JP2003291209A - Method for manufacturing biodegradable polyester stretched molding - Google Patents

Method for manufacturing biodegradable polyester stretched molding

Info

Publication number
JP2003291209A
JP2003291209A JP2002100322A JP2002100322A JP2003291209A JP 2003291209 A JP2003291209 A JP 2003291209A JP 2002100322 A JP2002100322 A JP 2002100322A JP 2002100322 A JP2002100322 A JP 2002100322A JP 2003291209 A JP2003291209 A JP 2003291209A
Authority
JP
Japan
Prior art keywords
temperature
melt
stretching
biodegradable polyester
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002100322A
Other languages
Japanese (ja)
Other versions
JP4245300B2 (en
Inventor
Kazuaki Sakurai
和明 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002100322A priority Critical patent/JP4245300B2/en
Publication of JP2003291209A publication Critical patent/JP2003291209A/en
Application granted granted Critical
Publication of JP4245300B2 publication Critical patent/JP4245300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a biodegradable polyester stretched molding which can easily manufacture the molding suitable for a packaging material application having biodegradability and excellent heat resistance and transparency. <P>SOLUTION: The method for manufacturing the biodegradable polyester stretched molding for stretching a molten molding while heating the molding the step of: stretching the molten molding at a temperature having a relation of formula (1): Tc-0.40(Tc-Tg)≤Ts≤Tc-0.05(Tc-Tg), wherein Ts(°C) is a heating temperature at the stretching time, Tg(°C) is a glass transition temperature obtained when the molding is measured at a differential scanning heat quantity and Tc(°C) is a cold crystallization temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性ポリエス
テルを主体とする延伸成形体の製造方法に関する。更に
詳しくは、生分解性ポリエステルを主体とする、耐熱
性、及び透明性に優れ包装材用途に好適な延伸成形体の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a stretch-molded body mainly composed of biodegradable polyester. More specifically, the present invention relates to a method for producing a stretch-molded product mainly composed of biodegradable polyester, which has excellent heat resistance and transparency and is suitable for packaging material applications.

【0002】[0002]

【従来の技術】食品や医薬品などの包装は、その内容物
の輸送や分配の作業を容易にするものであると同時に、
品質維持が特に重要な役割である。従って、包装材に
は、品質維持性能の高さが要求される。具体的には、長
期保存時に内容物を保護する性能として、衝撃や突き刺
しなどの外力に対する機械的強度や、外気酸素による内
容物の酸化劣化や内容物の水分蒸発による劣化に対する
ガスバリア性、包装材自体が保存時や使用時に変性や変
形しない耐油性や耐熱性などの安定性、包装材自体から
の有害物質、異味、異臭の移行がない衛生性などが挙げ
られる。また、包装材の要求特性としては、内容物の認
識し易さや、購入者の購買意欲を促すディスプレイ効果
により商品価値を高めるために、透明性も重要な因子で
ある。
2. Description of the Related Art The packaging of foods and pharmaceuticals facilitates the work of transporting and distributing the contents,
Maintaining quality is a particularly important role. Therefore, the packaging material is required to have high quality maintenance performance. Specifically, as the ability to protect contents during long-term storage, mechanical strength against external force such as impact and piercing, gas barrier property against oxidative deterioration of contents due to outside air oxygen and deterioration due to moisture evaporation of contents, packaging material Examples of such properties include stability such as oil resistance and heat resistance, which does not denature or deform during storage or use, and hygiene without transfer of harmful substances, off flavors or offensive odors from the packaging material itself. In addition, as a required characteristic of the packaging material, transparency is also an important factor in order to increase the commercial value by the recognizability of the contents and the display effect that encourages the purchaser to purchase.

【0003】従来から、これら包装材用途には、加工時
や利用時の利便性からプラスチック製品が使用されてい
た。しかし、現在の消費社会では、その使用量は年々増
加の一途をたどっており、同時にプラスチック廃棄物問
題は年々深刻化している。プラスチック廃棄物は、多く
は焼却や埋め立てにより処分されているが、近年は環境
保全の観点から、回収して再びプラスチック製品の原料
として用いるマテリアルリサイクルが提唱されている。
Conventionally, plastic products have been used for these packaging materials because of their convenience during processing and use. However, in the present consuming society, the usage amount is increasing year by year, and at the same time, the plastic waste problem is becoming more serious year by year. Most plastic wastes are disposed of by incineration or landfill, but in recent years, from the viewpoint of environmental protection, material recycling has been proposed for use as a raw material for plastic products again.

【0004】しかし、上述のとおり、プラスチック製品
の包装材としての要求性能は多岐にわたり、単一種類の
プラスチックのみではこれら全ての要求を満たすことが
出来ず、例えば多層化してガスバリア性フィルムや成形
容器にするなど、一般に数種類のプラスチックを組み合
わせて用いられている。この様な包装材は、各種樹脂へ
の分別が非常に困難であり、コスト面などを考慮すると
マテリアルリサイクルは不可能である。
However, as described above, the performance required as a packaging material for plastic products is diverse, and it is not possible to satisfy all of these requirements with a single type of plastic alone. For example, multiple layers are used to form gas barrier films and molding containers. Generally, several kinds of plastics are used in combination. Such a packaging material is very difficult to separate into various resins, and material recycling is impossible in consideration of cost and the like.

【0005】これに対し、例えば、特開平10−601
36号公報には、融点が150℃以上、融解熱ΔHmが
20J/g以上、無配向結晶化物の密度が1.50g/
cm 3以上である特定のポリグリコール酸を含有する熱
可塑性樹脂材料を、融点〜255℃の温度範囲で溶融成
形し、ガラス転移温度〜結晶化温度の温度範囲で少なく
とも一軸方向に延伸したポリグリコール酸配向フィルム
が、土中崩壊性を示し、且つ強靭性やバリア性に優れる
包材として使用することが出来ると開示されている。
On the other hand, for example, Japanese Patent Laid-Open No. 10-601
No. 36 discloses that the melting point is 150 ° C. or higher and the heat of fusion ΔHm is
20 J / g or more, density of non-oriented crystallized product is 1.50 g /
cm 3Heat containing a specific polyglycolic acid
Melt plastic resin material in the temperature range from melting point to 255 ° C
Shaped and less in the temperature range of glass transition temperature to crystallization temperature
Uniaxially oriented polyglycolic acid oriented film
However, it exhibits soil disintegration and has excellent toughness and barrier properties.
It is disclosed that it can be used as a packaging material.

【0006】しかしながら、上記特開平10−6013
5号公報の実施例では、ガラス転移温度近傍の42〜4
4℃で延伸している。このように比較的低い温度で延伸
している為に得られる配向フィルムは結晶化が比較的低
い場合があり、耐熱性などのフィルム物性を発現させる
ためには、延伸後の熱処理を比較的高い温度で行なわな
ければならないので、配向フィルムの透明性が悪化し易
いという問題点があった。
However, the above-mentioned Japanese Unexamined Patent Publication No. 10-6013.
In the example of Japanese Patent Laid-Open No. 5-4, 42-4 near the glass transition temperature is used.
It is stretched at 4 ° C. The oriented film obtained by stretching at such a relatively low temperature may have relatively low crystallization, and in order to develop the film physical properties such as heat resistance, the heat treatment after stretching is relatively high. Since it has to be carried out at a temperature, there is a problem that the transparency of the oriented film is likely to deteriorate.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、生分
解性を有し、且つ耐熱性、透明性に優れた包装材用途に
好適な生分解性ポリエステル延伸成形体を容易に製造す
ることが可能である、該成形体の製造方法を提供するこ
とにある。
An object of the present invention is to easily produce a biodegradable polyester stretched molded article which is biodegradable and has excellent heat resistance and transparency and which is suitable for use as a packaging material. It is an object of the present invention to provide a method for producing the molded article, which is capable of

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
達成する為に鋭意検討した結果、生分解性ポリエステル
を主体とする溶融成形物が適度な結晶化速度となる特定
の温度範囲に加熱しながら延伸することにより、生分解
性を有し、且つ耐熱性、透明性に優れた包装材用途に好
適な生分解性ポリエステル延伸成形体を容易に製造する
ことができることを見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventor has found that a melt-formed product mainly composed of biodegradable polyester has a specific temperature range in which it has an appropriate crystallization rate. The present invention found that a stretchable biodegradable polyester having biodegradability, heat resistance, and transparency, which is suitable for a packaging material application, can be easily produced by stretching while heating. Reached

【0009】即ち、本発明は、 1.溶融成形物を加熱しながら少なくとも一軸方向に延
伸する生分解性ポリエステル延伸成形体の製造方法にお
いて、延伸時の加熱温度Ts(℃)が、該溶融成形物を
試験片として加熱速度10℃/分で示差走査熱量測定
(JIS K7121準拠)した際に求められるガラス
転移温度Tg(℃)、及び冷結晶化温度Tc(℃)と下
式(1)の関係にある温度で延伸することを特徴とする
生分解性ポリエステル延伸成形体の製造方法、 式(1)Tc−0.40(Tc−Tg)≦Ts≦Tc−
0.05(Tc−Tg) 2.生分解性ポリエステルが、脂肪族ヒドロキシカルボ
ン酸系重合体であることを特徴とする上記1記載の生分
解性ポリエステル延伸成形体の製造方法、 3.生分解性ポリエステルが、グリコール酸系重合体で
あることを特徴とする上記1、及び2記載の生分解性ポ
リエステル延伸成形体の製造方法、である。
That is, the present invention is as follows: In the method for producing a biodegradable polyester stretched molded product in which a melted molded product is stretched in at least uniaxial direction while being heated, a heating temperature Ts (° C) at the time of stretching is a heating rate of 10 ° C / min using the melted molded product as a test piece. The glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) required for differential scanning calorimetry (according to JIS K7121) according to the above formula (1) are drawn. A method for producing a stretched biodegradable polyester, which is represented by the formula (1) Tc-0.40 (Tc-Tg) ≤Ts≤Tc-.
0.05 (Tc-Tg) 2. 2. The method for producing a stretched biodegradable polyester according to the above 1, wherein the biodegradable polyester is an aliphatic hydroxycarboxylic acid polymer. The method for producing a stretched and molded biodegradable polyester according to the above 1 or 2, wherein the biodegradable polyester is a glycolic acid polymer.

【0010】以下、本発明の生分解性ポリエステル延伸
成形体の製造方法について詳細に説明する。本発明の生
分解性ポリエステル延伸成形体の製造方法は、生分解性
ポリエステルを主体とする溶融成形物の延伸時の加熱温
度Tsを、示差走査熱量測定で求められるガラス転移温
度Tg、及び冷結晶化温度Tcに対して特定範囲とする
ことを特徴としており、本法によると該溶融成形物は適
度な結晶化速度で結晶化し得る状況において延伸される
為に、延伸中に過度に結晶化することなく、容易に所望
の延伸倍率まで破断せずに延伸できる。更に得られる生
分解性ポリエステル延伸成形体は、白化せずに透明性が
非常に優れ、且つ適度に結晶化していることから耐熱性
にも優れるものである。
The method for producing the stretched biodegradable polyester of the present invention will be described in detail below. The method for producing a stretched molded article of the biodegradable polyester of the present invention includes a heating temperature Ts during stretching of a melt-molded article mainly composed of biodegradable polyester, a glass transition temperature Tg determined by differential scanning calorimetry, and a cold crystal. It is characterized in that it is in a specific range with respect to the crystallization temperature Tc. According to the present method, the melt-molded product is stretched in a situation where it can be crystallized at an appropriate crystallization rate, so that it is excessively crystallized during the stretching. Can be easily stretched to a desired stretch ratio without breaking. Further, the obtained biodegradable polyester stretched molded article is excellent in transparency without whitening and is also crystallized appropriately, so that it is also excellent in heat resistance.

【0011】本発明でいう加熱温度Tsとは延伸時の溶
融成形物の温度を指すが、例えば溶融成形物に熱風を吹
き付けて加熱する場合には、溶融成形物は熱風と同等の
温度に加熱されるので、熱風温度を加熱温度Tsに設定
することとする。又、例えば溶融成形物を赤外線などで
輻射加熱する場合には、溶融成形物の温度が加熱温度T
sになるように加熱装置を設定することとする。本発明
でいう延伸成形体とは、主として延伸フィルム及び延伸
シートを指す。本発明において、フィルムとシートの区
別は、単に厚みの違いによって異なる呼称を用いている
ものであり、フィルムとシートを総称して成形体と称す
る。尚、延伸ブロー成形体も、その溶融成形物であるプ
リフォームを適度な結晶化速度で結晶化し得る状況にお
いてブロー成形することにより、本発明の製造方法を適
用してもよいものとする。
The heating temperature Ts in the present invention refers to the temperature of the melt-molded product during stretching. For example, when the melt-molded product is heated by blowing hot air, the melt-molded product is heated to the same temperature as the hot air. Therefore, the hot air temperature is set to the heating temperature Ts. When the melt-molded product is radiantly heated with infrared rays, the temperature of the melt-molded product is the heating temperature T.
The heating device is set so as to be s. The stretch-molded product in the present invention mainly refers to a stretched film and a stretched sheet. In the present invention, the film and the sheet are distinguished by simply using different names depending on the difference in thickness, and the film and the sheet are collectively referred to as a molded product. The stretch blow-molded article may also be produced by blow-molding the preform, which is a melt-molded article, in a state where the preform can be crystallized at an appropriate crystallization rate.

【0012】一般に、プラスチック成形体の成膜加工に
おいて、一軸延伸や二軸延伸によるフィルムの製造方法
では、溶融成形物を「融点以下で、二次転移点(ガラス
転移温度と同意)以上の温度に加熱しながら」(プラス
チックフィルム研究会、プラスチックフィルム−加工と
応用−、p.63、技報堂出版(1971))延伸を行
なうのが通常の方法である。特に、ポリエステルの一種
であるポリエチレンテレフタレートフィルムの製造方法
では、「成膜条件は…80〜130℃で2.0〜4.0
倍延伸」(プラスチックフィルム研究会、プラスチック
フィルム−加工と応用−、p.81、技報堂出版(19
71))するのが通常の方法である。
Generally, in a film forming process of a plastic molded product, in a method for producing a film by uniaxial stretching or biaxial stretching, a melt-molded product has a temperature "below the melting point and above the second-order transition point (which is synonymous with the glass transition temperature)". It is a usual method to carry out stretching while heating to "" (Plastic Film Research Group, Plastic Film-Processing and Application-, p. 63, Gihodo Publishing (1971)). In particular, in the method for producing a polyethylene terephthalate film, which is a type of polyester, "the film formation conditions are 80 to 130 ° C. and 2.0 to 4.0.
Double Stretching "(Plastic Film Research Group, Plastic Film-Processing and Application-, p. 81, Gihodo Publishing (19
71)) is the usual method.

【0013】一方、ポリエチレンテレフタレートの熱的
特性は、ガラス転移温度が79℃、冷結晶化温度が12
8℃(日本分析化学会、新版 高分子分析ハンドブッ
ク、p.336、紀伊国屋書店(1995))である。
従って、上記特開平10−60136号公報に規定され
ているガラス転移温度〜結晶化温度の温度範囲で延伸す
るフィルム製造方法は、ポリエチレンテレフタレートフ
ィルムの製造方法における従来技術から容易に類推され
得る温度範囲で延伸していると言える。
On the other hand, regarding the thermal characteristics of polyethylene terephthalate, the glass transition temperature is 79 ° C. and the cold crystallization temperature is 12.
8 ° C. (Japan Society for Analytical Chemistry, New Edition Handbook for Polymer Analysis, p. 336, Kinokuniya Bookstore (1995)).
Therefore, the film manufacturing method of stretching in the temperature range of the glass transition temperature to the crystallization temperature defined in the above-mentioned JP-A-10-60136 is a temperature range that can be easily inferred from the prior art in the manufacturing method of polyethylene terephthalate film. Can be said to be stretched.

【0014】本発明は、プラスチック成形体の成膜加工
において延伸時の加熱温度条件について鋭意検討した結
果、プラスチックの結晶化という自然現象を利用して、
ガラス転移温度Tg〜結晶化温度Tcの間でも、格別に
下式(1)に特定する温度範囲で延伸することにより、
得られる成形体の結晶構造を制御できることを見出し到
達したものである。尚、下式(1)は、変形して下式
(2)で表すことができる。 式(1)Tc−0.40(Tc−Tg)≦Ts≦Tc−
0.05(Tc−Tg) 式(2)0.05≦(Tc−Ts)/(Tc−Tg)≦
0.40 本発明における結晶化は、熱力学的非平衡状態にある、
いわゆるガラス状態の溶融成形物を加熱する際に起こる
結晶化現象で、慣用的に冷結晶化と呼ばれている現象で
ある。この結晶化の度合いを把握する数値としては、具
体的には結晶化度を求めることで可能であり、例えば熱
分析法により試験片の結晶融解熱の理論融解熱に対する
比から求めることができる。
In the present invention, as a result of diligent examination of the heating temperature condition during stretching in the film forming process of a plastic molding, the natural phenomenon of crystallization of plastic is utilized,
Even between the glass transition temperature Tg and the crystallization temperature Tc, by stretching in the temperature range specified in the following formula (1),
It has been found that the crystal structure of the obtained molded body can be controlled. The following formula (1) can be modified and expressed by the following formula (2). Formula (1) Tc-0.40 (Tc-Tg) ≤Ts≤Tc-
0.05 (Tc-Tg) Formula (2) 0.05 ≦ (Tc-Ts) / (Tc-Tg) ≦
0.40 The crystallization in the present invention is in a thermodynamic non-equilibrium state,
This is a crystallization phenomenon that occurs when heating a so-called glass-state melt-molded product, which is a phenomenon conventionally called cold crystallization. The numerical value for grasping the degree of crystallization can be specifically obtained by obtaining the crystallinity, and can be obtained, for example, by the ratio of the heat of crystal fusion of the test piece to the theoretical heat of fusion by a thermal analysis method.

【0015】図1は、試験片の結晶化度の経時変化が、
加熱温度によって異なることを示す実験図である。該図
は、横軸に加熱時間(分)、縦軸に結晶化度(%)を各
々目盛り、丸印(○)は加熱温度50℃の場合を、四角
印(□)は加熱温度80℃の場合を、三角印(△)は加
熱温度100℃の場合を各々示している。一方、この実
験で用いた試験片を加熱速度10℃/分で示差走査熱量
測定(JIS K7121準拠)した際に求められるガ
ラス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)
は、各々ガラス転移温度Tgが11℃、冷結晶化温度T
cが103℃であった。図1の加熱温度を前出式(2)
のTsとして代入すると、(Tc−Ts)/(Tc−T
g)の値は、各々丸印(○)の50℃では0.58、四
角印(□)の80℃では0.25、三角印(△)の10
0℃では0.03となる。
FIG. 1 shows that the crystallinity of the test piece changes with time.
It is an experimental figure which shows that it changes with heating temperature. In the figure, the horizontal axis indicates the heating time (minutes) and the vertical axis indicates the crystallinity (%). The circle (○) indicates the heating temperature of 50 ° C, and the square (□) indicates the heating temperature of 80 ° C. In each case, the triangle mark (Δ) indicates the case where the heating temperature is 100 ° C., respectively. On the other hand, the glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) required when the test piece used in this experiment was subjected to differential scanning calorimetry (JIS K7121 compliant) at a heating rate of 10 ° C./min.
Have a glass transition temperature Tg of 11 ° C. and a cold crystallization temperature T
c was 103 ° C. The heating temperature in FIG.
Substituting as Ts of (Tc-Ts) / (Tc-T
The values of g) are 0.58 at 50 ° C. for circles (◯), 0.25 at 80 ° C. for squares (□), and 10 for triangles (Δ).
It becomes 0.03 at 0 ° C.

【0016】図1によると、前出式(2)の(Tc−T
s)/(Tc−Tg)の値が0.58である加熱温度5
0℃では試験片の結晶化は少ししか起こらないが、該値
が0.25である加熱温度を80℃に設定すると試験片
は適度に結晶化するようになり、該値が0.03である
加熱温度100℃ではより高度に結晶化するようになる
ことが判る。該図が示す結晶化度の経時変化は結晶化速
度を表す指標になり、該図四角印(□)の加熱温度80
℃で示される様な適度な結晶化速度となる温度では、延
伸中に結晶化の進行度合いを制御することが可能で、過
度に結晶化することなく延伸成形体を製造できることが
判る。
According to FIG. 1, (Tc-T of the above equation (2) is used.
heating temperature 5 with a value of (s) / (Tc-Tg) of 0.58
At 0 ° C., crystallization of the test piece occurs only slightly, but when the heating temperature at which the value is 0.25 is set to 80 ° C., the test piece becomes crystallized moderately, and when the value is 0.03. It can be seen that at a certain heating temperature of 100 ° C., the crystallization becomes higher. The change with time of the crystallinity shown in the figure is an index showing the crystallization rate, and the heating temperature of the square mark (□) in the figure is 80.
It can be seen that at a temperature at which an appropriate crystallization rate as shown in ° C can be obtained, the progress of crystallization can be controlled during stretching, and a stretched molded product can be produced without excessive crystallization.

【0017】従って、本発明の延伸成形体の製造方法で
は、溶融成形物を延伸する際の加熱温度Ts(℃)は、
該溶融成形物を試験片として加熱速度10℃/分で示差
走査熱量測定(JIS K7121準拠)した際に求め
られるガラス転移温度Tg(℃)、及び冷結晶化温度T
c(℃)と式(1)の関係にある温度範囲に特定する。 式(1)Tc−0.40(Tc−Tg)≦Ts≦Tc−
0.05(Tc−Tg) 該Tsの値が(Tc−0.05(Tc−Tg))℃より
も高い場合は、用いる溶融成形物の結晶化速度が非常に
速くなる為に、延伸中に非常に高度な結晶化が起こり所
望の延伸倍率に達せず破断して成形体の製造工程が非常
に煩雑になったり、破断しなかったとしても延伸時の加
熱操作で白化し透明性が極度に劣る成形体しか得られな
かったりする。一方、該Tsの値が(Tc−0.40
(Tc−Tg))℃よりも低い場合は、用いる溶融成形
物の結晶化速度が非常に遅くなる為に延伸中に十分結晶
化が進まず、延伸後に熱固定しない成形体は結晶化度が
低く耐熱性が劣るものとなったり、延伸後に熱固定した
成形体は白化し透明性が極度に劣るものとなる。従っ
て、該Tsの値は、上記式(1)の関係にある温度範囲
から選ぶことになるが、より高い耐熱性とより高い透明
性を兼備し、延伸中に破断することなくより容易に延伸
成形体を製造する為には、下式(3)の関係にある温度
範囲から選ぶことが好ましい。 式(3)Tc−0.30(Tc−Tg)≦Ts≦Tc−
0.10(Tc−Tg)
Therefore, in the method for producing a stretch-molded product of the present invention, the heating temperature Ts (° C.) for stretching the melt-molded product is
A glass transition temperature Tg (° C.) and a cold crystallization temperature T, which are required when a differential scanning calorimetry (according to JIS K7121) is performed at a heating rate of 10 ° C./min as a test piece using the melt-formed product.
It is specified in the temperature range having the relationship of c (° C.) and the formula (1). Formula (1) Tc-0.40 (Tc-Tg) ≤Ts≤Tc-
0.05 (Tc-Tg) When the value of Ts is higher than (Tc-0.05 (Tc-Tg)) ° C., the crystallization rate of the melt-molded product to be used becomes very high, and therefore, during stretching. In that case, a very high degree of crystallization occurs and the molded product does not reach the desired stretching ratio and breaks, making the manufacturing process of the molded product very complicated, and even if it does not break, it is whitened by the heating operation during stretching and the transparency is extremely high. In some cases, only molded products that are inferior in quality are obtained. On the other hand, the value of Ts is (Tc-0.40
When the temperature is lower than (Tc-Tg)) ° C., the crystallization rate of the melt-molded product to be used is very slow, so that the crystallization does not proceed sufficiently during the stretching, and the molded product that is not heat-set after the stretching has a crystallinity degree. The heat resistance is low and inferior, or the molded product heat-fixed after stretching is whitened and the transparency is extremely inferior. Therefore, the value of Ts is selected from the temperature range having the relationship of the above formula (1), but it has both higher heat resistance and higher transparency, and is more easily stretched without breaking during stretching. In order to produce a molded body, it is preferable to select from a temperature range having the relationship of the following formula (3). Formula (3) Tc-0.30 (Tc-Tg) ≤Ts≤Tc-
0.10 (Tc-Tg)

【0018】尚、本発明で用いる溶融成形物に、上記示
差走査熱量測定においてガラス転移温度や冷結晶化温度
が各々複数存在する場合、例えば後述する原料から少な
くとも2種以上を用いて溶融混合した組成物からなる溶
融成形物の場合には、該溶融成形物を試験片として加熱
速度10℃/分で示差走査熱量測定(JIS K712
2準拠)した際に求められる冷結晶化熱が大きい方の生
分解性ポリエステルのガラス転移温度Tg(℃)、及び
冷結晶化温度Tc(℃)を採用し、延伸時の加熱温度T
s(℃)を設定する。又、後述する原料からなる多層状
溶融成形物の場合には、該溶融成形物を試験片として加
熱速度10℃/分で示差走査熱量測定(JIS K71
21準拠)した際に求められる融点が高い方の生分解性
ポリエステル層のガラス転移温度Tg(℃)、及び冷結
晶化温度Tc(℃)を採用し、延伸時の加熱温度Ts
(℃)を設定する。
When the melt-molded product used in the present invention has a plurality of glass transition temperatures or cold crystallization temperatures in the differential scanning calorimetry, for example, at least two or more of the raw materials described below are melt-mixed. In the case of a melt-molded product composed of the composition, the melt-molded product is used as a test piece at a heating rate of 10 ° C./min for differential scanning calorimetry (JIS K712).
2), the glass transition temperature Tg (° C.) of the biodegradable polyester and the cold crystallization temperature Tc (° C.) of which the heat of cold crystallization required is larger, and the heating temperature T during stretching is adopted.
Set s (° C). In the case of a multilayer melt-molded product made of the raw materials described below, the melt-molded product is used as a test piece at a heating rate of 10 ° C./min for differential scanning calorimetry (JIS K71).
21), the glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) of the biodegradable polyester layer having a higher melting point, which are required to be applied, are adopted, and the heating temperature Ts during stretching is adopted.
Set (℃).

【0019】次に、本発明の延伸成形体の製造方法で用
いる溶融成形物について、詳細に説明する。該溶融成形
物は、主として生分解性ポリエステルよりなる原料を、
例えば溶融押出法、カレンダー法、溶融プレス成形法な
どの、特に限定されるものではなく従来公知の一般的な
方法で溶融成形したシート状物やチューブ状物などであ
る。溶融成形物の原料である本発明で用いる生分解性ポ
リエステルとしては、例えばグリコール酸、及び乳酸や
2−ヒドロキシイソ酪酸などを含む2−ヒドロキシ−
2,2−ジアルキル酢酸類、3−ヒドロキシ酪酸、3−
ヒドロキシ吉草酸、3−ヒドロキシヘキサン酸、4−ヒ
ドロキシブタン酸などを含む脂肪族ヒドロキシカルボン
酸類、その他公知のヒドロキシカルボン酸類の単量体を
用いての直接脱水重縮合、例えばグリコール酸メチルな
どを含むこれらヒドロキシカルボン酸類のエステル誘導
体を用いての脱アルコール重縮合、若しくはこれらヒド
ロキシカルボン酸類の同種、異種の環状二量体である、
例えばグリコリド(1,4−ジオキサ−2,5−ジオ
ン)、ラクチド(3,6−ジメチル−1,4−ジオキサ
−2,5−ジオン)などを用いての開環重合、β−ブチ
ロラクトン、β−プロピオラクトン、ピバロラクトン、
γ−ブチロラクトン、δ−バレロラクトン、β−メチル
−δ−バレロラクトン、ε−カプロラクトンなどを含む
ラクトン類の単量体を用いての開環重合などにより得ら
れる単独重合体、又はこれらより任意に選択した二種以
上から得られる共重合体であるポリヒドロキシカルボン
酸類、ポリラクトン類、及びこれらヒドロキシカルボン
酸類やその環状二量体とラクトン類の共重合体であるポ
リ(ヒドロキシカルボン酸−コ−ラクトン)類、等モル
量の多価アルコール類と多価カルボン酸類の組み合わせ
であって、多価アルコール類として、例えばエチレング
リコール、プロピレングリコール、1,2−プロパンジ
オール、1,3−ブタンジオール、1,4−ブタンジオ
ール、1,5−ペンタンジオール、2,2−ジメチル−
1,3−プロパンジオール、1,6−ヘキサンジオー
ル、1,3−シクロヘキサノール、1,4−シクロヘキ
サノール、1,3−シクロヘキサンジメタノール、1,
4−シクロヘキサンジメタノールなどの脂肪族ジオー
ル、或いはこれら脂肪族ジオールが複数結合した、例え
ばジエチレングリコール、トリエチレングリコール、テ
トラエチレングリコールなどと、多価カルボン酸とし
て、例えばマロン酸、コハク酸、グルタル酸、2,2−
ジメチルグルタル酸、アジピン酸、ピメリン酸、スペリ
ン酸、アゼライン酸、セバシン酸、1,3−シクロペン
タンジカルボン酸、1,3−シクロヘキサンジカルボン
酸、1,4−シクロヘキサンジカルボン酸、ジグリコー
ル酸などの脂肪族ジカルボン酸、テレフタル酸、イソフ
タル酸、1,4−ナフタリンジカルボン酸、2,6−ナ
フタリンジカルボン酸などの芳香族ジカルボン酸、これ
ら脂肪族ジカルボン酸や芳香族ジカルボン酸のエステル
誘導体、これら脂肪族ジカルボン酸の無水物などとから
得られる多価アルコール類と多価カルボン酸が各々一種
ずつの単独重合体、或いは多価アルコール類と多価カル
ボン酸のうち何れか一方が一種で他方が任意に選択した
二種以上から得られる共重合体、又は多価アルコール類
と多価カルボン酸の各々が任意に選択した二種以上から
得られる共重合体である脂肪族ポリエステル類、上記ヒ
ドロキシカルボン酸類などと多価アルコール類の組合せ
であって、例えば1,4−ジオキサ−2−オンなどを含
むエステルとエーテル単位を有する環状化合物を用いて
の開環重合により得られるポリ(エステル−エーテル)
類、上記ヒドロキシカルボン酸類などと多価アルコール
類と多価カルボン酸類の組合せにより得られるポリエス
テル類などが挙げられる。
Next, the melt-formed product used in the method for producing a stretch-formed product of the present invention will be described in detail. The melt-molded product contains a raw material mainly composed of biodegradable polyester,
For example, a sheet-shaped material or a tube-shaped material that is melt-molded by a conventionally known general method such as a melt extrusion method, a calender method, and a melt press molding method is not particularly limited. Examples of the biodegradable polyester used in the present invention which is a raw material for the melt-molded product include glycolic acid, 2-hydroxy-containing lactic acid and 2-hydroxyisobutyric acid.
2,2-Dialkyl acetic acids, 3-hydroxybutyric acid, 3-
Direct dehydration polycondensation using aliphatic hydroxycarboxylic acids including hydroxyvaleric acid, 3-hydroxyhexanoic acid, 4-hydroxybutanoic acid and the like, and other known hydroxycarboxylic acid monomers, such as methyl glycolate Dealcoholization polycondensation using ester derivatives of these hydroxycarboxylic acids, or the same or different cyclic dimers of these hydroxycarboxylic acids,
For example, ring-opening polymerization using glycolide (1,4-dioxa-2,5-dione), lactide (3,6-dimethyl-1,4-dioxa-2,5-dione), β-butyrolactone, β -Propiolactone, pivalolactone,
γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, homopolymer obtained by ring-opening polymerization using a lactone monomer including ε-caprolactone, etc., or optionally from these Polyhydroxycarboxylic acids, polylactones, which are copolymers obtained from two or more selected types, and poly (hydroxycarboxylic acid-co-lactone), which is a copolymer of these hydroxycarboxylic acids or their cyclic dimers and lactones. ), An equimolar amount of polyhydric alcohols and polyhydric carboxylic acids, and examples of polyhydric alcohols include ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-butanediol, and 1-butanediol. , 4-butanediol, 1,5-pentanediol, 2,2-dimethyl-
1,3-propanediol, 1,6-hexanediol, 1,3-cyclohexanol, 1,4-cyclohexanol, 1,3-cyclohexanedimethanol, 1,
Aliphatic diols such as 4-cyclohexanedimethanol, or a combination of a plurality of these aliphatic diols, such as diethylene glycol, triethylene glycol, tetraethylene glycol, and polyvalent carboxylic acids such as malonic acid, succinic acid, glutaric acid, 2,2-
Fats such as dimethyl glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and diglycolic acid Aromatic dicarboxylic acids such as group dicarboxylic acids, terephthalic acid, isophthalic acid, 1,4-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, these aliphatic dicarboxylic acids and ester derivatives of aromatic dicarboxylic acids, and these aliphatic dicarboxylic acids Polyhydric alcohols and polycarboxylic acids obtained from acid anhydrides and the like are each a homopolymer, or one of polyhydric alcohols and polycarboxylic acids is one type and the other is arbitrarily selected. Copolymers obtained from two or more of the above, or polyhydric alcohols and polycarboxylic acids Aliphatic polyesters each being a copolymer obtained from two or more kinds arbitrarily selected, a combination of the above-mentioned hydroxycarboxylic acids and the like and polyhydric alcohols, such as 1,4-dioxa-2-one Poly (ester-ether) obtained by ring-opening polymerization using a cyclic compound having an ester and ether unit containing
And polyesters obtained by combining the above-mentioned hydroxycarboxylic acids and the like, polyhydric alcohols and polyhydric carboxylic acids.

【0020】これらの生分解性ポリエステルは、共重合
体の場合は、その配列は特に限定されるものではなく、
ランダム共重合体、交互共重合体、ブロック共重合体、
グラフト共重合体などの何れでも良く、その共重合組成
割合は特に限定されるものではなく、構成する単量体の
二種以上を任意の割合で共重合させた共重合体である。
更に、上記の単量体などが光学活性物質である場合に
は、L−体およびD−体の何れであってもよいし、D−
体とL−体の混合割合が任意の混合組成物、D−体とL
−体の共重合割合が任意の共重合体、或いはメソ体の何
れであってもよい。
When these biodegradable polyesters are copolymers, their arrangement is not particularly limited,
Random copolymer, alternating copolymer, block copolymer,
Any of graft copolymers and the like may be used, and the copolymerization composition ratio is not particularly limited, and it is a copolymer in which two or more kinds of constituent monomers are copolymerized at an arbitrary ratio.
Furthermore, when the above-mentioned monomer or the like is an optically active substance, it may be either L-form or D-form, and D-form
Composition of D-body and L-body in any mixing ratio
The copolymerization ratio of the-form may be any copolymer or meso form.

【0021】更に、本発明で用いる生分解性ポリエステ
ルとしては、上記の化学合成ポリエステルの他に、ポリ
(3−ヒドロキシブチラート)、ポリ(3−ヒドロキシ
ブチラート−コ−3−ヒドロキシバレレート)、ポリ
(3−ヒドロキシブチラート−コ−4−ヒドロキシブチ
ラート)、その他炭素数が12程度より少ないヒドロキ
シアルカン酸を単量体単位とした単独重合体、若しくは
共重合体などの、微生物により合成される微生物生産ポ
リエステル類であっても良い。
Further, as the biodegradable polyester used in the present invention, in addition to the above-mentioned chemically synthesized polyester, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) is used. , Poly (3-hydroxybutyrate-co-4-hydroxybutyrate), other homopolymers or copolymers of hydroxyalkanoic acid having less than about 12 carbon atoms as monomer units, synthesized by microorganisms Microbial produced polyesters may be used.

【0022】本発明で用いる生分解性ポリエステルは、
包装材として利用する成形体に耐熱性を付与する為に
は、加熱速度10℃/分で示差走査熱量測定(JIS
K7121準拠)した際に求められる融点が140℃以
上210℃以下であることが望ましく、より望ましくは
160℃以上205℃以下、最も望ましくは175℃以
上200℃以下であり、前述した熱分析法により求めた
結晶化度が、充分アニール処理して平衡状態となったも
の(後述の物性測定法の項で規定している。)を試験片
として10%以上70%以下であることが望ましく、よ
り望ましくは15%以上60%以下、最も望ましくは2
0%以上50%以下である。また、成形体に包装材とし
て要求される外力に対する機械的強度を付与する為に、
或いは溶融成形物を厚み精度良く、且つより容易に得る
為には、分子量は重量平均分子量で表すと8×104
上であることが望ましく、より望ましくは1×105
上である。分子量の上限は、可塑剤などの添加により溶
融流動性を調節すれば良く特に限定されるものではない
が、重量平均分子量で表すと8×105以下に留めるこ
とが望ましい。
The biodegradable polyester used in the present invention is
In order to impart heat resistance to the molded product used as a packaging material, differential scanning calorimetry (JIS
The melting point required in accordance with K7121 is 140 ° C. or higher and 210 ° C. or lower, more preferably 160 ° C. or higher and 205 ° C. or lower, and most preferably 175 ° C. or higher and 200 ° C. or lower. It is desirable that the obtained crystallinity is 10% or more and 70% or less as a test piece that has been sufficiently annealed to be in an equilibrium state (specified in the section of the physical property measurement method described later). It is preferably 15% or more and 60% or less, and most preferably 2
It is 0% or more and 50% or less. Further, in order to impart mechanical strength to the external force required as a packaging material to the molded body,
Alternatively, in order to obtain a melt-molded product with high thickness accuracy and more easily, the molecular weight is preferably 8 × 10 4 or more, more preferably 1 × 10 5 or more in terms of weight average molecular weight. The upper limit of the molecular weight is not particularly limited as long as the melt fluidity can be adjusted by adding a plasticizer or the like, but it is preferably 8 × 10 5 or less in terms of weight average molecular weight.

【0023】上記に例示した本発明で用いる生分解性ポ
リエステルのうち、より好ましい生分解性ポリエステル
は脂肪族ヒドロキシカルボン酸系重合体であり、なかで
も包装材として利用する成形体に耐熱性を付与するため
に比較的融点が高く、且つガスバリア性に優れるグリコ
ール酸系重合体が最も好ましい生分解性ポリエステルで
ある。上記グリコール酸系重合体とは、主たる単量体単
位がグリコール酸である重合体をいい、グリコール酸の
環状二量体であるグリコリド(1,4−ジオキサ−2,
5−ジオン)を用いての開環重合、又はグリコール酸を
用いての直接脱水重縮合、グリコール酸メチルなどのグ
リコール酸エステル類を用いて脱アルコールしながらの
重縮合などにより得られる重合体である。
Among the above-exemplified biodegradable polyesters used in the present invention, a more preferable biodegradable polyester is an aliphatic hydroxycarboxylic acid type polymer, and above all, it imparts heat resistance to a molded product used as a packaging material. Therefore, a glycolic acid-based polymer having a relatively high melting point and an excellent gas barrier property is the most preferable biodegradable polyester. The glycolic acid-based polymer means a polymer whose main monomer unit is glycolic acid, and is glycolide (1,4-dioxa-2, which is a cyclic dimer of glycolic acid.
A polymer obtained by ring-opening polymerization using (5-dione), direct dehydration polycondensation using glycolic acid, polycondensation while dealcoholating using glycolic acid esters such as methyl glycolate. is there.

【0024】該重合体の製造方法は、従来公知の一般的
な方法で行われ、例えば主たる単量体にグリコリドを用
い開環重合してグリコール酸系重合体を得るには、Gi
ldingらの方法(Polymer,vol.20,
December(1979))などが挙げられるが、
これに限定されるものではない。該重合体は、結晶化の
進行度合いをより制御し易くする為に、単量体単位がグ
リコール酸とグリコール酸以外、例えば乳酸などよりな
る共重合体であることが望ましく、例えば単量体単位と
してグリコール酸の成分割合が78〜90mol%と乳
酸の成分割合が22〜10mol%である開環重合によ
り得られたグリコール酸−乳酸共重合体でが挙げられ、
融点は175〜205℃、充分アニール処理して平衡状
態となったものを試験片として熱分析法により求めた結
晶化度は15〜40%である。但し、熱分析法による結
晶化度の算出では、理論融解熱はグリコール酸単独重合
体の値である207J/gを用いている(C.C.Ch
u,J.Appl.Poly.Sci.,Vol.2
6,p.1726(1981)、J.Brandru
p,et al.,POLYMER HANDBOO
K,3rd ed.,John Wiley & So
ns(1989))。
The polymer is produced by a conventional method known in the art. For example, in order to obtain a glycolic acid-based polymer by ring-opening polymerization using glycolide as a main monomer, Gi is used.
Lding et al. (Polymer, vol. 20,
December (1979)) and the like,
It is not limited to this. In order to make it easier to control the degree of crystallization, it is desirable that the monomer unit is a copolymer of glycolic acid and other than glycolic acid, such as lactic acid. As the glycolic acid-lactic acid copolymer obtained by ring-opening polymerization, the glycolic acid component ratio is 78 to 90 mol% and the lactic acid component ratio is 22 to 10 mol%.
The melting point is 175 to 205 [deg.] C., and the crystallinity determined by the thermal analysis method is a test piece that is sufficiently annealed to be in an equilibrium state and is 15 to 40%. However, in the calculation of the crystallinity by the thermal analysis method, the theoretical heat of fusion uses 207 J / g which is the value of the glycolic acid homopolymer (CC Ch.
u, J. Appl. Poly. Sci. , Vol. Two
6, p. 1726 (1981), J. Brandru
p, et al. , POLYMER HANDBOO
K, 3rd ed. , John Wiley & So
ns (1989)).

【0025】本発明で用いる溶融成形物は、その原料と
しては前述の生分解性ポリエステルを主体とするもの、
即ち50wt%以上含有するものであり、該ポリエステ
ルを単独で用いても良いし、該ポリエステルから二種以
上を選び任意の混合割合で溶融混合した混合組成物で用
いても良い。又、得られる延伸成形体の生分解性を阻害
しない範囲で他の重合体との混合組成物で用いても良
い。原料の一部として使用し得る他の重合体とは、上記
生分解性ポリエステル以外の公知の生分解性プラスチッ
クである、例えばデンプン系やセルロース系などの天然
高分子類、ポリアスパラギン酸などのポリアミノ酸類、
酢酸セルロースなどのセルロースエステル類、脂肪族ポ
リエステルカーボネート類、ポリビニルアルコール類、
ポリエチレンオキサイドなどのポリエーテル類、低分子
量のポリエチレン、ポリリンゴ酸等が挙げられる。
The melt-molded product used in the present invention is mainly composed of the above-mentioned biodegradable polyester as a raw material.
That is, it is contained in an amount of 50 wt% or more, and the polyester may be used alone, or may be used in a mixed composition in which two or more kinds are selected from the polyester and melt-mixed at an arbitrary mixing ratio. Further, it may be used as a mixed composition with another polymer as long as it does not impair the biodegradability of the obtained stretched and molded product. The other polymer that can be used as a part of the raw material is a known biodegradable plastic other than the above biodegradable polyester, for example, a natural polymer such as a starch-based or cellulose-based polymer, a polyaspartic acid-based polymer, or the like. Amino acids,
Cellulose esters such as cellulose acetate, aliphatic polyester carbonates, polyvinyl alcohols,
Examples thereof include polyethers such as polyethylene oxide, low molecular weight polyethylene, polymalic acid and the like.

【0026】又、得られる延伸成形体の生分解性を阻害
しない範囲であれば、例えば、ポリオレフィン類、芳香
族ポリエステル類、ポリアミド類、エチレン−ビニルア
ルコール系共重合体類、石油樹脂類やテルペン系樹脂
類、その水素添加物、その他公知の熱可塑性樹脂などを
混合しても良い。本発明で用いる溶融成形物は、必要に
応じて、その原料の一部として無機および/または有機
化合物よりなる添加剤、例えば、可塑剤、滑剤、帯電防
止剤、防曇剤、酸化防止剤、熱安定剤、光安定剤、紫外
線吸収剤、着色剤、難燃剤、結晶核剤等が適宜混合され
てもよい。
Further, as long as the biodegradability of the obtained stretched molded article is not impaired, for example, polyolefins, aromatic polyesters, polyamides, ethylene-vinyl alcohol copolymers, petroleum resins and terpenes. Resins, hydrogenated products thereof, and other known thermoplastic resins may be mixed. The melt-molded product used in the present invention, if necessary, an additive comprising an inorganic and / or organic compound as a part of its raw material, for example, a plasticizer, a lubricant, an antistatic agent, an antifogging agent, an antioxidant, A heat stabilizer, a light stabilizer, an ultraviolet absorber, a coloring agent, a flame retardant, a crystal nucleating agent and the like may be appropriately mixed.

【0027】使用される可塑剤の具体例としては、例え
ばジオクチルフタレートやジエチルフタレートなどのフ
タル酸エステル類、ラウリン酸エチルやオレイン酸ブチ
ル、リノール酸オクチルなどの脂肪酸エステル類、ジオ
クチルアジペートやジブチルセバケートなどの脂肪族二
塩基酸エステル類、アセチルクエン酸トリブチルやアセ
チルクエン酸トリエチルなどの脂肪族三塩基酸エステル
類、グリセリンジアセテートラウレートやグリセリント
リアセテートなどのグリセリン脂肪酸エステル類、ジグ
リセリンテトラアセテートやテトラグリセリンヘキサア
セテートなどのポリグリセリン脂肪酸エステル類、リン
酸ジオクチルなどのリン酸エステル類、エポキシ化大豆
油やエポキシ化アマニ油などの変性植物油類、ポリブチ
レンセバケートなどのポリエステル系可塑剤などが挙げ
られ、安全衛生性の観点からグリセリン脂肪酸エステル
類や脂肪族三塩基酸エステル類が特に望ましい。該溶融
成形物は、これらから一種、または二種以上を選び、添
加量が溶融成形物の原料中に40wt%未満含有する組
成物からなるものである。
Specific examples of the plasticizer used include phthalates such as dioctyl phthalate and diethyl phthalate, fatty acid esters such as ethyl laurate, butyl oleate and octyl linoleate, dioctyl adipate and dibutyl sebacate. Aliphatic dibasic acid esters such as, tributyl acetylcitrate and triethyl acetylcitrate such as triethyl, glycerin diacetate laurate and glycerin fatty acid esters such as glycerin triacetate, diglycerin tetraacetate and tetra Polyglycerin fatty acid esters such as glycerin hexaacetate, phosphate esters such as dioctyl phosphate, modified vegetable oils such as epoxidized soybean oil and epoxidized linseed oil, and polybutylene sebacate Of it can be mentioned a polyester-based plasticizers, safety and health of the viewpoint from glycerol fatty acid esters and aliphatic tribasic acid esters are particularly desirable. The melt-molded product is composed of a composition in which one kind or two or more kinds are selected from these and the addition amount is less than 40 wt% in the raw material of the melt-molded product.

【0028】又、使用される酸化防止剤としては、例え
ばフェノール系、フェニルアクリレート系、リン系、イ
オウ系などが挙げられる。該溶融成形物は、これらから
一種、又は二種以上を選び、添加量が溶融成形物の原料
中に10重量%未満含有する組成物からなるものであ
る。本発明で用いる上記生分解性ポリエステルと、上記
他の重合体や上記添加剤などとの組成物を用いる場合に
は、全部、或いは一部を単軸、又は二軸押出機、バンバ
リーミキサー、ミキシングロール、ニーダー等を使用し
て溶融混合させ用いるのが望ましい。
Examples of the antioxidant to be used include phenol type, phenyl acrylate type, phosphorus type and sulfur type. The melt-molded product is composed of a composition in which one kind or two or more kinds are selected from these and the addition amount is less than 10% by weight in the raw material of the melt-molded product. When the composition of the biodegradable polyester used in the present invention and the other polymer or the additive is used, all or a part thereof is a single-screw or twin-screw extruder, a Banbury mixer, and a mixing. It is desirable to use a roll, a kneader or the like for melt mixing.

【0029】次に、本発明により得られる延伸成形体に
ついて説明する。該成形体は、上記溶融成形物を加熱し
ながら少なくとも一軸方向に延伸する際に、加熱温度を
前述の特定範囲に設定して延伸し得られる成形体であ
る。該溶融成形物の製造方法やその延伸方法は、特に限
定されるものではなく従来公知の一般的な方法で行われ
る。溶融成形物の製造方法としては、前述した溶融押出
法、カレンダー法、溶融プレス成形法などが挙げられ、
具体的には、例えば溶融押出法では、前述した原料を、
事前に水分率が200wtppm以下になるまで乾燥さ
せてから押出機に供給して、加熱溶融しながら押出機の
先端に接続したダイスから押出し、その後冷却固化させ
ることにより、シート状、若しくはチューブ状の溶融成
形物として製造することができる。また、溶融プレス成
形法では、前述した原料を、事前に水分率が200wt
ppm以下になるまで乾燥させてから金型に供給して、
常圧或いは減圧雰囲気下で加熱溶融させプレスし、その
後冷却固化させることにより、シート状の溶融成形物と
して製造することができる。これらの方法において、原
料の加熱融解は、通常は(融点−5℃)〜(融点+65
℃)の温度範囲から適宜選ばれる温度で行なわれる。
又、冷却固化は、通常は結晶化温度以下まで3分以内で
冷却して固化させる条件、望ましくはガラス転移温度以
下まで2秒以内で急冷して非晶状態に固化させる条件に
て行なわれる。
Next, the stretch-molded article obtained by the present invention will be described. The molded body is a molded body that can be stretched by setting the heating temperature in the above-mentioned specific range when the molten molded article is stretched at least uniaxially while being heated. The method for producing the melt-formed product and the method for stretching the melt-formed product are not particularly limited, and a conventionally known general method is used. Examples of the method for producing a melt-molded product include the above-described melt extrusion method, calender method, and melt press molding method,
Specifically, for example, in the melt extrusion method, the above raw materials,
It is dried to a moisture content of 200 wtppm or less in advance, then supplied to an extruder, extruded from a die connected to the tip of the extruder while being heated and melted, and then cooled and solidified to form a sheet or tube. It can be produced as a melt-molded product. Further, in the melt press molding method, the above-mentioned raw materials have a water content of 200 wt in advance.
After drying until it is below ppm, supply it to the mold,
A sheet-like melt-molded product can be produced by heating and melting under normal pressure or reduced pressure atmosphere, pressing, and then cooling and solidifying. In these methods, the melting of the raw materials by heating is usually (melting point −5 ° C.) to (melting point +65).
The temperature is appropriately selected from the temperature range of (° C.).
The cooling and solidification is usually carried out under the conditions of cooling to below the crystallization temperature within 3 minutes to solidify, and preferably under the conditions of rapidly cooling below the glass transition temperature within 2 seconds to solidify into an amorphous state.

【0030】その後の延伸方法としては、例えば一軸延
伸の場合は、溶融押出法でTダイより溶融押出し、キャ
ストロールで冷却したシート状溶融成形物を、ロール延
伸機でシートの流れ方向に縦一軸延伸したり、該縦延伸
倍率を極力抑えてテンターで横一軸延伸して製造する方
法、或いは二軸延伸の場合は、溶融押出法でTダイより
溶融押出し、キャストロールで冷却したシート状溶融成
形物を、先ずロール延伸機で縦延伸してからテンターで
横延伸する逐次二軸延伸や、テンターで縦横両方向に延
伸する同時二軸延伸で製造する方法、溶融押出法でサー
キュラーダイより溶融押出し、水冷リング等で冷却した
チューブ状溶融成形物を、チューブラー延伸して製造す
る方法などがある。これらの場合、延伸の操作は、延伸
時の加熱温度は前述した特定温度範囲から、延伸速度は
10〜50000%/分から、延伸倍率は少なくとも一
軸方向に面積倍率2〜50倍から適宜選ばれる延伸条件
で行われる。尚、テンター延伸法やチューブラー延伸法
などで延伸時の加熱温度を多段的に設定する場合には、
延伸時に歪変化の始まる部分から歪変化率の最も大きい
部分での加熱温度を、本発明における加熱温度Tsとす
る。
As the subsequent stretching method, for example, in the case of uniaxial stretching, the sheet-shaped melt-molded product melt-extruded from a T-die by a melt-extrusion method and cooled by a cast roll is uniaxially lengthwise in the sheet flow direction by a roll stretching machine. Stretching, or a method of producing by laterally uniaxially stretching with a tenter while suppressing the longitudinal stretching ratio as much as possible, or in the case of biaxial stretching, melt extrusion from a T die by melt extrusion method and sheet-shaped melt molding cooled with a cast roll The product is first subjected to longitudinal stretching with a roll stretching machine and then sequentially biaxially stretched with a tenter, or a method for producing by simultaneous biaxial stretching with stretching in both longitudinal and lateral directions with a tenter, melt extrusion from a circular die by a melt extrusion method, There is a method in which a tubular melt-molded product cooled with a water-cooled ring or the like is tubularly stretched to produce. In these cases, the stretching operation is carried out by appropriately selecting the heating temperature during stretching from the above-mentioned specific temperature range, the stretching rate from 10 to 50000% / min, and the stretching ratio from at least one axial direction to the area ratio of 2 to 50 times. It is performed under the conditions. When the heating temperature during stretching is set in multiple stages by the tenter stretching method or the tubular stretching method,
The heating temperature from the portion where the strain change starts at the time of stretching to the portion where the strain change rate is the largest is the heating temperature Ts in the present invention.

【0031】この様にして得られた延伸成形体は、特に
可塑剤を比較的多量添加し引張弾性率が4.0GPa未
満である軟質から中質の延伸成形体は、ピロー包装、シ
ュリンク包装、ストレッチ包装、ケーシング、家庭用ラ
ップ等の包装材用途に好適である。熱収縮させながら包
装するなどのシュリンク包装用途に利用する場合には、
そのまま使用しても良いし、或いは熱収縮具合を調整す
る目的で熱処理やエージング処理を施しても良い。又、
電子レンジなどで加熱され耐熱性が要求される包装材に
利用する場合には、発熱した内容物からの熱による変形
や溶融穿孔を防ぐ目的で熱処理を施すことが望ましい。
更に、経時寸法安定性や物性安定性を向上させる目的
で、エージング処理などを施すことが望ましい。熱処理
は、通常は60〜160℃の温度範囲から適宜選ばれる
温度で1秒〜3時間行われることが望ましく、エージン
グ処理は、通常は25〜60℃の温度範囲から適宜選ば
れる温度で3時間〜10日間程度行われることが望まし
い。
The stretch-molded body thus obtained is a soft-to-medium stretch-molded body, in which a relatively large amount of a plasticizer is added and a tensile modulus is less than 4.0 GPa. It is suitable for use as a packaging material such as stretch packaging, casings, and household wraps. When using for shrink wrapping applications such as wrapping while heat shrinking,
It may be used as it is, or may be subjected to heat treatment or aging treatment for the purpose of adjusting the degree of heat shrinkage. or,
When used for a packaging material that is heated in a microwave oven or the like and is required to have heat resistance, it is desirable to perform a heat treatment for the purpose of preventing deformation and melt perforation due to heat from the heat-generated contents.
Further, for the purpose of improving dimensional stability with time and physical property stability, it is desirable to perform aging treatment or the like. The heat treatment is preferably carried out at a temperature appropriately selected from the temperature range of usually 60 to 160 ° C. for 1 second to 3 hours, and the aging treatment is usually carried out at a temperature appropriately selected from the temperature range of 25 to 60 ° C. for 3 hours. It is desirable to be performed for about 10 days.

【0032】又、得られた延伸成形体は、そのまま家庭
用ラップ等の包装材などとして使用しても良いが、必要
に応じて帯電防止剤や防曇性を向上させる目的でコーテ
ィングやコロナ処理等の各種表面処理を施しても良い
し、シール適性、防湿性、ガスバリア性、印刷適性など
を向上させる目的でラミネート加工やコーティング加
工、或いはアルミニウムなどの真空蒸着を施しても良
い。更に、二次加工により、用途に応じた形状に成形し
て使用しても良い。二次加工品としては、例えば延伸フ
ィルムの場合はピロー包装用途やウェルドタイプのケー
シング包装用途などの包装材とするシール加工品があ
り、延伸シートの場合はプラグアシスト成形法やエアー
クッション成形法などの真空成形加工、圧空成形加工、
雄雌型成形加工などを施してトレイやカップなどの容
器、又はブリスターパッケージングシートなどがある。
The stretch-molded product thus obtained may be used as it is as a packaging material for household wraps or the like, but if necessary, coating or corona treatment may be carried out for the purpose of improving the antistatic agent or antifogging property. May be subjected to various surface treatments, or for the purpose of improving sealability, moisture resistance, gas barrier property, printability, etc., laminating or coating, or vacuum deposition of aluminum or the like may be performed. Further, it may be formed into a shape suitable for the intended use by secondary processing. Secondary processed products include, for example, in the case of stretched films, seal processed products such as pillow packaging applications and weld type casing packaging applications, and in the case of stretched sheets, plug assist molding method, air cushion molding method, etc. Vacuum forming, pressure forming,
There are containers such as trays and cups that have been subjected to male-female molding and the like, or blister packaging sheets.

【0033】本発明における成形体の厚みは、その包装
材としての用途により適宜選ばれ、通常は延伸フィルム
では0.5〜100μm程度、延伸シートでは0.1〜
2mm程度であるが特に限定されるものではない。これ
ら延伸フィルム、及び延伸シートは、その厚みにおける
製造し易さを勘案すると、は延伸フィルムはチューブラ
ー延伸法で、延伸シートはテンター延伸法で製造するこ
とが望ましい。但し、フィルムとシートの区別は、単に
厚みの違いによって異なる呼称を用いているものであっ
て、本発明の課題であるところの耐熱性、透明性に優れ
た生分解性ポリエステル延伸成形体を容易に製造するこ
とができることに何ら差は無い。従って、後述する実施
例では、厚み約30μmの延伸フィルムをもって物性測
定や評価を行なって本発明を詳細に説明した。
The thickness of the molded article in the present invention is appropriately selected depending on its use as a packaging material, and is usually about 0.5 to 100 μm for a stretched film and 0.1 to about a stretched sheet.
It is about 2 mm, but is not particularly limited. Considering the ease of manufacturing the stretched film and the stretched sheet, it is preferable that the stretched film be manufactured by the tubular stretching method and the stretched sheet be manufactured by the tenter stretching method. However, the distinction between the film and the sheet is simply using different names depending on the difference in thickness, and the heat-resistant and transparent biodegradable polyester stretch-molded article which is the subject of the present invention can be easily prepared. There is no difference in that it can be manufactured. Therefore, in the examples described below, the present invention was described in detail by measuring and evaluating the physical properties of a stretched film having a thickness of about 30 μm.

【0034】[0034]

【発明の実施の形態】以下、実施例を挙げて本発明を更
に詳細に説明する。但し、これらの具体例は本発明の範
囲を限定するものではない。また、物性測定方法、評価
方法と尺度を下記に示すが、サンプルは特に断りのない
限り測定サンプル作製後に温度(23±2)℃、相対湿
度(50±5)%の雰囲気下に1〜2日間保管したもの
を物性測定や評価に供した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples. However, these specific examples do not limit the scope of the present invention. In addition, physical property measuring methods, evaluation methods and scales are shown below, but unless otherwise specified, the sample is 1 to 2 in an atmosphere of temperature (23 ± 2) ° C. and relative humidity (50 ± 5)% after the measurement sample is prepared. Those stored for a day were subjected to physical property measurement and evaluation.

【0035】[物性測定方法] (1)溶融成形物の示差走査熱量測定 延伸に用いる溶融成形物のガラス転移温度Tg(℃)、
及び冷結晶化温度Tc(℃)は、測定装置にセイコー電
子工業(株)製DSC6200を使用し、JISK712
1に準拠して測定した。サンプル溶融成形物を試験片と
して、試験片重量7.5mgを量り採り、先ず−30℃
で3分間保持した後、加熱速度10℃/分で270℃ま
で加熱した。この1回目の昇温過程での示差走査熱量曲
線におけるガラス転移温度Tg(℃)、及び結晶化ピー
ク温度として冷結晶化温度Tc(℃)を求めた。尚、温
度と熱量の校正は、標準物質としてインジウムを用いて
行った。
[Physical property measuring method] (1) Differential scanning calorimetry of melt-formed product Glass transition temperature Tg (° C) of melt-formed product used for stretching
And the cold crystallization temperature Tc (° C.) were measured by using a DSC6200 manufactured by Seiko Instruments Inc.
It measured based on 1. A sample melt-molded product was used as a test piece, and a test piece weight of 7.5 mg was weighed and firstly measured at -30 ° C.
After being held for 3 minutes, it was heated to 270 ° C. at a heating rate of 10 ° C./minute. The glass transition temperature Tg (° C.) in the differential scanning calorimetric curve in the first heating process and the cold crystallization temperature Tc (° C.) as the crystallization peak temperature were determined. The temperature and the amount of heat were calibrated using indium as a standard substance.

【0036】(2)生分解性ポリエステルの示差走査熱
量測定 生分解性ポリエステルの特性を表す融点Tm(℃)は、
下記の条件で充分アニール処理して平衡状態となったサ
ンプルシート状物を試験片として、上記示差走査熱量測
定と同様にして得られた示差走査熱量曲線における融解
ピーク温度として求めた。又、生分解性ポリエステルの
特性を表す結晶化度Xc(%)は、上記装置を使用しJ
IS K7122に準拠して測定した結晶融解熱ΔHm
(J/g)の、理論融解熱ΔHf(J/g)に対する比
として下式(4)により算出した。結晶融解熱ΔHm
(J/g)は、上記融点測定に用いたサンプルを試験片
として、上記示差走査熱量測定と同様にして得られた示
差走査熱量曲線における融解熱として求めた。理論融解
熱ΔHf(J/g)は、サンプル生分解性ポリエステル
を構成する主たる単量体単位の単独重合体として、前述
したPOLYMERHANDBOOKなどの文献から引
用した。尚、充分アニール処理した平衡状態とは、アニ
ール処理する前のシート状物を試験片として示差走査熱
量測定した際に求められる冷結晶化温度に設定した熱風
循環恒温槽中でアニール処理し、処理時間が60分間隔
での結晶化度変化が0.5%未満となった時のアニール
処理状態をさす。 式(4)Xc=ΔHm/ΔHf×100
(2) Differential Scanning Calorimetry of Biodegradable Polyester The melting point Tm (° C.) representing the characteristics of the biodegradable polyester is
A sample sheet-like material that had been sufficiently annealed under the following conditions and was in an equilibrium state was used as a test piece, and was determined as a melting peak temperature in a differential scanning calorimetric curve obtained in the same manner as in the differential scanning calorimetric measurement. Also, the crystallinity Xc (%), which represents the characteristics of biodegradable polyester, is
Crystal fusion heat ΔHm measured according to IS K7122
The ratio of (J / g) to the theoretical heat of fusion ΔHf (J / g) was calculated by the following equation (4). Crystal fusion heat ΔHm
(J / g) was determined as the heat of fusion in the differential scanning calorimetric curve obtained in the same manner as in the differential scanning calorimetric measurement, using the sample used for the melting point measurement as a test piece. The theoretical heat of fusion ΔHf (J / g) was quoted from the above-mentioned documents such as POLYMERHANDBOOK as a homopolymer of the main monomer units constituting the sample biodegradable polyester. Note that the fully annealed equilibrium state means that the sheet material before annealing is annealed in a hot air circulation thermostatic bath set to the cold crystallization temperature required when performing differential scanning calorimetry as a test piece. It refers to the state of annealing when the change in crystallinity at intervals of 60 minutes is less than 0.5%. Formula (4) Xc = ΔHm / ΔHf × 100

【0037】(3)混合組成物の示差走査熱量測定 2種以上の生分解性ポリエステルを用いて溶融混合した
組成物からなる溶融成形物であって、該溶融成形物の上
記示差走査熱量曲線において、ガラス転移に起因するベ
ースラインの階段状変化が複数存在する場合、及び/又
は冷結晶化に起因する発熱ピークが複数存在する場合に
は、該溶融成形物を試験片として上記示差走査熱量測定
と同様に測定(JIS K7122準拠)した際に求め
られる冷結晶化熱ΔHc(J/g)が大きい方の生分解
性ポリエステルのガラス転移温度Tg(℃)、及び冷結
晶化温度Tc(℃)を採用する。
(3) Differential scanning calorimetric measurement of mixed composition A melt-molded product comprising a composition obtained by melt-mixing two or more kinds of biodegradable polyesters, wherein the differential scanning calorimetric curve of the melt-molded product is used. When there are a plurality of baseline step changes due to the glass transition and / or when there are a plurality of exothermic peaks due to cold crystallization, the above-mentioned differential scanning calorimetry is performed using the melt-molded product as a test piece. The glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.) of the biodegradable polyester having the larger cold crystallization heat ΔHc (J / g) required when measured in the same manner as in (JIS K7122) To adopt.

【0038】(4)多層状物の示差走査熱量測定 多層状の溶融成形物であって、該溶融成形物の上記示差
走査熱量曲線において、ガラス転移に起因するベースラ
インの階段状変化が複数存在する場合、及び/又は冷結
晶化に起因する発熱ピークが複数存在する場合には、該
溶融成形物を試験片として上記示差走査熱量測定と同様
に測定(JIS K7121準拠)した際に求められる
融点Tm(℃)が高い方の生分解性ポリエステルのガラ
ス転移温度Tg(℃)、及び冷結晶化温度Tc(℃)を
採用する。該融点Tm(℃)は、該溶融成形物を試験片
として、上記示差走査熱量測定と同様にして得られた示
差走査熱量曲線における融解ピーク温度として求めた。
(4) Differential scanning calorimetry of multi-layered product A multi-layered melt-molded product, wherein the differential scanning calorimetric curve of the melt-molded product has a plurality of stepwise changes in the baseline due to glass transition. And / or when there are a plurality of exothermic peaks due to cold crystallization, the melting point obtained when the melt-molded product is used as a test piece in the same manner as in the differential scanning calorimetry (JIS K7121). The glass transition temperature Tg (° C) of the biodegradable polyester having a higher Tm (° C) and the cold crystallization temperature Tc (° C) are adopted. The melting point Tm (° C.) was determined as a melting peak temperature in a differential scanning calorimetric curve obtained in the same manner as in the differential scanning calorimetric measurement using the melt molded product as a test piece.

【0039】[評価方法と尺度] (1)透明性 透明性は、延伸成形体をサンプルとして、ヘーズを測定
し評価した。ヘーズの測定は、測定装置に村上色彩技術
研究所社製ヘーズ計HR−100を使用し、JIS K
7105に準拠して測定した。厚み約30μmの延伸成
形体サンプルを、一辺50mmの正方形に切り出し、こ
れをホルダーにセットしサンプルのヘーズを測定した。
ヘーズの測定結果は、サンプル数5個ずつ測定し、その
平均値で示した。このヘーズを透明性の指標とした。
[Evaluation Method and Scale] (1) Transparency Transparency was evaluated by measuring haze using a stretched molded body as a sample. The haze is measured by using a haze meter HR-100 manufactured by Murakami Color Research Laboratory Co., Ltd.
7105 was measured. A stretch-molded body sample having a thickness of about 30 μm was cut into a square having a side of 50 mm, which was set in a holder and the haze of the sample was measured.
The haze measurement results were obtained by measuring 5 samples each and showing the average value. This haze was used as an index of transparency.

【0040】 <評価尺度> ヘーズ 判 定 備 考 2%未満 ◎ 透明で視認性は非常に優れる 2%以上5%未満 ○ 若干白化する程度で視認性は優れる 5%以上10%未満 △ 白化し視認性が劣る 10%以上 × 著しく白化し視認性が非常に劣る[0040] <Evaluation scale> Haze judgment remarks Less than 2% ◎ Transparent and very excellent in visibility 2% or more and less than 5% ○ Excellent visibility with a slight whitening 5% or more and less than 10% △ Whitening and poor visibility 10% or more × Remarkably whitening and very poor visibility

【0041】(2)耐熱性 耐熱性は、延伸成形体をサンプルとして、耐荷重切断試
験を行い評価した。耐荷重切断試験は、短冊状試験片に
荷重30gをかけた状態で、一定温度に設定した熱風循
環恒温槽中で1時間加熱し試験片の切断の有無を調べ、
試験片が切断しない最高温度を測定した。厚み約30μ
mの延伸成形体を、縦140mm、横30mmの短冊状
に切り出した。短冊状試験片の上下端25mmずつの部
分に固定治具と荷重治具を各々取り付け、一定温度に設
定した熱風循環恒温槽中で1時間加熱し試験片の切断の
有無を調べた。短冊状試験片が切断しない場合は、新し
い試験片で設定温度を5℃上げて前記手順を繰返し試験
した。短冊状試験片が切断しない最高温度の測定結果
は、この試験を各延伸成形体につき5回ずつ行い最頻値
で示した。
(2) Heat resistance The heat resistance was evaluated by carrying out a load bearing cutting test using a stretched molded body as a sample. The load-bearing cutting test is carried out by heating the strip-shaped test piece under a load of 30 g for 1 hour in a hot-air circulation thermostat set to a constant temperature, and checking whether or not the test piece is cut.
The maximum temperature at which the test piece did not cut was measured. Thickness about 30μ
The stretched molded product of m was cut into a strip shape having a length of 140 mm and a width of 30 mm. Fixing jigs and load jigs were attached to the upper and lower ends of the strip-shaped test pieces of 25 mm each, and the test pieces were heated for 1 hour in a hot-air circulating thermostat set to a constant temperature to check whether or not the test pieces were cut. When the strip-shaped test piece was not cut, the set temperature was increased by 5 ° C. with a new test piece, and the above procedure was repeated. The measurement result of the maximum temperature at which the strip-shaped test piece was not cut was shown as the mode value by performing this test 5 times for each stretch-molded body.

【0042】 <評価尺度> 耐荷重切断試験 判 定 備 考 180℃以上 ◎ 耐熱性が非常に高く実用上問題はない 160〜175℃ ○ 耐熱性が高く用途により使用可 140〜155℃ △ 耐熱性が劣り用途が制限される 135℃以下 × 耐熱性は著しく低く実用に耐えない[0042] <Evaluation scale> Load-bearing cutting test Judgment Remarks 180 ° C or higher ◎ Extremely high heat resistance and no problem in practical use 160-175 ° C ○ High heat resistance and can be used depending on the application 140-155 ° C △ Poor heat resistance and limited applications 135 ° C or less × Heat resistance is extremely low and cannot be put to practical use

【0043】[0043]

【実施例1】[単量体の精製]グリコリド1kgを、酢
酸エチル3kgに75℃で溶解させた後、室温にて48
時間放置し析出させた。濾取した析出物を、室温で約3
kgの酢酸エチルを用いて洗浄を行った。再度この洗浄
操作を繰返した後、洗浄物を真空乾燥機内に入れ、60
℃で24時間真空乾燥を行った。この乾燥物を、窒素雰
囲気下で6〜7mmHgに減圧し単蒸留にて133〜1
34℃の留出物として蒸留精製グリコリド480gを得
た。L−ラクチド1kgを、トルエン3kgに80℃で
溶解させた後、室温にて48時間放置して析出させた。
濾取した析出物を、室温で約3kgのトルエンを用いて
洗浄を行った。再度この洗浄操作を繰返した後、洗浄物
を真空乾燥機内に入れ60℃で24時間真空乾燥を行
い、精製L−ラクチド560gを得た。
Example 1 [Purification of monomer] Glycolide (1 kg) was dissolved in ethyl acetate (3 kg) at 75 ° C, and the mixture was allowed to stand at room temperature for 48 hours.
It was left to stand for a time to cause precipitation. The precipitate collected by filtration is about 3 at room temperature.
Washing was performed with kg of ethyl acetate. After repeating this washing operation again, the washed product is put in a vacuum dryer and
Vacuum drying was performed at 24 ° C. for 24 hours. This dried product was depressurized to 6 to 7 mmHg under a nitrogen atmosphere and subjected to simple distillation to 133 to 1
As a distillate at 34 ° C., 480 g of distilled and purified glycolide was obtained. 1 kg of L-lactide was dissolved in 3 kg of toluene at 80 ° C., and then left standing at room temperature for 48 hours for precipitation.
The precipitate collected by filtration was washed at room temperature with about 3 kg of toluene. After repeating this washing operation again, the washed product was placed in a vacuum dryer and vacuum dried at 60 ° C. for 24 hours to obtain 560 g of purified L-lactide.

【0044】[重合体の調製]上記単量体の精製で得ら
れたグリコリド420gとラクチド250g、及び触媒
として2−エチルヘキサン酸すず0.2gとラウリルア
ルコール0.05gを、内面をガラスライニングしたジ
ャケット付反応機に仕込み、窒素を吹き込みながら約1
時間室温で乾燥した。次いで、窒素を吹き込みながら1
30℃に昇温し、40時間撹拌して重合を行った。重合
操作の終了後、ジャケットに冷却水を通水して冷却し、
反応機から取り出した塊状ポリマーを、粉砕機にて約3
mm以下の細粒に粉砕した。この粉砕物を、テトラヒド
ロフランを用いて60時間ソックスレー抽出した後、ヘ
キサフルオロイソプロパノール3kgに50℃で溶解
し、次いで7kgのメタノールで再沈殿させた。この再
沈殿物を、130℃に設定した真空乾燥機内で60時間
真空乾燥を行い、グリコール酸−乳酸共重合体520g
を得た。
[Preparation of Polymer] 420 g of glycolide and 250 g of lactide obtained by purifying the above monomers, 0.2 g of tin 2-ethylhexanoate and 0.05 g of lauryl alcohol as a catalyst were glass-lined on the inner surface. Charge the reactor with a jacket and blow it with nitrogen to about 1
Dried at room temperature for hours. Then, while blowing nitrogen, 1
The temperature was raised to 30 ° C. and the mixture was stirred for 40 hours to carry out polymerization. After the completion of the polymerization operation, cooling water is passed through the jacket to cool it,
The lump polymer taken out from the reactor was crushed to about 3
It was crushed into fine particles of mm or less. The pulverized product was subjected to Soxhlet extraction with tetrahydrofuran for 60 hours, dissolved in 3 kg of hexafluoroisopropanol at 50 ° C., and then reprecipitated with 7 kg of methanol. This reprecipitate was vacuum dried in a vacuum dryer set at 130 ° C. for 60 hours to give 520 g of glycolic acid-lactic acid copolymer.
Got

【0045】得られた共重合体は、該共重合体70mg
をトリフルオロ酢酸−D1mlに溶解して1H−NMR
により共重合成分割合を解析したところ、グリコール酸
の成分割合が81mol%と乳酸の成分割合が19mo
l%であった。該共重合体のヘキサフルオロイソプロパ
ノール0.5重量%溶液としてガスクロマトグラフィー
により残存する単量体を定量したところ、単量体である
グリコリドとラクチドの残量は両者の合計で340wt
ppmであった。該共重合体20mgを80mmol%
のトリフルオロ酢酸ナトリウムを含むヘキサフルオロイ
ソプロパノール3gに溶解してGPCにより分子量を測
定したところ、ポリメチルメタクリレート換算で重量平
均分子量は2×105であった。
70 mg of the obtained copolymer was obtained.
Was dissolved in 1 ml of trifluoroacetic acid-D and 1 H-NMR
When the copolymerization component ratio was analyzed by, the glycolic acid component ratio was 81 mol% and the lactic acid component ratio was 19 mo.
It was 1%. The amount of residual monomers of glycolide and lactide, which are the monomers, was 340 wt in total when the remaining monomers were quantified by gas chromatography as a 0.5% by weight hexafluoroisopropanol solution of the copolymer.
It was ppm. 80 mg of the copolymer 20 mg
Was dissolved in 3 g of hexafluoroisopropanol containing sodium trifluoroacetate, and the molecular weight was measured by GPC. The weight average molecular weight in terms of polymethylmethacrylate was 2 × 10 5 .

【0046】得られた共重合体を、130℃に設定した
熱風循環恒温槽中で約2時間放置して乾燥操作を行った
後、230℃に設定した加熱プレス機で5分間加熱加圧
し、その後20℃に設定した冷却プレスで冷却して厚み
200μmのシート状物を得た。このシート状物を、前
述の生分解性ポリエステルの示差走査熱量測定方法に従
って、先ずアニール処理を施す前に示差走査熱量測定し
たところ、冷結晶温度は131℃、冷結晶化熱は15J
/g、融点は188℃、結晶融解熱は15J/gであっ
た。その後、該シート状物を、131℃でアニール処理
して示差走査熱量測定したところ、処理時間120分と
処理時間180分の結晶化度変化が0.5%未満であっ
たので、アニール処理時間120分におけるシート状物
の示差走査熱量曲線から求めた該共重合体の融点Tmは
188℃、結晶化度Xcは19%であった。尚、結晶化
度Xcは、理論融解熱ΔHfを207J/gとして算出
した。
The obtained copolymer was left for about 2 hours in a hot air circulating constant temperature bath set at 130 ° C. for drying operation, and then heated and pressed for 5 minutes by a heating press set at 230 ° C., Then, it was cooled with a cooling press set to 20 ° C. to obtain a sheet-like material having a thickness of 200 μm. According to the above-mentioned differential scanning calorimetric measuring method of biodegradable polyester, the sheet-shaped material was subjected to a differential scanning calorimetric measurement before the annealing treatment. The cold crystallization temperature was 131 ° C. and the cold crystallization heat was 15 J.
/ G, the melting point was 188 ° C, and the heat of fusion of crystal was 15 J / g. After that, when the sheet-shaped material was annealed at 131 ° C. and the differential scanning calorimetry was performed, the change in crystallinity at a processing time of 120 minutes and a processing time of 180 minutes was less than 0.5%. The melting point Tm of the copolymer obtained from the differential scanning calorimetric curve at 120 minutes was 188 ° C., and the crystallinity Xc was 19%. The crystallinity Xc was calculated with the theoretical heat of fusion ΔHf being 207 J / g.

【0047】[シート状溶融成形物の作製]上記重合体
の調製で得られた共重合体を、130℃に設定した熱風
循環恒温槽中で約2時間放置して乾燥操作を行ったとこ
ろ、水分気化装置付きカールフィッシャー水分計により
240℃で測定した水分量は158wtppmであっ
た。この乾燥させた共重合体を、液体注入ポンプを備
え、ストランドダイを先端に取り付けた押出機に窒素気
流下で供給し、また可塑剤としてトリアセチンを添加量
20wt%となるように液体注入ポンプから添加し、該
共重合体とトリアセチンを230℃で溶融混合して、ス
トランドダイより押出し造粒した。この造粒した組成物
を、再び130℃に設定した熱風循環恒温槽中で約2時
間放置して乾燥操作を行った後、230℃に設定した加
熱プレス機で5分間加熱加圧し、その後25℃に設定し
た冷却プレスで冷却し厚み350μmのシート状溶融成
形物を得た。該溶融成形物をサンプルとして、前述の溶
融成形物の示差走査熱量測定方法に従って示差走査熱量
測定を行なったところ、該溶融成形物のガラス転移温度
Tgは11℃、冷結晶化温度Tcは103℃であった。
[Preparation of Melt-Formed Sheet] The copolymer obtained in the above-mentioned preparation of the polymer was allowed to stand for about 2 hours in a hot-air circulation thermostat set at 130 ° C., and dried. The amount of water measured by a Karl Fischer moisture meter equipped with a water vaporizer at 240 ° C. was 158 wtppm. The dried copolymer was supplied under a nitrogen stream to an extruder equipped with a liquid injection pump and equipped with a strand die at the tip, and triacetin as a plasticizer was added from the liquid injection pump so that the added amount was 20 wt%. The copolymer was added, and the copolymer and triacetin were melt-mixed at 230 ° C. and extruded from a strand die for granulation. The granulated composition was left to stand in a hot air circulation thermostat set at 130 ° C. for about 2 hours again to perform a drying operation, and then heated and pressed for 5 minutes by a heating press set at 230 ° C., and then at 25 ° C. It was cooled with a cooling press set to ℃ to obtain a sheet-like melt-molded product having a thickness of 350 μm. When the differential scanning calorimetry was performed on the melt-formed product as a sample according to the differential scanning calorimetry method of the above-mentioned melt-formed product, the glass transition temperature Tg of the melt-formed product was 11 ° C and the cold crystallization temperature Tc was 103 ° C. Met.

【0048】[延伸成形体の作製、及び評価]上記シー
ト状溶融成形物の作製で得られた溶融成形物の延伸は、
東洋精機社製二軸延伸試験装置を使用して行った。該溶
融成形物を、一辺90mmの正方形に切り出して、延伸
時の加熱温度を80℃に設定したチャンバー内にクラン
プ間80mmのクランプに装着し、延伸速度50%/分
で縦3.5倍、横3.5倍まで同時二軸延伸を行った。
延伸操作の終了後、直ちに冷風を吹き付けて冷却し延伸
成形体を得た。得られた延伸成形体を、金枠に固定し
て、90℃に設定した熱風循環恒温槽中で30秒間熱処
理を行い厚み30μmの延伸成形体を得た。得られた延
伸成形体をF1とする。該成形体F1をサンプルとし
て、前述の透明性と耐熱性の評価を行ったところ、ヘー
ズは1.1%、切断しない最高温度は180℃であり、
判定は透明性が◎、耐熱性が◎、総合判定が◎であっ
た。以上の評価結果から、得られた成形体F1は、耐熱
性と透明性に優れ、包装材用途に好適であることが判
る。
[Preparation and Evaluation of Stretched Molded Product] Stretching of the melt-molded product obtained in the above-mentioned preparation of the sheet-shaped melt-molded product
It was performed using a biaxial stretching test device manufactured by Toyo Seiki. The melt-molded product was cut into a square having a side of 90 mm, mounted in a chamber having a heating temperature of 80 ° C. at the time of stretching and a clamp having a distance between the clamps of 80 mm, and a longitudinal speed of 3.5 times at a stretching speed of 50% / min. Simultaneous biaxial stretching was performed up to 3.5 times in width.
Immediately after completion of the stretching operation, cold air was blown to cool the stretched molded body. The obtained stretch-molded body was fixed to a metal frame and heat-treated for 30 seconds in a hot air circulating constant temperature bath set at 90 ° C. to obtain a stretch-molded body having a thickness of 30 μm. The stretched molded body thus obtained is designated as F1. When the transparency and heat resistance were evaluated using the molded product F1 as a sample, the haze was 1.1% and the maximum temperature at which it was not cut was 180 ° C.
The transparency was ⊚, the heat resistance was ⊚, and the overall judgment was ⊚. From the above evaluation results, it is understood that the obtained molded product F1 has excellent heat resistance and transparency and is suitable for packaging material applications.

【0049】[0049]

【実施例2〜4、及び比較例1〜4】次いで、延伸時の
加熱温度を95℃とすることの他は上記実施例1と同じ
実験を繰返し、得られた延伸成形体をF2とする。該成
形体F2をサンプルとして、前述の透明性と耐熱性の評
価を行ったところ、ヘーズは2.5%、切断しない最高
温度は180℃であった(実施例2)。可塑剤トリアセ
チンと溶融混合せずに共重合体単体を用い、延伸時の加
熱温度を120℃とすることの他は上記実施例1と同じ
実験を繰返し、得られた延伸成形体をF3とする。ここ
で、延伸に用いた溶融成形物は、ガラス転移温度Tgが
34℃、冷結晶化温度Tcが131℃であった。該成形
体F3をサンプルとして、前述の透明性と耐熱性の評価
を行ったところ、ヘーズは1.2%、切断しない最高温
度は185℃であった(実施例3)。延伸時の加熱温度
を100℃とすることの他は上記実施例3と同じ実験を
繰返し、得られた延伸成形体をF4とする。該成形体F
4をサンプルとして、前述の透明性と耐熱性の評価を行
ったところ、ヘーズは1.0%、切断しない最高温度は
175℃であった(実施例4)。延伸時の加熱温度を5
0℃とすることの他は上記実施例1と同じ実験を繰返
し、得られた延伸成形体をF5とする。該成形体F5を
サンプルとして、前述の透明性と耐熱性の評価を行った
ところ、ヘーズは0.8%、切断しない最高温度は10
0℃であった(比較例1)。延伸時の加熱温度を65℃
とすることの他は上記実施例1と同じ実験を繰返し、得
られた延伸成形体をF6とする。該成形体F6をサンプ
ルとして、前述の透明性と耐熱性の評価を行ったとこ
ろ、ヘーズは0.9%、切断しない最高温度は140℃
であった(比較例2)。延伸時の加熱温度を100℃と
することの他は上記実施例1と同じ実験を繰返し、得ら
れた延伸成形体をF7とする。該成形体F7をサンプル
として、前述の透明性と耐熱性の評価を行ったところ、
ヘーズは11.5%、切断しない最高温度は180℃で
あった(比較例3)。延伸時の加熱温度を65℃とする
ことの他は上記実施例3と同じ実験を繰返し、得られた
延伸成形体をF8とする。該成形体F8をサンプルとし
て、前述の透明性と耐熱性の評価を行ったところ、ヘー
ズは0.8%、切断しない最高温度は120℃であった
(比較例4)。
Examples 2 to 4 and Comparative Examples 1 to 4 Next, the same experiment as in Example 1 was repeated except that the heating temperature at the time of stretching was 95 ° C., and the obtained stretched and molded product was designated as F2. . When the transparency and heat resistance were evaluated using the molded product F2 as a sample, the haze was 2.5% and the maximum temperature at which it was not cut was 180 ° C (Example 2). The same experiment as in Example 1 was repeated except that the copolymer simple substance was used without being melt-mixed with the plasticizer triacetin, and the heating temperature at the time of stretching was 120 ° C. The obtained stretched molded product was designated as F3. . Here, the melt-formed product used for stretching had a glass transition temperature Tg of 34 ° C. and a cold crystallization temperature Tc of 131 ° C. When the above-mentioned transparency and heat resistance were evaluated using the molded product F3 as a sample, the haze was 1.2% and the maximum temperature at which it did not break was 185 ° C (Example 3). The same experiment as in Example 3 was repeated except that the heating temperature at the time of stretching was 100 ° C., and the obtained stretch-molded body was designated as F4. The molded body F
When the above-mentioned transparency and heat resistance were evaluated using Sample No. 4 as a sample, the haze was 1.0%, and the maximum temperature without cutting was 175 ° C. (Example 4). The heating temperature during stretching is 5
The same experiment as in Example 1 was repeated except that the temperature was 0 ° C., and the obtained stretch-molded body was designated as F5. When the above-mentioned transparency and heat resistance were evaluated using the molded product F5 as a sample, the haze was 0.8%, and the maximum temperature at which it was not cut was 10%.
It was 0 ° C. (Comparative Example 1). The heating temperature during stretching is 65 ° C.
The same experiment as in Example 1 was repeated except that the above was performed, and the obtained stretch-molded body was designated as F6. When the transparency and heat resistance were evaluated using the molded product F6 as a sample, the haze was 0.9%, and the maximum temperature at which it was not cut was 140 ° C.
Was (Comparative Example 2). The same experiment as in Example 1 was repeated except that the heating temperature during stretching was 100 ° C., and the obtained stretched and molded product was designated as F7. When the above-mentioned transparency and heat resistance were evaluated using the molded body F7 as a sample,
The haze was 11.5%, and the maximum temperature without cutting was 180 ° C (Comparative Example 3). The same experiment as in Example 3 was repeated except that the heating temperature at the time of stretching was 65 ° C., and the obtained stretched molded product was designated as F8. When the above-mentioned transparency and heat resistance were evaluated using the molded product F8 as a sample, the haze was 0.8% and the maximum temperature at which it was not cut was 120 ° C (Comparative Example 4).

【0050】これら延伸成形体のF1〜8について、延
伸に用いた溶融成形物の示差走査熱量測定の測定結果、
延伸時の加熱温度条件、該成形体の透明性と耐熱性の評
価結果を表1、及び表2にまとめる。
Regarding F1 to 8 of these stretch-molded articles, the measurement results of the differential scanning calorimetry of the melt-molded articles used for stretching,
The heating temperature conditions during stretching and the evaluation results of the transparency and heat resistance of the molded product are summarized in Tables 1 and 2.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】表1によると、前述式(1)に特定する温
度範囲で延伸した実施例1〜4の延伸成形体の製造方法
は、延伸中に過度に結晶化することが無いので白化する
ことなく、所望の延伸倍率まで破断せず延伸でき、且つ
適度に結晶化する為に延伸後に施す熱処理において熱処
理条件をより緩く設定しても耐熱性の優れた延伸成形体
を得ることができ、延伸成形体を容易に製造することが
可能であることが判る。又、実施例1〜4の延伸成形体
F1〜4は、耐熱性と透明性に優れ、包装材用途に好適
であることが判る。なかでも、前述式(3)に特定する
温度範囲で延伸した実施例1、及び実施例3の延伸成形
体F1、及びF3は、耐熱性と透明性の両特性が著しく
優れ、包装材用途に特に好適であることが判る。
According to Table 1, in the method for producing the stretch-molded bodies of Examples 1 to 4 stretched in the temperature range specified by the above-mentioned formula (1), whitening occurs because excessive crystallization does not occur during stretching. Without stretching, it can be stretched to a desired stretching ratio without breaking, and in order to appropriately crystallize it, a stretched molded article having excellent heat resistance can be obtained even if the heat treatment conditions are set more relaxed in the heat treatment performed after stretching. It is understood that the molded body can be easily manufactured. Further, it can be seen that the stretch-formed products F1-4 of Examples 1 to 4 have excellent heat resistance and transparency and are suitable for use as packaging materials. Among them, the stretch-molded articles F1 and F3 of Example 1 and Example 3 stretched in the temperature range specified by the above-mentioned formula (3) are remarkably excellent in both heat resistance and transparency and are suitable for packaging materials. It turns out to be particularly suitable.

【0054】これらに対し、表2によると、延伸時の加
熱温度Tsの値が(Tc−0.40(Tc−Tg))℃
よりも低い温度で延伸した比較例1〜2、及び比較例4
の延伸成形体の製造方法は、過度に結晶化することなく
所望の延伸倍率まで破断せず延伸できるものの、得られ
た延伸成形体F5〜6、及びF8は、延伸後に上記実施
例1〜4と同じ条件で熱処理を施しても、耐熱性が著し
く劣るものであった。又、延伸時の加熱温度Tsの値が
(Tc−0.05(Tc−Tg))℃よりも高い温度で
延伸した比較例3の延伸成形体F7は、透明性が著しく
劣り、包装材用途には適さないことが判る。
On the other hand, according to Table 2, the value of the heating temperature Ts during stretching is (Tc-0.40 (Tc-Tg)) ° C.
Comparative Examples 1-2 and Comparative Example 4 stretched at a lower temperature
Although the method for producing a stretch-molded body of No. 1 can stretch without breaking to a desired stretch ratio without excessive crystallization, the obtained stretch-molded bodies F5 to 6 and F8 have the above-mentioned Examples 1 to 4 after stretching. Even when the heat treatment was performed under the same conditions, the heat resistance was extremely poor. Further, the stretched molded product F7 of Comparative Example 3 stretched at a temperature of the heating temperature Ts during stretching is higher than (Tc-0.05 (Tc-Tg)) ° C., the transparency is remarkably inferior. It turns out that it is not suitable for.

【0055】[0055]

【参考例】この実験は、溶融成形物の結晶化度の経時変
化が、加熱温度によって異なることを調べる為の実験で
ある。従って、溶融成形物は原料、及び作製方法が同一
のものを用いて、また加熱温度を除くその他の加熱条件
は同一条件に設定して比較している。本発明の延伸成形
体の製造方法として上記実施例1の加熱温度を擬似的に
再現した場合、及び延伸時の加熱温度Tsの値が(Tc
−0.40(Tc−Tg))℃よりも低い温度で延伸し
た上記比較例1の加熱温度を擬似的に再現した場合、延
伸時の加熱温度Tsの値が(Tc−0.05(Tc−T
g))℃よりも高い温度で延伸した上記比較例3の加熱
温度を擬似的に再現した場合について、溶融成形物を0
〜5分間加熱した後の結晶化度を前述した示差走査熱量
測定により求めて図1にまとめた。
Reference Example This experiment is an experiment for investigating that the change with time of the crystallinity of the melt-molded product varies depending on the heating temperature. Therefore, as the melt-molded products, the same raw materials and the same manufacturing method are used, and the other heating conditions except the heating temperature are set to the same conditions for comparison. When the heating temperature of the above-mentioned Example 1 is reproduced in a pseudo manner as the method for producing the stretch-molded article of the present invention, and the value of the heating temperature Ts during stretching is (Tc
When the heating temperature of Comparative Example 1 stretched at a temperature lower than −0.40 (Tc−Tg)) ° C. is simulated, the value of the heating temperature Ts during stretching is (Tc−0.05 (Tc -T
g)) In the case where the heating temperature of Comparative Example 3 stretched at a temperature higher than 0 ° C. was reproduced in a simulated manner, the melt-formed product was
The crystallinity after heating for ˜5 minutes was determined by the differential scanning calorimetry described above and summarized in FIG.

【0056】図1は、横軸に加熱時間(分)、縦軸に結
晶化度(%)を各々目盛り、丸印(○)は加熱温度50
℃の場合を、四角印(□)は加熱温度80℃の場合を、
三角印(△)は加熱温度100℃の場合を各々示してい
る。一方、この実験で用いた試験片を加熱速度10℃/
分で示差走査熱量測定(JIS K7121準拠)した
際に求められるガラス転移温度Tg(℃)、及び冷結晶
化温度Tc(℃)は、各々ガラス転移温度Tgが11
℃、冷結晶化温度Tcが103℃であった。図1の加熱
温度を前出式(2)のTsとして代入すると、(Tc−
Ts)/(Tc−Tg)の値は、各々丸印(○)の50
℃では0.58、四角印(□)の80℃では0.25、
三角印(△)の100℃では0.03となる。
In FIG. 1, the horizontal axis represents the heating time (minutes), the vertical axis represents the crystallinity (%), and the circles (◯) represent the heating temperature of 50.
℃, the square mark (□) is the case of heating temperature 80 ℃,
The triangles (Δ) indicate the cases where the heating temperature is 100 ° C., respectively. On the other hand, the test piece used in this experiment was heated at a heating rate of 10 ° C /
The glass transition temperature Tg (° C.) and the cold crystallization temperature Tc (° C.), which are obtained when the differential scanning calorimetry (according to JIS K7121) is measured in minutes, are 11 respectively.
C., the cold crystallization temperature Tc was 103.degree. Substituting the heating temperature in FIG. 1 as Ts in the above equation (2), (Tc-
The value of Ts) / (Tc-Tg) is 50 (circle).
0.58 at ℃, 0.25 at 80 ℃ marked with a square (□),
It becomes 0.03 at a triangle mark (Δ) at 100 ° C.

【0057】図1によると、前出式(2)の(Tc−T
s)/(Tc−Tg)の値が0.58である加熱温度5
0℃では試験片の結晶化は少ししか起こらないが、該値
が0.25である加熱温度を80℃に設定すると試験片
は適度に結晶化するようになり、該値が0.03である
加熱温度100℃ではより高度に結晶化するようになる
ことが判る。該図が示す結晶化度の経時変化は結晶化速
度を表す指標になり、該図四角印(□)の加熱温度80
℃で示される様な適度な結晶化速度となる温度では、延
伸中に結晶化の進行度合いを制御することが可能で、過
度に結晶化することなく延伸成形体を製造できることが
判る。
According to FIG. 1, (Tc-T of the above equation (2) is used.
heating temperature 5 with a value of (s) / (Tc-Tg) of 0.58
At 0 ° C., crystallization of the test piece occurs only slightly, but when the heating temperature at which the value is 0.25 is set to 80 ° C., the test piece becomes crystallized moderately, and when the value is 0.03. It can be seen that at a certain heating temperature of 100 ° C., the crystallization becomes higher. The change with time of the crystallinity shown in the figure is an index showing the crystallization rate, and the heating temperature of the square mark (□) in the figure is 80.
It can be seen that at a temperature at which an appropriate crystallization rate as shown in ° C can be obtained, the progress of crystallization can be controlled during stretching, and a stretched molded product can be produced without excessive crystallization.

【0058】[0058]

【発明の効果】本発明によれば、生分解性ポリエステル
を主体とする溶融成形物を用い、該溶融成形物が適度な
結晶化速度となる特定の温度範囲に加熱しながら延伸す
ることにより、生分解性を有し、且つ耐熱性、透明性に
優れた包装材用途に好適な生分解性ポリエステル延伸成
形体を容易に製造することが可能である。
EFFECTS OF THE INVENTION According to the present invention, a melt-molded product mainly composed of biodegradable polyester is used, and the melt-molded product is stretched while being heated to a specific temperature range where the melt-molded product has an appropriate crystallization rate. It is possible to easily manufacture a biodegradable polyester stretched molded article that is biodegradable, and has excellent heat resistance and transparency and that is suitable for use as a packaging material.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶融成形物の結晶化度の経時変化が、加熱温度
によって異なることを、加熱温度50℃、80℃、10
0℃の場合で示したグラフ図である。
FIG. 1 shows that the change in crystallinity of the melt-molded product over time varies depending on the heating temperature.
It is the graph figure shown in the case of 0 degreeC.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 生分解性ポリエステルを主体とする溶融
成形物を加熱しながら少なくとも一軸方向に延伸する生
分解性ポリエステル延伸成形体の製造方法において、延
伸時の加熱温度Ts(℃)が、該溶融成形物を試験片と
して加熱速度10℃/分で示差走査熱量測定(JIS
K7121準拠)した際に求められるガラス転移温度T
g(℃)、及び冷結晶化温度Tc(℃)と下式(1)の
関係にある温度で延伸することを特徴とする生分解性ポ
リエステル延伸成形体の製造方法。 式(1)Tc−0.40(Tc−Tg)≦Ts≦Tc−
0.05(Tc−Tg)
1. In a method for producing a stretched biodegradable polyester body in which a melt-molded product mainly composed of biodegradable polyester is heated and stretched in at least uniaxial direction, a heating temperature Ts (° C.) during stretching is Differential scanning calorimetry (JIS) at a heating rate of 10 ° C / min.
Glass transition temperature T required when (according to K7121)
A method for producing a stretched biodegradable polyester, which comprises stretching at a temperature having a relationship of g (° C.) and a cold crystallization temperature Tc (° C.) of the following formula (1). Formula (1) Tc-0.40 (Tc-Tg) ≤Ts≤Tc-
0.05 (Tc-Tg)
【請求項2】 生分解性ポリエステルが、脂肪族ヒドロ
キシカルボン酸系重合体であることを特徴とする請求項
1記載の生分解性ポリエステル延伸成形体の製造方法。
2. The method for producing a stretched biodegradable polyester according to claim 1, wherein the biodegradable polyester is an aliphatic hydroxycarboxylic acid polymer.
【請求項3】 生分解性ポリエステルが、グリコール酸
系重合体であることを特徴とする請求項1又は請求項2
記載の生分解性ポリエステル延伸成形体の製造方法。
3. The biodegradable polyester is a glycolic acid-based polymer, wherein the biodegradable polyester is a glycolic acid-based polymer.
A method for producing the stretched biodegradable polyester article described.
JP2002100322A 2002-04-02 2002-04-02 Method for producing biodegradable polyester stretch molded article Expired - Fee Related JP4245300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100322A JP4245300B2 (en) 2002-04-02 2002-04-02 Method for producing biodegradable polyester stretch molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100322A JP4245300B2 (en) 2002-04-02 2002-04-02 Method for producing biodegradable polyester stretch molded article

Publications (2)

Publication Number Publication Date
JP2003291209A true JP2003291209A (en) 2003-10-14
JP4245300B2 JP4245300B2 (en) 2009-03-25

Family

ID=29241323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100322A Expired - Fee Related JP4245300B2 (en) 2002-04-02 2002-04-02 Method for producing biodegradable polyester stretch molded article

Country Status (1)

Country Link
JP (1) JP4245300B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283555A (en) * 2006-04-13 2007-11-01 Sekisui Seikei Ltd Manufacturing method of oriented polyolefin resin sheet
JP2010229243A (en) * 2009-03-26 2010-10-14 Kureha Corp Ultraviolet-screening material, and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030096444A (en) 1996-11-07 2003-12-31 마쯔시다덴기산교 가부시키가이샤 Excitation vector generator and method for generating an excitation vector
CN110211602B (en) * 2019-05-17 2021-09-03 北京华控创为南京信息技术有限公司 Intelligent voice enhanced communication method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283555A (en) * 2006-04-13 2007-11-01 Sekisui Seikei Ltd Manufacturing method of oriented polyolefin resin sheet
JP2010229243A (en) * 2009-03-26 2010-10-14 Kureha Corp Ultraviolet-screening material, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4245300B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4363325B2 (en) Polylactic acid polymer composition, molded article thereof, and film
JP2018168382A (en) Copolyesters plasticized with polymeric plasticizer for shrink film applications
JP3473714B2 (en) Heat-resistant sheet comprising lactic acid-based polymer and method for producing molded article
JP2005325286A (en) Polylactic acid stretched film and its manufacturing method
JP5376749B2 (en) Polylactic acid film
JP5145695B2 (en) Method for producing polylactic acid resin film
JP3670913B2 (en) Polylactic acid-based shrink film or sheet
JP4245306B2 (en) Biodegradable polyester stretch molding
JP4245300B2 (en) Method for producing biodegradable polyester stretch molded article
JP4511099B2 (en) Lactic acid-based resin composition, sheet-like product thereof, and bag-like product
JP3670912B2 (en) Polylactic acid-based shrink film or sheet
JP2005139280A (en) Polyester resin composition and film
JP2008266369A (en) Polylactic acid film
JP2014218576A (en) Method of manufacturing stereo complex polylactic acid stretched film
JP4993238B2 (en) Molded body for packaging materials
JP4790920B2 (en) Stretched molded product for packaging materials
JP4260521B2 (en) Glycolic acid polymer composition
JP3482743B2 (en) Shrink film composed of lactic acid-based polymer
JP4326828B2 (en) Composition of glycolic acid copolymer
JP4260526B2 (en) Composition of glycolic acid polymer
JP2008200860A (en) Method for producing polylactic acid resin film
JP2005219487A (en) Laminated film
JP3879445B2 (en) Heat-shrinkable polyethylene terephthalate film
JP4452293B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP2001130183A (en) Document holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Effective date: 20070824

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees