JP2003298229A - Copper foil for printed wiring board and its manufacturing method - Google Patents

Copper foil for printed wiring board and its manufacturing method

Info

Publication number
JP2003298229A
JP2003298229A JP2002095167A JP2002095167A JP2003298229A JP 2003298229 A JP2003298229 A JP 2003298229A JP 2002095167 A JP2002095167 A JP 2002095167A JP 2002095167 A JP2002095167 A JP 2002095167A JP 2003298229 A JP2003298229 A JP 2003298229A
Authority
JP
Japan
Prior art keywords
layer
copper foil
cobalt
nickel
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002095167A
Other languages
Japanese (ja)
Other versions
JP4034586B2 (en
Inventor
Hisatoku Manabe
久徳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2002095167A priority Critical patent/JP4034586B2/en
Publication of JP2003298229A publication Critical patent/JP2003298229A/en
Application granted granted Critical
Publication of JP4034586B2 publication Critical patent/JP4034586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper foil for printed wiring board that can be dissolved by an alkali etchant and, in addition, is excellent in chemical resistance and heat resistance, and to provide a method of manufacturing the foil. <P>SOLUTION: This copper foil has a cobalt and/or nickel layer containing germanium on at least its one surface, a chromate coating film layer on the cobalt and/or nickel layer, and a silane coupling agent layer on the coating film layer. In the method of manufacturing the copper foil, the chromate layer is formed on the cobalt and/or nickel layer containing germanium after the cobalt and/or nickel layer is formed by cathodically electrolyzing the copper foil in an electrolytic solution containing germanium and cobalt and/or nickel. In addition, the silane coupling agent layer is provided on the chromate coating film layer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプリント配線板用銅
箔及びその製造方法に関するものであり、更に詳しくは
銅箔の少なくとも一方の面にゲルマニウムを含有するコ
バルト及び/またはニッケル層を設け、更に該層上にク
ロメート皮膜層を施し、更に該クロメート皮膜層上にシ
ランカップリング剤層を設ける事でアルカリエッチング
液に対して可溶となり、更に耐薬品性、耐熱性に優れた
高密度配線に適したプリント配線板用銅箔に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper foil for printed wiring board and a method for producing the same, more specifically, a cobalt and / or nickel layer containing germanium is provided on at least one surface of the copper foil. By providing a chromate film layer on this layer and further providing a silane coupling agent layer on the chromate film layer, it becomes soluble in an alkaline etching solution, and high density wiring with excellent chemical resistance and heat resistance is obtained. The present invention relates to a suitable copper foil for printed wiring board.

【0002】プリント配線板はパソコン、携帯電話など
の高密度配線を必要とする各種電気機器に広く用いられ
ているが、この分野の近年の開発速度は他の産業分野に
比べても格段に速く、それに伴い、プリント配線板に要
求される品質も高くなってきている。
Printed wiring boards are widely used in various electric devices such as personal computers and mobile phones that require high-density wiring, but the recent development speed in this field is much faster than other industrial fields. As a result, the quality required for printed wiring boards is also increasing.

【0003】[0003]

【従来の技術】プリント配線板製造方法としてはアディ
ティブ法、サブトラクティブ法があるが、前者が回路形
成時に銅箔を使用しないのに対して、後者は銅張積層板
形成後回路を印刷し、不要部分をエッチング除去する製
法でこちらの方が主流である。プリント配線板に使用さ
れている銅箔の基材と接着する面に対する要求特性は、
多種多様であるが特に重要な特性は以下の三点である。 基材との引き剥がし強さが十分であること。 上記引き剥がし強さが過酷試験(薬品処理、長時間加
熱処理)後も十分であること。 高密度化するプリント配線板の狭小化に伴う絶縁特性
の信頼性が高いこと。 (エッチングの精度)
2. Description of the Related Art As a method for manufacturing a printed wiring board, there are an additive method and a subtractive method, but the former does not use a copper foil at the time of forming a circuit, whereas the latter prints a circuit after forming a copper-clad laminate, This is the most popular method of removing unwanted parts by etching. The required characteristics for the surface of the copper foil used in the printed wiring board to adhere to the base material are:
A wide variety of, but particularly important characteristics are the following three points. Sufficient peel strength from the base material. The peel strength should be sufficient even after a severe test (chemical treatment, long-term heat treatment). High reliability of the insulation characteristics due to the narrowing of the density of printed wiring boards. (Accuracy of etching)

【0004】特に近年は通常よく使用するガラスエポキ
シ基材(FR−4)以外にハロゲンフリー基材、ガラス
ポリイミド基材、高Tg基材等が頻繁に使用される様に
なり銅箔に対する要求特性はますます厳しくなってきて
いる。
Particularly in recent years, halogen-free base materials, glass polyimide base materials, high Tg base materials, etc. have been frequently used in addition to the glass epoxy base materials (FR-4) which are usually used frequently, and required characteristics for copper foil. Is becoming more and more severe.

【0005】上記特性を満足させる一般的な手段とし
て、先ず、硫酸及び硫酸銅浴からの陰極電解により得ら
れた未処理銅箔への粗面化処理がある。粗面化処理とは
未処理銅箔の少なくとも一方の面を硫酸及び硫酸銅水溶
液中で限界電流密度またはそれ以上で陰極電解し銅の突
起物を析出させ、更に該層上に銅又は銅合金のカバーメ
ッキを施すものである。この粗面化処理により銅箔表面
の粗度は上昇し、その結果機械的投錨効果が高くなり、
引き剥がし強さは格段に上昇する。しかしながらこの粗
面化処理により解決される問題は上記した銅箔要求特性
ののみであり、過酷試験後(特に長時間加熱試験後)
の引き剥がし強さの劣化を抑制することは出来ない。
As a general means for satisfying the above characteristics, first, there is a surface roughening treatment on an untreated copper foil obtained by cathodic electrolysis from a sulfuric acid and copper sulfate bath. Roughening treatment is cathodic electrolysis of at least one surface of untreated copper foil in sulfuric acid and an aqueous solution of copper sulfate at a limiting current density or higher to deposit copper protrusions, and further copper or copper alloy on the layer. The cover plating is applied. This roughening treatment increases the roughness of the copper foil surface, resulting in a higher mechanical anchoring effect,
The peeling strength increases dramatically. However, the problem solved by this roughening treatment is only the above-mentioned required properties of copper foil, and after the severe test (especially after the long-time heating test)
It is not possible to suppress the deterioration of the peeling strength.

【0006】そこで更にこの粗面化処理上に基材樹脂と
銅箔との反応を防ぐ為、異種金属あるいは銅合金の被覆
バリアーを施すかあるいはまた種々の防錆処理が施され
ている。例えば特公昭51−35711号は銅箔面に亜
鉛、インジウム、黄銅等からなる群より選ばれた層を被
覆すること、特公昭53−39376号には2層からな
る電着銅層を設け、更に接着すべき基材に対して化学的
活性を有しない金属からなる層、例えば亜鉛、真鍮、ニ
ッケル、コバルト、クロム、カドミウム、スズ、及び青
銅などの層を被覆すること。
Therefore, in order to prevent the reaction between the base resin and the copper foil on the surface-roughening treatment, a coating barrier of a dissimilar metal or a copper alloy is applied or various anticorrosion treatments are applied. For example, in Japanese Examined Patent Publication No. S51-35711, a copper foil surface is coated with a layer selected from the group consisting of zinc, indium, brass, etc., and in Japanese Examined Patent Publication No. S53-39376, two electrodeposited copper layers are provided. Further coating a layer of a metal having no chemical activity on the substrate to be adhered, such as zinc, brass, nickel, cobalt, chromium, cadmium, tin, and bronze.

【0007】また、特公平2−51272号には球状ま
たは樹枝状の亜鉛を沈着させ、かつこの層を銅、砒素、
ビスマス、真鍮、青銅、ニッケル、コバルト、もしくは
亜鉛の一つ以上またはその合金を被覆する事、更に特公
平6−54829号には銅粗化処理後の銅箔表面にコバ
ルトめっき層或いはコバルトおよびニッケルから成るめ
っき層を形成し、更に、クロム酸化物の単独皮膜或いは
クロム酸化物と亜鉛及び(又は)亜鉛酸化物を施す事が
提案されている。しかしながら、これら従来の被覆バリ
アー層には以下に示すような問題点がある。
Further, in Japanese Patent Publication No. 2-51272, spherical or dendritic zinc is deposited, and this layer is formed of copper, arsenic,
Coating with one or more of bismuth, brass, bronze, nickel, cobalt, or zinc, or an alloy thereof, and Japanese Patent Publication No. 6-54829 discloses a cobalt plating layer or cobalt and nickel on the surface of a copper foil after copper roughening treatment. It has been proposed to form a plating layer consisting of, and further apply a single coating of chromium oxide or a coating of chromium oxide and zinc and / or zinc oxide. However, these conventional coating barrier layers have the following problems.

【0008】亜鉛、真鍮、亜鉛−ニッケル等、亜鉛を主
とする層を有する銅箔を印刷回路に適用した場合、銅箔
と基材との接着面及びその近傍は、耐塩酸性が非常に弱
く、プリント配線板製造工程において、酸洗や各種活性
処理液中に浸漬されているうちに、その界面部分の腐食
抵抗が弱いため、引き剥がし強さの劣化が生じ、特に最
近の導体幅の狭い回路の場合、熱的衝撃あるいは機械的
衝撃などにより、導体の剥離、脱落現象を起こす可能性
があるという欠点がある。また、塩化第二銅エッチング
では、銅箔と基材の接着面が弱いためアンダーカッティ
ングを生じるという欠点を有している。
When a copper foil having a layer mainly containing zinc such as zinc, brass, and zinc-nickel is applied to a printed circuit, the adhesive surface between the copper foil and the base material and its vicinity have very weak hydrochloric acid resistance. , In the manufacturing process of printed wiring boards, the corrosion resistance of the interface part is weak while being pickled and immersed in various active treatment liquids, so the peel strength deteriorates, especially the recent narrow conductor width. In the case of a circuit, there is a drawback that the conductor may be peeled or dropped due to thermal shock or mechanical shock. Further, cupric chloride etching has a drawback that undercutting occurs due to the weak adhesion surface between the copper foil and the base material.

【0009】ニッケル、錫は耐薬品性、耐熱性に優れ、
一般的によく使用される塩化第二鉄や塩化第二銅のエッ
チング液には可溶であるものの、パターンめっき法等で
よく使用されるアルカリエッチング液には不溶であり、
電気絶縁性を損なうエッチング残(ステイン)を生じると
いう重大な欠点を有している。近年の回路の狭小化を考
えた場合、塩化第二鉄、塩化第二銅でファインパターン
が描けるのはもちろん必須条件であるが、レジストなど
の多種多様化によりアルカリエッチング性も必須条件で
ある。
Nickel and tin are excellent in chemical resistance and heat resistance,
Although it is soluble in commonly used ferric chloride and cupric chloride etching solutions, it is insoluble in alkaline etching solutions often used in pattern plating and the like,
It has a serious drawback that it causes an etching residue (stain) that impairs electrical insulation. When considering the narrowing of circuits in recent years, it is of course essential that fine patterns can be drawn with ferric chloride and cupric chloride, but alkali etching is also an essential condition due to the wide variety of resists.

【0010】また、コバルト単独層の場合はアルカリエ
ッチング性は良好であるが、亜鉛程ではないが耐薬品性
に問題があること、真鍮メッキは実用的な方法はシアン
化物浴からの方法しかなく、環境上、作業上で大きな問
題を抱えている事など問題がある。
Further, in the case of the cobalt single layer, the alkali etching property is good, but there is a problem in chemical resistance though it is not as much as zinc, and brass plating is the only practical method from the cyanide bath. There are problems such as having big problems in terms of environment and work.

【0011】また、銅粗化処理後の銅箔表面にコバルト
めっき層或いはコバルトおよびニッケルから成るめっき
層を形成し、更に、クロム酸化物の単独皮膜或いはクロ
ム酸化物と亜鉛及び(又は)亜鉛酸化物を施した銅箔は
耐塩酸性は良好であるものの金めっき行程で使用される
シアン化物浴には弱く、アンダーカッティングを生じ
る。また、このアンダーカッティングを抑制するために
ニッケル含有量を増やした場合アルカリエッチング液に
不溶となると言うように耐シアン性、アルカリエッチン
グ性の両方を同時に満足させる事が非常に困難である。
Further, a cobalt plating layer or a plating layer composed of cobalt and nickel is formed on the surface of the copper foil after the copper roughening treatment, and further, a single coating of chromium oxide or chromium oxide and zinc and / or zinc oxide is formed. The treated copper foil has good hydrochloric acid resistance, but is weak in the cyanide bath used in the gold plating process and causes undercutting. Further, it is very difficult to satisfy both the cyan resistance and the alkali etching property at the same time, as it becomes insoluble in the alkali etching solution when the nickel content is increased to suppress the undercutting.

【0012】このように従来から提案されているバリア
ー層は基材樹脂に対する非反応性と耐薬品性を同時に満
足させる事が難しく、プリント配線板の急速な高密度化
や多様化には十分満足できていない。
As described above, it has been difficult to simultaneously satisfy the non-reactivity with the base resin and the chemical resistance of the barrier layer proposed hitherto, and it is sufficiently satisfied with the rapid densification and diversification of printed wiring boards. Not done.

【0013】[0013]

【発明が解決しようとする課題】本発明はアルカリエッ
チング液に対して可溶であり、更に耐薬品性、耐熱性に
優れたプリント配線板用銅箔及びその製造方法を提供す
ることを課題とする。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a copper foil for printed wiring boards which is soluble in an alkaline etching solution and has excellent chemical resistance and heat resistance, and a method for producing the same. To do.

【0014】[0014]

【課題を解決するための手段】そこで、本願発明者は従
来技術にあった問題を全て解決するために様々な銅箔処
理方法を検討した結果、銅箔の少なくとも一方の面にゲ
ルマニウムを含有するコバルト及び/またはニッケル層
を有し、且つ、該層上にクロメート皮膜層を有し、更に
該クロメート皮膜層上にシランカップリング剤層を施す
ことが効果的であるとの知見を得、本発明を完成するに
至った。
Therefore, as a result of examining various copper foil treatment methods in order to solve all the problems in the prior art, the inventor of the present application contains germanium on at least one surface of the copper foil. It was found that it is effective to have a cobalt and / or nickel layer, and to have a chromate film layer on the layer, and further to apply a silane coupling agent layer on the chromate film layer. The invention was completed.

【0015】即ち本発明は銅箔の少なくとも一方の面に
ゲルマニウムを含有するコバルト及び/またはニッケル
層を有し、且つ、該層上にクロメート皮膜層を有し、更
に該クロメート皮膜層上にシランカップリング剤層を形
成させることを特徴とするプリント配線板用銅箔、及び
ゲルマニウムとコバルト及び/またはニッケルを含む電
解液を用い該電解液中で銅箔を陰極電解し、ゲルマニウ
ムを含有するコバルト及び/またはニッケル層を形成さ
せた後、該層上にクロメート皮膜層を設け、更にシラン
カップリング剤処理を施しシランカップリング剤層を設
ける事を特徴とするプリント配線板用銅箔の製造方法で
ある。
That is, the present invention has a cobalt and / or nickel layer containing germanium on at least one surface of a copper foil, and a chromate film layer on the layer, and a silane film on the chromate film layer. A copper foil for a printed wiring board, which is characterized by forming a coupling agent layer, and an electrolytic solution containing germanium, cobalt and / or nickel is used to perform cathodic electrolysis of the copper foil in the electrolytic solution to form a cobalt containing germanium. And / or after forming a nickel layer, a chromate film layer is provided on the layer, and a silane coupling agent treatment is further performed to provide a silane coupling agent layer, which is a method for producing a copper foil for a printed wiring board. Is.

【0016】本発明のゲルマニウムを含有するコバルト
及び/またはニッケル層はゲルマニウムが欠けた単独お
よび二元合金層では目的とするバリアー層は得られな
い。 ・コバルト単独層の場合 長時間加熱処理後の引き剥がし強さの劣化は少ないが、
耐薬品性が悪く、塩酸、シアン化物浴浸漬後にアンダー
カッティングを生じる。 ・ニッケル単独層の場合 耐塩酸性、耐シアン性は良好であるがアルカリエッチン
グ性が悪く、強度のステインを生じる。 ・ゲルマニウム単独層の場合 水溶液から単独で析出させることが出来ない。ゲルマニ
ウムは鉄属の誘導析出型であり、本発明の場合コバルト
及び/またはニッケルが無いと析出しない。 ・コバルト−ニッケル層の場合 長時間加熱処理後の引き剥がし強さの劣化が少なく、ま
た、耐塩酸性は良好であるが耐シアン性、アルカリエッ
チング性の両特性を同時に満足させることが出来ない。
The germanium-containing cobalt and / or nickel layer of the present invention cannot be used as a barrier layer when a single or binary alloy layer lacking germanium is used.・ In the case of a single layer of cobalt, the peel strength after heat treatment for a long time does not deteriorate much, but
The chemical resistance is poor and undercutting occurs after immersion in a hydrochloric acid or cyanide bath. -In the case of a nickel single layer, hydrochloric acid resistance and cyanation resistance are good, but alkali etching resistance is poor and strong stains occur.・ In the case of a single layer of germanium, it cannot be precipitated alone from the aqueous solution. Germanium is an inductive precipitation type of the iron group, and in the present invention, it does not precipitate without cobalt and / or nickel. In the case of a cobalt-nickel layer, there is little deterioration in peel strength after heat treatment for a long time, and although hydrochloric acid resistance is good, both cyan resistance and alkali etching resistance cannot be satisfied at the same time.

【0017】以上の様にゲルマニウムを含まない単独及
び二元系合金層ではそれぞれ欠点があり、ゲルマニウム
を含有するコバルト及び/またはニッケルからなる二元
系、三元系合金層にする事でアルカリエッチング液に対
して可溶となり耐薬品性、耐熱性を備えたプリント配線
板用銅箔となる。
As described above, the single and binary alloy layers that do not contain germanium have their respective drawbacks. Alkali etching is performed by forming a binary or ternary alloy layer containing germanium-containing cobalt and / or nickel. A copper foil for printed wiring boards that is soluble in liquid and has chemical resistance and heat resistance.

【0018】また、本発明バリアー層上にクロメート皮
膜層を施す事により様々な特性が向上し、例えば、耐酸
化性を向上させる、基材との接着力を向上させる為引き
剥がし強さが強くなる、耐ブラウントランスファー性
(ガラスエポキシ樹脂を用いたプリント回路で生じるエ
ッチング基板面の変色、着色、汚れの事)を向上させる
等の効果をもたらす。また、このクロメート皮膜層を形
成させる浴は公知のものでよく、例えばクロム酸、重ク
ロム酸ナトリウム、重クロム酸カリウムなどの6価クロ
ムを有する物であればよく、水溶液にして浸漬又は陰極
電解により施す。
Further, by providing a chromate film layer on the barrier layer of the present invention, various properties are improved, for example, oxidation resistance is improved, and peel strength is increased in order to improve adhesive strength with a substrate. The effect of improving brown transfer resistance (discoloration, coloring, and stains on the surface of an etching substrate that occurs in a printed circuit using a glass epoxy resin). The bath for forming the chromate film layer may be a known bath, for example, a bath containing hexavalent chromium such as chromic acid, sodium dichromate, potassium dichromate, etc. Given by.

【0019】また、このクロム酸液はアルカリ性、酸性
のどちらでもかまわない。上記2種類のクロム酸液はそ
れぞれ長所、短所があり、使用目的に応じて使い分けれ
ばよいが、アルカリ性クロム酸液を使用した場合酸性ク
ロム酸液に比べクロメート皮膜層の耐食性がわずかに劣
る、接合基材との接着性がわずかに劣ると言う欠点があ
るが本発明のバリアー層上にアルカリ性クロム酸液でク
ロメート皮膜層を施しても上記した問題は発生しない。
The chromic acid solution may be alkaline or acidic. The above-mentioned two types of chromic acid solutions have advantages and disadvantages respectively and may be used properly according to the purpose of use, but when an alkaline chromic acid solution is used, the corrosion resistance of the chromate film layer is slightly inferior to that of the acidic chromic acid solution. Although there is a drawback that the adhesiveness with the bonding base material is slightly inferior, the above-mentioned problems do not occur even if a chromate film layer is formed on the barrier layer of the present invention with an alkaline chromic acid solution.

【0020】また、アルカリ性クロム酸液として特公昭
58−15950号にある様な亜鉛イオン、6価クロム
イオンを含むアルカリ性ジンククロメート液を使用して
もよく、本クロム酸液を使用することで、クロム単独酸
液からのクロメート皮膜層よりも耐酸化性を向上させる
事が出来る。もちろん酸性クロム酸液を使用しても問題
無く同様の結果が得られる。
As the alkaline chromic acid solution, an alkaline zinc chromate solution containing zinc ions and hexavalent chromium ions as described in JP-B-58-15950 may be used. By using this chromic acid solution, It is possible to improve the oxidation resistance as compared with the chromate film layer formed from the chromium alone acid solution. Of course, even if an acidic chromic acid solution is used, similar results can be obtained.

【0021】また、クロメート皮膜層上にシランカップ
リング剤層を施すことにより常態時の引き剥がし強さを
向上させるのみならず、過酷試験後の引き剥がし強さの
劣化も押さえる事ができ、更に耐酸化性も向上させ、優
れた汎用性を備えたプリント回路用銅箔となる。シラン
カップリング剤はエポキシ基、アミノ基、メルカプト
基、ビニル基、メタクリロキシ基、スチリル基等多種あ
るがそれぞれ異なった特性を有し、また、基材との相性
もあり、選択して使用する必要がある。シランカップリ
ング剤層の形成は水溶液として浸漬処理又はスプレー処
理などにより施す。
Further, by applying a silane coupling agent layer on the chromate film layer, not only the peel strength in the normal state can be improved but also the deterioration of the peel strength after the severe test can be suppressed. The copper foil for printed circuits has improved versatility by improving oxidation resistance. There are various types of silane coupling agents such as epoxy groups, amino groups, mercapto groups, vinyl groups, methacryloxy groups, styryl groups, etc., but they have different characteristics and also have compatibility with the base material, so it is necessary to select and use them. There is. The silane coupling agent layer is formed as an aqueous solution by immersion treatment or spray treatment.

【0022】本発明のバリアー層は通常のプリント配線
板用銅箔として使用する銅箔であれば電解銅箔、圧延銅
箔の種類を問わず使用できる。また、該層は銅箔特性を
損なわない程度(基材との接着力を低下させない程度)に
処理する必要があるが、好ましい処理量は1mg/m2
から500mg/m2であり更に好ましくは3mg/m
2から300mg/m2である。ゲルマニウムを含有する
コバルト及び/またはニッケル層が1mg/m2以下の
場合本発明のバリアー効果が十分に発揮できず、一方、
500mg/m2以上の場合銅の純度が下がる、コスト
高となり不経済である等の問題点が発生する。
The barrier layer of the present invention can be used regardless of the type of electrolytic copper foil or rolled copper foil as long as it is a copper foil used as a normal copper foil for printed wiring boards. The layer needs to be treated to the extent that the copper foil properties are not impaired (adhesion strength to the substrate is not reduced), but the preferred treatment amount is 1 mg / m 2.
To 500 mg / m 2 , more preferably 3 mg / m
2 to 300 mg / m 2 . When the cobalt and / or nickel layer containing germanium is 1 mg / m 2 or less, the barrier effect of the present invention cannot be sufficiently exhibited, while
When the amount is 500 mg / m 2 or more, problems such as a decrease in copper purity, an increase in cost and uneconomical problems occur.

【0023】また、本発明のゲルマニウムを含有するコ
バルト及び/またはニッケル層のコバルト、ニッケル、
ゲルマニウムの好ましい含有量は(wt%=重量%) コバルト−ゲルマニウム層の場合 30wt%≦コバルト≦80wt% 20wt%≦ゲルマニウム≦70wt% であり、更に好ましくは 35wt%≦コバルト≦75wt% 25wt%≦ゲルマニウム≦65wt% である。
The cobalt and / or nickel layer containing germanium according to the present invention may include cobalt, nickel,
A preferable content of germanium is (wt% = weight%) In the case of a cobalt-germanium layer, 30 wt% ≦ cobalt ≦ 80 wt% 20 wt% ≦ germanium ≦ 70 wt%, and more preferably 35 wt% ≦ cobalt ≦ 75 wt% 25 wt% ≦ germanium ≦ 65 wt%.

【0024】ニッケル−ゲルマニウム層の場合 30wt%≦ニッケル≦65wt% 35wt%≦ゲルマニウム≦70wt% であり、更に好ましくは 35wt%≦ニッケル≦60wt% 40wt%≦ゲルマニウム≦65wt% である。In the case of nickel-germanium layer 30 wt% ≤ nickel ≤ 65 wt% 35 wt% ≤ germanium ≤ 70 wt% And more preferably 35 wt% ≤ nickel ≤ 60 wt% 40 wt% ≤ germanium ≤ 65 wt% Is.

【0025】コバルト−ニッケル−ゲルマニウム層の場
合 15wt%≦コバルト≦70wt% 10wt%≦ニッケル≦40wt% 5wt%≦ゲルマニウム≦55wt% であり、更に好ましくは 20wt%≦コバルト≦65wt% 13wt%≦ニッケル≦35wt% 7wt%≦ゲルマニウム≦52wt% である。
In the case of a cobalt-nickel-germanium layer, 15 wt% ≤ cobalt ≤ 70 wt% 10 wt% ≤ nickel ≤ 40 wt% 5 wt% ≤ germanium ≤ 55 wt%, more preferably 20 wt% ≤ cobalt ≤ 65 wt% 13 wt% ≤ nickel ≤ 35wt% 7wt% <germanium <52wt%.

【0026】上記した三種類のバリアー層中の各元素の
含有率が上記範囲内であるときにはプリント配線板用銅
箔として極めて良好な特性を有するがこの範囲外の時は
以下の様な欠点が発生する。
When the content of each element in the above three kinds of barrier layers is within the above range, the copper foil for printed wiring board has very good characteristics, but when it is out of this range, the following drawbacks occur. Occur.

【0027】コバルト−ゲルマニウム層中各元素含有率
が上記含有率外の時 耐薬品性が悪くなり、塩酸、シアン化物浴浸漬後にアン
ダーカッティングを生じる。 ニッケル−ゲルマニウム層中各元素含有率が上記含有率
外の時 アルカリエッチング性、耐薬品性が悪くなる。 コバルト−ニッケル−ゲルマニウム層中各元素含有率が
上記含有率外の時 アルカリエッチング性、耐薬品性が悪くなる。
When the content of each element in the cobalt-germanium layer is outside the above content, the chemical resistance becomes poor, and undercutting occurs after immersion in a hydrochloric acid or cyanide bath. When the content of each element in the nickel-germanium layer is out of the above content, alkali etching properties and chemical resistance are deteriorated. When the content of each element in the cobalt-nickel-germanium layer is out of the above content, alkali etching properties and chemical resistance are deteriorated.

【0028】また、該バリアー層を銅箔表面上に形成さ
せる方法は公知の電気メッキ法、真空蒸着法、スパッタ
リング法等各種方法により形成可能であるが、工業上の
ラインに最適と思われるものは、水溶液電気メッキ法で
ある。その製造方法とはゲルマニウムとコバルト及び/
またはニッケルを含む電解液中で銅箔を陰極電解するこ
とにより得られる。メッキ電解液には酒石酸、クエン酸
等のオキシカルボン酸浴、ピロリン酸浴、酢酸浴、シア
ン化浴等種々挙げられるが、コスト、浴管理、公害性、
作業性等を考慮するとクエン酸浴等が適当であるが特に
これに限定するものではない。
The barrier layer may be formed on the surface of the copper foil by various methods such as known electroplating method, vacuum deposition method, sputtering method and the like, which is considered to be most suitable for the industrial line. Is an aqueous solution electroplating method. The manufacturing method is germanium and cobalt and / or
Alternatively, it is obtained by subjecting a copper foil to cathodic electrolysis in an electrolytic solution containing nickel. Examples of plating electrolytes include various tartaric acid, oxycarboxylic acid baths such as citric acid, pyrophosphoric acid baths, acetic acid baths, cyanide baths, etc., but cost, bath management, pollution resistance,
A citric acid bath or the like is suitable in consideration of workability, etc., but is not particularly limited thereto.

【0029】コバルト、ニッケル、ゲルマニウムの供給
源としては以下のものが使用できる。但し、これに限定
されるものではない。
The following sources can be used as the supply sources of cobalt, nickel and germanium. However, it is not limited to this.

【0030】コバルトイオンの供給源としては硫酸コバ
ルト、硫酸コバルトアンモニウム、クエン酸コバルト、
酢酸コバルトなどが使用できる。ニッケルイオンの供給
源としては硫酸ニッケル、硫酸ニッケルアンモニウム、
塩化ニッケル、酢酸ニッケルなどが使用できる。ゲルマ
ニウムイオンの供給源としては二酸化ゲルマニウムを使
用すると良い。この二酸化ゲルマニウムは低温から常温
浴では溶解しにくい為、40℃以上の浴で溶解させる事
が望ましい。
Sources of cobalt ions include cobalt sulfate, ammonium cobalt sulfate, cobalt citrate,
Cobalt acetate etc. can be used. Nickel sulfate, nickel ammonium sulfate,
Nickel chloride, nickel acetate, etc. can be used. It is recommended to use germanium dioxide as a source of germanium ions. Since this germanium dioxide is difficult to dissolve in a low temperature to normal temperature bath, it is desirable to dissolve it in a bath at 40 ° C. or higher.

【0031】また本発明浴の導電性の付与として硫酸ナ
トリウムを添加してもよい。浴温度は特に定めないが経
済面、作業面等を考慮した場合、常温から50℃位まで
が好ましい。電流密度は0.1から10A/dm2 まで広範
囲で使用可能であるが、これも実工程を考慮した場合、
1から5A/dm2 位までが好ましい。pHは4から10位
がよく、このpHの範囲では三元素の同時析出、バリア
ー特性、作業性のすべてが良いが、これもまた上記条件
に限定されるものではない。また、陽極は白金等の不溶
性陽極を用いるのが好ましい。
Further, sodium sulfate may be added to the bath of the present invention to impart conductivity. The bath temperature is not particularly specified, but in view of economy and work, it is preferably from room temperature to about 50 ° C. The current density can be used in a wide range from 0.1 to 10 A / dm 2 , but when considering the actual process as well,
1 to 5 A / dm 2 position is preferable. The pH is preferably about 4 to 10, and within this pH range, the simultaneous precipitation of the three elements, barrier properties, and workability are all good, but this is not limited to the above conditions either. Further, it is preferable to use an insoluble anode such as platinum as the anode.

【0032】[0032]

【本発明の実施の形態】以下に本発明の実施例と比較例
を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Examples and comparative examples of the present invention are shown below.

【0033】[0033]

【実施例】(実施例1〜18)あらかじめ公知の方法で
粗化処理した35μm電解銅箔を用意し、本発明浴の温
度を30℃一定とし、表1に示す様な浴組成、pH(硫
酸、水酸化ナトリウムで調整)、及び電解条件で陽極に
白金を使用して銅箔表面を陰極電解し、コバルト−ゲル
マニウム層(実施例1〜6)、ニッケル−ゲルマニウム
層(実施例7〜12)、コバルト−ニッケル−ゲルマニ
ウム層(実施例13〜18)を形成した後、水洗し、次
いで該層上にクロメート皮膜層を形成した。クロメート
皮膜層を形成したクロム酸液の組成と電解条件を以下に
示す。 重クロム酸ナトリウム 5g/L 浴温 30℃ pH(水酸化ナトリウムで調整) 13.0 電流密度 2A/dm2 電解時間 5秒 陽極 白金
EXAMPLES (Examples 1 to 18) 35 μm electrolytic copper foil roughened by a known method was prepared in advance, the temperature of the bath of the present invention was kept constant at 30 ° C., and the bath composition and pH (Table 1) The surface of the copper foil was subjected to cathodic electrolysis using platinum as an anode under sulfuric acid and sodium hydroxide) and electrolytic conditions, and a cobalt-germanium layer (Examples 1 to 6) and a nickel-germanium layer (Examples 7 to 12) were used. ), A cobalt-nickel-germanium layer (Examples 13 to 18) was formed, followed by washing with water, and then a chromate film layer was formed on the layer. The composition of the chromic acid solution having the chromate film layer formed thereon and the electrolysis conditions are shown below. Sodium dichromate 5g / L Bath temperature 30 ℃ pH (adjusted with sodium hydroxide) 13.0 Current density 2A / dm 2 Electrolysis time 5 seconds Anode platinum

【0034】上記アルカリ性クロム酸浴でクロメート皮
膜層を形成した後、水洗し、次いでシランカップリング
剤層を形成した。シランカップリング剤層を形成したシ
ランカップリング剤種、浴組成及び形成方法を以下に示
す。 γ−アミノプロピルトリエトキシシラン 1.5mL/L 浴温 30℃ 浸漬時間 15秒 上記シランカップリング剤浴でシランカップリング剤層
を形成した後、乾燥させた。次にこの銅箔をFR−4グ
レードのエポキシ樹脂含浸ガラス基材に積層、成形して
銅張積層板の各特性試験を行った。その結果を表2に示
す。
After the chromate film layer was formed in the above alkaline chromic acid bath, it was washed with water and then a silane coupling agent layer was formed. The silane coupling agent species, the bath composition and the forming method for forming the silane coupling agent layer are shown below. γ-Aminopropyltriethoxysilane 1.5 mL / L Bath temperature 30 ° C. Immersion time 15 seconds After forming a silane coupling agent layer in the above silane coupling agent bath, it was dried. Next, this copper foil was laminated and molded on an FR-4 grade epoxy resin-impregnated glass substrate, and each characteristic test of the copper-clad laminate was performed. The results are shown in Table 2.

【0035】[0035]

【比較例】(比較例1) 実施例と同様の35μm電解銅箔を用意し、表1に示す
様に 硫酸コバルト・七水和物 30g/L クエン酸三ナトリウム・二水和物 30g/L pH(水酸化ナトリウムで調整) 5.9 としこの浴において上記35μm電解銅箔を浴温30
℃、電流密度2A/dm2、電解時間3秒間陰極電解した他
は実施例1〜18と同じ処理工程を行い、同じ方法で銅
張積層板を成形し、同じ方法で各特性試験を行った。そ
の結果を表2に示す。
[Comparative Example] (Comparative Example 1) The same 35 μm electrolytic copper foil as in Example was prepared, and as shown in Table 1, cobalt sulfate heptahydrate 30 g / L trisodium citrate dihydrate 30 g / L. The pH (adjusted with sodium hydroxide) was adjusted to 5.9, and the above 35 μm electrolytic copper foil was heated to a bath temperature of 30 in this bath.
° C., a current density of 2A / dm 2, except that 3 seconds cathodic electrolysis electrolysis time performs the same processing steps as in Example 1 to 18, molding the copper-clad laminate in the same manner, was subjected to the property tests in the same way . The results are shown in Table 2.

【0036】(比較例2)実施例と同様の35μm電解
銅箔を用意し、比較例1と同じ浴組成、浴条件で電流密
度1A/dm2、電解時間5秒間陰極電解した他は実施例1
〜18と同じ処理工程を行い、同じ方法で銅張積層板を
成形し、同じ方法で各特性試験を行った。その結果を表
2に示す。
(Comparative Example 2) A 35 μm electrolytic copper foil similar to that of the embodiment was prepared, and a cathode electrolysis was carried out under the same bath composition and bath conditions as in Comparative Example 1 with a current density of 1 A / dm 2 and an electrolysis time of 5 seconds. 1
The same treatment steps as those of Nos. 18 to 18 were performed, a copper clad laminate was formed by the same method, and each characteristic test was performed by the same method. The results are shown in Table 2.

【0037】(比較例3)実施例と同様の35μm電解
銅箔を用意し、表1に示す様に 硫酸ニッケル・六水和物 30g/L クエン酸三ナトリウム・二水和物 30g/L pH(硫酸で調整) 4.5 としこの浴において上記35μm電解銅箔を浴温30
℃、電流密度1.5A/dm2、電解時間2秒間陰極電解し
た他は実施例1〜18と同じ処理工程を行い、同じ方法
で銅張積層板を成形し、同じ方法で各特性試験を行っ
た。その結果を表2に示す。
(Comparative Example 3) A 35 μm electrolytic copper foil similar to that of the Example was prepared, and as shown in Table 1, nickel sulfate hexahydrate 30 g / L trisodium citrate dihydrate 30 g / L pH. (Adjust with sulfuric acid) 4.5 and in this bath, the bath temperature of the above 35 μm electrolytic copper foil is 30
° C., a current density of 1.5A / dm 2, except that the electrolytic time 2 seconds and cathodic electrolysis is carried out the same processing steps as in Example 1 to 18, molding the copper-clad laminate in the same way, the characteristics tested in the same way went. The results are shown in Table 2.

【0038】(比較例4)実施例と同様の35μm電解
銅箔を用意し、表1に示す様に 硫酸ニッケル・六水和物 50g/L クエン酸三ナトリウム・二水和物 30g/L pH(水酸化ナトリウムで調整) 5.5 としこの浴において上記35μm電解銅箔を浴温30
℃、電流密度1A/dm2、電解時間5秒間陰極電解した他
は実施例1〜18と同じ処理工程を行い、同じ方法で銅
張積層板を成形し、同じ方法で各特性試験を行った。そ
の結果を表2に示す。
(Comparative Example 4) A 35 μm electrolytic copper foil similar to that of the Example was prepared, and as shown in Table 1, nickel sulfate hexahydrate 50 g / L trisodium citrate dihydrate 30 g / L pH. (Adjusted with sodium hydroxide) It was set to 5.5, and the above 35 μm electrolytic copper foil was heated to a bath temperature of 30 in this bath.
° C., a current density of 1A / dm 2, except that 5 seconds cathodic electrolysis electrolysis time performs the same processing steps as in Example 1 to 18, molding the copper-clad laminate in the same manner, was subjected to the property tests in the same way . The results are shown in Table 2.

【0039】(比較例5)実施例と同様の35μm電解
銅箔を用意し、表1に示す様に 硫酸コバルト・七水和物 5g/L 硫酸ニッケル・六水和物 30g/L クエン酸三ナトリウム・二水和物 30g/L pH(硫酸で調整) 4.5 としこの浴において上記35μm電解銅箔を浴温30
℃、電流密度1.5A/dm2、電解時間2秒間陰極電解し
た他は実施例1〜18と同じ処理工程を行い、同じ方法
で銅張積層板を成形し、同じ方法で各特性試験を行っ
た。その結果を表2に示す。
(Comparative Example 5) A 35 μm electrolytic copper foil similar to that of the Example was prepared, and as shown in Table 1, cobalt sulfate heptahydrate 5 g / L nickel sulfate hexahydrate 30 g / L citrate trihydrate. Sodium dihydrate 30 g / L pH (adjusted with sulfuric acid) 4.5 and in this bath, the bath temperature of the above 35 μm electrolytic copper foil was 30
° C., a current density of 1.5A / dm 2, except that the electrolytic time 2 seconds and cathodic electrolysis is carried out the same processing steps as in Example 1 to 18, molding the copper-clad laminate in the same way, the characteristics tested in the same way went. The results are shown in Table 2.

【0040】(比較例6)実施例と同様の35μm電解
銅箔を用意し、表1に示す様に 硫酸コバルト・七水和物 50g/L 硫酸ニッケル・六水和物 50g/L クエン酸三ナトリウム・二水和物 30g/L pH(硫酸で調整) 5.0 としこの浴において上記35μm電解銅箔を浴温30
℃、電流密度1A/dm2、電解時間5秒間陰極電解した他
は実施例1〜18と同じ処理工程を行い、同じ方法で銅
張積層板を成形し、同じ方法で各特性試験を行った。そ
の結果を表2に示す。
(Comparative Example 6) A 35 μm electrolytic copper foil similar to that of the Example was prepared, and as shown in Table 1, cobalt sulfate heptahydrate 50 g / L nickel sulfate hexahydrate 50 g / L citrate trihydrate. Sodium dihydrate 30 g / L pH (adjusted with sulfuric acid) 5.0 and the bath temperature of the above 35 μm electrolytic copper foil was 30 in this bath.
° C., a current density of 1A / dm 2, except that 5 seconds cathodic electrolysis electrolysis time performs the same processing steps as in Example 1 to 18, molding the copper-clad laminate in the same manner, was subjected to the property tests in the same way . The results are shown in Table 2.

【0041】(比較例7)実施例と同様の35μm電解
銅箔を用意し、比較例6と同じ浴組成、浴条件で電流密
度2A/dm2、電解時間4秒間陰極電解した他は実施例1
〜18と同じ処理工程を行い、同じ方法で銅張積層板を
成形し、同じ方法で各特性試験を行った。その結果を表
2に示す。
(Comparative Example 7) A 35 μm electrolytic copper foil similar to that of the Example was prepared, and a cathode density was 4 A for 2 seconds at a current density of 2 A / dm 2 under the same bath composition and bath conditions as in Comparative Example 6. 1
The same treatment steps as those of Nos. 18 to 18 were performed, a copper clad laminate was formed by the same method, and each characteristic test was performed by the same method. The results are shown in Table 2.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】*2 引き剥がし強さは1mm幅で測定。
その他条件はJIS−C−6418に準ずる。 *3 塩酸浸漬後の引き剥がし強さの劣化率は6N−H
Cl水溶液に25℃−20分間浸漬後の劣化率を求め
た。 *4 アンダーカッティングは6N−HCl水溶液に2
5℃−20分間浸漬後の侵食幅を金属顕微鏡にて読みと
った。 *5 シアン化物浴浸漬後の引き剥がし強さの劣化率は
10%−KCN水溶液に70℃−30分間浸漬後の劣化
率を求めた。 *6 アンダーカッティングは10%−KCN水溶液に
70℃−30分間浸漬後の侵食幅を金属顕微鏡にて読み
とった。 *7 長時間加熱処理後の引き剥がし強さは180℃−
48時間加熱処理を行った後の引き剥がし強さを測定し
た。
* 2 Peel strength was measured with a width of 1 mm.
Other conditions are in accordance with JIS-C-6418. * 3 Degradation rate of peel strength after dipping in hydrochloric acid is 6N-H
The deterioration rate after immersion in a Cl aqueous solution at 25 ° C. for 20 minutes was obtained. * 4 Undercutting is 2N in 6N-HCl aqueous solution.
The erosion width after immersion at 5 ° C for 20 minutes was read with a metallurgical microscope. * 5 The deterioration rate of the peeling strength after immersion in a cyanide bath was determined by the deterioration rate after immersion in a 10% -KCN aqueous solution at 70 ° C for 30 minutes. * 6 For undercutting, the erosion width after immersion in a 10% -KCN aqueous solution at 70 ° C for 30 minutes was read with a metallurgical microscope. * 7 Peeling strength after long-term heat treatment is 180 ° C-
The peel strength after heat treatment for 48 hours was measured.

【0045】*8 アルカリエッチング エッチング方法 評価 ○:ステインが全く認められない △:ステインがわずかに認められる ×:強度のステイン* 8 Alkaline etching Etching method Evaluation ◯: Stain is not recognized at all Δ: Stain is slightly recognized x: Stain of strong intensity

【0046】表1にゲルマニウムを含有するコバルト及
び/またはニッケル層及び該層上にクロメート皮膜層を
施した後、更に該クロメート層上にシランカップリング
剤層を施した実施例1〜18と比較例1〜7のメッキ浴
組成、pH、電解条件、ゲルマニウムを含有するコバル
ト及び/またはニッケル層の析出量(mg/m2)及び
該層中の各元素の含有率(wt%=重量%)を示し、また、
表2には上記実施例、比較例の各種特性を評価した結果
を示した。
In Table 1, a cobalt and / or nickel layer containing germanium and a chromate film layer formed on the layer and then a silane coupling agent layer formed on the chromate layer were compared with Examples 1 to 18. Composition of plating bath of Examples 1 to 7, pH, electrolysis conditions, deposition amount of cobalt and / or nickel layer containing germanium (mg / m 2 ) and content of each element in the layer (wt% = wt%) , And also
Table 2 shows the results of evaluation of various characteristics of the above Examples and Comparative Examples.

【0047】ゲルマニウムを含有するコバルト及び/ま
たはニッケル層及び該層上にクロメート皮膜層を施した
後、更に該クロメート層上にシランカップリング剤層を
施した実施例1〜18は、エッチングに於いて金属選択
性のあるアルカリエッチング液に対しても可溶であり、
更に、塩酸浸漬後、シアン化物浴浸漬後のアンダーカッ
ティングの発生も見られず、引き剥がし強さの劣化率が
低く抑えられ、更に、長時間加熱処理後の引き剥がし強
さも十分であり、優れた汎用性を備えたプリント回路用
銅箔である事が分かる。
Examples 1 to 18 in which a cobalt and / or nickel layer containing germanium and a chromate film layer on the layer and then a silane coupling agent layer on the chromate layer were applied were used. It is also soluble in alkaline etching solutions with metal selectivity,
Furthermore, no occurrence of undercutting was observed after immersion in hydrochloric acid or cyanide bath, the deterioration rate of peeling strength was suppressed to a low level, and the peeling strength after long-term heat treatment was also sufficient, which is excellent. It can be seen that it is a copper foil for printed circuits with versatility.

【0048】一方、比較例1〜7までのゲルマニウムを
含まない単独層、2元系合金層について述べると、 ・コバルト単独層の場合(比較例1,2)長時間加熱処
理後の引き剥がし強さの劣化は少ないが、耐薬品性が悪
く、塩酸、シアン化物浴浸漬後にアンダーカッティング
を生じる。 ・ニッケル単独層の場合(比較例3,4)耐塩酸性、耐
シアン性は良好であるがアルカリエッチング性が悪く、
強度のステインを生じる。 ・コバルト−ニッケル層の場合(比較例5,6,7)長
時間加熱処理後の引き剥がし強さの劣化が少なく、ま
た、耐塩酸性は良好であるが耐シアン性、アルカリエッ
チング性の両特性を同時に満足させることが出来ない。 という様にそれぞれ欠点があり、プリント配線板用銅箔
として使用するには問題がある。
On the other hand, the individual layers containing no germanium and the binary alloy layers of Comparative Examples 1 to 7 will be described. In the case of a cobalt single layer (Comparative Examples 1 and 2), peeling strength after long-term heat treatment is high. However, undercutting occurs after immersion in a hydrochloric acid or cyanide bath. In the case of a nickel single layer (Comparative Examples 3 and 4), hydrochloric acid resistance and cyan resistance are good, but alkali etching resistance is poor,
This produces a strong stain. In the case of cobalt-nickel layer (Comparative Examples 5, 6, 7), there is little deterioration in peel strength after heat treatment for a long time, and hydrochloric acid resistance is good, but both cyan resistance and alkali etching resistance are high. Cannot be satisfied at the same time. As described above, each has its drawbacks, and there is a problem in using it as a copper foil for a printed wiring board.

【0049】[0049]

【発明の効果】以上の様に本発明のゲルマニウムを含有
するコバルト及び/またはニッケル層にクロメート皮膜
層を施した後、更に該クロメート層上にシランカップリ
ング剤層を施した銅箔は 基材との引き剥がし強さが十分である。 上記引き剥がし強さが過酷試験(薬品処理、加熱処理)
後も十分である。 高密度化する印刷回路の狭小化に伴う絶縁特性の信頼
性が高い。 以上の特性を全て十分に満たしており、狭小化著しいプ
リント配線板、特に高密度プリント配線板においてその
性能を十分に発揮できるものである。
As described above, the copper foil of the present invention, which is obtained by forming a chromate film layer on the germanium-containing cobalt and / or nickel layer and then forming a silane coupling agent layer on the chromate layer, is a base material. Peeling strength with is sufficient. The above peeling strength is a severe test (chemical treatment, heat treatment)
After that is enough. High reliability of insulation characteristics due to the narrowing of the density of printed circuits. All of the above characteristics are sufficiently satisfied, and the performance can be sufficiently exhibited in a printed wiring board that is significantly narrowed, especially in a high-density printed wiring board.

【0050】以上、アルカリエッチング液に対して可溶
であり、更に耐薬品性、耐熱性に適した本発明プリント
配線板用銅箔は一般のプリント配線板はもちろん高密度
プリント配線板に適したものである。
As described above, the copper foil for a printed wiring board of the present invention, which is soluble in an alkaline etching solution and is suitable for chemical resistance and heat resistance, is suitable not only for general printed wiring boards but also for high density printed wiring boards. It is one.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅箔の少なくとも一方の面にゲルマニウ
ムを含有するコバルト及び/またはニッケル層を有し、
且つ、該層上にクロメート皮膜層を形成させた後、更に
シランカップリング剤層を形成させる事を特徴とするプ
リント配線板用銅箔。
1. A copper foil having a cobalt and / or nickel layer containing germanium on at least one surface thereof,
Further, a copper foil for a printed wiring board, characterized in that after forming a chromate film layer on the layer, a silane coupling agent layer is further formed.
【請求項2】 ゲルマニウムとコバルト及び/またはニ
ッケルを含む電解液を用い該電解液中で銅箔を陰極電解
し、ゲルマニウムを含有するコバルト及び/またはニッ
ケル層を形成させた後、該銅箔を6価クロムを含む水溶
液に浸漬するか、陰極電解し、該層上にクロメート皮膜
層を設け、更に該クロメート皮膜層上にシランカップリ
ング剤水溶液を塗布しシランカップリング剤層を設ける
事を特徴とするプリント配線板用銅箔の製造方法。
2. A copper foil is subjected to cathodic electrolysis in an electrolytic solution containing germanium and cobalt and / or nickel to form a cobalt and / or nickel layer containing germanium, and then the copper foil is removed. It is characterized in that it is immersed in an aqueous solution containing hexavalent chromium or is subjected to cathodic electrolysis, a chromate film layer is provided on the layer, and a silane coupling agent aqueous solution is applied on the chromate film layer to provide a silane coupling agent layer. And a method for producing a copper foil for a printed wiring board.
JP2002095167A 2002-03-29 2002-03-29 Copper foil for printed wiring board and method for producing the same Expired - Fee Related JP4034586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095167A JP4034586B2 (en) 2002-03-29 2002-03-29 Copper foil for printed wiring board and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095167A JP4034586B2 (en) 2002-03-29 2002-03-29 Copper foil for printed wiring board and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003298229A true JP2003298229A (en) 2003-10-17
JP4034586B2 JP4034586B2 (en) 2008-01-16

Family

ID=29387154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095167A Expired - Fee Related JP4034586B2 (en) 2002-03-29 2002-03-29 Copper foil for printed wiring board and method for producing the same

Country Status (1)

Country Link
JP (1) JP4034586B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116426A1 (en) * 2008-03-19 2009-09-24 松田産業株式会社 Electronic component and method for manufacturing the same
CN112639170A (en) * 2018-09-07 2021-04-09 三菱动力株式会社 Hydrogen production system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116426A1 (en) * 2008-03-19 2009-09-24 松田産業株式会社 Electronic component and method for manufacturing the same
TWI404835B (en) * 2008-03-19 2013-08-11 Matsuda Sangyo Co Ltd Electronic parts and manufacturing methods thereof
CN112639170A (en) * 2018-09-07 2021-04-09 三菱动力株式会社 Hydrogen production system

Also Published As

Publication number Publication date
JP4034586B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
US4387006A (en) Method of treating the surface of the copper foil used in printed wire boards
JP4626390B2 (en) Copper foil for printed wiring boards in consideration of environmental protection
JP5512273B2 (en) Copper foil and copper clad laminate for printed circuit
JPS6113688A (en) Copper foil for printed circuit and method of producing same
US4483906A (en) Copper foil for a printed circuit and a method for the production thereof
JP3081026B2 (en) Electrolytic copper foil for printed wiring boards
JPH0987889A (en) Treatment of copper foil for printed circuit
JP4492434B2 (en) Copper foil for printed wiring board, method for producing the same, and trivalent chromium chemical conversion treatment solution used for the production
JPH0329879B2 (en)
JP2620151B2 (en) Copper foil for printed circuits
KR100654737B1 (en) Method of manufacturing Surface-treated Copper Foil for PCB having fine-circuit pattern and Surface-treated Copper Foil thereof
JP3564460B2 (en) Copper foil for printed wiring board and method for producing the same
JP4660819B2 (en) Copper foil for flexible printed wiring boards for COF
JP5151761B2 (en) Method for producing rolled copper foil for printed wiring board
JP3709142B2 (en) Copper foil for printed wiring board and method for producing the same
JPH04318997A (en) Copper foil for printed circuit and manufacture thereof
JP4034586B2 (en) Copper foil for printed wiring board and method for producing the same
JP3367805B2 (en) Processing method of copper foil for printed circuit
JP2875186B2 (en) Processing method of copper foil for printed circuit
CN114016098A (en) Copper-clad plate electroplating Ni-Co-Ce film plating solution for PCB and film preparation method
JP2684164B2 (en) Surface treatment method for copper foil for printed circuits
JP2875187B2 (en) Processing method of copper foil for printed circuit
JP3113445B2 (en) Copper foil for printed circuit and manufacturing method thereof
JP3833493B2 (en) Copper foil used for TAB tape carrier, TAB carrier tape and TAB tape carrier using this copper foil
JP3900116B2 (en) Surface-treated copper foil for electronic circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4034586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees