JP2003106276A - Two-stage compression type rotary compressor - Google Patents

Two-stage compression type rotary compressor

Info

Publication number
JP2003106276A
JP2003106276A JP2002270079A JP2002270079A JP2003106276A JP 2003106276 A JP2003106276 A JP 2003106276A JP 2002270079 A JP2002270079 A JP 2002270079A JP 2002270079 A JP2002270079 A JP 2002270079A JP 2003106276 A JP2003106276 A JP 2003106276A
Authority
JP
Japan
Prior art keywords
stage compression
compression element
rotary compressor
refrigerant
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002270079A
Other languages
Japanese (ja)
Inventor
Masaya Tadano
昌也 只野
Atsushi Oda
淳志 小田
Toshiyuki Ebara
俊行 江原
Takashi Yamakawa
貴志 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002270079A priority Critical patent/JP2003106276A/en
Publication of JP2003106276A publication Critical patent/JP2003106276A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Abstract

PROBLEM TO BE SOLVED: To provide a two-stage compression type rotary compressor in which rotary compression elements are fixed to an inner surface of a sealed vessel without degrading the compression performance or the reliability. SOLUTION: In this two-stage compression type rotary compressor of a carbon dioxide refrigerant forming a two-stage compression mechanism with a discharge side of a low-stage compression element 32 connected in series to an intake side of a high-stage compression element 34, the fitting clearance of components in the low-stage compression element 32 is set to be smaller than that in the high-stage compression element 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は、2段圧縮式ロータ
リコンプレッサにする。
TECHNICAL FIELD The present invention relates to a two-stage compression rotary compressor.

【従来の技術】従来、密閉容器内に電動要素と、この電
動要素に連結されるクランク軸により駆動される2個の
回転圧縮要素を配置収納した2段圧縮式ロータリコンプ
レッサが種々提案されている。具体的には、図4に示す
ように、密閉容器1003内の上部に駆動電動機100
5を、下部に駆動電動機1005の回転軸1005cに
連結し、且つ上下2段に形成された回転圧縮機構(上部
は低圧圧縮機構1007,下部は高圧圧縮機構100
9)を、底部に油溜を配置し、低圧圧縮機構1007、
高圧圧縮機構1009の各シリンダ1007c(100
9c)を吸入室と圧縮室とに区画するベーン(図示せ
ず)の背面が密閉容器1003の内部空間に通じてお
り、ベーンへの背圧付勢力をバネ装置の反力と密閉容器
1003内圧力とで形成している。そして、低圧圧縮機
構1007の吐出冷媒ガスは、吐出管1007e及び連
通管1009dを介して高圧圧縮機構1009に導入さ
れる。高圧圧縮機構1009で再圧縮された吐出冷媒ガ
スは、吐出管1009eを介して、密閉容器1003内
に放出され、密閉容器1003を内部高圧にした後、密
閉容器1003の上部に設けられた吐出管1009e'
を介して外部の凝縮器(図示せず)に送出され、膨張
弁、気液分離器、蒸発器(図示せず)を順次経由して、
吸入管1007dを通じて再び低圧圧縮機構1007に
戻り、蒸気圧縮式冷凍サイクルを実現している。そし
て、上記した従来装置では、密閉容器内圧力は高圧圧縮
機構1009の吐出圧力と略同等の高圧圧力となるた
め、密閉容器1003内の高圧ガスが圧力差が大きい低
圧圧縮機構1007へリーク侵入していた。また、一般
に1段目の低圧圧縮機構1007の吸気効率がコンプレ
ッサ全体の体積効率に与える影響が大きいため、上述の
低圧圧縮機構1007への高圧ガスリークに伴い体積効
率及び圧縮効率が低下する虞れがあった。
2. Description of the Related Art Conventionally, various two-stage compression type rotary compressors have been proposed in which an electric element and two rotary compression elements driven by a crankshaft connected to the electric element are arranged and housed in a closed container. . Specifically, as shown in FIG. 4, the drive motor 100 is installed in the upper part of the closed container 1003.
5 is connected to the rotary shaft 1005c of the drive motor 1005 in the lower part, and is formed in two stages of upper and lower sides (the upper part is the low pressure compression mechanism 1007, the lower part is the high pressure compression mechanism 100).
9), an oil reservoir is arranged at the bottom, and a low pressure compression mechanism 1007,
Each cylinder 1007c (100
The back surface of the vane (not shown) that divides 9c) into the suction chamber and the compression chamber communicates with the internal space of the closed container 1003, and the back pressure biasing force to the vane is applied to the reaction force of the spring device and the closed container 1003. Formed with pressure. Then, the refrigerant gas discharged from the low-pressure compression mechanism 1007 is introduced into the high-pressure compression mechanism 1009 via the discharge pipe 1007e and the communication pipe 1009d. The discharge refrigerant gas recompressed by the high-pressure compression mechanism 1009 is discharged into the closed container 1003 via the discharge pipe 1009e, and after the inside pressure of the closed container 1003 is increased to high, the discharge pipe provided above the closed container 1003. 1009e '
To an external condenser (not shown) through the expansion valve, a gas-liquid separator, and an evaporator (not shown) in order,
It returns to the low pressure compression mechanism 1007 again through the suction pipe 1007d to realize the vapor compression refrigeration cycle. In the above-described conventional apparatus, the pressure inside the closed container becomes a high pressure substantially equal to the discharge pressure of the high pressure compression mechanism 1009, so that the high pressure gas inside the closed container 1003 leaks into the low pressure compression mechanism 1007 having a large pressure difference. Was there. Further, generally, the intake efficiency of the first-stage low-pressure compression mechanism 1007 has a great influence on the volumetric efficiency of the entire compressor, and therefore there is a risk that the volumetric efficiency and the compression efficiency will decrease due to the high-pressure gas leak to the low-pressure compression mechanism 1007 described above. there were.

【発明が解決しようとする課題】この対策として、密閉
容器1003内を内部高圧とする場合に、低圧圧縮機構
1007における構成部品相互の嵌合クリアランスを、
高圧圧縮機構1009における構成部品相互の嵌合クリ
アランスよりも小さく設定して、低圧圧縮機構1007
のシリンダ1007c室へのリーク侵入ガス量を低減さ
せる構成が考えられる。一方、上記した従来装置では回
転圧縮機構を密閉容器1003の内面に固定させるため
に、例えばシリンダ1007c(1009c)を密閉容
器1003にタック溶接している。しかし、一般に斯か
る溶接による応力で、溶接したシリンダ1007c(1
009c)の内径やベーンが摺動する摺動溝が歪む虞れ
があった。このため、上述したように低圧圧縮機構10
07における構成部品相互の嵌合クリアランスを、高圧
圧縮機構1009における構成部品相互の嵌合クリアラ
ンスよりも小さく設定し、回転圧縮機構を密閉容器10
03に固定させる場合に、嵌合クリアランスが小さい低
圧圧縮機構1007のシリンダ1007cをタック溶接
した場合には、適正な構成部品相互の嵌合クリアランス
が形成されず、最悪の場合には、コンプレッサがロック
してしまう虞れがあった。本発明は斯かる点に鑑みてな
されたものであって、圧縮性能や信頼性を低下させるこ
となく、密閉容器の内面に回転圧縮要素を固定した2段
圧縮式ロータリコンプレッサを提供することを目的とす
る。
As a countermeasure against this, when the internal high pressure is set in the closed container 1003, the fitting clearance between the components in the low pressure compression mechanism 1007 is
The low pressure compression mechanism 1007 is set to be smaller than the fitting clearance between the components of the high pressure compression mechanism 1009.
A configuration is conceivable in which the amount of gas leaking into the cylinder 1007c chamber is reduced. On the other hand, in the above-mentioned conventional apparatus, in order to fix the rotary compression mechanism to the inner surface of the closed container 1003, for example, the cylinder 1007c (1009c) is tack-welded to the closed container 1003. However, in general, the stress caused by such welding causes the welded cylinder 1007c (1
There was a possibility that the inner diameter of 009c) or the sliding groove on which the vane slides would be distorted. Therefore, as described above, the low pressure compression mechanism 10
The fitting clearance between the components in 07 is set to be smaller than the fitting clearance between the components in the high-pressure compression mechanism 1009, and the rotary compression mechanism is closed.
When the cylinder 1007c of the low-pressure compression mechanism 1007 having a small fitting clearance is tack-welded when it is fixed to No. 03, proper fitting clearances between the components are not formed, and in the worst case, the compressor is locked. There was a risk of doing it. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a two-stage compression rotary compressor in which a rotary compression element is fixed to the inner surface of a closed container without degrading compression performance and reliability. And

【課題を解決するための手段】本発明は、密閉容器の内
部に電動要素と、該電動要素に連結される駆動軸により
駆動される回転圧縮要素とを配置し、該回転圧縮要素
は、ローラとベーンとを内装するシリンダが中間仕切板
を介して夫々配置された低段圧縮要素及び高段圧縮要素
と、該各圧縮要素の開口面を閉塞し、前記駆動軸の軸受
部を兼用する上部支持部材及び下部支持部材とを備え、
前記低段圧縮要素の吐出側と前記高段圧縮要素の吸入側
とを直列接続した2段圧縮機構を形成すると共に、冷媒
として二酸化炭素を用い、該冷媒を超臨界圧力まで圧縮
する2段圧縮式ロータリコンプレッサにおいて、前記低
段圧縮要素における構成部品相互の嵌合クリアランス
を、前記高段圧縮要素における構成部品相互の嵌合クリ
アランスよりも小さく設定することを特徴とするもので
ある。この構成を用いることにより、密閉容器内の高圧
ガスが圧力差の大きい低段圧縮要素へリーク侵入するの
を低減できると共に、高段圧縮要素のシリンダの溶接等
によりその嵌合クリアランスが変化したとしても、コン
プレッサがロックしてしまうことはない。また、ローラ
をシリンダ内で公転させる駆動軸を備え、該ローラを駆
動軸に共回りしない非自転式に構成しても良い。具体的
には、ローラの外周部筒面にベーンを突設すると共に、
前記ベーンの突設先端側をシリンダ室内の外方に回転自
在に支持する揺動体に進退自由に係合させて、前記ロー
ラを非自転式に構成しても良い。この構成を用いること
により、ベーンとローラとを一体化した揺動型ロータリ
コンプレッサにおいても、同様の効果を期待し得る。更
に、前記高段圧縮要素で圧縮した冷媒を前記密閉容器の
内部に排出して、該密閉容器内を内部高圧とした構成と
しても良い。
According to the present invention, an electric element and a rotary compression element driven by a drive shaft connected to the electric element are arranged inside a sealed container, and the rotary compression element is a roller. A lower stage compression element and a higher stage compression element in which cylinders containing a vane and a vane are respectively arranged via an intermediate partition plate, and an upper portion that closes the opening surface of each compression element and also serves as a bearing portion of the drive shaft. A support member and a lower support member,
A two-stage compression mechanism that forms a two-stage compression mechanism in which the discharge side of the low-stage compression element and the suction side of the high-stage compression element are connected in series and uses carbon dioxide as a refrigerant to compress the refrigerant to a supercritical pressure. In the rotary compressor, the fitting clearance between the components of the low-stage compression element is set to be smaller than the fitting clearance between the components of the high-stage compression element. By using this configuration, it is possible to reduce the leakage of high-pressure gas in the closed container into the low-stage compression element having a large pressure difference, and it is possible that the fitting clearance changes due to welding of the cylinder of the high-stage compression element or the like. However, the compressor never locks up. In addition, a drive shaft that revolves the roller in the cylinder may be provided, and the roller may be configured as a non-rotating type that does not rotate with the drive shaft. Specifically, while the vane is projected on the outer peripheral cylindrical surface of the roller,
The roller may be configured to be a non-rotating type by engaging the projecting tip side of the vane with an oscillating body that rotatably supports the outside of the cylinder chamber so as to freely move back and forth. By using this configuration, the same effect can be expected in an oscillating rotary compressor in which vanes and rollers are integrated. Further, the refrigerant compressed by the high-stage compression element may be discharged into the closed container so that the inside of the closed container has an internal high pressure.

【発明の実施の形態】以下、本発明の一実施形態例につ
いて、以下に示す図面に基づいて説明する。図1は、本
発明の一実施形態例である内部高圧型2段圧縮式ロータ
リコンプレッサの要部縦断面図である。図1において、
本実施の形態例の2段圧縮式ロータリコンプレッサ10
は、鋼板からなる円筒状密閉容器12、この密閉容器1
2内の上部空間に配置された電動要素としての駆動電動
機14、及び電動機14の下部空間に配置され、且つこ
の電動機14に連結されるクランク軸(駆動軸)16に
より駆動される圧縮要素としての回転圧縮機構18を含
む。また、密閉容器12は底部をオイル溜とし、電動機
14及び回転圧縮機構18を収容する12Aと、この容
器本体12Aの上部開口を密閉する蓋体12Bとの2部
材で構成され、蓋体12Bには電動機14に外部電力を
供給するターミナル端子(給電配線は省略)20が取り
付けてられている。電動機14は、密閉容器12の上部
空間の内周に沿って環状に取り付けられたステータ22
と、このステータ22の内側に若干の間隙を設けて配置
されたロータ24とからなる。このロータ24には、そ
の中心を通り鉛直方向に延びるクランク軸16が一体に
設けられている。ステータ22は、リング状の電磁鋼板
を積層した積層体26と、この積層体26に巻装された
複数のコイル28を有している。また、ロータ24もス
テータ22と同じように電磁鋼板の積層体30で構成さ
れている。本実施の形態例では、電動機14として交流
モータを用いているが、永久磁石を埋装しDCモータと
する場合もある。回転圧縮機構18は、低段圧縮要素3
2と高段圧縮要素34を含む。すなわち、中間仕切板3
6と、この中間仕切板36の上下に設けられた上下シリ
ンダ38、40と、この上下シリンダ38、40内をク
ランク軸16に設けた上下偏心部42、44に連結され
て回転する上下ローラ46、48と、この上下ローラ4
6、48に当接して上下各シリンダ38、40内を吸入
室(吸入側)と圧縮室(吐出側)に区画する上下ベーン
50、52と、上下シリンダ38、40の各開口面を閉
塞するクランク軸16の各軸受部を兼用する上部支持部
材54と下部支持部材56とで構成される。また、上部
支持部材54及び下部支持部材56には、図示しない弁
装置を介して上下シリンダ38、40と適宜連通する吐
出消音室58、60が形成されると共に、これらの各吐
出消音室等の開口部は上部プレート62と下部プレート
64で閉塞されている。また、上下ベーン50、52
は、上下シリンダ38、40のシリンダ壁に形成された
半径方向の案内溝66、68に摺動可能に配置され、且
つスプリング70、72により上下ローラ46、48に
常時当接するように付勢されている。そして、下シリン
ダ40では1段目(低段側)の圧縮作用が行われ、上シ
リンダ38では下シリンダ40で圧縮された冷媒ガスを
更に圧縮する2段目(高段側)の圧縮作用が行われる。
そして、上述の回転圧縮機構18を構成する上部支持部
材54、上シリンダ38、中間仕切板36、下シリンダ
40及び下部支持部材56は、この順に配置され上部プ
レート62及び下部プレート64と共に複数本の取付ボ
ルト74を用いて連結固定させれている。また、クラン
ク軸16には軸中心にストレートのオイル孔76とこの
孔76に横方向の給油孔78,80を介して連なる螺旋
状給油溝82,84を外周面に形成して、軸受け及び各
摺動部にオイルを供給するようにしている。この実施形
態例では、冷媒としてR404Aを使用し、また、潤滑
油としてのオイルは、例えば鉱物油(ミネラルオイ
ル)、アルキルベンゼン油、PAGオイル(ポリアルキ
レングリコール系オイル)、エーテル油、エステル油等
既存のオイルが使用している。上述の回転圧縮機構18
の低段圧縮要素32では、吸入側冷媒圧力が0.05M
Paであり、吐出側冷媒圧力が0.18MPaである。
そして、高段圧縮要素34では、吸入側冷媒圧力が0.
18MPaであり、吐出側冷媒圧力が1.90MPaで
ある。また、上下シリンダ38、40には、冷媒を導入
する上下冷媒吸込通路(図示せず)と、圧縮された冷媒
を吐出消音室58、60を経由して吐出する冷媒吐出通
路86とが設けられている。そして、この各冷媒吸込通
路と冷媒吐出通路86には、密閉容器12に固定される
接続管90、92、94を介して冷媒配管98、10
0、102が接続される。また、冷媒配管100および
102の間には、気液分離器として作用するサクション
マフラー106が接続されている。さらに、上部プレー
ト62には上部支持部材54の吐出消音室58と、密閉
容器12の内部空間とを連通状態とする吐出管108が
設けられており、2段目(高段圧縮要素34)の圧縮冷
媒ガスを密閉容器12内に直接吐出し、密閉容器12を
内部高圧にした後、密閉容器12上部の蓋体12Bに固
定される接続管96及び冷媒配管104を介して外部の
凝縮器(図示せず)に送出され、膨張弁、気液分離器、
蒸発器(図示せず)を順次経由して、冷媒配管98、接
続管90及び上シリンダ38の上冷媒吸込通路を通じて
再び低段圧縮要素32に戻り、蒸気圧縮式冷凍サイクル
を実現している。また、低段圧縮要素32における構成
部品相互の嵌合クリアランスを、高段圧縮要素34にお
ける構成部品相互の嵌合クリアランスよりも小さく設定
している。具体的には、低段圧縮要素32における構成
部品相互の嵌合クリアランスを10μmに、高段圧縮要
素34における構成部品相互の嵌合クリアランスを20
μmに設定している。これにより、密閉容器12内の高
圧ガスが圧力差の大きい低段圧縮要素32へリーク侵入
するのを低減でき、体積効率及び圧縮効率を向上させる
ことができる。さらに、高段圧縮要素34の上シリンダ
38は密閉容器12の内面にタック溶接により固定され
ている。この上シリンダ38の溶接によりその嵌合クリ
アランスが歪んだとしても、上記したように高段圧縮要
素34における構成部品相互の嵌合クリアランスを比較
的大きく設定しているため、コンプレッサがロックして
しまうことはない。次に、上述した図1の2段圧縮式ロ
ータリコンプレッサ10の動作概要について説明する。
まず、ターミナル端子20及び給電配線(図示せず)を
介して電動機14のコイル28に給電すると、ロータ2
4が回転しそれに固定されたクランク軸16が回転す
る。この回転によりクランク軸16と一体的に設けられ
た上下偏心部42、44に連結された上下ローラ46、
48が上下シリンダ38、40内を偏心回転する。これ
により、冷媒配管98、冷媒吸込通路(図示せず)を経
由して、図2に示すように吸入ポート118から下シリ
ンダ40の吸入室40aに吸入された冷媒ガスは、下ロ
ーラ48と下ベーン52の動作により1段目の圧縮が行
われる。そして、圧縮室40bより吐出ポート120を
経由して下部支持部材56の吐出消音室60に吐出され
た中間圧の冷媒ガスは、下シリンダ40の冷媒吐出通路
88を通り冷媒配管100に送出される。次に、冷媒配
管100からの冷媒ガスはサクションマフラー106を
経由して冷媒配管102及び図示されない冷媒吸込通路
を経由して図2に示す吸込ポート114から上シリンダ
38の低圧室38aに吸入された中間圧の冷媒ガスは、
上ローラ46と上ベーン50の動作により2段目の圧縮
が行われる。そして、上シリンダ38の圧縮室38bよ
り吐出ポート116を経由して上部支持部材54の吐出
消音室58に吐出された高圧冷媒ガスは、吐出消音室5
8から吐出管108及び冷媒配管104を通り蒸気圧縮
式冷凍サイクルを構成する外部冷媒回路(図示せず)に
送出される。以後同様の経路で、冷媒ガスの吸入→圧縮
→吐出が行われる。また、クランク軸16の回転によ
り、密閉容器12の底部に貯溜されている潤滑油はクラ
ンク軸16の軸中心に形成された鉛直方向のオイル孔7
6を上昇しその途中に設けた横方向の給油孔78、80
より外周面に形成した螺旋状給油溝82、84に流出す
る。これにより、クランク軸16の軸受け及び上下ロー
ラ46、48と上下偏心部42、44の各摺動部に対す
る給油が良好に行われ、その結果、クランク軸16及び
上下偏心部42、44は円滑な回転を行うことができ
る。尚、上記実施の形態の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施の形態に限らず、特許請求の
範囲に記載の技術的範囲内で種々の変形が可能であるこ
とは勿論である。例えば、上記実施形態例では、ベーン
をシリンダに進退可能に支持すると共に背圧を作用させ
て、ベーンの先端をローラの外周面に接触させ、このベ
ーンとローラとを相対移動させる場合について説明した
が、本発明はこの構成に限らず、図3に示すように、ベ
ーン301をローラ302の外周一部に、ローラ302
の径方向外方に向けて突出するように一体的に設けると
共に、シリンダ303における吸入口304と吐出口3
05との中間内方部に円筒形や球形などの円形保持孔3
06を設けて、この保持孔306に、一端がシリンダ室
307側に開口された受入溝308aを持つ支持体30
8を回動可能に保持して、支持体308の受入溝308
a内にベーン301の突出側先端部を摺動可能に挿入さ
せている。そして、ローラ302を駆動軸であるクラン
ク軸309に共回りしない非自転式に構成すると共に、
クランク軸309の駆動によりローラ302をシリンダ
303内で公転させている。ここで、ローラ302の外
周一部にベーン301を設けるに際しては、ローラ30
2側にベーン301の基端一部を挿入可能とした取付溝
を形成し、この取り付溝内にベーン301の基端一部を
挿入させて接着剤で接着一体化させるか或いはロウ付け
により一体化させている。また、上記実施形態例では、
密閉容器の内面にタック溶接により高段圧縮要素を固定
される場合について説明したが、これに限らず、アーク
スポット溶接、TIG溶接等のその他の溶接方法により
固定させても構わない。更に、溶接に限らず圧入、焼き
嵌め等により固定させても良い。更に、上記実施形態例
では、冷媒としてR404Aを用いた場合について説明
したが、他の冷媒を用いても良く、例えば、冷媒として
二酸化炭素を用いて超臨界圧力まで圧縮させる構成とし
ても良い。この場合には、環境に与える影響の少なく、
且つ可燃性や毒性がない冷凍サイクルを実現することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings shown below. FIG. 1 is a longitudinal sectional view of a main part of an internal high pressure type two-stage compression rotary compressor which is an embodiment of the present invention. In FIG.
Two-stage compression rotary compressor 10 of the present embodiment
Is a cylindrical closed container 12 made of steel plate, and this closed container 1
Drive motor 14 as an electric element arranged in the upper space of 2 and a compression element driven by a crank shaft (drive shaft) 16 arranged in the lower space of electric motor 14 and connected to this electric motor 14. A rotary compression mechanism 18 is included. The closed container 12 has an oil reservoir at the bottom and is composed of two members, 12A for housing the electric motor 14 and the rotary compression mechanism 18, and a lid 12B for sealing the upper opening of the container body 12A. Is equipped with a terminal terminal (power supply wiring is omitted) 20 for supplying external electric power to the electric motor 14. The electric motor 14 includes a stator 22 mounted in an annular shape along the inner circumference of the upper space of the closed container 12.
And a rotor 24 disposed inside the stator 22 with a slight gap. The rotor 24 is integrally provided with a crankshaft 16 that extends vertically through the center of the rotor 24. The stator 22 has a laminated body 26 in which ring-shaped electromagnetic steel sheets are laminated, and a plurality of coils 28 wound around the laminated body 26. Further, the rotor 24 is also composed of a laminated body 30 of electromagnetic steel plates, like the stator 22. Although an AC motor is used as the electric motor 14 in the present embodiment, a permanent magnet may be embedded to form a DC motor. The rotary compression mechanism 18 includes the low-stage compression element 3
2 and high-stage compression element 34. That is, the intermediate partition plate 3
6, upper and lower cylinders 38 and 40 provided above and below the intermediate partition plate 36, and an upper and lower roller 46 that rotates by connecting the insides of the upper and lower cylinders 38 and 40 to the vertical eccentric portions 42 and 44 provided on the crankshaft 16. , 48 and the upper and lower rollers 4
The upper and lower vanes 50 and 52, which contact the upper and lower cylinders 38 and 40 by contacting the upper and lower cylinders 38 and 40, are divided into suction chambers (suction side) and compression chambers (discharge side), and the opening surfaces of the upper and lower cylinders 38 and 40 are closed. The crankshaft 16 is composed of an upper support member 54 and a lower support member 56 that also serve as the bearings of the crankshaft 16. Further, the upper support member 54 and the lower support member 56 are provided with discharge muffling chambers 58, 60 which are in proper communication with the upper and lower cylinders 38, 40 via a valve device (not shown), and these discharge muffling chambers, etc. The opening is closed by an upper plate 62 and a lower plate 64. Also, the upper and lower vanes 50, 52
Is slidably arranged in radial guide grooves 66, 68 formed in the cylinder walls of the upper and lower cylinders 38, 40, and is urged by springs 70, 72 so as to always contact the upper and lower rollers 46, 48. ing. Then, the lower cylinder 40 performs the first-stage (lower-stage side) compression action, and the upper cylinder 38 performs the second-stage (higher-stage side) compression action for further compressing the refrigerant gas compressed by the lower cylinder 40. Done.
The upper support member 54, the upper cylinder 38, the intermediate partition plate 36, the lower cylinder 40, and the lower support member 56 that constitute the rotary compression mechanism 18 are arranged in this order and together with the upper plate 62 and the lower plate 64, a plurality of them. It is connected and fixed using a mounting bolt 74. Further, a straight oil hole 76 is formed in the crankshaft 16 at the center of the shaft, and spiral oil supply grooves 82, 84 which are continuous with the hole 76 via lateral oil supply holes 78, 80 are formed on the outer peripheral surface of the crankshaft 16 to form bearings and respective bearings. Oil is supplied to the sliding parts. In this embodiment, R404A is used as the refrigerant, and the oil used as the lubricating oil is, for example, mineral oil (mineral oil), alkylbenzene oil, PAG oil (polyalkylene glycol-based oil), ether oil, ester oil, etc. Oil is used. The rotary compression mechanism 18 described above.
In the low-stage compression element 32, the suction side refrigerant pressure is 0.05M.
Pa and the discharge side refrigerant pressure is 0.18 MPa.
Then, in the high-stage compression element 34, the suction side refrigerant pressure is 0.
It is 18 MPa and the discharge side refrigerant pressure is 1.90 MPa. Further, the upper and lower cylinders 38, 40 are provided with upper and lower refrigerant suction passages (not shown) for introducing a refrigerant and a refrigerant discharge passage 86 for discharging the compressed refrigerant via the discharge muffling chambers 58, 60. ing. Then, in each of the refrigerant suction passages and the refrigerant discharge passages 86, refrigerant pipes 98, 10 are provided via connection pipes 90, 92, 94 fixed to the closed container 12.
0 and 102 are connected. A suction muffler 106 that acts as a gas-liquid separator is connected between the refrigerant pipes 100 and 102. Further, the upper plate 62 is provided with a discharge pipe 108 which establishes communication between the discharge muffling chamber 58 of the upper support member 54 and the internal space of the closed container 12, and the discharge pipe 108 of the second stage (high stage compression element 34) is provided. The compressed refrigerant gas is directly discharged into the closed container 12 to make the closed container 12 have a high internal pressure, and then an external condenser (via a connection pipe 96 and a refrigerant pipe 104 fixed to the lid 12B above the closed container 12 ( (Not shown), expansion valve, gas-liquid separator,
The vapor compression refrigeration cycle is realized by returning to the low-stage compression element 32 again through the refrigerant pipe 98, the connecting pipe 90, and the upper refrigerant suction passage of the upper cylinder 38 via an evaporator (not shown) in order. Further, the fitting clearance between the constituent parts of the low-stage compression element 32 is set smaller than the fitting clearance between the constituent parts of the high-stage compression element 34. Specifically, the fitting clearance between the components in the low-stage compression element 32 is set to 10 μm, and the fitting clearance between the components in the high-stage compression element 34 is set to 20 μm.
It is set to μm. As a result, the high-pressure gas in the closed container 12 can be prevented from leaking into the low-stage compression element 32 having a large pressure difference, and the volume efficiency and the compression efficiency can be improved. Further, the upper cylinder 38 of the high-stage compression element 34 is fixed to the inner surface of the closed container 12 by tack welding. Even if the fitting clearance is distorted by the welding of the upper cylinder 38, the fitting lock between the components of the high-stage compression element 34 is set to be relatively large as described above, so that the compressor is locked. There is no such thing. Next, an outline of the operation of the above-described two-stage compression rotary compressor 10 shown in FIG. 1 will be described.
First, when power is supplied to the coil 28 of the electric motor 14 through the terminal terminal 20 and the power supply wiring (not shown), the rotor 2
4 rotates and the crankshaft 16 fixed to it rotates. By this rotation, the upper and lower rollers 46 connected to the upper and lower eccentric parts 42 and 44 integrally provided with the crankshaft 16,
48 rotates eccentrically in the upper and lower cylinders 38, 40. As a result, the refrigerant gas sucked into the suction chamber 40a of the lower cylinder 40 from the suction port 118 through the refrigerant pipe 98 and the refrigerant suction passage (not shown) as shown in FIG. The operation of the vane 52 causes the first stage compression. The intermediate-pressure refrigerant gas discharged from the compression chamber 40b to the discharge muffling chamber 60 of the lower support member 56 via the discharge port 120 is delivered to the refrigerant pipe 100 through the refrigerant discharge passage 88 of the lower cylinder 40. . Next, the refrigerant gas from the refrigerant pipe 100 is sucked into the low pressure chamber 38a of the upper cylinder 38 from the suction port 114 shown in FIG. 2 via the suction muffler 106, the refrigerant pipe 102 and the refrigerant suction passage (not shown). The intermediate pressure refrigerant gas is
The second roller is compressed by the operation of the upper roller 46 and the upper vane 50. Then, the high-pressure refrigerant gas discharged from the compression chamber 38 b of the upper cylinder 38 into the discharge muffling chamber 58 of the upper support member 54 via the discharge port 116 is discharged to the discharge muffling chamber 5.
8 through the discharge pipe 108 and the refrigerant pipe 104 to be delivered to an external refrigerant circuit (not shown) that constitutes a vapor compression refrigeration cycle. After that, the suction, compression, and discharge of the refrigerant gas are performed by the same route. Further, due to the rotation of the crankshaft 16, the lubricating oil stored in the bottom portion of the closed container 12 has a vertical oil hole 7 formed in the axial center of the crankshaft 16.
6 is lifted up and horizontal oil supply holes 78 and 80 are provided in the middle thereof.
It flows out to the spiral oil supply grooves 82, 84 formed on the outer peripheral surface. As a result, the bearing of the crankshaft 16 and the upper and lower rollers 46, 48 and the sliding parts of the upper and lower eccentric parts 42, 44 are satisfactorily lubricated, and as a result, the crankshaft 16 and the upper and lower eccentric parts 42, 44 are made smooth. The rotation can be performed. The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope. Further, it goes without saying that the configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims. For example, in the above-described embodiment, the case where the vane is supported in the cylinder so as to be able to move forward and backward and a back pressure is applied to bring the tip of the vane into contact with the outer peripheral surface of the roller, and the vane and the roller are relatively moved has been described. However, the present invention is not limited to this configuration, and as shown in FIG.
Is integrally provided so as to project outward in the radial direction of the cylinder 303, and the suction port 304 and the discharge port 3 in the cylinder 303 are provided.
Circular holding hole 3 such as a cylinder or a sphere in the inner part of the middle of 05
No. 06 is provided, and the holding body 306 has a receiving groove 308a whose one end is opened to the cylinder chamber 307 side.
8 is rotatably held and the receiving groove 308 of the support 308 is held.
The tip end of the vane 301 on the protruding side is slidably inserted into a. Then, the roller 302 is configured as a non-rotating type that does not rotate with the crank shaft 309 that is a drive shaft,
The roller 302 is revolved in the cylinder 303 by driving the crankshaft 309. Here, when the vane 301 is provided on a part of the outer periphery of the roller 302, the roller 30
By forming a mounting groove into which the base end part of the vane 301 can be inserted on the 2 side, and inserting the base end part of the vane 301 into this mounting groove and bonding and integrating with an adhesive, or by brazing It is integrated. Further, in the above embodiment example,
Although the case where the high-stage compression element is fixed to the inner surface of the closed container by tack welding has been described, the present invention is not limited to this, and it may be fixed by another welding method such as arc spot welding or TIG welding. Further, it is not limited to welding and may be fixed by press fitting, shrink fitting, or the like. Further, in the above-described embodiment, the case where R404A is used as the refrigerant has been described, but other refrigerants may be used, for example, carbon dioxide may be used as the refrigerant and compressed to the supercritical pressure. In this case, there is little impact on the environment,
In addition, it is possible to realize a refrigeration cycle that is neither flammable nor toxic.

【発明の効果】以上述べたとおり本発明によれば、密閉
容器内の高圧ガスが圧力差の大きい低段圧縮要素へリー
ク侵入するのを低減でき、体積効率及び圧縮効率を向上
させることができる。さらに、溶接等により高段圧縮要
素の構成部品相互の嵌合クリアランスが変化したとして
も、コンプレッサがロックしてしまうことはない。
As described above, according to the present invention, it is possible to prevent the high-pressure gas in the closed container from leaking into the low-stage compression element having a large pressure difference, and to improve the volume efficiency and the compression efficiency. . Further, even if the fitting clearance between the components of the high-stage compression element changes due to welding or the like, the compressor will not be locked.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態例である内部高圧型2段圧
縮式ロータリコンプレッサの要部縦断面図である。
FIG. 1 is a longitudinal sectional view of an essential part of an internal high pressure type two-stage compression rotary compressor which is an embodiment of the present invention.

【図2】図1における各圧縮要素の要部構成を示す概略
平面図である。
FIG. 2 is a schematic plan view showing a main configuration of each compression element in FIG.

【図3】本発明の他の実施形態例である内部高圧型2段
圧縮式ロータリコンプレッサの各圧縮要素の要部構成を
示す概略平面図である。
FIG. 3 is a schematic plan view showing a configuration of a main part of each compression element of an internal high pressure type two-stage compression rotary compressor which is another embodiment of the present invention.

【図4】従来の2段圧縮式ロータリコンプレッサの要部
縦断面図である。
FIG. 4 is a longitudinal sectional view of a main part of a conventional two-stage compression rotary compressor.

【符号の説明】[Explanation of symbols]

10 内部高圧型2段圧縮式ロータリコンプレッサ 12 円筒状密閉容器 14 駆動電動機(電動要素) 16 クランク軸 18 回転圧縮機構(回転圧縮要素) 32 低段圧縮要素 34 高段圧縮要素 36 中間仕切板 38、40 上下シリンダ 42、44 上下偏心部 46、48 上下ローラ 50、52 上下ベーン 54 上部支持部材 56 下部支持部材 82、84 オイル溝 10 Internal high pressure type two-stage compression rotary compressor 12 Cylindrical closed container 14 Drive motor (electric element) 16 crankshaft 18 Rotary compression mechanism (rotary compression element) 32 Low-stage compression element 34 High-stage compression element 36 Intermediate partition plate 38, 40 Vertical cylinder 42,44 Vertical eccentric part 46, 48 upper and lower rollers 50, 52 upper and lower vanes 54 Upper support member 56 Lower support member 82, 84 oil groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江原 俊行 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山川 貴志 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3H029 AA04 AA09 AA13 AB03 AB05 AB08 BB16 BB33 BB43 BB44 CC03 CC05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiyuki Ehara             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Takashi Yamakawa, inventor             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 3H029 AA04 AA09 AA13 AB03 AB05                       AB08 BB16 BB33 BB43 BB44                       CC03 CC05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】密閉容器の内部に電動要素と、 該電動要素に連結される駆動軸により駆動される回転圧
縮要素とを配置し、 該回転圧縮要素は、ローラとベーンとを内装するシリン
ダが中間仕切板を介して夫々配置された低段圧縮要素及
び高段圧縮要素と、 該各圧縮要素の開口面を閉塞し、前記駆動軸の軸受部を
兼用する上部支持部材及び下部支持部材とを備え、 前記低段圧縮要素の吐出側と前記高段圧縮要素の吸入側
とを直列接続した2段圧縮機構を形成すると共に、 冷媒として二酸化炭素を用い、該冷媒を超臨界圧力まで
圧縮する2段圧縮式ロータリコンプレッサにおいて、 前記低段圧縮要素における構成部品相互の嵌合クリアラ
ンスを、前記高段圧縮要素における構成部品相互の嵌合
クリアランスよりも小さく設定することを特徴とする2
段圧縮式ロータリコンプレッサ。
1. An electric element and a rotary compression element driven by a drive shaft connected to the electric element are arranged inside a hermetic container, and the rotary compression element includes a cylinder containing rollers and vanes. A low-stage compression element and a high-stage compression element which are respectively arranged via an intermediate partition plate, and an upper support member and a lower support member which close the opening surfaces of the respective compression elements and also serve as the bearing portion of the drive shaft. A two-stage compression mechanism is provided in which the discharge side of the low-stage compression element and the suction side of the high-stage compression element are connected in series, and carbon dioxide is used as a refrigerant to compress the refrigerant to a supercritical pressure. In the stage compression rotary compressor, the fitting clearance between the components of the low-stage compression element is set to be smaller than the fitting clearance of the components in the high-stage compression element. 2
Stage compression rotary compressor.
【請求項2】前記ローラをシリンダ内で公転させる駆動
軸を備え、該ローラを駆動軸に共回りしない非自転式に
構成することを特徴とする請求項1記載の2段圧縮式ロ
ータリコンプレッサ。
2. A two-stage compression type rotary compressor according to claim 1, further comprising a drive shaft for revolving the roller in the cylinder, wherein the roller is a non-rotating type that does not rotate with the drive shaft.
【請求項3】前記ローラの外周部筒面にベーンを突設す
ると共に、前記ベーンの突設先端側をシリンダ室内の外
方に回転自在に支持する揺動体に進退自由に係合させ
て、前記ローラを非自転式に構成していることを特徴と
する請求項2記載の2段圧縮式ロータリコンプレッサ。
3. A vane is provided on a cylindrical surface of an outer peripheral portion of the roller, and a protruding tip end side of the vane is engaged with an oscillating body for rotatably supporting an outside of a cylinder chamber so as to move back and forth. The two-stage compression rotary compressor according to claim 2, wherein the roller is configured to be non-rotating.
【請求項4】前記高段圧縮要素で圧縮した冷媒を前記密
閉容器の内部に排出して、該密閉容器内を内部高圧とす
ることを特徴とする請求項1乃至3のいずれかに記載の
2段圧縮式ロータリコンプレッサ。
4. The refrigerant compressed by the high-stage compression element is discharged to the inside of the hermetically sealed container so that the inside of the hermetically sealed container has an internal high pressure. Two-stage compression rotary compressor.
JP2002270079A 1999-09-09 2002-09-17 Two-stage compression type rotary compressor Pending JP2003106276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270079A JP2003106276A (en) 1999-09-09 2002-09-17 Two-stage compression type rotary compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25618699 1999-09-09
JP11-256186 1999-09-09
JP2002270079A JP2003106276A (en) 1999-09-09 2002-09-17 Two-stage compression type rotary compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000083561A Division JP2001153076A (en) 1999-09-09 2000-03-24 Two-stage compression rotary compressor

Publications (1)

Publication Number Publication Date
JP2003106276A true JP2003106276A (en) 2003-04-09

Family

ID=26542619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270079A Pending JP2003106276A (en) 1999-09-09 2002-09-17 Two-stage compression type rotary compressor

Country Status (1)

Country Link
JP (1) JP2003106276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343528C (en) * 2003-05-01 2007-10-17 乐金电子(天津)电器有限公司 Rotary compressor internal structural welding supporting arrangement
KR101136606B1 (en) * 2004-02-27 2012-04-18 산요덴키가부시키가이샤 2-stage rotary compressor
CN103967792A (en) * 2014-05-26 2014-08-06 珠海格力节能环保制冷技术研究中心有限公司 Rotor compressor and air conditioner with same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343528C (en) * 2003-05-01 2007-10-17 乐金电子(天津)电器有限公司 Rotary compressor internal structural welding supporting arrangement
KR101136606B1 (en) * 2004-02-27 2012-04-18 산요덴키가부시키가이샤 2-stage rotary compressor
CN103967792A (en) * 2014-05-26 2014-08-06 珠海格力节能环保制冷技术研究中心有限公司 Rotor compressor and air conditioner with same

Similar Documents

Publication Publication Date Title
JP3490950B2 (en) 2-cylinder 2-stage compression type rotary compressor
WO2001016490A1 (en) Internal intermediate pressure 2-stage compression type rotary compressor
JP3291484B2 (en) 2-stage compression type rotary compressor
WO2001016485A1 (en) Closed motor-driven compressor
JP2001153076A (en) Two-stage compression rotary compressor
JP3370027B2 (en) 2-stage compression type rotary compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP2003254276A (en) Rotary compressor
JP2003106276A (en) Two-stage compression type rotary compressor
JP2003161280A (en) Rotary compressor
JP2005139973A (en) Multistage compression type rotary compressor
JP3370026B2 (en) 2-stage compression type rotary compressor
JP4033756B2 (en) Hermetic electric compressor
JP3579323B2 (en) 2-cylinder 2-stage compression rotary compressor
JP2005147071A (en) Horizontal type multi-stage compression rotary compressor, and air conditioner having the same for automobile
JP2003293971A (en) Rotary compressor
JP2003176796A (en) Rotary compressor
JP2003201982A (en) Rotary compressor
JP2003201981A (en) Rotary compressor
JP2003254272A (en) Rotary compressor
JP2001271776A (en) Rotary compressor
JP2001082371A (en) Two-stage compression type rotary compressor
JP2003293972A (en) Rotary compressor
JP3370041B2 (en) Rotary compressor
JP2003184771A (en) Rotary compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302