JP3579323B2 - 2-cylinder 2-stage compression rotary compressor - Google Patents

2-cylinder 2-stage compression rotary compressor Download PDF

Info

Publication number
JP3579323B2
JP3579323B2 JP2000087918A JP2000087918A JP3579323B2 JP 3579323 B2 JP3579323 B2 JP 3579323B2 JP 2000087918 A JP2000087918 A JP 2000087918A JP 2000087918 A JP2000087918 A JP 2000087918A JP 3579323 B2 JP3579323 B2 JP 3579323B2
Authority
JP
Japan
Prior art keywords
stage
cylinder
shaft
diameter
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000087918A
Other languages
Japanese (ja)
Other versions
JP2001271773A (en
Inventor
俊行 江原
悟 今井
昌也 只野
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000087918A priority Critical patent/JP3579323B2/en
Publication of JP2001271773A publication Critical patent/JP2001271773A/en
Application granted granted Critical
Publication of JP3579323B2 publication Critical patent/JP3579323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【産業上の利用分野】
この発明は2シリンダ型2段圧縮ロータリーコンプレッサに関し、特にたとえば簡単な構成により排除容積を変えることができる2シリンダ型2段圧縮ロータリーコンプレッサに関する。
【0002】
【従来の技術】
例えば、密閉容器内に回転圧縮機構部を上下に配置した2シリンダ型ロータリーコンプレッサにおいては、上下回転圧縮機構部での回転軸偏心量は上下で同一としている。そして、2段圧縮ロータリーコンプレッサでは排除容積の変更を回転軸に設けた偏心部の偏心量とこの偏心部に嵌合されてシリンダ内を偏心回転するローラの外径を変えることで対応している。この場合、排除容積の最大値は回転軸偏心量と回転軸偏心部径と軸受径で決まるものであるが、従来技術では2段圧縮ロータリーコンプレッサにおいても、回転軸偏心部径と軸受径は1段目(低段側)と2段目(高段側)で同一となっている。
【0003】
【発明が解決しようとする課題】
そのために、2段圧縮ロータリーコンプレッサにおける排除容積の設定を行う場合、設定の自由度に制約があり生産性が悪くまたやコストも高くなるという問題がある。
【0004】
それゆえに、この発明の主たる目的は、簡単な構成により排除容積の設定が容易に行うことができる2シリンダ型2段圧縮ロータリーコンプレッサを提供することである。
【0005】
【課題を解決するための手段】
この発明は、密閉容器、この密閉容器内に収納される電動機部及び電動機部の回転軸により駆動される2個のシリンダを有し、各シリンダ内で回転軸に設けた偏心部に嵌合されるローラを偏心回転させると共にベーンにより各シリンダ内を仕切り、冷媒ガスを吸込んで圧縮して吐出する回転圧縮機構部を備え、この回転圧縮機構部は、低圧の冷媒ガスを吸込んで圧縮する低段側圧縮部、この低段側圧縮部で圧縮され中間圧に昇圧された冷媒ガスを吸込んで圧縮する高段側圧縮部及び両圧縮部の間に介設され回転軸を挿通する孔を形成した中間仕切板を含む、2シリンダ型2段圧縮ロータリーコンプレッサにおいて、回転軸に設けられる2個の偏心部は180度の位相差を有しかつ両偏心部の相互間を連結する連結部の軸径及び偏心部を介して連結部に連なる回転軸端部の軸径を共に回転軸の軸径より小さく設定するようにしたことを特徴とする、2シリンダ型2段圧縮ロータリーコンプレッサである。
【0006】
【作用】
2シリンダ型2段圧縮コンプレッサにおいて、回転軸に設けた2つの偏心部の偏心部径および軸受径(軸径)を低段側(1段目)と高段側(2段目)とで変えることにより排除容積の変更が可能となる。例えば、1段目の低段側軸受径を小さくし2段目の高段側軸受径を大きくすることで対応できるものである。
【0007】
【発明の効果】
この発明によれば、排除容積の設定の自由度が向上し、それに伴い生産性の向上とコストの低減が可能となる。
【0008】
この発明の上述の目的,その他の目的,特徴及び利点は、図面を参照して以下に行う実施例の詳細な説明により一層明らかとなろう。
【0009】
【実施例】
図1に示すこの発明の一実施例である内部低圧式の2シリンダ型2段圧縮ロータリーコンプレッサ10は、鋼板からなる円筒状密閉容器12、この容器12の内部空間に配置収納された電動機部14、この電動機部14の下方空間に配置されかつこの電動機部に連結される回転軸16により駆動される回転圧縮機構部18を含む。円筒状密閉容器12は底部をオイル溜とし、電動機部14及び回転圧縮機構部16を収納する上面開口の容器本体12Aと、この容器本体12Aの上面開口を閉塞する蓋体12Bとの2部材で構成され、蓋体12Bには電動機部14に電力を供給するターミナル端子20(配線を省略)を取り付けている。
【0010】
また、電動機部14は、円筒状密閉容器12の上部内周面に沿って取り付けられた環状のステータ22と、このステータ22の内側に若干の間隙を設けて配置されたロータ24とからなる。このロータ24にはその中心を通り鉛直方向に延びる回転軸16が設けられている。
【0011】
ステータ22は、リング状の電磁鋼板を積層した積層体26と、この積層体26に装着された3相のステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で構成され、これにより交流モータとしている。なお、交流モータに代わりに永久磁石をロータに埋設したDCモータを用いることも可能である。
【0012】
回転圧縮機構部18は、高段側圧縮部32と低段側圧縮部34及び回転軸16を挿通せしめる挿入孔36aを有する中間仕切板36を含みかつ高段側圧縮部32は中間仕切板36の上側に配置され、低段側圧縮部34は中間仕切板36の下側に配置されている。
【0013】
すなわち、中間仕切板36と、この中間仕切板36の上下両側に設けられた上下シリンダ38,40と、この上下シリンダ38、40内を回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46,48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側38a、40aと高圧室側38b、40bに区分する上下ベーン50,52と、上下シリンダ38、40の各開口面を閉塞すると共に回転軸16の高段側軸受54aを兼用する上部支持枠体54と低段側軸受56aを兼用する下部支持枠体56とで構成される。
【0014】
そして、高段側軸受54aの内径よりも低段側軸受56aの内径を小さくしている。その理由については回転軸16、上下偏心部42、44の偏心量及び各偏心部径との関係において後程詳しく説明する。
【0015】
また、上部支枠体54及び下部支持枠体56には、上下シリンダ38、40と適宜連通する吸込通路58、60及び消音室兼用吐出通路62、64が一体に形成されると共にそれらの開口部は上部プレート66と下部プレート68で閉塞される。さらに、上下ベーン50、52は上下シリンダ38、40のシリンダ壁に形成された径方向の案内溝70、72に往復動可能に収納されかつスプリング74、76により上下ローラ46、48に常時当接するように付勢される。
【0016】
そして、下シリンダ40では1段目(低段側)の圧縮作用が行われ、上シリンダ38では下シリンダ40で1段目の圧縮がなされた冷媒ガスをさらに圧縮して高圧にする2段目(高段側)の圧縮作用が行われる。
【0017】
また、回転圧縮機構部18を構成する各エレメントは、上部支持枠体54、上シリンダ38、中間仕切板36、下シリンダ40及び下部支持枠体56の順に配置され、上部プレート66及び下部プレート68と共に複数本の取付ボルト78を用いて一体的に連結される。
【0018】
更に、回転軸16には軸中心に鉛直方向のオイル穴80が形成されると共に、このオイル穴80に連通する横方向の給油孔82、84及び螺旋状給油溝86、88を設けている。
【0019】
そして、この実施例では、冷媒として地球環境、可燃性及び毒性等を考慮して例えば自然冷媒である炭酸ガス(CO2)を使用し、また、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等の既存オイルが使用される。
【0020】
また、上部支持枠体54及び下部支持枠体56には吸込通路58、60を経由して上下シリンダ38、40に冷媒を導入する上下冷媒導入管90、92と上下シリンダ38、40で圧縮された冷媒を消音室兼用吐出通路62、64を経由して吐出する上下冷媒吐出管94、96がそれぞれ接続されている。
【0021】
さらに、上下冷媒導入管90、92及び上下冷媒吐出管94、96にはそれぞれ冷媒配管98,100、102及び104が接続されると共に、冷媒配管98と104との間にはアキュムレータ106が接続されている。なお、円筒状密閉容器12の外底部には取付用台座108が熔接等により固定されている。
【0022】
ところで、図1における回転軸16は、図3に示されるように上下ローラ46、48を嵌合する上下偏心部42、44のうち、下偏心部44を設ける回転軸下部、すなわち上下偏心部42、44の相互間を連結すると連結部110の軸径及び下部支持枠体56に設けた低段側軸受56aで軸支される回転軸下端部112の軸径を上部支持枠体54に設けた高段側軸受54aで軸支される回転軸16の軸径よりも小さく設定している。
【0023】
そして、図5に示される従来の回転軸16の軸心に対する下偏心部44の偏心量をAとすると、図3に示すようにこの発明では回転軸下端部112の軸径を回転軸16の軸径よりも小さく設定することにより、上下偏心部42、44の径を同径とした場合、回転軸16の軸心に対する下偏心部44の偏心量Bは従来例における偏心量Aよりも大きく(B>A)できる。その結果、例えば低段側(1段目)の下シリンダ40における排除容積をより大きくすることができる。
【0024】
また、図4に示すこの発明による他の実施態様は、回転軸16に設けた上下偏心部42、44の相互間を連結する連結部110及び下部支持枠体56の軸受56aで軸支される回転軸下端部112の軸径を上部支持枠体54の軸受54aで軸支される回転軸16の軸径より小さく設定すると共に下偏心部44の径Dを上偏心部42の径Cより小さく(D<C)設定することにより、中間仕切板36に形成される挿入孔36aの径を小さくでき、その結果、下偏心部44に嵌合される下ローラ48の厚さ(肉厚)を大きくできるため、下ローラ48と中間仕切板36とのシール部の接触面積を広くできガスリークが少なくなる。従って、圧縮効率や体積効率が向上する。
【0025】
ここで、図1及び図2を参照して上述の実施例の動作概要を説明する。
【0026】
先ず、ターミナル端子20及び図示されない配線を介して電動機部14のステータタコイル28に通電すると、電動機部14が起動してロータ24に固定された回転軸16が回転する。この回転により回転軸16に設けた上下偏心部42、44に嵌合された上下ローラ46、48は上下シリンダ38、40内を偏心回転する。
【0027】
これにより、冷媒配管100、下冷媒導入管92及び下部支持枠体56に形成された吸込通路60を経由して、図2に示す如く吸込ポート118から下シリンダ40の低圧室側40aに吸入された低圧の冷媒ガスは、下ローラ48と下ベーン52の動作により1段目(低段側)の圧縮が行われて下シリンダ40の高圧室側40bより吐出ポート120、下支持枠体56の消音室兼用吐出通路64、下冷媒吐出管96及び冷媒配管104よりアキュムレータ106に送出される。
【0028】
つぎに、アキュムレータ106から冷媒配管98、上冷媒導入管90、上部支持枠体54に形成された吸込通路58を経由して図2に示す如く吸込ポート114から上シリンダ38の低圧室側38aに吸入された中間圧の冷媒ガスは、上ローラ46と上ベーン50の動作により2段目(高段側)の圧縮が行われて高圧の圧縮冷媒ガスとなり、上シリンダ38の高圧室側38bより吐出ポート116、上部支持枠体54に形成された消音室兼用吐出通路62、上冷媒吐出管94、及び冷媒配管102を経由して冷凍サイクルを構成する外部冷媒回路(図示せず)に送出される。以後上述の経路で冷媒ガスは循環して冷却作用を発揮する。
【0029】
また、回転軸16の回転により円筒状密閉容器12の底部に貯溜されている潤滑オイル(図示せず)は、回転軸16の軸中心に形成された鉛直方向のオイル穴80を上昇し、途中に設けた横方向の給油孔82、84及び螺旋状給油溝86、88より各軸受部及び上下偏心部42、44にそれぞれ給油されて円滑な回転を維持する。
【0030】
なお、この発明は上述の実施例に限定されるものではない。例えば、上述の実施形態はいずれも回転軸16を縦置型とした2シリンダ型2段圧縮ロータリーコンプレッサ10について説明したが、これに代えて回転軸を横置型とした2シリンダ型2段圧縮ロータリーコンプレッサでも良いことは言うまでもない。
【図面の簡単な説明】
【図1】この発明の一実施例を示す内部低圧式の2シリンダ型2段圧縮ロータリーコンプレッサの要部縦断面図である。
【図2】図1における各圧縮部の構成を模式的に示す図解図である。
【図3】図1における上下偏心部を含む回転軸の正面図である。
【図4】図3に相当する他の実施態様を示す回転軸の正面図である。
【図5】図3及び図4に対応する従来例の回転軸の正面図である。
【符号の説明】
10 …2シリンダ型2段圧縮ロータリーコンプレッサ
12 …円筒状密閉容器
14 …電動機部
16 …回転軸
18 …回転圧縮機構部
32 …高段側圧縮部
34 …低段側圧縮部
36 …中間仕切板
36a …挿入孔
42、44 …上下偏心部
54a …高段側軸受(2段目の軸受)
56a …低段側軸受(1段目の軸受)
110 …連結部
112 …回転軸下端部
[0001]
[Industrial applications]
The present invention relates to a two-cylinder two-stage compression rotary compressor, and more particularly to a two-cylinder two-stage compression rotary compressor capable of changing the displacement volume with a simple configuration, for example.
[0002]
[Prior art]
For example, in a two-cylinder rotary compressor in which a rotary compression mechanism is vertically arranged in a closed container, the amount of eccentricity of the rotating shaft in the vertical rotation compression mechanism is the same in the vertical direction. In the two-stage compression rotary compressor, the displacement is changed by changing the amount of eccentricity of an eccentric portion provided on the rotating shaft and the outer diameter of a roller fitted to the eccentric portion and eccentrically rotating in the cylinder. . In this case, the maximum value of the displacement volume is determined by the amount of eccentricity of the rotating shaft, the diameter of the eccentric portion of the rotating shaft, and the diameter of the bearing. In the prior art, even in a two-stage compression rotary compressor, the diameter of the eccentric portion of the rotating shaft and the diameter of the bearing are 1 unit. The stage (lower stage) and the second stage (higher stage) are the same.
[0003]
[Problems to be solved by the invention]
Therefore, when setting the exclusion volume in the two-stage compression rotary compressor, there is a problem that the degree of freedom of the setting is limited, the productivity is low, and the cost is high.
[0004]
SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a two-cylinder two-stage compression rotary compressor which can easily set an excluded volume with a simple configuration.
[0005]
[Means for Solving the Problems]
The present invention has an airtight container, an electric motor unit housed in the airtight container, and two cylinders driven by a rotating shaft of the electric motor unit, and is fitted in each cylinder to an eccentric part provided on the rotating shaft. A rotary compression mechanism that eccentrically rotates the rollers and separates the interior of each cylinder by vanes, sucks, compresses, and discharges the refrigerant gas.This rotary compression mechanism is a low-stage that sucks and compresses low-pressure refrigerant gas. A side compression section, a high-stage compression section that sucks and compresses the refrigerant gas that has been compressed by the low-stage compression section and raised to an intermediate pressure, and a hole that is interposed between the two compression sections and that has a rotary shaft inserted therethrough. In a two-cylinder two-stage compression rotary compressor including an intermediate partition plate, two eccentric portions provided on a rotating shaft have a phase difference of 180 degrees and a shaft diameter of a connecting portion connecting the two eccentric portions to each other. And through the eccentric Characterized in that the shaft diameter of the rotating shaft end portion continuous to the binding portion to both set smaller than the shaft diameter of the rotary shaft, a second cylinder type two-stage compression rotary compressor.
[0006]
[Action]
In a two-cylinder two-stage compression compressor, the eccentric part diameter and bearing diameter (shaft diameter) of two eccentric parts provided on a rotating shaft are changed between a low stage side (first stage) and a high stage side (second stage). This makes it possible to change the excluded volume. For example, this can be achieved by reducing the diameter of the first-stage low-stage bearing and increasing the size of the second-stage high-stage bearing.
[0007]
【The invention's effect】
According to the present invention, the degree of freedom in setting the exclusion volume is improved, and accordingly, it is possible to improve productivity and reduce costs.
[0008]
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
[0009]
【Example】
As shown in FIG. 1, an internal low-pressure two-cylinder two-stage compression rotary compressor 10 according to an embodiment of the present invention includes a cylindrical hermetic container 12 made of a steel plate, and a motor portion 14 disposed and housed in the internal space of the container 12. And a rotary compression mechanism 18 arranged in a space below the electric motor section 14 and driven by a rotating shaft 16 connected to the electric motor section. The cylindrical airtight container 12 has an oil reservoir at the bottom, and is composed of two members: a container body 12A having an upper surface opening for accommodating the electric motor portion 14 and the rotary compression mechanism portion 16, and a lid 12B for closing the upper surface opening of the container body 12A. A terminal terminal 20 (wiring is omitted) for supplying electric power to the motor unit 14 is attached to the lid 12B.
[0010]
The electric motor unit 14 includes an annular stator 22 attached along the upper inner peripheral surface of the cylindrical airtight container 12, and a rotor 24 arranged with a slight gap inside the stator 22. The rotor 24 is provided with a rotating shaft 16 extending vertically through the center thereof.
[0011]
The stator 22 includes a laminated body 26 in which ring-shaped electromagnetic steel sheets are laminated, and a three-phase stator coil 28 mounted on the laminated body 26. Further, the rotor 24 is also formed of a laminated body 30 of electromagnetic steel sheets, like the stator 22, thereby forming an AC motor. Note that a DC motor in which a permanent magnet is embedded in a rotor can be used instead of the AC motor.
[0012]
The rotary compression mechanism 18 includes an intermediate partition plate 36 having a high-stage compression unit 32, a low-stage compression unit 34, and an insertion hole 36 a through which the rotary shaft 16 is inserted, and the high-stage compression unit 32 includes an intermediate partition plate 36. , And the low-stage-side compression section 34 is disposed below the intermediate partition plate 36.
[0013]
That is, the intermediate partition plate 36, upper and lower cylinders 38, 40 provided on the upper and lower sides of the intermediate partition plate 36, and upper and lower eccentric portions 42, 44 provided on the rotary shaft 16 in the upper and lower cylinders 38, 40 are fitted. The upper and lower rollers 46, 48 which are eccentrically rotated and contact with the upper and lower rollers 46, 48, and the upper and lower vanes 50, which partition the inside of the upper and lower cylinders 38, 40 into a low pressure chamber side 38a, 40a and a high pressure chamber side 38b, 40b, respectively. 52, an upper support frame 54 that also closes the opening surfaces of the upper and lower cylinders 38, 40 and also serves as a high-stage bearing 54a of the rotating shaft 16, and a lower support frame 56 that also serves as a low-stage bearing 56a. Is done.
[0014]
The inner diameter of the low-stage bearing 56a is smaller than the inner diameter of the high-stage bearing 54a. The reason will be described later in detail in relation to the amount of eccentricity of the rotating shaft 16, the upper and lower eccentric parts 42 and 44, and the diameter of each eccentric part.
[0015]
The upper support frame 54 and the lower support frame 56 are integrally formed with suction passages 58 and 60 and muffler chamber / discharge passages 62 and 64 which are communicated with the upper and lower cylinders 38 and 40 as appropriate. Is closed by an upper plate 66 and a lower plate 68. Further, the upper and lower vanes 50 and 52 are reciprocally housed in radial guide grooves 70 and 72 formed in the cylinder walls of the upper and lower cylinders 38 and 40, and always contact the upper and lower rollers 46 and 48 by springs 74 and 76. It is energized as follows.
[0016]
The lower cylinder 40 performs a first-stage (lower-stage) compression action, and the upper cylinder 38 further compresses the refrigerant gas that has been subjected to the first-stage compression by the lower cylinder 40 to a second-stage high pressure. (High stage side) compression action is performed.
[0017]
The elements constituting the rotary compression mechanism 18 are arranged in the order of an upper support frame 54, an upper cylinder 38, an intermediate partition plate 36, a lower cylinder 40 and a lower support frame 56, and an upper plate 66 and a lower plate 68 And are integrally connected using a plurality of mounting bolts 78.
[0018]
Further, a vertical oil hole 80 is formed in the rotation shaft 16 at the center of the shaft, and horizontal oil supply holes 82 and 84 and spiral oil supply grooves 86 and 88 communicating with the oil hole 80 are provided.
[0019]
In this embodiment, for example, carbon dioxide (CO2), which is a natural refrigerant, is used in consideration of the global environment, flammability, toxicity, and the like, and the lubricating oil is, for example, mineral oil (mineral oil). ), Existing oils such as alkylbenzene oil, ether oil and ester oil are used.
[0020]
The upper and lower support frames 54 and 56 are compressed by upper and lower cylinders 38 and 40 via upper and lower refrigerant introduction pipes 90 and 92 for introducing a refrigerant to the upper and lower cylinders 38 and 40 via suction passages 58 and 60. Upper and lower refrigerant discharge pipes 94 and 96 for discharging the discharged refrigerant via the muffler chamber and discharge passages 62 and 64 are connected respectively.
[0021]
Further, refrigerant pipes 98, 100, 102 and 104 are connected to the upper and lower refrigerant introduction pipes 90 and 92 and the upper and lower refrigerant discharge pipes 94 and 96, respectively, and an accumulator 106 is connected between the refrigerant pipes 98 and 104. ing. A mounting base 108 is fixed to the outer bottom of the cylindrical closed container 12 by welding or the like.
[0022]
Meanwhile, the rotating shaft 16 in FIG. 1 is, as shown in FIG. 3, a lower portion of the rotating shaft provided with the lower eccentric portion 44, that is, the upper and lower eccentric portions 42, of the upper and lower eccentric portions 42, 44 in which the upper and lower rollers 46, 48 are fitted. , 44 are connected to each other, the shaft diameter of the connecting portion 110 and the shaft diameter of the lower end portion 112 of the rotary shaft supported by the low-stage bearing 56 a provided on the lower support frame 56 are provided on the upper support frame 54. The diameter is set smaller than the shaft diameter of the rotating shaft 16 that is supported by the high-stage bearing 54a.
[0023]
Assuming that the amount of eccentricity of the lower eccentric portion 44 with respect to the axis of the conventional rotary shaft 16 shown in FIG. 5 is A, as shown in FIG. When the diameter of the upper and lower eccentric portions 42 and 44 is set to be the same diameter by setting the diameter to be smaller than the shaft diameter, the eccentric amount B of the lower eccentric portion 44 with respect to the axis of the rotating shaft 16 is larger than the eccentric amount A in the conventional example. (B> A) As a result, for example, the displacement volume in the lower cylinder 40 on the lower stage side (first stage) can be further increased.
[0024]
In another embodiment according to the present invention shown in FIG. 4, the connecting portion 110 connecting the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 and the bearing 56a of the lower support frame 56 are supported by the shaft. The shaft diameter of the lower end portion 112 of the rotating shaft is set smaller than the shaft diameter of the rotating shaft 16 supported by the bearing 54 a of the upper support frame 54, and the diameter D of the lower eccentric portion 44 is smaller than the diameter C of the upper eccentric portion 42. By setting (D <C), the diameter of the insertion hole 36a formed in the intermediate partition plate 36 can be reduced, and as a result, the thickness (wall thickness) of the lower roller 48 fitted to the lower eccentric portion 44 is reduced. Since the size can be increased, the contact area of the seal portion between the lower roller 48 and the intermediate partition plate 36 can be increased, and gas leakage can be reduced. Therefore, compression efficiency and volume efficiency are improved.
[0025]
Here, an outline of the operation of the above-described embodiment will be described with reference to FIGS.
[0026]
First, when electricity is supplied to the stator coil 28 of the electric motor unit 14 via the terminal 20 and the wiring (not shown), the electric motor unit 14 starts and the rotating shaft 16 fixed to the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 eccentrically rotate inside the upper and lower cylinders 38 and 40.
[0027]
Thereby, the refrigerant is sucked from the suction port 118 into the low pressure chamber side 40a of the lower cylinder 40 through the refrigerant pipe 100, the lower refrigerant introduction pipe 92, and the suction passage 60 formed in the lower support frame 56 as shown in FIG. The low-pressure refrigerant gas is compressed in the first stage (lower stage side) by the operation of the lower roller 48 and the lower vane 52, and is discharged from the high pressure chamber side 40 b of the lower cylinder 40 to the discharge port 120 and the lower support frame 56. The air is sent to the accumulator 106 from the silencer chamber discharge passage 64, the lower refrigerant discharge pipe 96, and the refrigerant pipe 104.
[0028]
Next, from the accumulator 106 through the refrigerant pipe 98, the upper refrigerant introduction pipe 90, and the suction passage 58 formed in the upper support frame 54, from the suction port 114 to the low pressure chamber side 38a of the upper cylinder 38 as shown in FIG. The sucked intermediate-pressure refrigerant gas is compressed in the second stage (high-stage side) by the operation of the upper roller 46 and the upper vane 50 to become a high-pressure compressed refrigerant gas. The refrigerant is sent to an external refrigerant circuit (not shown) constituting a refrigeration cycle via the discharge port 116, the discharge passage 62 also serving as a muffling chamber formed in the upper support frame 54, the upper refrigerant discharge pipe 94, and the refrigerant pipe 102. You. Thereafter, the refrigerant gas circulates in the above-described path to exhibit a cooling effect.
[0029]
Further, the lubricating oil (not shown) stored at the bottom of the cylindrical hermetic container 12 due to the rotation of the rotating shaft 16 rises through a vertical oil hole 80 formed at the center of the rotating shaft 16. Are supplied to the bearings and the upper and lower eccentric portions 42 and 44 from the horizontal oil supply holes 82 and 84 and the spiral oil supply grooves 86 and 88, respectively, to maintain smooth rotation.
[0030]
The present invention is not limited to the above embodiment. For example, in each of the above-described embodiments, the two-cylinder two-stage compression rotary compressor 10 in which the rotary shaft 16 is vertically mounted has been described. But it goes without saying that it is good.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part of an internal low-pressure two-cylinder two-stage compression rotary compressor showing an embodiment of the present invention.
FIG. 2 is an illustrative view schematically showing a configuration of each compression unit in FIG. 1;
FIG. 3 is a front view of a rotating shaft including a vertical eccentric portion in FIG. 1;
FIG. 4 is a front view of a rotating shaft showing another embodiment corresponding to FIG. 3;
FIG. 5 is a front view of a conventional rotating shaft corresponding to FIGS. 3 and 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Two cylinder type two stage compression rotary compressor 12 ... Cylindrical hermetic container 14 ... Electric motor part 16 ... Rotating shaft 18 ... Rotary compression mechanism part 32 ... High stage compression part 34 ... Low stage compression part 36 ... Intermediate partition plate 36a ... Insertion holes 42 and 44... Vertical eccentric portion 54a... High-stage bearing (second stage bearing)
56a… Low stage bearing (first stage bearing)
110 ... connecting part 112 ... lower end of rotating shaft

Claims (3)

密閉容器、前記密閉容器内に収納される電動機部及び前記電動機部の回転軸により駆動される2個のシリンダを有し、前記各シリンダ内で前記回転軸に設けた偏心部に嵌合されるローラを偏心回転させると共にベーンにより前記各シリンダ内を仕切り、冷媒ガスを吸込んで圧縮して吐出する回転圧縮機構部を備え、前記回転圧縮機構部は、低圧の冷媒ガスを吸込んで圧縮する低段側圧縮部、前記低段側圧縮部で圧縮され中間圧に昇圧された冷媒ガスを吸込んで圧縮する高段側圧縮部及び前記両圧縮部の間に介設され前記回転軸を挿通する孔を形成した中間仕切板を含む、2シリンダ型2段圧縮ロータリーコンプレッサにおいて、
前記回転軸に設けられる2個の偏心部は180度の位相差を有しかつ前記両偏心部の相互間を連結する連結部の軸径及び前記偏心部を介して前記連結部に連なる回転軸端部の軸径を共に前記回転軸の軸径より小さく設定するようにしたことを特徴とする、2シリンダ型2段圧縮ロータリーコンプレッサ。
It has an airtight container, an electric motor unit housed in the airtight container, and two cylinders driven by a rotation shaft of the electric motor unit, and is fitted to an eccentric part provided on the rotation shaft in each of the cylinders. A rotary compression mechanism that eccentrically rotates the rollers and partitions the inside of each cylinder by vanes, sucks, compresses, and discharges the refrigerant gas, wherein the rotary compression mechanism is a low stage that sucks and compresses the low-pressure refrigerant gas. A side compression section, a high-stage compression section that sucks and compresses the refrigerant gas that has been compressed by the low-stage compression section and raised to an intermediate pressure, and a hole that is interposed between the two compression sections and that passes through the rotary shaft. In a two-cylinder two-stage compression rotary compressor including the formed intermediate partition plate,
Two eccentric portions provided on the rotating shaft have a phase difference of 180 degrees, and a shaft diameter of a connecting portion connecting the two eccentric portions to each other, and a rotating shaft connected to the connecting portion via the eccentric portion. A two-cylinder two-stage compression rotary compressor, wherein both end shaft diameters are set smaller than the shaft diameter of the rotary shaft.
前記2個の偏心部の径を同径に設定するようにした、請求項1記載の2シリンダ型2段圧縮ロータリーコンプレッサ。2. The two-cylinder two-stage compression rotary compressor according to claim 1, wherein the two eccentric portions have the same diameter. 前記2個の偏心部のうち、前記連結部と前記回転軸端部との間にある偏心部の径を他の偏心部の径より小さく設定するようにした、請求項1記載の2シリンダ型2段圧縮ロータリーコンプレッサ。2. The two-cylinder type according to claim 1, wherein, among the two eccentric portions, a diameter of an eccentric portion between the connecting portion and the end of the rotary shaft is set smaller than a diameter of another eccentric portion. Two-stage compression rotary compressor.
JP2000087918A 2000-03-28 2000-03-28 2-cylinder 2-stage compression rotary compressor Expired - Fee Related JP3579323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087918A JP3579323B2 (en) 2000-03-28 2000-03-28 2-cylinder 2-stage compression rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087918A JP3579323B2 (en) 2000-03-28 2000-03-28 2-cylinder 2-stage compression rotary compressor

Publications (2)

Publication Number Publication Date
JP2001271773A JP2001271773A (en) 2001-10-05
JP3579323B2 true JP3579323B2 (en) 2004-10-20

Family

ID=18603863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087918A Expired - Fee Related JP3579323B2 (en) 2000-03-28 2000-03-28 2-cylinder 2-stage compression rotary compressor

Country Status (1)

Country Link
JP (1) JP3579323B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780971B2 (en) * 2005-02-17 2011-09-28 三洋電機株式会社 Rotary compressor
JP6664118B2 (en) 2016-02-26 2020-03-13 パナソニックIpマネジメント株式会社 2-cylinder hermetic compressor

Also Published As

Publication number Publication date
JP2001271773A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP3490950B2 (en) 2-cylinder 2-stage compression type rotary compressor
WO2001016490A1 (en) Internal intermediate pressure 2-stage compression type rotary compressor
JP3723408B2 (en) 2-cylinder two-stage compression rotary compressor
JP3291484B2 (en) 2-stage compression type rotary compressor
EP1209357A1 (en) Closed motor-driven compressor
JP3370027B2 (en) 2-stage compression type rotary compressor
JP3579323B2 (en) 2-cylinder 2-stage compression rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP2001153076A (en) Two-stage compression rotary compressor
JP2003161280A (en) Rotary compressor
JP3370026B2 (en) 2-stage compression type rotary compressor
JP2004084568A (en) Multistage compression type rotary compressor and displacement capacity ratio setting method therefor
JP2003293971A (en) Rotary compressor
JP3935854B2 (en) Rotary compressor
JP2003106276A (en) Two-stage compression type rotary compressor
JP4225793B2 (en) Horizontal type compressor
JP3370041B2 (en) Rotary compressor
JP2001082371A (en) Two-stage compression type rotary compressor
JP2004092469A (en) Rotary compressor
JP2003286985A (en) Rotary compressor
JP2009144602A (en) Rotary compressor and manufacturing method thereof
JP2001271776A (en) Rotary compressor
JP2003184771A (en) Rotary compressor
JP2004293380A (en) Horizontal rotary compressor
JP2004019599A (en) Multiple-stage compression type rotary compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees