JP2003297863A - Method of manufacturing reformed inorganic filler - Google Patents

Method of manufacturing reformed inorganic filler

Info

Publication number
JP2003297863A
JP2003297863A JP2002093641A JP2002093641A JP2003297863A JP 2003297863 A JP2003297863 A JP 2003297863A JP 2002093641 A JP2002093641 A JP 2002093641A JP 2002093641 A JP2002093641 A JP 2002093641A JP 2003297863 A JP2003297863 A JP 2003297863A
Authority
JP
Japan
Prior art keywords
average particle
particle size
inorganic filler
weight
shearing force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002093641A
Other languages
Japanese (ja)
Other versions
JP3910093B2 (en
Inventor
Kenjiro Yamaguchi
憲ニ郎 山口
Hiroyuki Tanaka
宏之 田中
Hiroshige Nakagawa
裕茂 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002093641A priority Critical patent/JP3910093B2/en
Publication of JP2003297863A publication Critical patent/JP2003297863A/en
Application granted granted Critical
Publication of JP3910093B2 publication Critical patent/JP3910093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a reformed inorganic filler suitable for the filler of an epoxy resin molding material for sealing a semiconductor. <P>SOLUTION: In this method of manufacturing a reformed inorganic filler, a shearing force is imparted to the inorganic filler with an average particle diameter D<SB>50</SB>of 0.5 μm or below at the rate of change of the average particle diameter in a range of 10% or lower under the presence of a coupling agent by using equipment having a mechanism having at least two rotors and capable of applying pressure to a raw material that is charged into a closed treatment chamber from at least one direction to impart the shearing force by rotations of the rotors. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、無機充填材に表面
処理して得られる半導体封止用エポキシ樹脂成形材料の
フィラーに好適な無機充填材の製造方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a method for producing an inorganic filler suitable as a filler for an epoxy resin molding material for semiconductor encapsulation obtained by surface-treating an inorganic filler.

【0002】[0002]

【従来の技術】IC、LSI等の半導体素子の封止に
は、信頼性と生産性の観点から、トランスファ成形でき
るエポキシ樹脂成形材料が広く用いられている。エポキ
シ樹脂成形材料は、エポキシ樹脂、フェノ−ル樹脂、硬
化促進剤、シリカフィラ−、離型剤、難燃剤、カップリ
ング剤などから構成されるが、製法としては、所定量秤
量された成分原料をヘンシェルミキサーなどの攪拌混合
機を用いて予備混合した後に、単軸押出機、二軸押出
機、加熱ロール、連続ニーダなどの混練機を用いて加熱
混練する工程が採用されている。他方、電子機器の小型
軽量化、高機能化の動向に対応して、半導体装置の小型
化、薄型化、狭ピッチ化が益々加速する中、半導体封止
用エポキシ樹脂成形材料には、封止成形後の半導体装置
の信頼性に関連する半田耐熱性や耐湿性の向上が強く求
められている。このため、半導体装置内部の応力や吸湿
度を低減する目的で、エポキシ樹脂成形材料の成分は無
機充填材の比率が高い材料へと移行している。しかし、
単に成形材料中の無機充填材の含有率を高くするだけで
は、リードフレーム変形、金線変形、ボイド発生など、
流動性低下に伴う成形加工上の不良が増大するばかりで
なく、成形後の半導体パッケージにおいても、リードフ
レームや半導体チップと封止エポキシ樹脂との密着性が
低下し、パッケージ信頼性が期待した程には向上しな
い。
2. Description of the Related Art For sealing semiconductor elements such as IC and LSI, epoxy resin molding materials which can be transfer molded are widely used from the viewpoint of reliability and productivity. The epoxy resin molding material is composed of an epoxy resin, a phenol resin, a curing accelerator, a silica filler, a release agent, a flame retardant, a coupling agent and the like. Is preliminarily mixed using a stirring mixer such as a Henschel mixer, and then heated and kneaded using a kneader such as a single screw extruder, a twin screw extruder, a heating roll and a continuous kneader. On the other hand, in response to the trend toward smaller and lighter electronic devices with higher functionality, semiconductor devices are becoming smaller, thinner, and narrower in pitch. There is a strong demand for improvement in solder heat resistance and moisture resistance related to the reliability of a semiconductor device after molding. Therefore, in order to reduce the stress and moisture absorption inside the semiconductor device, the component of the epoxy resin molding material is being changed to a material having a high inorganic filler ratio. But,
By simply increasing the content of the inorganic filler in the molding material, lead frame deformation, gold wire deformation, void generation, etc.
In addition to the increase in molding process defects due to the decrease in fluidity, the adhesiveness between the lead frame and semiconductor chip and the sealing epoxy resin also deteriorates in the molded semiconductor package, and package reliability is as high as expected. Does not improve to

【0003】これに対して、無機充填材の比率を向上さ
せながら封止成形後のパッケージ信頼性を向上させるた
めの無機充填材の処理方法については、角のある無機充
填材に丸みを帯びさせる方法(特開昭63−28210
9号公報)などが開示されているが、これらの方法によ
って得られた無機充填材を用いても、まだ半導体封止用
成形材料の流動性が充分なものではなかった。
On the other hand, regarding the method of treating the inorganic filler for improving the package reliability after encapsulation molding while increasing the ratio of the inorganic filler, the cornered inorganic filler is rounded. Method (JP-A-63-28210)
However, even if the inorganic fillers obtained by these methods are used, the fluidity of the molding material for semiconductor encapsulation is still insufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、無機充填材
に表面処理して得られる半導体封止用エポキシ樹脂成形
材料のフィラーに好適な改質無機充填材の製造方法に関
するものである。
The present invention relates to a method for producing a modified inorganic filler suitable for a filler of an epoxy resin molding material for semiconductor encapsulation obtained by surface-treating an inorganic filler.

【0005】[0005]

【課題を解決するための手段】本発明はこのような情勢
を鑑み研究を進めた結果、平均粒子径D50が0.5μm
以下である無機充填材に、少なくとも2本のロータを有
し、且つ閉鎖された処理室内に投入した原料に少なくと
も1方向から圧力を加えることのできる機構を有し、ロ
ータが回転する事によりずり剪断力を与えることのでき
る設備を用いて、カップリング剤存在下で平均粒子径の
変化率が10%以下の範囲でずり剪断力を与えること
で、半導体封止用エポキシ樹脂成形材料のフィラーに好
適な改質無機充填材を得ることができることを新たに見
出した。即ち本発明は、平均粒子径D50が0.5μm以
下である無機充填材に、少なくとも2本のロータを有
し、且つ閉鎖された処理室内に投入した原料に少なくと
も1方向から圧力を加えることのできる機構を有し、ロ
ータが回転する事によりずり剪断力を与えることのでき
る設備を用いて、カップリング剤存在下で平均粒子径の
変化率が10%以下の範囲でずり剪断力を与えることを
特徴とする改質無機充填材の製造方法である。
The present invention has been studied in view of such circumstances, and as a result, the average particle diameter D 50 was 0.5 μm.
The following inorganic filler has at least two rotors, and has a mechanism capable of applying pressure from at least one direction to the raw material introduced into the closed processing chamber. By using equipment capable of applying shearing force, shear shearing force is applied in the presence of a coupling agent in the range of which the change rate of the average particle diameter is 10% or less, whereby the filler of the epoxy resin molding material for semiconductor encapsulation is added. It was newly found that a suitable modified inorganic filler can be obtained. That is, according to the present invention, an inorganic filler having an average particle diameter D 50 of 0.5 μm or less has at least two rotors, and pressure is applied from at least one direction to a raw material introduced into a closed processing chamber. A shear shearing force is applied in the presence of a coupling agent in the range where the rate of change of the average particle size is 10% or less by using a facility that has a mechanism capable of providing a shearing shearing force when the rotor rotates. A method for producing a modified inorganic filler characterized by the above.

【0006】[0006]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に使用される無機充填材は、溶融球状シリカ、結
晶シリカ、窒化珪素などが挙げられるが、これらを単独
で用いても、混合して用いても構わない。本研究では、
無機充填材の一部をカップリング剤存在下でずり剪断力
を与えて処理する。処理する無機充填材は、平均粒子径
50が0.5μm以下であることが不可欠である。平均
粒子径が0.5μm以下では粒子同士の凝集が進むた
め、ずり剪断力が凝集物の解砕に使用され、一次粒子の
粉砕による粒子径変化が生じにくい。一方、平均粒子径
が0.5μm以上では、粒子同士の凝集力が小さく、ず
り剪断力が一直接次粒子の粉砕に使用されるため、粒子
径変化が小さい処理が非常に難しい。上述したように、
本発明では処理する無機充填材の平均粒子径は0.5μ
m以下であることが必要となるが、平均粒子径0.1μ
m以下とすることがさらに好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
Examples of the inorganic filler used in the present invention include fused spherical silica, crystalline silica, and silicon nitride, but these may be used alone or in combination. In this study,
A part of the inorganic filler is treated by applying shear shear force in the presence of the coupling agent. It is essential that the inorganic filler to be treated has an average particle diameter D 50 of 0.5 μm or less. When the average particle size is 0.5 μm or less, the particles agglomerate with each other, and therefore shear shearing force is used for disintegrating the agglomerates, and the particle size change due to the crushing of the primary particles hardly occurs. On the other hand, when the average particle diameter is 0.5 μm or more, the cohesive force between the particles is small and the shear shearing force is directly used for pulverizing the primary particles, so that a treatment with a small change in particle diameter is very difficult. As mentioned above,
In the present invention, the average particle size of the inorganic filler to be treated is 0.5 μm.
It is necessary that the average particle size is 0.1 μm or less.
It is more preferable that the thickness is m or less.

【0007】本発明では処理する無機充填材の平均粒子
径の変化率は、Aを処理前の無機充填材の平均粒子径、
Bを処理後の無機充填材の平均粒子径とすると、(A−
B)/(A)×100(%)で表す。この平均粒子径の
変化率が10%以下の範囲でずり剪断力を与え処理す
る。
In the present invention, the rate of change of the average particle size of the inorganic filler to be treated is the average particle size A of the inorganic filler before treatment,
When B is the average particle diameter of the inorganic filler after treatment, (A-
B) / (A) × 100 (%). The shearing force is applied in the range where the change rate of the average particle size is 10% or less.

【0008】本発明では処理する無機充填材の粒度分布
は特に限定しないが、粒径が1μm以上になると一次粒
子の粉砕が進み、粒子径変化が生じてしまうため、小さ
い粒子が多いほど処理が容易であり、例示すると1μm
未満の粒子は95重量%以上であることが好ましい。
In the present invention, the particle size distribution of the inorganic filler to be treated is not particularly limited, but when the particle size is 1 μm or more, the pulverization of primary particles proceeds and the particle size change occurs. Easy, 1 μm for example
Less than 95% by weight of particles are preferred.

【0009】本発明では、ずり剪断力を与える設備は特
に限定しないが、加圧状態でずり剪断力が加えられる機
構を有した加圧ニーダ、バンバリーミキサー等が適して
いる。これらの設備を用いてカップリング剤存在下で処
理を行う場合、加圧しながらずり剪断力を加えることに
より、カップリング剤が無機充填材の表面に擦り付けら
れ、延展、定着する。
In the present invention, the equipment for applying the shearing force is not particularly limited, but a pressure kneader, a Banbury mixer or the like having a mechanism for applying the shearing force under pressure is suitable. When the treatment is carried out in the presence of a coupling agent using these facilities, the coupling agent is rubbed against the surface of the inorganic filler by applying shear shearing force while applying pressure, and spreads and is fixed.

【0010】本発明では、上述したように無機充填材の
処理を平均粒子径の変化率が10%以下の範囲で行う。
これは粒子の寸法や形状の変化が小さい処理を意味して
いる。これに対して、特開昭63−282109号公報
が開示されているが、この発明はシリカ充填材を外部か
らの押圧力によって互いにこすり合わせ、角のある粒子
に丸みを帯びさせることを特徴としている。これは寸法
や形状の大きな変化を伴う処理であり、本発明とは異な
る。
In the present invention, as described above, the treatment of the inorganic filler is carried out in the range where the change rate of the average particle diameter is 10% or less.
This means a treatment in which the size and shape of the particles are small. On the other hand, Japanese Patent Application Laid-Open No. 63-282109 discloses that the present invention is characterized in that silica fillers are rubbed against each other by a pressing force from the outside so that the angled particles are rounded. There is. This is a process that involves a large change in size and shape, and is different from the present invention.

【0011】本発明で用いられる無機充填材の平均粒子
径は一般の方法で測定すればよいが、流体中に浮遊する
粒子に光を照射した時の散乱光の強さより求めるいわゆ
る光散乱法が使用できる。本発明に使用されるカップリ
ング剤は特に限定されるものではないが、エポキシ基含
有シランカップリング剤、メルカプト基含有シランカッ
プリング剤が使用できる。また、これらを単独で用いて
も、混合して用いても構わない。
The average particle size of the inorganic filler used in the present invention may be measured by a general method, but a so-called light scattering method is used, which is obtained from the intensity of scattered light when light is irradiated to particles floating in a fluid. Can be used. The coupling agent used in the present invention is not particularly limited, but an epoxy group-containing silane coupling agent and a mercapto group-containing silane coupling agent can be used. Further, these may be used alone or in combination.

【0012】[0012]

【実施例】以下に実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に限定されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0013】(実施例1)溶融球状シリカ粉末1(平均
粒子径:0.42μm、最大粒子径:1.1μm、粒子
径1μm未満成分:99重量%) 10重量部とγ−グ
リシドキシプロピルトリメトキシシラン 0.5重量部
を加圧ニーダ(処理容量4リットル、ロータ回転数30
rpm、加圧力2kgf/cm2)で10分間処理を行
った。このときの原料である溶融球状シリカ粉末1と加
圧ニーダで処理した溶融球状シリカ粉末1の平均粒子径
を光散乱法で測定し、この平均粒子径及び平均粒子径の
変化率を表1に示した。
Example 1 10 parts by weight of fused spherical silica powder 1 (average particle size: 0.42 μm, maximum particle size: 1.1 μm, particle size less than 1 μm: 99% by weight) and γ-glycidoxypropyl 0.5 parts by weight of trimethoxysilane was added to a pressure kneader (processing capacity: 4 liters, rotor speed: 30).
The treatment was performed for 10 minutes at rpm and a pressure of 2 kgf / cm 2 . The average particle size of the fused spherical silica powder 1 as the raw material and the fused spherical silica powder 1 treated with a pressure kneader at this time were measured by a light scattering method, and the average particle size and the change rate of the average particle size are shown in Table 1. Indicated.

【0014】<評価方法>エポキシ樹脂[3,3’,
5,5’−テトラメチルビフェノールジグリシジルエー
テル樹脂、融点103℃、エポキシ当量195] 2.
7重量部、フェノール樹脂[ノボラック型フェノール樹
脂、150℃における溶融粘度0.3Pa.s、水酸基
当量175] 2.8重量部、臭素化ビスフェノールA
型エポキシ樹脂 1.0重量部、トリフェニルホスフィ
ン 0.2重量部、γ−グリシドキシプロピルトリメト
キシシラン 0.5重量部、カーボンブラック 0.3
重量部、カルナバワックス 0.5重量部、三酸化アン
チモン 1.0重量部、球状溶融シリカ粉末2(平均粒
子径:23μm、最大粒子径:75μm) 80重量部
と前記改質溶融球状シリカ粉末とを一緒にヘンシェルミ
キサー(容量15リットル、回転数1000rpm、1
0℃冷却)で5分間予備混合したものを同方向噛み合い
二軸押出混練機(スクリュ径D=30mm、押出機軸長
さ=1m、ニーディングディスク長=6D、スクリュ回
転数300rpm、吐出量20kg/h)で加熱混練し
た。吐出物を厚さ2mmのシートにした後、冷却し、粉
砕してエポキシ樹脂成形材料を得た。得られた材料の流
動性とパッケージ信頼性を次に示す方法に従って評価し
た。結果を表1に示した。
<Evaluation method> Epoxy resin [3, 3 ',
5,5′-Tetramethylbiphenol diglycidyl ether resin, melting point 103 ° C., epoxy equivalent 195] 1.
7 parts by weight, phenol resin [novolak type phenol resin, melt viscosity at 150 ° C. 0.3 Pa. s, hydroxyl equivalent 175] 2.8 parts by weight, brominated bisphenol A
Type epoxy resin 1.0 part by weight, triphenylphosphine 0.2 part by weight, γ-glycidoxypropyltrimethoxysilane 0.5 part by weight, carbon black 0.3
Parts by weight, carnauba wax 0.5 parts by weight, antimony trioxide 1.0 part by weight, spherical fused silica powder 2 (average particle size: 23 μm, maximum particle size: 75 μm) 80 parts by weight and the modified fused spherical silica powder Henschel mixer together (capacity 15 liters, rotation speed 1000 rpm, 1
A pre-mixed product that has been pre-mixed for 5 minutes at 0 ° C. is meshed with each other in the same direction. It was kneaded by heating in h). The discharged product was formed into a sheet having a thickness of 2 mm, cooled and pulverized to obtain an epoxy resin molding material. The fluidity and package reliability of the obtained material were evaluated according to the following methods. The results are shown in Table 1.

【0015】流動性:EMMI−I−66に準拠したス
パイラルフロー測定用金型を取り付けたトランスファ成
形機を用いて、前記半導体封止用エポキシ樹脂成形材料
のスパイラルフロー値を測定した。トランスファ成形条
件は金型温度175℃、注入圧力70kg/cm2、保
圧硬化時間120秒とした。
Fluidity: The spiral flow value of the epoxy resin molding material for semiconductor encapsulation was measured using a transfer molding machine equipped with a mold for spiral flow measurement conforming to EMMI-I-66. The transfer molding conditions were a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a holding pressure curing time of 120 seconds.

【0016】パッケージ信頼性:前記半導体封止用エポ
キシ樹脂成形材料を用いて、8個の80pQFPパッケ
ージ(ボディサイズ14mmX20mm、厚さ1.5m
m、半導体チップサイズ9mm×9mm)を封止成形
(トランファ成形機条件:175℃、70kg/c
2、120秒)し、180℃で8時間ポストキュアし
た後、封止したパッケージを温度85℃、相対湿度85
%、168時間の環境で処理し、処理直後にIRリフロ
ー(240℃、10秒)処理を行い、IRリフロー処理
後のパッケージクラックの有無を目視で観察した。その
後、封止樹脂と半導体チップ並びにリードフレームの界
面剥離の有無を超音波探傷機で観察し、界面剥離の数に
より密着性を評価した。
Package reliability: Eight 80 pQFP packages (body size 14 mm × 20 mm, thickness 1.5 m) using the epoxy resin molding material for semiconductor encapsulation.
m, semiconductor chip size 9 mm x 9 mm) is sealed and molded (Transfer molding machine conditions: 175 ° C, 70 kg / c)
m 2 for 120 seconds) and post-cure at 180 ° C. for 8 hours, and then seal the package at a temperature of 85 ° C. and a relative humidity of 85.
%, 168 hours, IR reflow (240 ° C., 10 seconds) was performed immediately after the treatment, and the presence or absence of package cracks after the IR reflow treatment was visually observed. Then, the presence or absence of interfacial peeling between the sealing resin, the semiconductor chip, and the lead frame was observed with an ultrasonic flaw detector, and the adhesion was evaluated by the number of interfacial peelings.

【0017】(実施例2)溶融球状シリカ粉末1(平均
粒子径:0.42μm、最大粒子径:1.1μm、粒子
径1μm未満成分:99重量%) 10重量部とγ−グ
リシドキシプロピルトリメトキシシラン 0.5重量部
をバンバリーミキサー(処理容量5リットル、ロータ回
転数30rpm、加圧力2kgf/cm2)で10分間
処理を行った。このときの原料である溶融球状シリカ粉
末1とバンバリーミキサーで処理した溶融球状シリカ粉
末1の平均粒子径を光散乱法で測定し、この平均粒子径
及び平均粒子径の変化率を表1に示した。これを用いて
実施例1と同じ要領で得られたエポキシ樹脂成形材料の
流動性とパッケージ信頼性の評価を行い、結果を表1に
示した。
Example 2 10 parts by weight of fused spherical silica powder 1 (average particle size: 0.42 μm, maximum particle size: 1.1 μm, particle size less than 1 μm: 99% by weight) and γ-glycidoxypropyl 0.5 parts by weight of trimethoxysilane was treated for 10 minutes with a Banbury mixer (treatment capacity: 5 liters, rotor speed: 30 rpm, pressure: 2 kgf / cm 2 ). At this time, the average particle size of the fused spherical silica powder 1 as the raw material and the fused spherical silica powder 1 treated with a Banbury mixer were measured by a light scattering method, and the average particle size and the change rate of the average particle size are shown in Table 1. It was Using this, the flowability and package reliability of the epoxy resin molding material obtained in the same manner as in Example 1 were evaluated, and the results are shown in Table 1.

【0018】(実施例3)溶融球状シリカ粉末3(平均
粒子径:0.08μm、最大粒子径:0.2μm、粒子
径1μm未満成分:100重量%) 10重量部とγ−
グリシドキシプロピルトリメトキシシラン 0.5重量
部を加圧ニーダ(処理容量4リットル、ロータ回転数4
5rpm、加圧力7kgf/cm2)で20分間処理を
行った。このときの原料である溶融球状シリカ粉末3と
加圧ニーダで処理した溶融球状シリカ粉末3の平均粒子
径を光散乱法で測定し、この平均粒子径及び平均粒子径
の変化率を表1に示した。これを用いて実施例1と同じ
要領で得られたエポキシ樹脂成形材料の流動性とパッケ
ージ信頼性の評価を行い、結果を表1に示した。
Example 3 10 parts by weight of fused spherical silica powder 3 (average particle diameter: 0.08 μm, maximum particle diameter: 0.2 μm, particle diameter less than 1 μm: 100% by weight) and γ-
0.5 part by weight of glycidoxypropyltrimethoxysilane was added to a pressure kneader (processing capacity: 4 liters, rotor speed: 4).
The treatment was performed at 5 rpm and a pressure of 7 kgf / cm 2 ) for 20 minutes. The average particle size of the fused spherical silica powder 3 as the raw material and the fused spherical silica powder 3 treated with a pressure kneader at this time were measured by a light scattering method, and the average particle size and the change rate of the average particle size are shown in Table 1. Indicated. Using this, the flowability and package reliability of the epoxy resin molding material obtained in the same manner as in Example 1 were evaluated, and the results are shown in Table 1.

【0019】(実施例4)溶融球状シリカ粉末4(平均
粒子径0.45μm、最大粒子径1.8μm、粒子径1
μm未満成分:91重量%) 10重量部とγ−グリシ
ドキシプロピルトリメトキシシラン 0.5重量部を加
圧ニーダ(処理容量4リットル、ロータ回転数30rp
m、加圧力2kgf/cm2)で10分間処理を行っ
た。このときの原料である溶融球状シリカ粉末4と加圧
ニーダで処理した溶融球状シリカ粉末4の平均粒子径を
光散乱法で測定し、この平均粒子径及び平均粒子径の変
化率を表1に示した。これを用いて実施例1と同じ要領
で得られたエポキシ樹脂成形材料の流動性とパッケージ
信頼性の評価を行い、結果を表1に示した。
Example 4 Fused spherical silica powder 4 (average particle size 0.45 μm, maximum particle size 1.8 μm, particle size 1
(less than μm component: 91% by weight) 10 parts by weight and 0.5 part by weight of γ-glycidoxypropyltrimethoxysilane under a pressure kneader (processing capacity: 4 liters, rotor speed: 30 rp)
m, pressure 2 kgf / cm 2 ) for 10 minutes. The average particle size of the fused spherical silica powder 4 as the raw material and the fused spherical silica powder 4 treated with a pressure kneader at this time were measured by a light scattering method, and the average particle size and the change rate of the average particle size are shown in Table 1. Indicated. Using this, the flowability and package reliability of the epoxy resin molding material obtained in the same manner as in Example 1 were evaluated, and the results are shown in Table 1.

【0020】(比較例1)溶融球状シリカ粉末1(平均
粒子径:0.42μm、最大粒子径:1.1μm、粒子
径1μm未満成分:99重量%) 10重量部とγ−グ
リシドキシプロピルトリメトキシシラン 0.5重量部
を加圧ニーダ(処理容量4リットル、ロータ回転数45
rpm、加圧力7kgf/cm2)で120分間処理を
行った。このときの原料である溶融球状シリカ粉末1と
加圧ニーダで処理した溶融球状シリカ粉末1の平均粒子
径を光散乱法で測定し、この平均粒子径及び平均粒子径
の変化率を表1に示した。これを用いて実施例1と同じ
要領で得られたエポキシ樹脂成形材料の流動性とパッケ
ージ信頼性の評価を行い、結果を表1に示した。
Comparative Example 1 10 parts by weight of fused spherical silica powder 1 (average particle size: 0.42 μm, maximum particle size: 1.1 μm, particle size less than 1 μm: 99% by weight) and γ-glycidoxypropyl 0.5 parts by weight of trimethoxysilane was added to a pressure kneader (processing capacity: 4 liters, rotor speed: 45).
The treatment was carried out for 120 minutes at rpm and a pressure of 7 kgf / cm 2 . The average particle size of the fused spherical silica powder 1 as the raw material and the fused spherical silica powder 1 treated with a pressure kneader at this time were measured by a light scattering method, and the average particle size and the change rate of the average particle size are shown in Table 1. Indicated. Using this, the flowability and package reliability of the epoxy resin molding material obtained in the same manner as in Example 1 were evaluated, and the results are shown in Table 1.

【0021】(比較例2)溶融球状シリカ粉末1(平均
粒子径:0.42μm、最大粒子径:1.1μm、粒子
径1μm未満成分:99重量%) 10重量部とγ−グ
リシドキシプロピルトリメトキシシラン 0.5重量部
をバンバリーミキサー(処理容量5リットル、ロータ回
転数45rpm、加圧力7kgf/cm2)で120分
間混合を行った。このときの原料である溶融球状シリカ
粉末1とバンバリーミキサーで処理した溶融球状シリカ
粉末1の平均粒子径を光散乱法で測定し、この平均粒子
径及び平均粒子径の変化率を表1に示した。これを用い
て実施例1と同じ要領で得られたエポキシ樹脂成形材料
の流動性とパッケージ信頼性の評価を行い、結果を表1
に示した。
Comparative Example 2 10 parts by weight of fused spherical silica powder 1 (average particle size: 0.42 μm, maximum particle size: 1.1 μm, particle size less than 1 μm: 99% by weight) and γ-glycidoxypropyl 0.5 parts by weight of trimethoxysilane were mixed for 120 minutes with a Banbury mixer (processing capacity: 5 liters, rotor rotation speed: 45 rpm, pressure: 7 kgf / cm 2 ). At this time, the average particle size of the fused spherical silica powder 1 as the raw material and the fused spherical silica powder 1 treated with a Banbury mixer were measured by a light scattering method, and the average particle size and the change rate of the average particle size are shown in Table 1. It was Using this, the flowability and package reliability of the epoxy resin molding material obtained in the same manner as in Example 1 were evaluated, and the results are shown in Table 1.
It was shown to.

【0022】(比較例3)溶融球状シリカ粉末5(平均
粒子径:0.65μm、最大粒子径:1.3μm、粒子
径1μm未満成分:97重量%) 10重量部とγ−グ
リシドキシプロピルトリメトキシシラン 0.5重量部
を加圧ニーダ(処理容量4リットル、ロータ回転数30
rpm、加圧力2kgf/cm2)で10分間処理を行
った。このときの原料である溶融球状シリカ粉末5と加
圧ニーダで処理した溶融球状シリカ粉末5の平均粒子径
を光散乱法で測定し、この平均粒子径及び平均粒子径の
変化率を表1に示した。これを用いて実施例1と同じ要
領で得られたエポキシ樹脂成形材料の流動性とパッケー
ジ信頼性の評価を行い、結果を表1に示した。
(Comparative Example 3) 10 parts by weight of fused spherical silica powder 5 (average particle size: 0.65 μm, maximum particle size: 1.3 μm, particle size less than 1 μm: 97% by weight) and γ-glycidoxypropyl 0.5 parts by weight of trimethoxysilane was added to a pressure kneader (processing capacity: 4 liters, rotor speed: 30).
The treatment was performed for 10 minutes at rpm and a pressure of 2 kgf / cm 2 . At this time, the average particle diameters of the fused spherical silica powder 5 as the raw material and the fused spherical silica powder 5 treated with a pressure kneader were measured by a light scattering method, and the average particle diameter and the change rate of the average particle diameter are shown in Table 1. Indicated. Using this, the flowability and package reliability of the epoxy resin molding material obtained in the same manner as in Example 1 were evaluated, and the results are shown in Table 1.

【0023】(比較例4)溶融球状シリカ粉末1(平均
粒子径0.42μm、最大粒子径1μm) 10重量部
とγ−グリシドキシプロピルトリメトキシシラン 0.
5重量部をヘンシェルミキサー(容量15リットル、回
転数1000rpm、10℃冷却)で5分間混合を行っ
た。これを用いて実施例1と同じ要領で得られたエポキ
シ樹脂成形材料の流動性とパッケージ信頼性の評価を行
い、結果を表1に示した。
Comparative Example 4 10 parts by weight of fused spherical silica powder 1 (average particle size 0.42 μm, maximum particle size 1 μm) and γ-glycidoxypropyltrimethoxysilane 0.1.
5 parts by weight were mixed for 5 minutes with a Henschel mixer (capacity 15 liters, rotation speed 1000 rpm, 10 ° C. cooling). Using this, the flowability and package reliability of the epoxy resin molding material obtained in the same manner as in Example 1 were evaluated, and the results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】これまで説明したように、本発明によれ
ば、半導体封止用エポキシ樹脂成形材料のフィラーに好
適な改質無機充填材を安定的に製造することができる。
As described above, according to the present invention, it is possible to stably produce a modified inorganic filler suitable for the filler of the epoxy resin molding material for semiconductor encapsulation.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CD001 DA037 DE138 DJ006 DJ016 FB136 FB156 FD016 FD097 FD138 GQ05 4J037 AA18 CB23 DD05 DD11 EE02 EE47 EE48 4M109 AA01 EB06 EB13 5F061 AA01 BA01 CA21 DE03 DE04   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4J002 CD001 DA037 DE138 DJ006                       DJ016 FB136 FB156 FD016                       FD097 FD138 GQ05                 4J037 AA18 CB23 DD05 DD11 EE02                       EE47 EE48                 4M109 AA01 EB06 EB13                 5F061 AA01 BA01 CA21 DE03 DE04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径D50が0.5μm以下である
無機充填材に、少なくとも2本のロータを有し、且つ閉
鎖された処理室内に投入した原料に少なくとも1方向か
ら圧力を加えることのできる機構を有し、ロータが回転
する事によりずり剪断力を与えることのできる設備を用
いて、カップリング剤存在下で平均粒子径の変化率が1
0%以下の範囲でずり剪断力を与えることを特徴とする
改質無機充填材の製造方法。
1. An inorganic filler having an average particle diameter D 50 of 0.5 μm or less, wherein at least two rotors are provided, and pressure is applied from at least one direction to a raw material introduced into a closed processing chamber. Using the equipment that has a mechanism that can control the shearing force by rotating the rotor, the change rate of the average particle size in the presence of the coupling agent is 1
A method for producing a modified inorganic filler, characterized in that shear shearing force is applied in the range of 0% or less.
【請求項2】 無機充填材が溶融シリカである請求項1
記載の方法。
2. The inorganic filler is fused silica.
The method described.
【請求項3】 ずり剪断力を与える操作を加圧ニーダを
用いて行う請求項1又は2記載の方法。
3. The method according to claim 1, wherein the operation of applying the shear shearing force is performed by using a pressure kneader.
JP2002093641A 2002-03-29 2002-03-29 Method for producing modified inorganic filler Expired - Fee Related JP3910093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093641A JP3910093B2 (en) 2002-03-29 2002-03-29 Method for producing modified inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093641A JP3910093B2 (en) 2002-03-29 2002-03-29 Method for producing modified inorganic filler

Publications (2)

Publication Number Publication Date
JP2003297863A true JP2003297863A (en) 2003-10-17
JP3910093B2 JP3910093B2 (en) 2007-04-25

Family

ID=29386793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093641A Expired - Fee Related JP3910093B2 (en) 2002-03-29 2002-03-29 Method for producing modified inorganic filler

Country Status (1)

Country Link
JP (1) JP3910093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149049A (en) * 2004-11-18 2006-06-08 Denso Corp Rotary electric machine for vehicle
JP2010270262A (en) * 2009-05-22 2010-12-02 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device in which semiconductor element is sealed using the composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149049A (en) * 2004-11-18 2006-06-08 Denso Corp Rotary electric machine for vehicle
US7923884B2 (en) 2004-11-18 2011-04-12 Denso Corporation Rotary electric machine having stator coil with U-shaped segment
JP2010270262A (en) * 2009-05-22 2010-12-02 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device in which semiconductor element is sealed using the composition

Also Published As

Publication number Publication date
JP3910093B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP5736643B2 (en) Semiconductor sealing resin composition, semiconductor device manufacturing method, and semiconductor device
JP3856425B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP3929245B2 (en) Manufacturing method of epoxy resin molding material for semiconductor encapsulation
JP5795168B2 (en) Thermally conductive resin composition and semiconductor package
JP3135926B2 (en) Epoxy resin encapsulant for molding semiconductor chips and method of manufacturing the same
JP2003297863A (en) Method of manufacturing reformed inorganic filler
JP2000063636A (en) Epoxy resin composition for semiconductor sealing and semiconductor sealed therewith
JP3846825B2 (en) Method for producing epoxy resin composition for encapsulating granular semiconductor
JP2003277589A (en) Semiconductor sealing epoxy resin molding material and its preparation process
JP5153050B2 (en) Epoxy resin composition and semiconductor device
JP2003286394A (en) Epoxy resin molding material for sealing semiconductor and its production process
JP4133653B2 (en) Method for producing surface-treated inorganic filler and surface treatment method for inorganic filler
JP2000273278A (en) Production of epoxy resin holding material for semiconductor sealing use
JP4706089B2 (en) Epoxy resin composition and semiconductor device
JP2000129139A (en) Production of granular semiconductor sealing material and granular semiconductor sealing material
JP3919162B2 (en) Epoxy resin composition and semiconductor device
JP3973139B2 (en) Epoxy resin composition and semiconductor device
JP2001302805A (en) Method for producing epoxy resin molding material for sealing semiconductor
JP2001189407A (en) Manufacturing method for surface-treated inorganic filler, epoxy resin composition for sealing semiconductor, and semiconductor device
JP2003268207A (en) Epoxy resin molding material for sealing of semiconductor and semiconductor device
JPS59204633A (en) Resin composition with low radioactivity
JP3132403B2 (en) Manufacturing method of granular semiconductor sealing material
JP2003213095A (en) Epoxy resin composition and semiconductor device
WO2022102697A1 (en) Resin composition for semiconductor encapsulation, and semiconductor device
JP2003268202A (en) Epoxy resin-molding material for sealing of semiconductor and semiconductor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Effective date: 20070115

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees