JP2003293971A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JP2003293971A
JP2003293971A JP2002098536A JP2002098536A JP2003293971A JP 2003293971 A JP2003293971 A JP 2003293971A JP 2002098536 A JP2002098536 A JP 2002098536A JP 2002098536 A JP2002098536 A JP 2002098536A JP 2003293971 A JP2003293971 A JP 2003293971A
Authority
JP
Japan
Prior art keywords
vane
cylinder
pressure chamber
chamber side
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002098536A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ebara
俊行 江原
Takayasu Saito
隆泰 斎藤
Takashi Sato
孝 佐藤
Hiroyuki Matsumori
裕之 松森
Masaru Matsuura
大 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002098536A priority Critical patent/JP2003293971A/en
Publication of JP2003293971A publication Critical patent/JP2003293971A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary compressor with increased reliability and compression efficiency of a vane. <P>SOLUTION: In this rotary compressor, an electric element and a rotating compression element driven by the electric element are installed in a closed container. The rotary compressor comprises: a roller 46 fitted to a cylinder 38 for forming the rotating compression element and an eccentric part 42 formed on the rotating shaft of the electric element and eccentrically rotated in the cylinder; the vane 50 allowed to abut on the roller and dividing the inside of the cylinder into a low pressure chamber side and a high pressure chamber side; a guide groove 71 formed in the cylinder to store the vane; and a back pressure chamber 72 formed in the cylinder and communicating with the guide groove to apply a back pressure to the vane. The cross sectional shape of the vane at the tip is formed in an arc shape, and the radius of the arc of the vane on the high pressure chamber side is lowered less than the radius of the arc on the low pressure chamber side. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、密閉容器内に電動
要素と、該電動要素にて駆動される回転圧縮要素を備
え、当該回転圧縮要素で冷媒ガスを圧縮して吐出するロ
ータリコンプレッサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary compressor provided with an electric element in a closed container and a rotary compression element driven by the electric element, and compressing and discharging a refrigerant gas by the rotary compression element. Is.

【0002】[0002]

【従来の技術】従来のこの種ロータリコンプレッサ、特
に内部中間圧型多段圧縮式のロータリコンプレッサは例
えば特開平2−294587号公報(F04C23/0
0)に示されている。即ち、係るロータリコンプレッサ
では、第1の回転圧縮要素の吸込ポートから冷媒ガスが
シリンダの低圧室側に吸入され、ローラとベーンの動作
により圧縮されて中間圧となりシリンダの高圧室側より
吐出ポート、吐出消音室を経て密閉容器内に吐出され
る。そして、この密閉容器内の中間圧のガスは第2の回
転圧縮要素の吸込ポートからシリンダの低圧室側に吸入
され、ローラとベーンの動作により2段目の圧縮が行な
われて高温高圧のガスとなり、高圧室側より吐出ポー
ト、吐出消音室を経て吐出される。
2. Description of the Related Art A conventional rotary compressor of this type, particularly an internal intermediate pressure type multi-stage compression type rotary compressor, is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-294587 (F04C23 / 0).
0). That is, in such a rotary compressor, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, and is compressed by the operation of the roller and the vane to become an intermediate pressure, and the discharge port from the high pressure chamber side of the cylinder, It is discharged into the closed container through the discharge muffling chamber. Then, the intermediate-pressure gas in the closed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so that the high-temperature and high-pressure gas is generated. And is discharged from the high pressure chamber side through the discharge port and the discharge muffling chamber.

【0003】ロータリコンプレッサから吐出されたガス
は冷媒回路の放熱器などに流入し、放熱した後、膨張弁
で絞られて蒸発器で吸熱し、ロータリコンプレッサの第
1の回転圧縮要素に吸入されるサイクルを繰り返す。
The gas discharged from the rotary compressor flows into a radiator or the like of the refrigerant circuit, radiates heat, is throttled by an expansion valve and absorbed by an evaporator, and is sucked into a first rotary compression element of the rotary compressor. Repeat the cycle.

【0004】また、係るロータリコンプレッサに、高低
圧差の大きい冷媒、例えば二酸化炭素(CO2)を冷媒
として用いた場合、吐出冷媒圧力は高圧となる第2の回
転圧縮要素で12MPaGに達し、一方、低段側となる
第1の回転圧縮要素で8MPaG(中間圧)となる(第
1の回転圧縮要素の吸込圧力は4MPa)。
When a refrigerant having a large difference in high pressure and low pressure, for example, carbon dioxide (CO 2 ) is used as the refrigerant in the rotary compressor, the pressure of the discharged refrigerant reaches 12 MPaG in the second rotary compression element which becomes high pressure, while The first rotary compression element on the lower stage side has a pressure of 8 MPaG (intermediate pressure) (the suction pressure of the first rotary compression element is 4 MPa).

【0005】[0005]

【発明が解決しようとする課題】ここで、一般的にロー
タリコンプレッサに取り付けられたベーンは、シリンダ
の半径方向に設けられた案内溝にシリンダの半径方向に
移動自在に挿入される。そして、このベーンはローラ側
に押し付ける必要があるため、従来よりスプリングによ
る付勢力と背圧室からの背圧によってベーンをローラに
押し付ける構造が取られているが、前述した内部中間圧
のロータリコンプレッサの第2の回転圧縮要素では、シ
リンダ内の圧力が密閉容器内の中間圧より高くなるた
め、密閉容器内の圧力をベーンの背圧として利用するこ
とができない。
Generally, the vane attached to the rotary compressor is inserted into a guide groove provided in the radial direction of the cylinder so as to be movable in the radial direction of the cylinder. Since this vane needs to be pressed against the roller side, the structure in which the vane is pressed against the roller by the biasing force of the spring and the back pressure from the back pressure chamber has been adopted in the past. In the second rotary compression element, since the pressure in the cylinder is higher than the intermediate pressure in the closed container, the pressure in the closed container cannot be used as the back pressure of the vane.

【0006】そこで、第2の回転圧縮要素ではその吐出
圧力をベーンの背圧として印加することになるが、前述
の如く高圧と低圧(この場合は中間圧)との差が大きく
なるため、ベーン先端をローラに押し付ける力(先端の
面圧)が高くなり、先端の摩耗などによって信頼性が低
下する。また、ローラがベーンを押し込むのに要される
力も大きくなるため、圧縮性能にも悪影響を与える問題
がある。これは上述した多段圧縮式のロータリコンプレ
ッサに限らず、単シリンダタイプのロータリコンプレッ
サでも同様である。
Therefore, in the second rotary compression element, the discharge pressure is applied as the back pressure of the vane, but as described above, the difference between the high pressure and the low pressure (in this case, the intermediate pressure) becomes large, so that the vane is increased. The force pressing the tip against the roller (the surface pressure of the tip) increases, and the reliability decreases due to abrasion of the tip. In addition, the force required for the roller to push the vane becomes large, which causes a problem that the compression performance is adversely affected. This is not limited to the above-described multi-stage compression type rotary compressor, and the same applies to a single cylinder type rotary compressor.

【0007】そこで、本発明は、係る従来の技術的課題
を解決するために成されたものであり、ベーンに関する
信頼性と圧縮効率の向上を図ったロータリコンプレッサ
を提供することを目的とする。
Therefore, the present invention has been made in order to solve the above-mentioned conventional technical problems, and an object of the present invention is to provide a rotary compressor having improved reliability and compression efficiency regarding vanes.

【0008】[0008]

【課題を解決するための手段】即ち、請求項1の発明で
は、密閉容器内に電動要素と、この電動要素にて駆動さ
れる回転圧縮要素を備えたロータリコンプレッサにおい
て、回転圧縮要素を構成するためのシリンダ及び電動要
素の回転軸に形成された偏心部に嵌合されてシリンダ内
で偏心回転するローラと、このローラに当接してシリン
ダ内を低圧室側と高圧室側に区画するベーンと、シリン
ダに形成され、ベーンを収納するための案内溝と、シリ
ンダに形成され、ベーンに背圧を加えるため、案内溝に
連通する背圧室とを備え、ベーン先端の断面形状を円弧
状と成すと共に、当該ベーンの高圧室側の円弧の半径
を、低圧室側の円弧の半径よりも小さくしたことを特徴
とする。
That is, according to the invention of claim 1, a rotary compression element is constituted in a rotary compressor provided with an electric element in a closed container and a rotary compression element driven by the electric element. And a roller that is fitted to an eccentric portion formed on the rotating shaft of the electric element and rotates eccentrically in the cylinder, and a vane that abuts on the roller and divides the cylinder into a low pressure chamber side and a high pressure chamber side. , A guide groove formed in the cylinder for accommodating the vane, and a back pressure chamber formed in the cylinder and communicating with the guide groove for applying a back pressure to the vane, and the cross-sectional shape of the vane tip is an arc shape. In addition, the radius of the arc on the high pressure chamber side of the vane is smaller than the radius of the arc on the low pressure chamber side.

【0009】請求項2の発明では、密閉容器内に電動要
素と、この電動要素にて駆動される回転圧縮要素を備え
たロータリコンプレッサにおいて、回転圧縮要素を構成
するためのシリンダ及び電動要素の回転軸に形成された
偏心部に嵌合されてシリンダ内で偏心回転するローラ
と、このローラに当接してシリンダ内を低圧室側と高圧
室側に区画するベーンと、シリンダに形成され、ベーン
を収納するための案内溝と、シリンダに形成され、ベー
ンに背圧を加えるため、案内溝に連通する背圧室とを備
え、ベーン先端の断面形状を円弧状と成すと共に、当該
円弧の中心をベーンの中央より低圧室側に偏位させたこ
とを特徴とする。
According to the second aspect of the present invention, in a rotary compressor including an electric element in a closed container and a rotary compression element driven by the electric element, a cylinder for forming the rotary compression element and a rotation of the electric element are rotated. A roller fitted in an eccentric portion formed on the shaft and rotating eccentrically in the cylinder, a vane that abuts on this roller to divide the inside of the cylinder into a low pressure chamber side and a high pressure chamber side, and a vane formed in the cylinder to A guide groove for housing and a back pressure chamber that is formed in the cylinder and communicates with the guide groove for applying back pressure to the vane are provided, and the cross-sectional shape of the tip of the vane is formed in an arc shape, and the center of the arc is formed. It is characterized in that it is offset from the center of the vane to the low pressure chamber side.

【0010】請求項3の発明では、密閉容器内に電動要
素と、この電動要素にて駆動される第1及び第2の回転
圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒
ガスを密閉容器内に吐出し、更にこの吐出された中間圧
の冷媒ガスを第2の回転圧縮要素で圧縮するロータリコ
ンプレッサにおいて、第2の回転圧縮要素を構成するた
めのシリンダ及び電動要素の回転軸に形成された偏心部
に嵌合されてシリンダ内で偏心回転するローラと、この
ローラに当接してシリンダ内を低圧室側と高圧室側に区
画するベーンと、シリンダに形成され、ベーンを収納す
るための案内溝と、シリンダに形成され、ベーンに背圧
を加えるため、案内溝に連通する背圧室とを備え、ベー
ン先端の断面形状を円弧状と成すと共に、当該ベーンの
高圧室側の円弧の半径を、低圧室側の円弧の半径よりも
小さくしたことを特徴とする。
According to the third aspect of the present invention, the hermetic container is provided with an electric element and first and second rotary compression elements driven by the electric element, and the refrigerant gas compressed by the first rotary compression element. In a hermetically sealed container and further compresses the discharged intermediate pressure refrigerant gas by a second rotary compression element, in a cylinder and a rotary shaft of an electric element for constituting the second rotary compression element. A roller that is fitted into an eccentric part formed on the cylinder and rotates eccentrically in the cylinder; a vane that abuts on the roller and divides the cylinder into a low pressure chamber side and a high pressure chamber side; And a back pressure chamber that is formed in the cylinder and that communicates with the guide groove for applying back pressure to the vane. The vane tip has an arc-shaped cross section and the high pressure chamber side of the vane. Of the arc Diameter, characterized by being smaller than the radius of the arc of the low-pressure chamber side.

【0011】請求項4の発明では、密閉容器内に電動要
素と、この電動要素にて駆動される第1及び第2の回転
圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒
ガスを密閉容器内に吐出し、更にこの吐出された中間圧
の冷媒ガスを第2の回転圧縮要素で圧縮するロータリコ
ンプレッサにおいて、第2の回転圧縮要素を構成するた
めのシリンダ及び電動要素の回転軸に形成された偏心部
に嵌合されてシリンダ内で偏心回転するローラと、この
ローラに当接してシリンダ内を低圧室側と高圧室側に区
画するベーンと、シリンダに形成され、ベーンを収納す
るための案内溝と、シリンダに形成され、ベーンに背圧
を加えるため、案内溝に連通する背圧室とを備え、ベー
ン先端の断面形状を円弧状と成すと共に、当該円弧の中
心をベーンの中央より低圧室側に偏位させたことを特徴
とする。
According to the fourth aspect of the present invention, the hermetic container is provided with an electric element and first and second rotary compression elements driven by the electric element, and the refrigerant gas compressed by the first rotary compression element is provided. In a hermetically sealed container and further compresses the discharged intermediate pressure refrigerant gas by a second rotary compression element, in a cylinder and a rotary shaft of an electric element for constituting the second rotary compression element. A roller that is fitted into an eccentric part formed on the cylinder and rotates eccentrically in the cylinder; a vane that abuts on the roller and divides the cylinder into a low pressure chamber side and a high pressure chamber side; And a back pressure chamber that is formed in the cylinder and communicates with the guide groove to apply back pressure to the vane.The vane tip has an arc-shaped cross-section, and the center of the arc is the vane. Center of Ri is characterized in that is displaced toward the low pressure chamber.

【0012】[0012]

【発明の実施の形態】次に、図面に基づき本発明の実施
形態を詳述する。図1は本発明のロータリコンプレッサ
の実施例として、第1及び第2の回転圧縮要素を備えた
内部中間圧型多段(2段)圧縮式ロータリコンプレッサ
10の縦断側面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a vertical cross-sectional side view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements as an embodiment of the rotary compressor of the present invention.

【0013】この図において、10は二酸化炭素(CO
2)を冷媒として使用する内部中間圧型多段圧縮式ロー
タリコンプレッサで、この多段圧縮式ロータリコンプレ
ッサ10は鋼板からなる円筒状の密閉容器12と、この
密閉容器12の内部空間の上側に配置収納された電動要
素14及びこの電動要素14の下側に配置され、電動要
素14の回転軸16により駆動される第1の回転圧縮要
素32(1段目)及び第2の回転圧縮要素34(2段
目)からなる回転圧縮機構部18にて構成されている。
In this figure, 10 is carbon dioxide (CO
2 ) is an internal intermediate pressure type multi-stage compression rotary compressor that uses as a refrigerant. This multi-stage compression rotary compressor 10 is arranged and housed in a cylindrical hermetic container 12 made of steel plate and above the inner space of the hermetic container 12. The first rotary compression element 32 (first stage) and the second rotary compression element 34 (second stage), which are arranged below the electric element 14 and are driven by the rotary shaft 16 of the electric element 14. ) Is composed of the rotary compression mechanism section 18.

【0014】密閉容器12は底部をオイル溜めとし、電
動要素14と回転圧縮機構部18を収納する容器本体1
2Aと、この容器本体12Aの上部開口を閉塞する略椀
状のエンドキャップ(蓋体)12Bとで構成され、且
つ、このエンドキャップ12Bの上面中心には円形の取
付孔12Dが形成されており、この取付孔12Dには電
動要素14に電力を供給するためのターミナル(配線を
省略)20が取り付けられている。
The closed container 12 has a bottom as an oil reservoir, and the container body 1 for accommodating the electric element 14 and the rotary compression mechanism 18
2A and a substantially bowl-shaped end cap (lid) 12B that closes the upper opening of the container body 12A, and a circular mounting hole 12D is formed at the center of the upper surface of the end cap 12B. A terminal (wiring is omitted) 20 for supplying electric power to the electric element 14 is attached to the attachment hole 12D.

【0015】電動要素14は、密閉容器12の上部空間
の内周面に沿って環状に取り付けられたステータ22
と、このステータ22の内側に若干の間隔を設けて挿入
設置されたロータ24とからなる。このロータ24は中
心を通り鉛直方向に延びる前記回転軸16に固定されて
いる。
The electric element 14 is a stator 22 mounted in an annular shape along the inner peripheral surface of the upper space of the closed container 12.
And a rotor 24 inserted and installed inside the stator 22 with a slight gap. The rotor 24 is fixed to the rotary shaft 16 that extends vertically through the center.

【0016】ステータ22は、ドーナッツ状の電磁鋼板
を積層した積層体26と、この積層体26の歯部に直巻
き(集中巻き)方式により巻装されたステータコイル2
8を有している。また、ロータ24もステータ22と同
様に電磁鋼板の積層体30で形成され、この積層体30
内に永久磁石MGを埋設して構成されている。
The stator 22 includes a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 2 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method.
Have eight. The rotor 24 is also formed of a laminated body 30 of electromagnetic steel plates, like the stator 22.
It is configured by embedding a permanent magnet MG therein.

【0017】前記第1の回転圧縮要素32と第2の回転
圧縮要素34との間には中間仕切板36が狭持されてい
る。即ち、回転圧縮機構部18の第1の回転圧縮要素3
2と第2の回転圧縮要素34は、中間仕切板36と、こ
の中間仕切板36の上下に配置された上側のシリンダ3
8、下側のシリンダ40と、180度の位相差を有して
回転軸16に設けた上下の偏心部42、44に嵌合され
て上下のシリンダ38、40内を偏心回転する上下のロ
ーラ46、48と、コイルバネ76、77と背圧により
付勢されて先端をこれら上下のローラ46、48にそれ
ぞれ当接させ、上下のシリンダ38、40内をそれぞれ
低圧室側LRと高圧室側HR(図2)に区画する上下の
ベーン50、52と、シリンダ38の上側の開口面及び
シリンダ40の下側の開口面を閉塞して回転軸16の軸
受けを兼用する支持部材としての上部支持部材54及び
下部支持部材56にて構成されている。
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 3 of the rotary compression mechanism portion 18
2 and the second rotary compression element 34 include an intermediate partition plate 36 and an upper cylinder 3 arranged above and below the intermediate partition plate 36.
8. Upper and lower rollers which are eccentrically rotated in the upper and lower cylinders 38 and 40 by being fitted to the lower cylinder 40 and the upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees. 46 and 48, coil springs 76 and 77, and back pressure to urge their tips into contact with the upper and lower rollers 46 and 48, respectively, so that the insides of the upper and lower cylinders 38 and 40 are in the low pressure chamber side LR and the high pressure chamber side HR, respectively. (FIG. 2) upper and lower vanes 50 and 52, and an upper support member as a support member that also serves as a bearing for the rotary shaft 16 by closing the upper opening surface of the cylinder 38 and the lower opening surface of the cylinder 40. 54 and a lower support member 56.

【0018】一方、上部支持部材54及び下部支持部材
56には、吸込ポート55(図2。下部支持部材56は
図示せず)にて上下のシリンダ38、40の内部とそれ
ぞれ連通する吸込通路60(上部支持部材54は図示せ
ず)と、一部を凹陥させ、この凹陥部を上カバー66、
下カバー68にて閉塞することにより形成される吐出消
音室62、64とが設けられている。
On the other hand, in the upper support member 54 and the lower support member 56, a suction passage 60 communicating with the insides of the upper and lower cylinders 38 and 40 through a suction port 55 (FIG. 2, the lower support member 56 is not shown). (The upper support member 54 is not shown) and a part thereof is recessed, and the recessed portion is covered by the upper cover 66,
Discharge silencing chambers 62 and 64 formed by closing with a lower cover 68 are provided.

【0019】尚、吐出消音室64と密閉容器12内と
は、上下のシリンダ38、40や中間仕切板36を貫通
する連通路にて連通されており、連通路の上端には中間
吐出管121が立設され、この中間吐出管121から第
1の回転圧縮要素32で圧縮された中間圧の冷媒が密閉
容器12内に吐出される。
The discharge muffler chamber 64 and the inside of the closed container 12 are communicated with each other by a communication passage that penetrates the upper and lower cylinders 38, 40 and the intermediate partition plate 36, and the intermediate discharge pipe 121 is provided at the upper end of the communication passage. Is erected, and the intermediate-pressure refrigerant compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the closed container 12.

【0020】そして、この場合冷媒としては地球環境に
やさしく、可燃性及び毒性等を考慮して自然冷媒である
前述した二酸化炭素(CO2)を使用し、潤滑油として
のオイルは、例えば鉱物油(ミネラルオイル)、アルキ
ルベンゼン油、エーテル油、エステル油、PAG(ポリ
アルキルグリコール)等該存のオイルが使用される。
In this case, the above-mentioned carbon dioxide (CO 2 ) which is a natural refrigerant in consideration of flammability and toxicity is used as the refrigerant, and the oil as the lubricating oil is, for example, a mineral oil. (Mineral oil), alkylbenzene oil, ether oil, ester oil, PAG (polyalkyl glycol) and other existing oils are used.

【0021】密閉容器12の容器本体12Aの側面に
は、上部支持部材54と下部支持部材56の吸込通路6
0(上側は図示せず)、吐出消音室62、上カバー66
の上側(電動要素14の下端に略対応する位置)に対応
する位置に、スリーブ141、142、143及び14
4がそれぞれ溶接固定されている。そして、スリーブ1
41内にはシリンダ38に冷媒ガスを導入するための冷
媒導入管92の一端が挿入接続され、この冷媒導入管9
2の一端はシリンダ38の図示しない吸込通路と連通す
る。この冷媒導入管92は密閉容器12の上側を通過し
てスリーブ144に至り、他端はスリーブ144内に挿
入接続されて密閉容器12内に連通する。
The suction passage 6 of the upper support member 54 and the lower support member 56 is provided on the side surface of the container body 12A of the closed container 12.
0 (upper side not shown), discharge muffling chamber 62, upper cover 66
Of the sleeves 141, 142, 143 and 14 at positions corresponding to the upper side of the (the position substantially corresponding to the lower end of the electric element 14).
4 are fixed by welding. And sleeve 1
One end of a refrigerant introducing pipe 92 for introducing a refrigerant gas into the cylinder 38 is inserted and connected in the cylinder 41.
One end of 2 communicates with a suction passage (not shown) of the cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the closed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 and communicates with the closed container 12.

【0022】また、スリーブ142内にはシリンダ40
に冷媒ガスを導入するための冷媒導入管94の一端が挿
入接続され、この冷媒導入管94の一端はシリンダ40
の吸込通路60と連通する。この冷媒導入管94の他端
は図示しないアキュムレータに接続される。また、スリ
ーブ143内には冷媒吐出管96が挿入接続され、この
冷媒導入管96の一端は吐出消音室62と連通する。
Further, the cylinder 40 is provided in the sleeve 142.
One end of a refrigerant introduction pipe 94 for introducing a refrigerant gas into the cylinder is inserted and connected, and one end of this refrigerant introduction pipe 94 is connected to the cylinder 40.
Of the suction passage 60. The other end of the refrigerant introducing pipe 94 is connected to an accumulator (not shown). A refrigerant discharge pipe 96 is inserted and connected in the sleeve 143, and one end of the refrigerant introduction pipe 96 communicates with the discharge muffling chamber 62.

【0023】次に、図2を参照しながら上記第2の回転
圧縮要素34のベーン50周辺の構造について説明す
る。シリンダ38には前記吐出消音室62と図示しない
吐出弁を介して連通する吐出ポート70と前述した吸込
ポート55が形成されており、これらの間に位置してシ
リンダ38には半径方向に延在する案内溝71が形成さ
れている。そして、この案内溝71内に前記ベーン50
は摺動自在に収納されている。
Next, the structure around the vane 50 of the second rotary compression element 34 will be described with reference to FIG. The cylinder 38 is formed with a discharge port 70 communicating with the discharge muffling chamber 62 via a discharge valve (not shown) and the suction port 55 described above, and is located between these and extends in the cylinder 38 in the radial direction. A guide groove 71 is formed. The vane 50 is placed in the guide groove 71.
Is slidably stored.

【0024】ベーン50は前述した如くその先端をロー
ラ46に当接させてシリンダ38内を低圧室側LRと高
圧室側HRとに区画する。そして、吸込ポート55はこ
の低圧室側LRに開口し、吐出ポート70は高圧室側H
Rに開口している。
As described above, the vane 50 has its tip abutted against the roller 46 to divide the inside of the cylinder 38 into the low pressure chamber side LR and the high pressure chamber side HR. The suction port 55 opens to the low pressure chamber side LR, and the discharge port 70 to the high pressure chamber side H.
It is open to R.

【0025】案内溝71の外側(密閉容器12側)には
当該案内溝71に連通して背圧室72がシリンダ38内
に形成されている。ここで、実施例の内部中間圧型多段
圧縮式ロータリコンプレッサ10では密閉容器12内が
中間圧となるため、第2の回転圧縮要素34ではベーン
50の背圧として利用できない。そのため、この背圧室
72は前記吐出消音室62に連通されており、それによ
ってベーン50に高圧の背圧を印加する。
A back pressure chamber 72 is formed inside the cylinder 38 outside the guide groove 71 (on the closed container 12 side) so as to communicate with the guide groove 71. Here, in the internal intermediate pressure type multi-stage compression rotary compressor 10 of the embodiment, the inside pressure of the hermetic container 12 is an intermediate pressure, and therefore the second rotary compression element 34 cannot use it as the back pressure of the vane 50. Therefore, the back pressure chamber 72 is communicated with the discharge muffling chamber 62, and thereby a high back pressure is applied to the vane 50.

【0026】尚、前記コイルバネ76はこの案内溝71
及び背圧室72の外側に延在してシリンダ38内に形成
された収納部内に収納され、ベーン50の外側に当接し
てベーン50の先端を常時ローラ46側に付勢する。
The coil spring 76 is provided in the guide groove 71.
Also, it is stored in a storage portion formed outside the back pressure chamber 72 and formed in the cylinder 38, and abuts on the outside of the vane 50 to constantly urge the tip end of the vane 50 toward the roller 46 side.

【0027】即ち、ベーン50は係るコイルバネ76の
付勢力と背圧室72からの高圧によってローラ46側に
付勢される。この場合、ベーン50の先端50Aは図2
の如く断面が円弧形状を呈している。また、この円弧の
半径は図3の如くベーン50の中央Cを境として低圧室
側LRと高圧室側HRとで異なる値とされており、高圧
室側HRの円弧の半径R2は低圧室側LRの円弧の半径
R1より小さく設定されている(R1>R2)。
That is, the vane 50 is biased toward the roller 46 by the biasing force of the coil spring 76 and the high pressure from the back pressure chamber 72. In this case, the tip 50A of the vane 50 is shown in FIG.
Like this, the cross section has an arc shape. Further, the radius of the arc is different between the low pressure chamber side LR and the high pressure chamber side HR with the center C of the vane 50 as a boundary, as shown in FIG. 3, and the radius R2 of the arc of the high pressure chamber side HR is the low pressure chamber side. It is set smaller than the radius R1 of the arc of LR (R1> R2).

【0028】係る構成により、ベーン50の先端50A
の表面積は、中央Cより高圧室側HRの部分の方が低圧
室側LRの部分よりも広くなる。これにより、シリンダ
38内の高圧室側HRの圧力(高圧)がより効果的にベ
ーン50の先端50Aに作用するように構成されてい
る。
With this configuration, the tip 50A of the vane 50 is
The surface area of is larger in the high pressure chamber side HR than in the center C than in the low pressure chamber side LR. As a result, the pressure (high pressure) on the high pressure chamber side HR in the cylinder 38 is configured to more effectively act on the tip 50A of the vane 50.

【0029】以上の構成で次に動作を説明する。ターミ
ナル20及び図示されない配線を介して電動要素14の
ステータコイル28に通電されると、電動要素14が起
動してロータ24が回転する。この回転により回転軸1
6と一体に設けた上下の偏心部42、44に嵌合された
上下のローラ46、48が上下のシリンダ38、40内
を偏心回転する。
Next, the operation of the above configuration will be described. When the stator coil 28 of the electric element 14 is energized via the terminal 20 and wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. Rotation axis 1 by this rotation
The upper and lower rollers 46 and 48 fitted in the upper and lower eccentric portions 42 and 44 provided integrally with the motor 6 rotate eccentrically in the upper and lower cylinders 38 and 40.

【0030】これにより、冷媒導入管94及び下部支持
部材56に形成された吸込通路60を経由して図示しな
い吸込ポートからシリンダ40の低圧室側に吸入された
低圧の冷媒は、ローラ48とベーン52の動作により圧
縮されて中間圧となりシリンダ40の高圧室側より図示
しない連通路を経て中間吐出管121から密閉容器12
内に吐出される。これによって、密閉容器12内は中間
圧となる。
As a result, the low-pressure refrigerant sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56, the rollers 48 and the vanes. By the operation of 52, it becomes an intermediate pressure and becomes an intermediate pressure from the high pressure chamber side of the cylinder 40 through the communication passage not shown to the intermediate discharge pipe 121 to the closed container 12
Is discharged inside. As a result, the pressure inside the closed container 12 becomes an intermediate pressure.

【0031】そして、密閉容器12内の中間圧の冷媒ガ
スは、スリ−ブ144から出て冷媒導入管92及び上部
支持部材54に形成された図示しない吸込通路を経由し
て吸込ポート55からシリンダ38の低圧室側LRに吸
入される。吸入された中間圧の冷媒ガスは、ローラ46
とベーン50の動作により2段目の圧縮が行われて高温
・高圧の冷媒ガスとなり、高圧室側HRから吐出ポート
70を通り上部支持部材54に形成された吐出消音室6
2、冷媒吐出管96を経由して外部の図示しないガスク
ーラなどに流入する。このガスクーラで冷媒は放熱した
後、図示しない減圧装置などで減圧され、これも図示し
ないエバポレータに流入する。
The intermediate pressure refrigerant gas in the hermetic container 12 exits from the sleeve 144, passes through the refrigerant introduction pipe 92 and the suction passage (not shown) formed in the upper support member 54, and from the suction port 55 to the cylinder. 38 is sucked into the low pressure chamber side LR. The sucked intermediate-pressure refrigerant gas is transferred to the roller 46.
The second stage compression is performed by the operation of the vane 50 and the vane 50 to become a high-temperature and high-pressure refrigerant gas, and the discharge silencer chamber 6 formed in the upper support member 54 from the high pressure chamber side HR through the discharge port 70.
2. It flows into the external gas cooler (not shown) via the refrigerant discharge pipe 96. After radiating the heat of the refrigerant in this gas cooler, it is decompressed by a decompression device (not shown) or the like and also flows into an evaporator (not shown).

【0032】そこで冷媒が蒸発し、その後、前記アキュ
ムレータを経て冷媒導入管94から第1の回転圧縮要素
32内に吸い込まれるサイクルを繰り返す。
Then, the refrigerant evaporates, and then the cycle in which the refrigerant is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 through the accumulator is repeated.

【0033】この場合、第2の回転圧縮要素34での圧
縮動作において、本発明では前述の如くローラ46に押
し付けられるベーン50の先端50Aの表面積を、シリ
ンダ38内の低圧室側LRに位置する部分より高圧室側
HRに位置する部分の方が大きくなるようにしているの
で、シリンダ38内の高圧室側HRの圧力がベーン50
の先端50Aに効果的に作用し、背圧室72からの圧力
によるローラ46へのベーン押し付け力が緩和される。
In this case, in the compression operation by the second rotary compression element 34, in the present invention, the surface area of the tip 50A of the vane 50, which is pressed against the roller 46 as described above, is located on the low pressure chamber side LR in the cylinder 38. Since the portion located on the high pressure chamber side HR is made larger than the portion, the pressure on the high pressure chamber side HR in the cylinder 38 is controlled by the vane 50.
Effectively acts on the front end 50A of the above, and the vane pressing force against the roller 46 due to the pressure from the back pressure chamber 72 is relaxed.

【0034】これにより、ベーン50が必要以上に強く
ローラ46に押し付けられ、面圧が異常に高くなること
を解消して、ベーン50の先端50Aの信頼性を向上さ
せることができるようになると共に、ローラ46がベー
ン50を案内溝71側に押し込む仕事も軽くなるので、
圧縮効率も改善される。
As a result, the vane 50 is pressed against the roller 46 more strongly than necessary, and the surface pressure is prevented from becoming abnormally high, and the reliability of the tip 50A of the vane 50 can be improved. Since the roller 46 also reduces the work of pushing the vane 50 into the guide groove 71 side,
The compression efficiency is also improved.

【0035】また、ベーン50の先端50Aは低圧室側
LRも高圧室側HRも円弧状(半径は異なる)であるの
で、ベーン50の先端50Aがローラ46に食い込む噛
みつき現象が生じることもない。
Further, since the tip 50A of the vane 50 has an arc shape (having different radii) on both the low pressure chamber side LR and the high pressure chamber side HR, there is no occurrence of biting phenomenon in which the tip 50A of the vane 50 bites into the roller 46.

【0036】ここで、図4は本発明の他の実施例のベー
ン50の先端50Aの形状を示している。この場合、ベ
ーン50の先端50Aは断面が全体として半径Rの円弧
形状を呈しているが、この円弧の中心Oは、ベーン50
の中央Cよりも寸法Sだけ低圧室側LRに偏位してい
る。係る構成によっても、前述同様にベーン50の先端
50Aの表面積は、中央Cより高圧室側HRの部分の方
が低圧室側LRの部分よりも広くなる。これにより、シ
リンダ38内の高圧室側HRの圧力(高圧)がより効果
的にベーン50の先端50Aに作用するようになって、
前述同様の効果を奏する。
Here, FIG. 4 shows the shape of the tip 50A of the vane 50 of another embodiment of the present invention. In this case, the tip 50 </ b> A of the vane 50 has a circular cross section with a radius R as a whole, but the center O of this arc is the vane 50.
Is deviated to the low pressure chamber side LR by the dimension S from the center C of. With this configuration as well, the surface area of the tip end 50A of the vane 50 is larger at the high pressure chamber side HR than at the center C than at the low pressure chamber side LR, as described above. As a result, the pressure (high pressure) on the high pressure chamber side HR in the cylinder 38 acts on the tip 50A of the vane 50 more effectively,
The same effect as described above is achieved.

【0037】特に、この場合にはベーン50の円弧半径
が一様であるので、ベーン50の加工も容易となる効果
がある。
Particularly, in this case, since the arc radius of the vane 50 is uniform, the vane 50 can be easily machined.

【0038】尚、実施例では内部中間圧型多段圧縮式の
ロータリコンプレッサに本発明を適用したが、それに限
らず、単シリンダのロータリコンプレッサにおいても本
発明は有効である。また、使用する冷媒も請求項1乃至
請求項4では二酸化炭素(CO2)に限定されない。
In the embodiment, the present invention is applied to the internal intermediate pressure type multi-stage compression type rotary compressor, but the present invention is not limited to this, and the present invention is also effective for a single cylinder rotary compressor. Further, the refrigerant to be used is not limited to carbon dioxide (CO 2 ) in claims 1 to 4.

【0039】[0039]

【発明の効果】以上詳述した如く本発明によれば、ロー
ラに押し付けられるベーン先端の表面積は、シリンダ内
の低圧室側に位置する部分より高圧室側に位置する部分
の方が大きくなる。これにより、シリンダ内の高圧室側
の圧力をベーン先端に効果的に作用させ、背圧室からの
圧力によるローラへのベーン押し付け力を緩和してベー
ン先端の信頼性を向上させることができるようになると
共に、圧縮効率も改善することが可能となる。
As described above in detail, according to the present invention, the surface area of the tip of the vane pressed against the roller is larger in the portion located in the high pressure chamber side than in the portion located in the low pressure chamber side in the cylinder. As a result, the pressure on the high pressure chamber side in the cylinder can be effectively applied to the tip of the vane, and the vane pressing force on the roller due to the pressure from the back pressure chamber can be mitigated to improve the reliability of the vane tip. In addition, the compression efficiency can be improved.

【0040】また、ベーン先端は低圧室側も高圧室側も
円弧状であるので、所謂ローラへの噛みつき現象が生じ
ることもない。特に、請求項3や請求項4の如く内部中
間圧型多段圧縮式のロータリコンプレッサの第2の回転
圧縮要素では、背圧室に高圧が印加されることになるの
で、本発明は極めて有効である。また、請求項5の如く
高低圧差が大きくなるCO2冷媒を圧縮する場合には、
その効果は一層顕著なものとなる。
Further, since the vane tip is arcuate on both the low-pressure chamber side and the high-pressure chamber side, the so-called roller biting phenomenon does not occur. Particularly, in the second rotary compression element of the internal intermediate pressure type multi-stage compression type rotary compressor as in claims 3 and 4, a high pressure is applied to the back pressure chamber, so the present invention is extremely effective. . Further, when compressing the CO 2 refrigerant in which the high-low pressure difference becomes large as in claim 5,
The effect becomes more remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の内部中間圧型多段圧縮式ロー
タリコンプレッサの縦断面図である。
FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage compression rotary compressor according to an embodiment of the present invention.

【図2】図1の第2の回転圧縮要素のベーン部分の拡大
平断面図である。
2 is an enlarged plan sectional view of a vane portion of the second rotary compression element of FIG. 1. FIG.

【図3】図2のベーン先端部の拡大図である。3 is an enlarged view of the vane tip portion of FIG. 2. FIG.

【図4】本発明の他の実施例のベーン先端部の拡大図で
ある。
FIG. 4 is an enlarged view of a vane tip portion according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 多段圧縮式ロータリコンプレッサ 32 第1の回転圧縮要素 34 第2の回転圧縮要素 38 シリンダ 42 偏心部 46 ローラ 50 ベーン 71 案内溝 72 背圧室 10 Multi-stage compression rotary compressor 32 First rotary compression element 34 Second rotary compression element 38 cylinders 42 Eccentric part 46 Laura 50 vanes 71 guide groove 72 Back pressure chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 孝 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 松森 裕之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 松浦 大 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Sato             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Hiroyuki Matsumori             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Dai Matsuura             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内に電動要素と、該電動要素に
て駆動される回転圧縮要素を備えたロータリコンプレッ
サにおいて、 前記回転圧縮要素を構成するためのシリンダ及び前記電
動要素の回転軸に形成された偏心部に嵌合されて前記シ
リンダ内で偏心回転するローラと、 該ローラに当接して前記シリンダ内を低圧室側と高圧室
側に区画するベーンと、 前記シリンダに形成され、前記ベーンを収納するための
案内溝と、 前記シリンダに形成され、前記ベーンに背圧を加えるた
め、案内溝に連通する背圧室とを備え、 前記ベーン先端の断面形状を円弧状と成すと共に、当該
ベーンの前記高圧室側の円弧の半径を、前記低圧室側の
円弧の半径よりも小さくしたことを特徴とするロータリ
コンプレッサ。
1. A rotary compressor provided with an electric element in a closed container and a rotary compression element driven by the electric element, wherein a cylinder for constituting the rotary compression element and a rotary shaft of the electric element are formed. A roller that is fitted into the eccentric portion and rotates eccentrically in the cylinder; a vane that abuts the roller to divide the inside of the cylinder into a low pressure chamber side and a high pressure chamber side; and a vane formed in the cylinder. And a back pressure chamber that is formed in the cylinder and that communicates with the guide groove to apply back pressure to the vane, and the vane tip has an arc-shaped cross-sectional shape. A rotary compressor characterized in that a radius of an arc of the vane on the high-pressure chamber side is smaller than a radius of an arc on the low-pressure chamber side.
【請求項2】 密閉容器内に電動要素と、該電動要素に
て駆動される回転圧縮要素を備えたロータリコンプレッ
サにおいて、 前記回転圧縮要素を構成するためのシリンダ及び前記電
動要素の回転軸に形成された偏心部に嵌合されて前記シ
リンダ内で偏心回転するローラと、 該ローラに当接して前記シリンダ内を低圧室側と高圧室
側に区画するベーンと、 前記シリンダに形成され、前記ベーンを収納するための
案内溝と、 前記シリンダに形成され、前記ベーンに背圧を加えるた
め、案内溝に連通する背圧室とを備え、 前記ベーン先端の断面形状を円弧状と成すと共に、当該
円弧の中心をベーンの中央より前記低圧室側に偏位させ
たことを特徴とするロータリコンプレッサ。
2. A rotary compressor comprising an electric element and a rotary compression element driven by the electric element in a closed container, wherein a cylinder for constituting the rotary compression element and a rotary shaft of the electric element are formed. A roller that is fitted into the eccentric portion and rotates eccentrically in the cylinder; a vane that abuts the roller to divide the inside of the cylinder into a low pressure chamber side and a high pressure chamber side; and a vane formed in the cylinder. And a back pressure chamber that is formed in the cylinder and that communicates with the guide groove to apply back pressure to the vane, and the vane tip has an arc-shaped cross-sectional shape. A rotary compressor characterized in that the center of an arc is deviated from the center of a vane to the low-pressure chamber side.
【請求項3】 密閉容器内に電動要素と、該電動要素に
て駆動される第1及び第2の回転圧縮要素を備え、前記
第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容
器内に吐出し、更にこの吐出された中間圧の冷媒ガスを
前記第2の回転圧縮要素で圧縮するロータリコンプレッ
サにおいて、 前記第2の回転圧縮要素を構成するためのシリンダ及び
前記電動要素の回転軸に形成された偏心部に嵌合されて
前記シリンダ内で偏心回転するローラと、 該ローラに当接して前記シリンダ内を低圧室側と高圧室
側に区画するベーンと、 前記シリンダに形成され、前記ベーンを収納するための
案内溝と、 前記シリンダに形成され、前記ベーンに背圧を加えるた
め、案内溝に連通する背圧室とを備え、 前記ベーン先端の断面形状を円弧状と成すと共に、当該
ベーンの前記高圧室側の円弧の半径を、前記低圧室側の
円弧の半径よりも小さくしたことを特徴とするロータリ
コンプレッサ。
3. An airtight container comprising an electric element and first and second rotary compression elements driven by the electric element, wherein the refrigerant gas compressed by the first rotary compression element is contained in the airtight container. A rotary compressor that discharges into the interior of the rotary compressor and further compresses the discharged intermediate-pressure refrigerant gas by the second rotary compression element, wherein a cylinder for configuring the second rotary compression element and a rotary shaft of the electric element A roller fitted to an eccentric part formed in the cylinder and rotating eccentrically in the cylinder; a vane that abuts the roller to divide the cylinder into a low pressure chamber side and a high pressure chamber side; A guide groove for accommodating the vane; and a back pressure chamber formed in the cylinder and communicating with the guide groove for applying a back pressure to the vane. The vane tip has an arc-shaped cross-section. , Rotary compressor, characterized in that the radius of the high-pressure chamber side arc of the vane, is smaller than the radius of the arc of the low-pressure chamber side.
【請求項4】 密閉容器内に電動要素と、該電動要素に
て駆動される第1及び第2の回転圧縮要素を備え、前記
第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容
器内に吐出し、更にこの吐出された中間圧の冷媒ガスを
前記第2の回転圧縮要素で圧縮するロータリコンプレッ
サにおいて、 前記第2の回転圧縮要素を構成するためのシリンダ及び
前記電動要素の回転軸に形成された偏心部に嵌合されて
前記シリンダ内で偏心回転するローラと、 該ローラに当接して前記シリンダ内を低圧室側と高圧室
側に区画するベーンと、 前記シリンダに形成され、前記ベーンを収納するための
案内溝と、 前記シリンダに形成され、前記ベーンに背圧を加えるた
め、案内溝に連通する背圧室とを備え、 前記ベーン先端の断面形状を円弧状と成すと共に、当該
円弧の中心をベーンの中央より前記低圧室側に偏位させ
たことを特徴とするロータリコンプレッサ。
4. A hermetic container provided with an electric element and first and second rotary compression elements driven by the electric element in a hermetic container, wherein the refrigerant gas compressed by the first rotary compression element is contained in the hermetic container. A rotary compressor that discharges into the interior of the rotary compressor and further compresses the discharged intermediate-pressure refrigerant gas by the second rotary compression element, wherein a cylinder for configuring the second rotary compression element and a rotary shaft of the electric element A roller fitted to an eccentric part formed in the cylinder and rotating eccentrically in the cylinder; a vane that abuts the roller to divide the cylinder into a low pressure chamber side and a high pressure chamber side; A guide groove for accommodating the vane; and a back pressure chamber formed in the cylinder and communicating with the guide groove for applying a back pressure to the vane. The vane tip has an arc-shaped cross-section. , Rotary compressor is characterized in that the center of the arc is offset from the center of the vane in the low pressure chamber side.
【請求項5】 前記回転圧縮要素はCO2冷媒を圧縮す
ることを特徴とする請求項1、請求項2、請求項3又は
請求項4のロータリコンプレッサ。
5. The rotary compressor according to claim 1, 2, 3, or 4, wherein the rotary compression element compresses CO 2 refrigerant.
JP2002098536A 2002-04-01 2002-04-01 Rotary compressor Pending JP2003293971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098536A JP2003293971A (en) 2002-04-01 2002-04-01 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098536A JP2003293971A (en) 2002-04-01 2002-04-01 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2003293971A true JP2003293971A (en) 2003-10-15

Family

ID=29240484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098536A Pending JP2003293971A (en) 2002-04-01 2002-04-01 Rotary compressor

Country Status (1)

Country Link
JP (1) JP2003293971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077946A (en) * 2005-09-16 2007-03-29 Matsushita Electric Ind Co Ltd Multistage rotary expander
US20080050995A1 (en) 2004-08-06 2008-02-28 Lai John T Hydroxyl-Terminated Thiocarbonate Containing Compounds, Polymers, and Copolymers, and Polyurethanes and Urethane Acrylics Made Therefrom
US7563080B2 (en) 2004-05-11 2009-07-21 Daikin Industries, Ltd. Rotary compressor
CN104595195A (en) * 2014-12-04 2015-05-06 广东美芝制冷设备有限公司 Low-backpressure rotary type compressor
CN105840500A (en) * 2015-04-02 2016-08-10 熵零股份有限公司 Three-cylinder coaxial fluid mechanism
CN111520324A (en) * 2019-02-05 2020-08-11 日立江森自控空调有限公司 Rotary compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563080B2 (en) 2004-05-11 2009-07-21 Daikin Industries, Ltd. Rotary compressor
US20080050995A1 (en) 2004-08-06 2008-02-28 Lai John T Hydroxyl-Terminated Thiocarbonate Containing Compounds, Polymers, and Copolymers, and Polyurethanes and Urethane Acrylics Made Therefrom
JP2007077946A (en) * 2005-09-16 2007-03-29 Matsushita Electric Ind Co Ltd Multistage rotary expander
CN104595195A (en) * 2014-12-04 2015-05-06 广东美芝制冷设备有限公司 Low-backpressure rotary type compressor
CN105840500A (en) * 2015-04-02 2016-08-10 熵零股份有限公司 Three-cylinder coaxial fluid mechanism
CN111520324A (en) * 2019-02-05 2020-08-11 日立江森自控空调有限公司 Rotary compressor
JP2020125716A (en) * 2019-02-05 2020-08-20 日立ジョンソンコントロールズ空調株式会社 Rotary compressor
CN111520324B (en) * 2019-02-05 2021-11-02 日立江森自控空调有限公司 Rotary compressor
JP7218195B2 (en) 2019-02-05 2023-02-06 日立ジョンソンコントロールズ空調株式会社 rotary compressor

Similar Documents

Publication Publication Date Title
JP2006207532A (en) Rotary compressor
JP3291484B2 (en) 2-stage compression type rotary compressor
JP2003293971A (en) Rotary compressor
JP2006097549A (en) Compressor
WO2011125652A1 (en) Rotary compressor
JP3762693B2 (en) Multi-stage rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP2003269351A (en) Rotary compressor
JP2003293972A (en) Rotary compressor
JP2001153076A (en) Two-stage compression rotary compressor
JP2003286985A (en) Rotary compressor
JP2003166488A (en) Multi-stage compression type rotary compressor
JP2004251150A (en) Multistage compression type rotary compressor
JP2003286984A (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP2003286982A (en) Rotary compressor
JP2006207535A (en) Rotary compressor
JP2005113878A (en) Rotary compressor
JP3579323B2 (en) 2-cylinder 2-stage compression rotary compressor
JP2006022766A (en) Multi-cylinder rotary compressor
JP2007092738A (en) Compressor
JP2003286980A (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP2006214375A (en) Rotary compressor
JP3863799B2 (en) Multi-stage rotary compressor
JP2003106276A (en) Two-stage compression type rotary compressor
JP2003214366A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Effective date: 20060515

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060522

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061002

Free format text: JAPANESE INTERMEDIATE CODE: A02