
て前記Rb金属(17)と前記Cs金属(18)とを合金化する
ことにより液体負極(27)を形成する工程と、 それぞれ露出した前記正極用シート状物の一部(14a)及
び負極用シート状物の一部(22a)に電圧を印加して初期
充電を行う工程と、 それぞれ露出した前記正極用シート状物の一部(14a)及
び負極用シート状物の一部(22a)から電力を消費して初
期放電を行う工程とを含むリチウム二次電池の製造方
法。
4. A positive electrode sheet obtained by laminating a sheet or foil-shaped positive electrode current collector (11), a sheet or foil-shaped positive electrode (12) and a sheet-shaped lithium ion conductive solid electrolyte (13) in this order. Forming the particulate matter (14) and Li metal (16) and Rb in an inert gas atmosphere at a temperature of 0 ° C or less.
The metal (17) and the Cs metal (18) are in a weight ratio of 10: 1 to 1: 4:
A sheet-like negative electrode current collector containing a metal layer (19) containing 1 to 4
A step of forming the negative electrode sheet-like material (22) on one surface of (21), and the positive electrode sheet-like material (14) and the negative electrode sheet-like material (22) in an inert gas atmosphere at a temperature of 0 ° C. or less. ) And the positive electrode current collector (11)
And a step of forming a laminated body (23) by stacking the negative electrode current collectors (21) so that they are on the outside, and a part (14a) of the positive electrode sheet-like material in an inert gas atmosphere at a temperature of 0 ° C. or less. ) And a part of the negative electrode sheet-like material (22a) is exposed so that the laminate (23) is covered with an aluminum vapor-deposited film and vacuum-sealed, and the vacuum-sealed laminate (23) ) In a room temperature atmosphere to form a liquid negative electrode (27) by alloying the Rb metal (17) with the Cs metal (18), and the exposed sheet material for positive electrode, respectively. A step of applying a voltage to a part (14a) and a part (22a) of the negative electrode sheet material to perform initial charging, and a part (14a) and the negative electrode sheet shape of the exposed positive electrode sheet material, respectively. And a step of consuming electric power from a part (22a) of the article to perform an initial discharge.
【請求項5】 箔状のLi金属(16)、箔状のRb金属(1
7)及び箔状のCs金属(18)を積層することにより金属層
(19)が形成される請求項4記載のリチウム二次電池の製
造方法。
5. A foil-shaped Li metal (16) and a foil-shaped Rb metal (1
7) and foil-shaped Cs metal (18) are laminated to form a metal layer
The method for producing a lithium secondary battery according to claim 4, wherein (19) is formed.
【請求項6】 粒状のLi金属、粒状のRb金属及び粒
状のCs金属を有機溶媒に分散させ、前記有機溶媒をシ
ート状物の負極集電体の片面に塗布し、前記塗布層から
有機溶媒を脱離することにより金属層が形成される請求
項4記載のリチウム二次電池の製造方法。
6. A granular Li metal, a granular Rb metal and a granular Cs metal are dispersed in an organic solvent, the organic solvent is applied to one surface of a negative electrode current collector in sheet form, and the organic solvent is applied from the coating layer. The method for producing a lithium secondary battery according to claim 4, wherein the metal layer is formed by desorbing.
【請求項7】 Cs金属及びRb金属のどちらか一方又
は双方の金属が前記金属を含む飛灰より回収した金属で
ある請求項4ないし6いずれか記載の製造方法。
7. The method according to claim 4, wherein one or both of the Cs metal and the Rb metal is a metal recovered from fly ash containing the metal.
【請求項8】 飛灰がセメントキルン灰、産業廃棄物溶
融炉灰又は一般廃棄物焼却炉灰である請求項7記載の製
造方法。
8. The method according to claim 7, wherein the fly ash is cement kiln ash, industrial waste melting furnace ash, or general waste incinerator ash.
JP2002109358A 2002-04-11 2002-04-11 Negative electrode for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the same Withdrawn JP2003303589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109358A JP2003303589A (en) 2002-04-11 2002-04-11 Negative electrode for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109358A JP2003303589A (en) 2002-04-11 2002-04-11 Negative electrode for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003303589A true JP2003303589A (en) 2003-10-24

Family

ID=29392849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109358A Withdrawn JP2003303589A (en) 2002-04-11 2002-04-11 Negative electrode for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003303589A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073075A1 (en) * 2015-10-30 2017-05-04 Sharp Kabushiki Kaisha Metal-ion rechargeable cell or battery
CN110380117A (en) * 2019-07-04 2019-10-25 光鼎铷业(广州)集团有限公司 A kind of preparation method of the solid polyelectrolyte film of rubidium doping

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073075A1 (en) * 2015-10-30 2017-05-04 Sharp Kabushiki Kaisha Metal-ion rechargeable cell or battery
CN110380117A (en) * 2019-07-04 2019-10-25 光鼎铷业(广州)集团有限公司 A kind of preparation method of the solid polyelectrolyte film of rubidium doping
CN110380117B (en) * 2019-07-04 2020-12-08 光鼎铷业(广州)集团有限公司 Preparation method of rubidium-doped polymer solid electrolyte membrane

Similar Documents

Publication Publication Date Title
JP2021158119A5 (en)
US9876225B2 (en) Anode active material and battery
JP3206604B2 (en) Rechargeable lithium battery with increased reversible capacity
JP4626013B2 (en) Lithium secondary battery negative electrode
JP7154847B2 (en) Method for manufacturing all-solid-state battery
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
JP2004185862A (en) Lithium ion secondary battery and its manufacturing method
JP2007273184A (en) Battery
JP7129144B2 (en) All-solid-state battery and manufacturing method thereof
JP5435469B2 (en) Negative electrode material in all solid lithium ion secondary battery and method for producing all solid lithium ion secondary battery
JP2001243951A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and battery using the same
JP5061433B2 (en) Current collector and lithium ion secondary battery using the same
JP4381176B2 (en) Thin film solid secondary battery
JP2006172860A (en) Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery
KR20020094530A (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
JP2017107826A (en) Electrode and method of manufacturing the same, and all-solid-state lithium ion battery
JP2003303589A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the same, and method of manufacturing the same
WO2021100272A1 (en) Secondary battery and method for producing same
JPH10302776A (en) Totally solid lithium secondary battery
JP2002203593A (en) Inorganic solid electrolyte thin film and lithium battery member using it
JP2001093535A (en) Solid electrolyte cell
JP2021034199A (en) All-solid battery
JP2006155960A (en) Negative electrode and battery
WO2024018246A1 (en) Method for producing all-solid-state battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705