JP2003294337A - Engine-driven refrigerating cycle device and heating system - Google Patents

Engine-driven refrigerating cycle device and heating system

Info

Publication number
JP2003294337A
JP2003294337A JP2002101329A JP2002101329A JP2003294337A JP 2003294337 A JP2003294337 A JP 2003294337A JP 2002101329 A JP2002101329 A JP 2002101329A JP 2002101329 A JP2002101329 A JP 2002101329A JP 2003294337 A JP2003294337 A JP 2003294337A
Authority
JP
Japan
Prior art keywords
heating
engine
temperature
intake air
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002101329A
Other languages
Japanese (ja)
Other versions
JP4069658B2 (en
Inventor
Hiroyuki Fukunaga
博之 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002101329A priority Critical patent/JP4069658B2/en
Publication of JP2003294337A publication Critical patent/JP2003294337A/en
Application granted granted Critical
Publication of JP4069658B2 publication Critical patent/JP4069658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine-driven refrigerating cycle device, and a heating system for improving heating capacity in a state of an outside air temperature being low, and the heating capacity being insufficient. <P>SOLUTION: An intake heater 11 is arranged in the middle of an intake air passage 1a of an engine. A control device 150 performs intake air heating for heating intake air of the engine 1 by the intake heater 11 when the outside air temperature is lower than a prescribed value, and recovers exhaust heat for heating a refrigerant by a refrigerant heater 7. This invention recovers a hated heat quantity as the exhaust heat by performing the intake air heating in operation at low temperature time, and uses the heat quantity as a heating heat quantity, and increases an exhaust heat quantity itself by activating sluggish engine combustion at low temperature time. Thus, the heating capacity can be efficiently improved by recovering the exhaust heat while performing the intake air heating in a state being low in the outside air temperature, and being insufficient in the heating capacity. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒循環による冷
凍サイクルと、その冷媒の圧縮機を駆動するエンジンと
を有し、空気や水等の流体の冷却や加熱を行うエンジン
駆動式冷凍サイクル装置に関するもので、特に低外気温
時の加熱能力向上に関し、空気を加熱して居室内の暖房
を行う暖房装置等に適用して好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine-driven refrigeration cycle apparatus having a refrigeration cycle by circulating a refrigerant and an engine for driving a compressor of the refrigerant, for cooling or heating a fluid such as air or water. In particular, the present invention is suitable for application to a heating device or the like that heats air to heat a living room, particularly regarding improvement of heating capacity at low outside air temperature.

【0002】[0002]

【従来の技術】近年、圧縮機の駆動にエンジンを用いた
エンジン駆動式冷凍サイクル装置が普及し、特に、冷凍
サイクルにヒートポンプ方式を用いた冷暖房装置や給湯
装置等が数多く使われている。このようなヒートポンプ
サイクルは、加熱時に外気から吸熱するため、外気温度
が低下すると吸熱効率が低下して加熱能力が低下する
(図2の外気温度と加熱能力との関係を表すグラフ参
照)。このため、加熱能力が必要となる低温時ほど能力
が不足して問題となっていた。
2. Description of the Related Art In recent years, engine-driven refrigeration cycle devices using an engine to drive a compressor have become widespread, and in particular, many cooling / heating devices and hot water supply devices using a heat pump system are used in refrigeration cycles. In such a heat pump cycle, since heat is absorbed from the outside air during heating, the heat absorption efficiency decreases and the heating capacity decreases when the outside air temperature decreases (see the graph showing the relationship between the outside air temperature and the heating capacity in FIG. 2). For this reason, there is a problem in that the capacity becomes insufficient at low temperatures where heating capacity is required, which is a problem.

【0003】ちなみに、これらのエンジンには発生熱を
冷却するための冷却水回路が備わっており、エンジンの
冷却仕事を終えて昇温した冷却水は、ラジエータで放熱
冷却して再びエンジンに供給し、これを繰り返して循環
させるようになっている。以前は昇温したエンジン冷却
水の熱と共に、排気ガスの熱も排熱されてなんら利用さ
れることはなかった。しかし、上記の問題を解決する技
術として、最近ではこうした排熱を再利用することが見
直されてきている。つまり熱を回収して暖房や給湯加熱
に有効利用することである。
Incidentally, these engines are equipped with a cooling water circuit for cooling the heat generated, and the cooling water that has been heated after finishing the cooling work of the engine is radiatively cooled by a radiator and supplied again to the engine. , This is repeated to circulate. In the past, the heat of the engine cooling water, which had risen in temperature, was also exhausted from the heat of the exhaust gas and was never used. However, as a technique for solving the above problem, the reuse of such exhaust heat has recently been reviewed. In other words, it is to recover heat and use it effectively for heating and hot water heating.

【0004】この種のエンジン熱を回収して加熱の助成
に利用するシステムとして、一般的なエンジン駆動式ヒ
ートポンプ装置においての構造は、エンジンのウォータ
ジャケット、又は排ガスで冷却水を加熱し、昇温した冷
却水の熱を冷媒回路に供給するための冷媒加熱器を設け
て冷媒回路に組み込んでいる。これにより冬季加熱時
は、エンジンの排熱を熱源として回収し、この回収熱を
冷媒回路における加熱の強化に利用し、夏季シーズンは
排熱している。
As a system for recovering this kind of engine heat and utilizing it for assisting heating, the structure of a general engine-driven heat pump device is such that the water jacket of the engine or exhaust gas heats cooling water to raise the temperature. A refrigerant heater for supplying the heat of the cooling water to the refrigerant circuit is provided and incorporated in the refrigerant circuit. As a result, during heating in winter, the exhaust heat of the engine is recovered as a heat source, and the recovered heat is used to enhance the heating in the refrigerant circuit, and is exhausted during the summer season.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来技術
の排熱回収を行っても、極寒時にはエンジンにて圧縮機
を駆動する負荷自体が減少しているため、エンジンから
発生する排熱も減少してしまい、加熱熱量が不足すると
いう問題がある。本発明は、上記従来の問題に鑑みて成
されたものであり、その目的は、外気温が低く加熱能力
が不足する状況時に加熱能力を向上することのできるエ
ンジン駆動式冷凍サイクル装置及び暖房装置を提供する
ことにある。
However, even if the exhaust heat is recovered according to the above-mentioned prior art, the load itself for driving the compressor by the engine is reduced in extremely cold weather, so the exhaust heat generated from the engine is also reduced. Therefore, there is a problem that the heating amount is insufficient. The present invention has been made in view of the above conventional problems, and an object thereof is to provide an engine-driven refrigeration cycle device and a heating device capable of improving the heating capacity when the outside air temperature is low and the heating capacity is insufficient. To provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明では以下の技術的手段を採用する。請求項1
記載の発明では、エンジン(1)の吸気通路(1a)の
途中に、吸気加熱手段(11)を設けると共に、制御手
段(150)は、外気温度(Tout)が所定値(T
2)より低い場合、吸気加熱手段(11)でエンジン
(1)の吸気を加熱する吸気加熱を行うと共に、冷媒加
熱器(7)にて冷媒を加熱する排熱回収を行うことを特
徴とする。
In order to achieve the above object, the present invention employs the following technical means. Claim 1
In the invention described, the intake air heating means (11) is provided in the middle of the intake passage (1a) of the engine (1), and the control means (150) controls the outside air temperature (Tout) to a predetermined value (Tout).
If lower than 2), the intake air heating means (11) performs intake air heating for heating intake air of the engine (1), and the refrigerant heater (7) performs exhaust heat recovery for heating the refrigerant. .

【0007】エンジン(1)の吸気通路(1a)の途中
に設ける吸気加熱手段(11)の一例としてインテーク
ヒータがあり、図3は、そのインテークヒータ11の
(a)正面図と、(b)断面側面図である。従来、この
インテークヒータ11は、ディーゼルエンジンの始動補
助や排気エミッション対策として使われているものであ
る。
An intake heater is an example of the intake heating means (11) provided in the intake passage (1a) of the engine (1), and FIG. 3 is a front view (a) of the intake heater 11 and FIG. It is a sectional side view. Conventionally, the intake heater 11 has been used as a starting aid for a diesel engine and as an exhaust emission countermeasure.

【0008】具体的には、プレヒートとしてエンジン始
動の直前に発熱プレート11aに通電して吸入空気を暖
め、低温時の始動性を向上させている。更に、アフター
ヒートとして始動後も一定時間、発熱プレート11a・
11bに通電して吸入空気を暖め、アイドル安定化や白
煙低減等を計っている。しかし、あくまで従来はエンジ
ン始動の直前と直後だけの使用であり、運転中は使用さ
れていない。
Specifically, as preheat, the heat generating plate 11a is energized to warm the intake air immediately before the engine is started, and the startability at low temperature is improved. Furthermore, as a after heat, the heating plate 11a
11b is energized to warm the intake air to stabilize the idle and reduce white smoke. However, conventionally, it is used only just before and immediately after the engine is started, and is not used during driving.

【0009】本案は、このような吸気加熱を低温時の運
転中に行うことで、加熱した熱量を排熱として回収して
加熱熱量に利用すると共に、緩慢とした低温時のエンジ
ン燃焼を活性化させて排熱量そのものを増量することに
着目したものである。エンジンの吸気温度を上昇させる
ことで、空気と燃料の混合および燃焼反応が活性化し、
燃焼温度および排気ガス温度が上昇して冷却水の加熱度
が上がる。図4は、この吸気加熱の効果を説明するグラ
フであり、[吸気加熱無しでの排熱量A+吸気加熱熱量
B<吸気加熱有りでの排熱量C]となっている。
According to the present invention, by performing such intake air heating during operation at a low temperature, the heated heat amount is recovered as exhaust heat and utilized for heating heat amount, and at the same time, the engine combustion at a slow low temperature is activated. The focus is on increasing the amount of exhaust heat itself. By raising the intake air temperature of the engine, the mixture of air and fuel and the combustion reaction are activated,
The combustion temperature and the exhaust gas temperature rise and the heating degree of the cooling water rises. FIG. 4 is a graph for explaining the effect of this intake air heating, which is [exhaust heat amount A without intake air heating + intake air heating heat amount B <exhaust heat amount C with intake air heating].

【0010】またその結果、図5の外気温度に対する吸
気加熱効果の違いを表すグラフに示すように、特に低外
気温時の排熱量を向上させることができる。これによ
り、外気温が低く加熱能力が不足する状況時に吸気加熱
をしながら排熱回収を行うことで、効率よく加熱能力を
向上することができる。
As a result, as shown in the graph of FIG. 5 showing the difference in intake air heating effect with respect to the outside air temperature, the amount of exhaust heat can be improved especially at low outside air temperature. As a result, when the outside air temperature is low and the heating capacity is insufficient, exhaust heat recovery is performed while heating the intake air, so that the heating capacity can be efficiently improved.

【0011】請求項2記載の発明では、制御手段(15
0)は、外気温度(Tout)が第1所定温度(T1)
を下回った場合に排熱回収を行い、外気温度(Tou
t)が第1所定温度(T1)より低い第2所定温度(T
2)を下回った場合に吸気加熱と排熱回収とを行うこと
を特徴とする。
According to the second aspect of the invention, the control means (15
0) indicates that the outside air temperature (Tout) is the first predetermined temperature (T1)
Exhaust heat recovery is performed when the temperature falls below the
t) is a second predetermined temperature (T1) lower than the first predetermined temperature (T1)
It is characterized in that the intake air heating and the exhaust heat recovery are performed when the temperature falls below 2).

【0012】図7は、本発明の吸気加熱+排熱回収によ
る効果を表すグラフである。吸気加熱も排熱回収もしな
い状態での加熱能力(実線の曲線)が必要能力と交差す
る点の外気温度を第1所定温度(T1)とし、この温度
を下回る(加熱能力が必要能力を下回る)場合、まず排
熱回収を行うことで加熱能力は破線の曲線へと引き上が
る。
FIG. 7 is a graph showing the effect of the intake air heating + exhaust heat recovery of the present invention. The outside air temperature at the point where the heating capacity (solid line curve) without the intake air heating and exhaust heat recovery intersects the required capacity is set to the first predetermined temperature (T1) and falls below this temperature (heating capacity falls below the required capacity. In this case, the heating capacity is raised to the broken line curve by first recovering the exhaust heat.

【0013】次に、この排熱回収を行った状態での加熱
能力が必要能力と交差する点の外気温度を第2所定温度
(T2)とし、この温度を下回る(加熱能力が必要能力
を下回る)場合、更に吸気加熱を加えることで加熱能力
は一点鎖線の曲線へと引き上げることができる。このよ
うに、外気温が低く加熱能力が不足する状況時に順次排
熱回収と吸気加熱とを行うことで、効率よく加熱能力を
向上することができる。ちなみに図7中のS7〜9は後
述する図6のフローチャートのステップと対応するもの
である。
Next, the outside air temperature at the point where the heating capacity in the state where the exhaust heat is recovered intersects with the required capacity is set to the second predetermined temperature (T2), and the temperature is lower than this temperature (the heating capacity is lower than the required capacity). In this case, the heating capacity can be increased to the one-dot chain line curve by further adding intake air heating. In this way, by sequentially performing exhaust heat recovery and intake air heating when the outside air temperature is low and the heating capacity is insufficient, it is possible to efficiently improve the heating capacity. Incidentally, S7 to S9 in FIG. 7 correspond to the steps of the flowchart of FIG. 6 described later.

【0014】請求項3記載の発明では、制御手段(15
0)は、吸気加熱を行う上で、外気温度(Tout)が
低いほど吸気加熱量を大きくすることを特徴とする。こ
のように外気温度が低いほど加熱量を大きくすることで
低温時の加熱能力低下を効率よく補って必要能力を確保
することができるようになる。尚図8は、本項発明にお
ける外気温度と吸気加熱量との関係を表すグラフであ
り、外気温に対する吸気加熱量の変化は、直線的(K
1)であっても、段階的(K2)であっても、加熱能力
の低下に対応した曲線的(図示せず)であっても良い。
According to the invention of claim 3, the control means (15
0) is characterized by increasing the intake air heating amount as the outside air temperature (Tout) is lower in performing intake air heating. By increasing the heating amount as the outside air temperature is lower in this way, it becomes possible to efficiently compensate for the lowering of the heating capability at low temperatures and to secure the required capability. FIG. 8 is a graph showing the relationship between the outside air temperature and the intake air heating amount in the present invention, and the change of the intake air heating amount with respect to the outside air temperature is linear (K
It may be 1), stepwise (K2), or curvilinear (not shown) corresponding to a decrease in heating capacity.

【0015】請求項4記載の発明では、吸気加熱手段
(11)として、エンジンの始動補助装置であるインテ
ークヒータ(11)を用いていることを特徴とする。こ
れにより、エンジンの始動補助や排気エミッション対策
と、冷凍サイクルの加熱能力向上とに共通して使えるう
え、コストを抑えることができる。
According to a fourth aspect of the invention, the intake heater (11) is characterized by using an intake heater (11) which is an engine starting assisting device. As a result, the engine can be commonly used for assisting starting of the engine, measures for exhaust emission, and improvement of the heating capacity of the refrigeration cycle, and the cost can be suppressed.

【0016】請求項5記載の発明では、請求項1ないし
請求項4のいずれかに記載のエンジン駆動式冷凍サイク
ル装置を備え、凝縮器(5)を室内熱交換器(5)と
し、蒸発器(8)を室外熱交換器(8)としたことを特
徴とする。これにより、外気温が低く加熱能力が不足す
る状況時に吸気加熱をしながら排熱回収を行うことで、
効率よく加熱能力を向上することのできる暖房機とする
ことができる。
According to a fifth aspect of the present invention, the engine-driven refrigeration cycle apparatus according to any of the first to fourth aspects is provided, and the condenser (5) is an indoor heat exchanger (5), and an evaporator is provided. (8) is an outdoor heat exchanger (8). This allows exhaust heat recovery while heating the intake air when the outside temperature is low and the heating capacity is insufficient.
The heater can efficiently improve the heating capacity.

【0017】請求項6記載の発明では、制御手段(15
0)は、室内温度(Tr)が第1所定温度(t1)を下
回った場合に排熱回収を行い、室内温度(Tr)が第1
所定温度(t1)より低い第2所定温度(t2)を下回
った場合に吸気加熱と排熱回収とを行うことを特徴とす
る。これは請求項2に記載の発明の外気温度(Tou
t)を室内温度(Tr)に置き換えたものである。
In a sixth aspect of the invention, the control means (15
0) recovers exhaust heat when the room temperature (Tr) is lower than the first predetermined temperature (t1), and the room temperature (Tr) is the first
It is characterized in that the intake air heating and the exhaust heat recovery are performed when the temperature falls below a second predetermined temperature (t2) lower than the predetermined temperature (t1). This is the outside air temperature (Tou of the invention of claim 2
t) is replaced with the room temperature (Tr).

【0018】これによっても図7のグラフと同様に、室
内温が低く加熱能力を必要とする状況時に順次排熱回収
と吸気加熱とを行うことで、効率よく加熱能力を向上す
ることができる。ちなみに、上記各手段の括弧内の符号
は、後述する実施形態に記載の具体的手段との対応関係
を示す一例である。
As in the case of the graph shown in FIG. 7, the heating capacity can be efficiently improved by sequentially performing exhaust heat recovery and intake air heating when the room temperature is low and heating capacity is required. By the way, the reference numerals in parentheses of the above-mentioned means are examples showing the correspondence with the concrete means described in the embodiments described later.

【0019】[0019]

【発明の実施の形態】(第1実施形態)以下、本発明の
実施の形態を、図面に基づいて説明する。図1は、本発
明の一実施形態におけるエンジン駆動のヒートポンプ式
空調装置(以下、単に空調装置という)100の全体構
成を示す模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an overall configuration of an engine-driven heat pump type air conditioner (hereinafter, simply referred to as an air conditioner) 100 according to an embodiment of the present invention.

【0020】本実施形態は、灯油・軽油・ガソリン等を
燃料とする水冷式のエンジン1により、冷媒循環による
冷凍サイクル110の圧縮機2が駆動され、空気の冷却
や加熱を行って居室内の冷暖房を行うものである。この
空調装置100は定置型或いは車両搭載型として用いら
れ、屋内や車室内を冷暖房することができるが、本実施
形態では定置型に適用したものとして述べる。
In this embodiment, a compressor 2 of a refrigerating cycle 110 is driven by circulating a refrigerant by a water-cooled engine 1 that uses kerosene, light oil, gasoline, etc. as a fuel to cool and heat the air in the living room. Air conditioning is performed. The air conditioner 100 is used as a stationary type or a vehicle-mounted type and can cool and heat the inside and the passenger compartment. However, in the present embodiment, it will be described as being applied to the stationary type.

【0021】まず全体の構成を説明すると、エンジン1
によって駆動される圧縮機2、冷媒の流路を切り替える
四方弁4、冷房時は蒸発器として働き暖房時は凝縮器と
して働く室内熱交換器5、冷媒の減圧手段である膨張弁
6、エンジン1の排熱によって暖められた冷却水で冷媒
を加熱する冷媒加熱器7、冷房時は凝縮器として働き暖
房時は蒸発器として働く室外熱交換器8、冷媒を気液に
分離しガス冷媒を導出するアキュムレ−タ9が冷媒回路
(実線矢印)110によって順次接続され、基本となる
冷凍サイクルが構成されている。
First, the overall structure will be described.
A compressor 2, a four-way valve 4 that switches the flow path of the refrigerant, an indoor heat exchanger 5 that functions as an evaporator during cooling, and functions as a condenser during heating, an expansion valve 6 that is a pressure reducing means for the refrigerant, and an engine 1 Refrigerant heater 7 that heats the refrigerant with the cooling water warmed by the exhaust heat of, outdoor heat exchanger 8 that functions as a condenser during cooling and an evaporator during heating, and separates the refrigerant into gas and liquid to derive the gas refrigerant. The accumulators 9 are sequentially connected by a refrigerant circuit (solid arrow) 110 to form a basic refrigeration cycle.

【0022】ここで、圧縮機2はエンジン1のクランク
プーリと連動するVベルト3によって駆動される。尚、
室内熱交換器5と室外熱交換器8には、図示しない送風
手段として電動式のモータで駆動される室内ファン、室
外ファンが設けられている。また、膨張弁6としては、
周知のように、運転時に蒸発器となる方の熱交換器出口
の冷媒温度及び冷媒圧力を、各々図示しない温度センサ
及び圧力センサで検知し、これらセンサからの検知信号
に応じて弁開度を制御する電子膨張弁が用いられる。
Here, the compressor 2 is driven by a V-belt 3 which is interlocked with a crank pulley of the engine 1. still,
The indoor heat exchanger 5 and the outdoor heat exchanger 8 are provided with an indoor fan and an outdoor fan, which are driven by an electric motor, as blower means (not shown). Further, as the expansion valve 6,
As is well known, the temperature and pressure of the refrigerant at the outlet of the heat exchanger, which serves as the evaporator during operation, are detected by a temperature sensor and a pressure sensor, respectively, which are not shown, and the valve opening is set according to the detection signals from these sensors. A controlling electronic expansion valve is used.

【0023】一方、エンジン1の冷却水回路(破線)1
20は、エンジン1から排ガス熱回収機13を通り、冷
媒加熱器7に温水を供給してからエンジン1に戻る回路
となっており、冷却水ポンプ14によって循環されてい
る。
On the other hand, the cooling water circuit (broken line) 1 of the engine 1
A circuit 20 passes from the engine 1 through the exhaust gas heat recovery machine 13, supplies hot water to the refrigerant heater 7 and then returns to the engine 1, and is circulated by the cooling water pump 14.

【0024】尚、排ガス熱回収機13とは、エンジン1
の排気マニホールド1cの後流に設けられ、排気ガスに
よって冷却水を加熱して排ガスの排熱を回収するもので
ある。また、冷却水回路120には、図示しないラジエ
−タを通ってエンジン1に戻る回路も設けられており、
冷房時等で排熱回収を行わない場合、ラジエ−タを通し
て冷却水を放熱冷却してオーバーヒートを防止するよう
になっている。
The exhaust gas heat recovery machine 13 is the engine 1
It is provided in the downstream of the exhaust manifold 1c and heats the cooling water by the exhaust gas to recover the exhaust heat of the exhaust gas. Further, the cooling water circuit 120 is also provided with a circuit for returning to the engine 1 through a radiator (not shown),
When exhaust heat is not recovered during cooling or the like, the cooling water is radiatively cooled through a radiator to prevent overheating.

【0025】エンジン1の吸排気部分で、10はエアク
リーナであり、ここで塵埃が除去された(浄化された)
空気は吸気通路1aから吸気加熱手段としてのインテー
クヒータ11(図3参照)を通り、吸気マニホールド1
bからエンジン1に供給される。また、燃料燃焼後の排
気ガスは、排気マニホールド1cから上記の排ガス熱回
収機13を通って排気通路1dを流れ、途中部のマフラ
15で消音されてから機外に放出される。
In the intake / exhaust portion of the engine 1, 10 is an air cleaner in which dust is removed (cleaned).
Air passes from the intake passage 1a through an intake heater 11 (see FIG. 3) as an intake heating means, and the intake manifold 1
It is supplied to the engine 1 from b. Further, the exhaust gas after the fuel combustion flows from the exhaust manifold 1c through the exhaust gas heat recovery machine 13 through the exhaust passage 1d, is silenced by the muffler 15 in the middle, and is then discharged outside the machine.

【0026】かかる構成を有する空調装置100におい
て、各構成要素のうち室内熱交換器5及び室内ファン
は、室内機130を構成して室内の適所に設置され、そ
の他のものは、エンジンを内蔵して定置して使用される
装置として室外機140を構成し、屋外の適所に設置さ
れている。
In the air-conditioning apparatus 100 having such a configuration, the indoor heat exchanger 5 and the indoor fan among the respective constituent elements constitute the indoor unit 130 and are installed at appropriate places in the room, and the other elements have an internal engine. The outdoor unit 140 is configured as a device that is used by being fixedly installed at a suitable place outdoors.

【0027】そして、空調装置100は電子回路等から
なる制御装置150を室外機140内の適宜な場所に有
している。そして、この制御装置150には、図示しな
い操作パネルからの設定温度Tset、図示しないセン
サ群から外気温度Tout、冷却水水温Tw、排気温度
Tex、室内温度Tr等が入力され、エンジン1、四方
弁4、電子膨張弁6、インテークヒータ11、冷却水ポ
ンプ14等に制御信号を出力することによって、これら
両機130、140を作動制御するようになっている。
The air conditioner 100 has a control device 150 composed of an electronic circuit or the like at an appropriate place in the outdoor unit 140. Then, to the control device 150, a set temperature Tset from an operation panel (not shown), an outside air temperature Tout, a cooling water temperature Tw, an exhaust temperature Tex, an indoor temperature Tr, etc. are input from a sensor group (not shown), and the engine 1 and the four-way valve are input. 4, by outputting control signals to the electronic expansion valve 6, the intake heater 11, the cooling water pump 14, etc., operation control of both of these machines 130, 140 is performed.

【0028】次に、上記構成に基づき本実施形態の作動
を説明する。暖房時:制御装置150の暖房スイッチが
起動されると、四方弁4が暖房側(実線)に切り替えら
れ、圧縮機2を出た高温のガス冷媒は四方弁4を通り、
室内熱交換器5で凝縮し暖房を行う。
Next, the operation of this embodiment will be described based on the above configuration. During heating: When the heating switch of the control device 150 is activated, the four-way valve 4 is switched to the heating side (solid line), and the high-temperature gas refrigerant that has exited the compressor 2 passes through the four-way valve 4.
The indoor heat exchanger 5 condenses and heats.

【0029】その後、膨張弁6で減圧され、冷媒加熱器
7でエンジン1の熱を回収した温水と熱交換して蒸発
し、室外熱交換器8にて空気と熱交換(外気吸熱)して
更に蒸発し、四方弁4を再び通り、アキュムレータ9か
ら圧縮機2に戻る。この時、温水回路120において、
エンジン1からの温水は、排ガス熱回収機13で排ガス
にて更に加熱され、冷媒加熱器9で冷媒を加熱してから
再びエンジン1に戻る。
After that, the pressure is reduced by the expansion valve 6, the heat of the engine 1 is recovered by the refrigerant heater 7 to be exchanged with the warm water to evaporate, and the outdoor heat exchanger 8 exchanges heat with the air (absorption of outside air). It is further evaporated, passes through the four-way valve 4 again, and returns from the accumulator 9 to the compressor 2. At this time, in the hot water circuit 120,
The hot water from the engine 1 is further heated by the exhaust gas heat recovery machine 13 by the exhaust gas, the refrigerant heater 9 heats the refrigerant, and then returns to the engine 1 again.

【0030】冷房時:制御装置150の冷房スイッチが
起動されると、四方弁4が冷房側(破線)に切り替えら
れ、圧縮機2を出た高温のガス冷媒は四方弁4から室外
熱交換器8へ流れて放熱凝縮され、冷媒加熱器9を通過
し、膨張弁6で減圧され、室内熱交換器5で吸熱蒸発
し、冷房を行う。
During cooling: When the cooling switch of the control device 150 is activated, the four-way valve 4 is switched to the cooling side (broken line), and the high-temperature gas refrigerant leaving the compressor 2 is discharged from the four-way valve 4 to the outdoor heat exchanger. 8, the heat is condensed and radiated, the refrigerant passes through the refrigerant heater 9, the pressure is reduced by the expansion valve 6, the heat is absorbed and evaporated by the indoor heat exchanger 5, and the air is cooled.

【0031】その後、再び四方弁4を通り、アキュムレ
ータ10にて気液分離され、再び圧縮機2に戻る。この
時、温水回路120において、エンジン1からの温水
は、ラジエータを通って放熱冷却されてから再びエンジ
ン1に戻る。
After that, the gas passes through the four-way valve 4 again, is separated into gas and liquid by the accumulator 10, and returns to the compressor 2 again. At this time, in the hot water circuit 120, the hot water from the engine 1 returns to the engine 1 again after being radiatively cooled through the radiator.

【0032】次に、本実施形態の加熱能力向上制御につ
いて説明する。図6は、本発明の第1実施形態における
加熱能力向上のための制御プログラムの一例を示すフロ
ーチャートである。まずステップS1で、冷凍サイクル
が加熱状態であるか否かを判定する。加熱状態である場
合は排熱回収や吸気加熱が必要となる可能性があるとし
て次のステップS2に進む。また、加熱状態でない場合
は排熱回収も吸気加熱も必要ないため、ステップS9へ
進んで排熱回収も吸気加熱も行わない状態で繰り返す。
Next, the heating capacity improvement control of this embodiment will be described. FIG. 6 is a flowchart showing an example of a control program for improving heating capacity in the first embodiment of the present invention. First, in step S1, it is determined whether or not the refrigeration cycle is in a heated state. If it is in the heating state, it is considered that exhaust heat recovery or intake air heating may be necessary, and the process proceeds to the next step S2. Further, if it is not in the heating state, neither exhaust heat recovery nor intake air heating is required, so the routine proceeds to step S9 and is repeated in a state where neither exhaust heat recovery nor intake air heating is performed.

【0033】次にステップS2では、以後の判定に必要
な情報として、センサ群で検出される外気温度Tou
t、冷却水水温Tw、及び排気温度Texを取り込む。
そして、ステップS3では、外気温度Toutを第1所
定温度T1と比較して、排熱回収が必要か否かを判定す
る。本実施例では、この第1所定温度T1を8℃として
おり、8℃を下回る場合は少なくとも排熱回収が必要と
して次のステップS4へ進む。また、8℃以上の場合は
排熱回収も必要ないため、ステップS9へ進んで排熱回
収も吸気加熱も行わない状態で繰り返す。
Next, in step S2, the outside air temperature Tou detected by the sensor group is used as information necessary for the subsequent determination.
t, cooling water temperature Tw, and exhaust temperature Tex are taken in.
Then, in step S3, the outside air temperature Tout is compared with the first predetermined temperature T1 to determine whether exhaust heat recovery is necessary. In the present embodiment, the first predetermined temperature T1 is set to 8 ° C. If it falls below 8 ° C., at least exhaust heat recovery is necessary and the process proceeds to the next step S4. Further, when the temperature is 8 ° C. or higher, exhaust heat recovery is not necessary, so the routine proceeds to step S9 and is repeated in a state where neither exhaust heat recovery nor intake air heating is performed.

【0034】次のステップS4では、冷却水水温Twで
吸気加熱が必要か否かを判定する。ここではその閾値を
95℃としており、95℃を下回る場合は吸気加熱も必
要となる可能性があるとして次のステップS5に進む。
また、95℃以上の場合は排熱回収可能としてステップ
S8へ進み、排熱回収を行い吸気加熱は行わない。
In the next step S4, it is determined whether intake air heating is required at the cooling water temperature Tw. Here, the threshold value is set to 95 ° C. If the temperature falls below 95 ° C., intake air heating may be necessary, and the process proceeds to the next step S5.
If the temperature is 95 ° C. or higher, the exhaust heat can be recovered and the process proceeds to step S8 to recover the exhaust heat and not perform intake air heating.

【0035】次のステップS5では、排気温度Texが
排熱回収に使えるだけ高いか否かを判定する。ここでは
その閾値を300℃としており、300℃を下回る場合
は吸気加熱も必要となる可能性があるとして次のステッ
プS6に進む。また、300℃以上の場合は排熱回収可
能としてステップS8へ進み、排熱回収を行い吸気加熱
は行わない。
In the next step S5, it is determined whether the exhaust temperature Tex is high enough to recover exhaust heat. Here, the threshold value is set to 300 ° C. If the temperature is lower than 300 ° C., intake air heating may be necessary, and the process proceeds to the next step S6. If the temperature is 300 ° C. or higher, the exhaust heat can be recovered and the process proceeds to step S8 to recover the exhaust heat and not perform intake air heating.

【0036】次にステップS6では、外気温度Tout
を第2所定温度T2と比較して、吸気加熱が必要か否か
を判定する。本実施例では、この第2所定温度T2を0
℃としており、0℃を下回る場合は吸気加熱が必要とし
て次のステップS7へ進んで排熱回収も吸気加熱も行
う。また、0℃以上の場合は吸気加熱は必要ないため、
ステップS8へ進んで排熱回収を行い吸気加熱は行わな
い。
Next, at step S6, the outside air temperature Tout
Is compared with the second predetermined temperature T2 to determine whether intake air heating is required. In this embodiment, the second predetermined temperature T2 is set to 0.
The temperature is set to 0 ° C., and if the temperature is lower than 0 ° C., intake air heating is required and the process proceeds to the next step S7 to perform exhaust heat recovery and intake air heating. Also, if the temperature is 0 ° C or higher, intake air heating is not required,
In step S8, exhaust heat is recovered and intake air heating is not performed.

【0037】次に、本実施形態の特徴について説明す
る。エンジン1の吸気通路1aの途中に、インテークヒ
ータ11を設けると共に、制御装置150は、外気温度
Toutが所定値T2より低い場合、インテークヒータ
11でエンジン1の吸気を加熱する吸気加熱を行うと共
に、冷媒加熱器7にて冷媒を加熱する排熱回収を行って
いる。
Next, the features of this embodiment will be described. The intake heater 11 is provided in the middle of the intake passage 1a of the engine 1, and when the outside air temperature Tout is lower than a predetermined value T2, the control device 150 heats the intake air of the engine 1 by the intake heater 11, and Exhaust heat recovery for heating the refrigerant is performed by the refrigerant heater 7.

【0038】本実施形態では、このような吸気加熱を低
温時の運転中に行うことで、加熱した熱量を排熱として
回収して加熱熱量に利用すると共に、緩慢とした低温時
のエンジン燃焼を活性化させて排熱量そのものを増量し
ている(図4、5参照)。これは、特に低外気温時の排
熱量を向上させることができ、これにより、外気温が低
く加熱能力が不足する状況時に吸気加熱をしながら排熱
回収を行うことで、効率よく加熱能力を向上することが
できる。
In the present embodiment, by performing such intake air heating during operation at low temperature, the heated heat amount is recovered as exhaust heat and used as the heating heat amount, and the slow engine combustion at low temperature is performed. It is activated to increase the exhaust heat amount itself (see FIGS. 4 and 5). This can improve the amount of exhaust heat especially at low outside air temperature, so that when the outside air temperature is low and the heating capacity is insufficient, exhaust heat recovery can be performed efficiently while performing intake air heating. Can be improved.

【0039】また、制御装置150は、外気温度Tou
tが第1所定温度T1を下回った場合に排熱回収を行
い、外気温度Toutが第1所定温度T1より低い第2
所定温度T2を下回った場合に吸気加熱と排熱回収とを
行っている(図7参照)。このように、外気温が低く加
熱能力が不足する状況時に順次排熱回収と吸気加熱とを
行うことで、効率よく加熱能力を向上することができ
る。
Further, the control device 150 controls the outside air temperature Tou.
When the temperature t is lower than the first predetermined temperature T1, the exhaust heat is recovered and the outside air temperature Tout is lower than the first predetermined temperature T1.
When the temperature falls below the predetermined temperature T2, intake air heating and exhaust heat recovery are performed (see FIG. 7). In this way, by sequentially performing exhaust heat recovery and intake air heating when the outside air temperature is low and the heating capacity is insufficient, it is possible to efficiently improve the heating capacity.

【0040】また、吸気加熱手段として、エンジンの始
動補助装置であるインテークヒータ11を用いている。
これにより、エンジンの始動補助や排気エミッション対
策と、冷凍サイクルの加熱能力向上とに共通して使える
うえ、コストを抑えることができる。
Further, as the intake air heating means, an intake heater 11 which is an engine starting auxiliary device is used.
As a result, the engine can be commonly used for assisting starting of the engine, measures for exhaust emission, and improvement of the heating capacity of the refrigeration cycle, and the cost can be suppressed.

【0041】また、このようなエンジン駆動式冷凍サイ
クル装置を備え、凝縮器を室内熱交換器5とし、蒸発器
を室外熱交換器8としている。これにより、外気温が低
く加熱能力が不足する状況時に吸気加熱をしながら排熱
回収を行うことで、効率よく加熱能力を向上することの
できる暖房機とすることができる。
Further, such an engine-driven refrigeration cycle apparatus is provided, and the condenser is the indoor heat exchanger 5 and the evaporator is the outdoor heat exchanger 8. Thus, when the outside air temperature is low and the heating capacity is insufficient, the exhaust heat is recovered while the intake air is being heated, so that the heating apparatus can efficiently improve the heating capacity.

【0042】(第2実施形態)図8は、本発明の第2実
施形態における外気温度と吸気加熱量との関係を表すグ
ラフである。第1実施形態と異なるのは、制御装置15
0で吸気加熱を行う場合、外気温度Toutが低いほど
吸気加熱量を大きくしている。このように外気温度が低
いほど加熱量を大きくすることで低温時の加熱能力低下
を効率よく補って必要能力を確保することができるよう
になる。
(Second Embodiment) FIG. 8 is a graph showing the relationship between the outside air temperature and the intake air heating amount in the second embodiment of the present invention. The difference from the first embodiment is that the control device 15
When the intake air heating is performed at 0, the intake air heating amount is increased as the outside air temperature Tout is lower. By increasing the heating amount as the outside air temperature is lower in this way, it becomes possible to efficiently compensate for the lowering of the heating capability at low temperatures and to secure the required capability.

【0043】(第3実施形態)図9は、本発明の第3実
施形態における加熱能力向上のための制御プログラムの
一例を示すフローチャートである。第1実施形態のフロ
ーチャート(図6)とは外気温度Toutを室内温度T
rに置き換えており、制御装置150は、室内温度Tr
が第1所定温度t1(本実施例では18℃)を下回った
場合に排熱回収を行い、室内温度Trが第1所定温度t
1より低い第2所定温度t2(本実施例では10℃)を
下回った場合に吸気加熱と排熱回収とを行っている。
(Third Embodiment) FIG. 9 is a flow chart showing an example of a control program for improving heating capacity in the third embodiment of the present invention. The flow chart of the first embodiment (FIG. 6) means that the outside air temperature Tout is the indoor temperature T
r, and the control device 150 controls the room temperature Tr.
Is lower than the first predetermined temperature t1 (18 ° C. in this embodiment), the exhaust heat is recovered, and the room temperature Tr is the first predetermined temperature t.
When the temperature falls below the second predetermined temperature t2 (10 ° C. in the present embodiment) lower than 1, intake air heating and exhaust heat recovery are performed.

【0044】これによっても第1実施形態と同様に、室
内温が低く加熱能力を必要とする状況時に順次排熱回収
と吸気加熱とを行うことで、効率よく加熱能力を向上す
ることができる。
Also in this case, similarly to the first embodiment, the exhaust heat recovery and the intake air heating are sequentially performed when the room temperature is low and the heating capacity is required, so that the heating capacity can be efficiently improved.

【0045】(その他の実施形態)上述の実施形態は、
エンジン駆動のヒートポンプ式空調装置であったが、本
発明はこれに限らず、ヒートポンプ式以外の冷媒圧縮式
冷凍サイクルに適用してもよい。また、空調装置以外の
水や不凍液等のブライン(熱交換媒体)を加熱する給湯
装置等に適用しても良い。
(Other Embodiments) The above embodiment is
Although the heat pump type air conditioner is driven by an engine, the present invention is not limited to this, and may be applied to a refrigerant compression type refrigeration cycle other than the heat pump type. Further, it may be applied to a hot water supply device or the like that heats brine (heat exchange medium) such as water or antifreeze liquid other than the air conditioner.

【0046】また、上述の実施形態では、吸気加熱手段
として電気ヒータを用いているがこれに限らず、エンジ
ン冷却水、エンジン排ガス、サイクル冷媒等と熱交換し
てエンジン吸気を過熱するものであっても良い。また、
上述の実施形態では、インテークヒータへの電力供給は
外部電源によるものとしているが、エンジンで駆動する
発電機を設けて得られる電力を利用しても良い。
In the above-described embodiment, the electric heater is used as the intake air heating means, but the invention is not limited to this, and heat is exchanged with engine cooling water, engine exhaust gas, cycle refrigerant, etc. to superheat the engine intake air. May be. Also,
In the above-described embodiment, the electric power is supplied to the intake heater by the external power source, but the electric power obtained by providing the generator driven by the engine may be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態におけるエンジン駆動のヒ
ートポンプ式空調装置の全体構成を示す模式図である。
FIG. 1 is a schematic diagram showing the overall configuration of an engine-driven heat pump type air conditioner according to an embodiment of the present invention.

【図2】外気温度と加熱能力との関係を表すグラフであ
る。
FIG. 2 is a graph showing the relationship between outside air temperature and heating capacity.

【図3】吸気加熱手段の一例として、インテークヒータ
の(a)正面図、(b)断面側面図である。
3A and 3B are a front view and a sectional side view of an intake heater as an example of intake air heating means.

【図4】吸気加熱の効果を説明するグラフである。FIG. 4 is a graph illustrating the effect of intake air heating.

【図5】外気温度に対する吸気加熱効果の違いを表すグ
ラフである。
FIG. 5 is a graph showing a difference in intake air heating effect with respect to outside air temperature.

【図6】本発明の第1実施形態における加熱能力向上の
ための制御プログラムの一例を示すフローチャートであ
る。
FIG. 6 is a flowchart showing an example of a control program for improving heating capacity in the first embodiment of the present invention.

【図7】本発明の吸気加熱+排熱回収による効果を表す
グラフである。
FIG. 7 is a graph showing the effect of the intake air heating + exhaust heat recovery of the present invention.

【図8】本発明の第2実施形態における外気温度と吸気
加熱量との関係を表すグラフである。
FIG. 8 is a graph showing the relationship between the outside air temperature and the intake air heating amount in the second embodiment of the present invention.

【図9】本発明の第3実施形態における加熱能力向上の
ための制御プログラムの一例を示すフローチャートであ
る。
FIG. 9 is a flowchart showing an example of a control program for improving heating capacity in the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン 1a 吸気通路 2 圧縮機 5 室内熱交換器(凝縮器) 6 膨張弁(減圧手段) 7 冷媒加熱器 8 室外熱交換器(蒸発器) 11 インテークヒータ、吸気加熱手段 110 冷媒回路(冷凍サイクル) 120 冷却水回路 150 制御装置(制御手段) T1、t1 第1所定温度 T2、t2 第2所定温度、所定値 Tout 外気温度 Tr 室内温度 1 engine 1a Intake passage 2 compressor 5 Indoor heat exchanger (condenser) 6 Expansion valve (pressure reducing means) 7 Refrigerant heater 8 Outdoor heat exchanger (evaporator) 11 Intake heater, intake air heating means 110 Refrigerant circuit (refrigeration cycle) 120 cooling water circuit 150 Control device (control means) T1, t1 first predetermined temperature T2, t2 Second predetermined temperature, predetermined value Tout outside temperature Tr room temperature

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮して吐出する圧縮機(2)、
前記冷媒を凝縮させる凝縮器(5)、前記冷媒を減圧す
る減圧手段(6)、前記冷媒を蒸発させる蒸発器(8)
を環状に接続して形成した冷凍サイクル(110)と、 前記圧縮機(2)を駆動するエンジン(1)と、 前記エンジン(1)の冷却水回路(120)途中に、前
記エンジン(1)の排熱によって暖められた冷却水で前
記冷媒を加熱する冷媒加熱器(7)と、 これら前記冷凍サイクル(110)、前記エンジン
(1)、及び前記冷却水回路(120)の状態を制御す
る制御手段(150)とを備えるエンジン駆動式冷凍サ
イクル装置において、 前記エンジン(1)の吸気通路(1a)の途中に、吸気
加熱手段(11)を設けると共に、 前記制御手段(150)は、外気温度(Tout)が所
定値(T2)より低い場合、前記吸気加熱手段(11)
で前記エンジン(1)の吸気を加熱する吸気加熱を行う
と共に、前記冷媒加熱器(7)にて冷媒を加熱する排熱
回収を行うことを特徴とするエンジン駆動式冷凍サイク
ル装置。
1. A compressor (2) for compressing and discharging a refrigerant,
A condenser (5) for condensing the refrigerant, a pressure reducing means (6) for decompressing the refrigerant, and an evaporator (8) for evaporating the refrigerant.
A refrigeration cycle (110) formed by connecting the above in an annular shape, an engine (1) that drives the compressor (2), and the engine (1) in the middle of a cooling water circuit (120) of the engine (1). The state of the refrigerant heater (7) for heating the refrigerant with the cooling water warmed by the exhaust heat of the unit, the refrigeration cycle (110), the engine (1), and the cooling water circuit (120) is controlled. In an engine-driven refrigeration cycle apparatus including a control means (150), an intake air heating means (11) is provided in the middle of an intake passage (1a) of the engine (1), and the control means (150) controls the outside air. When the temperature (Tout) is lower than a predetermined value (T2), the intake air heating means (11)
The engine-driven refrigeration cycle apparatus is characterized in that the intake air heating for heating the intake air of the engine (1) is carried out, and the exhaust heat recovery for heating the refrigerant is carried out by the refrigerant heater (7).
【請求項2】 前記制御手段(150)は、外気温度
(Tout)が第1所定温度(T1)を下回った場合に
前記排熱回収を行い、外気温度(Tout)が前記第1
所定温度(T1)より低い第2所定温度(T2)を下回
った場合に前記吸気加熱と前記排熱回収とを行うことを
特徴とする請求項1に記載のエンジン駆動式冷凍サイク
ル装置。
2. The control means (150) performs the exhaust heat recovery when the outside air temperature (Tout) is lower than a first predetermined temperature (T1), and the outside air temperature (Tout) is the first outside temperature (Tout).
The engine-driven refrigeration cycle apparatus according to claim 1, wherein the intake air heating and the exhaust heat recovery are performed when the temperature falls below a second predetermined temperature (T2) lower than the predetermined temperature (T1).
【請求項3】 前記制御手段(150)は、前記吸気加
熱を行う上で、外気温度(Tout)が低いほど吸気加
熱量を大きくすることを特徴とする請求項1または請求
項2に記載のエンジン駆動式冷凍サイクル装置。
3. The control unit (150) according to claim 1, wherein the intake air heating amount is increased as the outside air temperature (Tout) is lower in performing the intake air heating. Engine driven refrigeration cycle equipment.
【請求項4】 前記吸気加熱手段(11)として、エン
ジンの始動補助装置であるインテークヒータ(11)を
用いていることを特徴とする請求項1に記載のエンジン
駆動式冷凍サイクル装置。
4. The engine-driven refrigeration cycle apparatus according to claim 1, wherein an intake heater (11) which is an engine starting assisting device is used as the intake air heating means (11).
【請求項5】 請求項1ないし請求項4のいずれかに記
載のエンジン駆動式冷凍サイクル装置を備え、前記凝縮
器(5)を室内熱交換器(5)とし、前記蒸発器(8)
を室外熱交換器(8)としたことを特徴とする暖房装
置。
5. An engine-driven refrigeration cycle apparatus according to claim 1, wherein the condenser (5) is an indoor heat exchanger (5), and the evaporator (8).
The outdoor heat exchanger (8) is a heating device.
【請求項6】 前記制御手段(150)は、室内温度
(Tr)が第1所定温度(t1)を下回った場合に前記
排熱回収を行い、室内温度(Tr)が前記第1所定温度
(t1)より低い第2所定温度(t2)を下回った場合
に前記吸気加熱と前記排熱回収とを行うことを特徴とす
る請求項5に記載の暖房装置。
6. The control means (150) recovers the exhaust heat when the room temperature (Tr) is lower than a first predetermined temperature (t1), and the room temperature (Tr) is the first predetermined temperature (Tr). The heating device according to claim 5, wherein the intake air heating and the exhaust heat recovery are performed when the temperature falls below a second predetermined temperature (t2) lower than t1).
JP2002101329A 2002-04-03 2002-04-03 Engine-driven refrigeration cycle device and heating device Expired - Fee Related JP4069658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101329A JP4069658B2 (en) 2002-04-03 2002-04-03 Engine-driven refrigeration cycle device and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101329A JP4069658B2 (en) 2002-04-03 2002-04-03 Engine-driven refrigeration cycle device and heating device

Publications (2)

Publication Number Publication Date
JP2003294337A true JP2003294337A (en) 2003-10-15
JP4069658B2 JP4069658B2 (en) 2008-04-02

Family

ID=29241750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101329A Expired - Fee Related JP4069658B2 (en) 2002-04-03 2002-04-03 Engine-driven refrigeration cycle device and heating device

Country Status (1)

Country Link
JP (1) JP4069658B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462650C (en) * 2004-12-10 2009-02-18 Lg电子株式会社 Cogeneration system
JP2011112248A (en) * 2009-11-25 2011-06-09 Nishimatsu Constr Co Ltd Hot water supply/power generation system and operation control method for the same
JP2012220122A (en) * 2011-04-11 2012-11-12 Chubu Electric Power Co Inc Waste heat sharing system
JP2013053845A (en) * 2012-11-12 2013-03-21 Mitsubishi Electric Corp Air-conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462650C (en) * 2004-12-10 2009-02-18 Lg电子株式会社 Cogeneration system
JP2011112248A (en) * 2009-11-25 2011-06-09 Nishimatsu Constr Co Ltd Hot water supply/power generation system and operation control method for the same
JP2012220122A (en) * 2011-04-11 2012-11-12 Chubu Electric Power Co Inc Waste heat sharing system
JP2013053845A (en) * 2012-11-12 2013-03-21 Mitsubishi Electric Corp Air-conditioning system

Also Published As

Publication number Publication date
JP4069658B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
US7536869B2 (en) Vapor compression refrigerating apparatus
US7392655B2 (en) Vapor compression refrigerating device
JP2540738B2 (en) Exhaust heat utilization device for vehicle mounting
US20100281901A1 (en) Air conditioner for vehicle
US20060005557A1 (en) Vapor compression refrigerator
JP5003639B2 (en) Vehicle cooling system
CN101918695A (en) Waste heat utilizing device for internal combustion engine
CA2553829A1 (en) Air conditioning system for a motor vehicle
JP6578959B2 (en) Vehicle coolant heating apparatus and vehicle coolant heating program
EP3878670A1 (en) In-vehicle temperature control system
JP4588644B2 (en) Refrigeration equipment with waste heat utilization device
JP4201062B2 (en) Hybrid refrigerant compression heat transfer device
JP6358424B2 (en) Intake air temperature control system
JPH0849943A (en) Engine driven heat pump equipment
JP4069658B2 (en) Engine-driven refrigeration cycle device and heating device
JP2003336927A (en) Combined refrigerating system
JP4699972B2 (en) Waste heat utilization apparatus and control method thereof
JP4240837B2 (en) Refrigeration equipment
JP2004322933A (en) Refrigerating cycle device for vehicle
KR102456828B1 (en) Heat pump system for vehicle
JP2008111365A (en) Exhaust heat recovery device and air conditioner for vehicle
JP3284573B2 (en) Vehicle air conditioner
WO2019130886A1 (en) Vehicular waste heat recovery device
JPH04251170A (en) Refrigerating device and operation method thereof in cogeneration system
KR20140063930A (en) An engine-driven heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees