JP2003290622A - Decomposition apparatus for gaseous organic compound - Google Patents

Decomposition apparatus for gaseous organic compound

Info

Publication number
JP2003290622A
JP2003290622A JP2002098981A JP2002098981A JP2003290622A JP 2003290622 A JP2003290622 A JP 2003290622A JP 2002098981 A JP2002098981 A JP 2002098981A JP 2002098981 A JP2002098981 A JP 2002098981A JP 2003290622 A JP2003290622 A JP 2003290622A
Authority
JP
Japan
Prior art keywords
ultraviolet
electrolyzed water
decomposition
organic compound
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002098981A
Other languages
Japanese (ja)
Other versions
JP3699055B2 (en
Inventor
Kazushi Kimura
一志 木村
Tomoyuki Naito
友之 内藤
Takahiro Terajima
高宏 寺嶋
Yoshiko Nakato
誉子 中藤
Tsunezo Nitta
恒造 新田
Shinji Noguchi
真二 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP2002098981A priority Critical patent/JP3699055B2/en
Priority to CNB021555478A priority patent/CN100551467C/en
Priority to KR10-2002-0082589A priority patent/KR100509400B1/en
Priority to CA2419857A priority patent/CA2419857C/en
Priority to AU2003200768A priority patent/AU2003200768B2/en
Priority to EP08020159A priority patent/EP2022560A3/en
Priority to EP03251880A priority patent/EP1350561A3/en
Priority to US10/397,166 priority patent/US7364710B2/en
Publication of JP2003290622A publication Critical patent/JP2003290622A/en
Application granted granted Critical
Publication of JP3699055B2 publication Critical patent/JP3699055B2/en
Priority to US11/405,428 priority patent/US7722830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decomposition apparatus for a gaseous organic compound capable of efficiently decomposing a polluted gas containing the organic compound in a short time, easily treating an intermediate product generated by ultraviolet decomposition and reducing an equipment cost and a running cost. <P>SOLUTION: The decomposition apparatus for the gaseous organic compound is equipped with an ultraviolet decomposition unit 1 for irradiating the polluted gas containing the organic compound with ultraviolet rays with a wavelength of <300 nm to decompose the organic compound and an intermediate product treatment device 2 having an acidic electrolytic water supply pipe 9 and an alkali electrolytic water supply pipe 10 respectively connected thereto through a valve and selectively spraying strong alkali electrolytic water and strong acidic electrolytic water on the polluted gas containing the intermediate product formed by the decomposition of the organic compound to neutralize and decompose the intermediate product. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス状有機化合物
の分解装置に関する。
TECHNICAL FIELD The present invention relates to an apparatus for decomposing gaseous organic compounds.

【0002】[0002]

【従来の技術】トリクロロエチレン、テトラクロロエチ
レンなどの有機化合物はその優れた溶解力により、半導
体関連分野、金属油分洗浄分野、ドライクリーニング分
野などで洗浄剤、溶剤として長年にわたり使用されてき
た。しかし、近年、これら塩素系有機化合物の中に発ガ
ン性物質が存在することが分かり、その有害性が社会的
に問題視され、排出規制されるに至っている。従って、
これら塩素系有機化合物を過去に多量に使用・排出して
きた事業所においては、敷地内及び周辺の土壌汚染・地
下汚染が深刻な問題になっている。また、汚染ガスがあ
る種の有機化合物を含有すると、悪臭を発して環境が悪
化することもある。
2. Description of the Related Art Organic compounds such as trichlorethylene and tetrachloroethylene have been used as cleaning agents and solvents for many years in the fields of semiconductors, metal oil cleaning, dry cleaning, etc. due to their excellent dissolving power. However, in recent years, it has been found that a carcinogenic substance exists in these chlorine-based organic compounds, and its harmfulness has been socially regarded as a problem, and emission control has been reached. Therefore,
At business sites that have used and discharged large amounts of these chlorine-based organic compounds in the past, soil and underground pollution on and around the site has become a serious problem. Further, if the pollutant gas contains a certain organic compound, the environment may be deteriorated by giving off a bad odor.

【0003】通常、土壌を浄化するには、土壌ガスを吸
引し、これに含有される有機化合物を活性炭で吸着除去
して回収していた。このため、高濃度且つ広範囲に汚染
された場所では、大がかりな活性炭による吸着装置が必
要になり、設備コスト負担とランニングコストが問題に
なっている。また、土壌ガスに含有される有機化合物を
活性炭のみにより吸着・除去しようとすると、活性炭を
頻繁に交換する必要があり、活性炭の交換作業、再生処
理、廃棄などに係わる手間と費用が莫大になって、土壌
浄化を行う上での企業負担が非常に大きくなっている。
Usually, in order to purify the soil, the soil gas is sucked and the organic compounds contained therein are adsorbed and removed by activated carbon to be collected. For this reason, a large-scale adsorbing device using activated carbon is required at a place contaminated over a wide area with high concentration, which causes a problem of facility cost burden and running cost. Also, if it is attempted to adsorb and remove organic compounds contained in soil gas only with activated carbon, it is necessary to frequently replace the activated carbon, resulting in enormous labor and cost associated with replacement work, regeneration treatment, disposal, etc. of activated carbon. As a result, the burden on companies for soil purification has become extremely large.

【0004】ところで、紫外線を照射して有機化合物を
分解する技術が従来公知であり、例えば、半導体ウェハ
の表面洗浄では、エキシマランプなどにより高エネルギ
ーの紫外線(波長172nm)を照射して表面の有機化合
物を分解している。このような高エネルギーの紫外線を
照射すると、有機化合物はきわめて短時間で分解され
る。ところが、エキシマランプはけた外れに高価であっ
て、設備コストが莫大となり、電力消費量もきわめて多
いので、土壌ガスの浄化に利用するのは実用的でない。
By the way, a technique of irradiating ultraviolet rays to decompose organic compounds is conventionally known. For example, in the case of cleaning the surface of a semiconductor wafer, a high-energy ultraviolet ray (wavelength 172 nm) is irradiated by an excimer lamp or the like to irradiate the organic surface. Decomposing the compound. When irradiated with such high-energy ultraviolet rays, organic compounds are decomposed in an extremely short time. However, since the excimer lamp is extremely expensive, the equipment cost is enormous, and the power consumption is extremely large, it is not practical to use it for cleaning the soil gas.

【0005】また、廉価な低圧水銀ランプ、中圧水銀ラ
ンプ、高圧水銀ランプから紫外線を照射して有機化合物
を分解しようとすると、中間生成物として塩化水素、ハ
ロ酢酸など反応性の不安定な物質が発生し、これを安定
した物質まで分解するのに非常に時間がかかる。そこ
で、有機塩素化合物を含有するガスに、波長300nm以
下の紫外線を含む紫外線を照射して塩素原子を有する反
応中間体まで分解し、さらに微生物処理を施して反応中
間体を分解する有機塩素化合物の分解方法が特開平8−
24335号公報に開示されている。しかし、微生物処
理は環境に優しいという点では優れているが、管理が難
しく、分解速度が非常に遅いので処理に時間がかかり、
特に、高濃度汚染には対応できないという問題がある。
When an inexpensive low-pressure mercury lamp, medium-pressure mercury lamp, or high-pressure mercury lamp is used to irradiate ultraviolet rays to decompose organic compounds, hydrogen chloride, haloacetic acid, or other reactive substances are unstable as intermediate products. Occurs, and it takes a very long time to decompose this into a stable substance. Therefore, a gas containing an organochlorine compound is irradiated with ultraviolet rays including ultraviolet rays having a wavelength of 300 nm or less to decompose a reaction intermediate having a chlorine atom, and further, a microbial treatment is performed to decompose the reaction intermediate. The disassembling method is JP-A-8-
It is disclosed in Japanese Patent No. 24335. However, microbial treatment is excellent in that it is environmentally friendly, but it is difficult to manage and the decomposition rate is very slow, so it takes time to treat,
In particular, there is a problem that high-concentration pollution cannot be dealt with.

【0006】[0006]

【発明が解決しようとする課題】この発明は、有機化合
物を含む汚染ガスを効率よく短時間で分解することがで
き、紫外線分解によって発生する中間生成物の処理が容
易であり、設備コスト及びランニングコストが低廉で済
むガス状有機化合物の分解装置を提供することを課題と
する。
SUMMARY OF THE INVENTION The present invention is capable of efficiently decomposing pollutant gases containing organic compounds in a short time, facilitating the treatment of intermediate products generated by ultraviolet decomposition, and reducing equipment costs and running. An object of the present invention is to provide a decomposing device for a gaseous organic compound that can be manufactured at low cost.

【0007】[0007]

【課題を解決するための手段】本発明のガス状有機化合
物の分解装置は、有機化合物を含有する汚染ガスに、波
長300nm未満の紫外線を照射して前記有機化合物を分
解する紫外線分解ユニットと、酸性電解水供給パイプ及
びアルカリ電解水供給パイプがそれぞれバルブを介して
接続され、前記有機化合物が分解されて生成された中間
生成物に、強アルカリ電解水及び強酸性電解水を選択的
に噴霧して、前記中間生成物を中和し分解する中間生成
物処理装置とを備える。汚染ガスに含まれる有機化合物
は紫外線照射によりその化学結合が分断され、また有機
化合物が分解した結果生成する複数の中間生成物は、紫
外線照射により不安定なラジカル状態で混在すると考え
られる。これらの不安定なガス状中間生成物は、強酸性
電解水や強アルカリ電解水の噴霧による接触によって、
ガス洗浄されると共に中和され、或いは分解され、より
安定で無害な物質に変化させることができる。また、汚
染ガスに噴霧する強アルカリ電解水や強酸性電解水は人
体に無害であり、排水が環境を汚染する心配は全くな
い。
An apparatus for decomposing a gaseous organic compound according to the present invention comprises an ultraviolet decomposing unit for decomposing the organic compound by irradiating a pollutant gas containing the organic compound with ultraviolet rays having a wavelength of less than 300 nm. An acidic electrolyzed water supply pipe and an alkaline electrolyzed water supply pipe are connected via valves, respectively, and a strong alkaline electrolyzed water and a strongly acidic electrolyzed water are selectively sprayed onto an intermediate product produced by decomposing the organic compound. And an intermediate product treatment device for neutralizing and decomposing the intermediate product. It is considered that the chemical bond of the organic compound contained in the polluted gas is broken by the ultraviolet irradiation, and a plurality of intermediate products produced as a result of the decomposition of the organic compound are mixed in an unstable radical state by the ultraviolet irradiation. These unstable gaseous intermediate products are contacted by spraying strongly acidic electrolyzed water or strongly alkaline electrolyzed water,
It can be converted into a more stable and harmless substance by being gas-washed, neutralized, or decomposed. In addition, the strong alkaline electrolyzed water and the strongly acidic electrolyzed water sprayed on the polluted gas are harmless to the human body, and there is no concern that the waste water pollutes the environment.

【0008】中間生成物処理装置を紫外線分解ユニット
の中間部に接続して、該紫外線分解ユニット内の汚染ガ
スに強アルカリ電解水及び強酸性電解水を選択的に噴霧
しても、中間生成物処理装置を紫外線分解ユニットの下
流に接続して、該紫外線分解ユニットを通過した汚染ガ
スに強アルカリ電解水及び強酸性電解水を選択的に噴霧
しても良い。中間生成物処理装置を紫外線分解ユニット
の下流に接続した場合には、紫外線分解ユニット内の汚
染ガスに、強アルカリ電解水及び/又は強酸性電解水を
噴霧することもある。この構成によって、紫外線による
有機化合物の分解が促進され、処理時間が短縮される。
紫外線分解ユニットに噴霧される強アルカリ電解水及び
強酸性電解水は、中間生成物処理装置において噴霧され
る強アルカリ電解水及び強酸性電解水と同時に生成され
るので、コスト増大は抑えられる。
Even if the intermediate product treatment device is connected to the intermediate part of the ultraviolet decomposing unit and the pollutant gas in the ultraviolet decomposing unit is selectively sprayed with strong alkaline electrolyzed water and strong acidic electrolyzed water, the intermediate product The treatment device may be connected to the downstream of the ultraviolet decomposing unit, and strong alkaline electrolyzed water and strong acidic electrolyzed water may be selectively sprayed on the polluted gas passing through the ultraviolet decomposing unit. When the intermediate product treatment device is connected to the downstream of the ultraviolet decomposition unit, strong alkaline electrolyzed water and / or strong acidic electrolyzed water may be sprayed on the polluted gas in the ultraviolet decomposition unit. With this configuration, decomposition of the organic compound by ultraviolet rays is promoted, and the processing time is shortened.
The strong alkaline electrolyzed water and the strongly acidic electrolyzed water sprayed on the ultraviolet decomposition unit are produced at the same time as the strongly alkaline electrolyzed water and the strongly acidic electrolyzed water sprayed in the intermediate product treating apparatus, so that the cost increase can be suppressed.

【0009】紫外線分解ユニットは、内部に紫外線照射
ランプを設置した分解セルより成り、該分解セルの周壁
にガス入口が、分解セルの直径に沿って汚染ガスを吹き
込むように形成されることもある。これにより、汚染ガ
スが分解セルの内面に沿って移動しにくくなり、汚染ガ
スの分解セル中における滞留時間が長くなると共に、紫
外線の照射強度が強まって、分解効率が向上する。紫外
線照射ランプとしては、低圧水銀ランプ、中圧水銀ラン
プ、高圧水銀ランプ、アマルガムランプ、ハロゲンラン
プ、エキシマランプなどを使用できる。
The ultraviolet decomposition unit comprises a decomposition cell having an ultraviolet irradiation lamp installed therein, and a gas inlet may be formed in the peripheral wall of the decomposition cell so as to blow a pollutant gas along the diameter of the decomposition cell. . This makes it difficult for the polluted gas to move along the inner surface of the decomposition cell, prolongs the residence time of the polluted gas in the decomposition cell, enhances the irradiation intensity of ultraviolet rays, and improves the decomposition efficiency. As the ultraviolet irradiation lamp, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an amalgam lamp, a halogen lamp, an excimer lamp or the like can be used.

【0010】この場合、汚染ガスに均一に紫外線が照射
されるように、複数の前記紫外線照射ランプを、分解セ
ルの上面に等間隔で吊り下げると良い。紫外線強度は照
射距離に反比例するので、紫外線照射ランプ間の距離は
100mm以下、好ましくは20mm以下とする。また、比
較的短波長の紫外線が減衰するのを防ぐために、紫外線
照射ランプは、保護管が波長172nm以上の紫外線を8
0%以上透過する合成石英ガラスを素材としたものであ
ることが望ましい。紫外線ランプはできるだけ細いもの
を使用するのが好ましく、保護筒の直径が6mm〜20mm程
度の細管を使用する。
In this case, it is preferable that the plurality of ultraviolet irradiation lamps be hung on the upper surface of the decomposition cell at equal intervals so that the contaminated gas is uniformly irradiated with ultraviolet rays. Since the ultraviolet intensity is inversely proportional to the irradiation distance, the distance between the ultraviolet irradiation lamps is 100 mm or less, preferably 20 mm or less. Further, in order to prevent the attenuation of ultraviolet rays having a relatively short wavelength, the protective tube of the ultraviolet irradiation lamp has a wavelength of 172 nm or more.
It is desirable to use a synthetic quartz glass that transmits 0% or more as a material. It is preferable to use an ultraviolet lamp that is as thin as possible, and use a thin tube having a protective cylinder with a diameter of about 6 mm to 20 mm.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。ガス状有機化合物の分解装置
は、汚染土壌から有機化合物を含む汚染ガスを吸引する
ガス吸引装置に連結され、図1に示すように、汚染ガス
が導入される紫外線分解ユニット1と、紫外線分解ユニ
ット1の下流に接続されたスクラバ2より成る中間生成
物処理装置と、スクラバ2の下流に接続された活性炭吸
着ユニット3と、電解水生成装置4とを備える。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. The decomposing device for a gaseous organic compound is connected to a gas suction device for sucking a contaminated gas containing an organic compound from contaminated soil, and as shown in FIG. 1, an ultraviolet decomposing unit 1 into which the contaminated gas is introduced, and an ultraviolet decomposing unit. 1, an intermediate product treatment device composed of a scrubber 2 connected downstream, an activated carbon adsorption unit 3 connected downstream of the scrubber 2, and an electrolyzed water generation device 4.

【0012】電解水生成装置4は、オキシライザーメデ
ィカCL(商品名、株式会社三浦電子製)を使用し、電
解水生成装置4によって、塩化ナトリウム、塩化カリウ
ム、塩化マグネシウム等の水溶性電解質を含む水を電気
分解すると、陽極側からは強酸性電解水が、陰極側から
は強アルカリ電解水がそれぞれ取り出される。このよう
にして得られた強酸性電解水及び強アルカリ電解水は、
人体に無害なので、機能水として汚染ガスに接触させて
も環境を汚染する心配はない。
The electrolyzed water generator 4 uses an Olyxer Medica CL (trade name, manufactured by Miura Denshi Co., Ltd.) and contains a water-soluble electrolyte such as sodium chloride, potassium chloride or magnesium chloride. When water is electrolyzed, strongly acidic electrolyzed water is taken out from the anode side and strong alkaline electrolyzed water is taken out from the cathode side. The strongly acidic electrolyzed water and the strongly alkaline electrolyzed water thus obtained are
Since it is harmless to the human body, there is no risk of polluting the environment even if it contacts functional gas as functional water.

【0013】紫外線分解ユニット1は、ステンレス製パ
イプの内部に、低圧水銀ランプ5(図2,図3)より成
る紫外線照射ランプを複数設置した分解セル6を2筒直
列に接続して構成される。低圧水銀ランプ5は、保護管
として波長172nm以上の紫外線を80%以上透過する
合成石英ガラスを用いたものであり、消費電力13W
で、波長が254nmの紫外線及び185nmの紫外線を照
射する。また、低圧水銀ランプ5は、図2に示すよう
に、分解セル6の上面から吊り下げられ、分解セル6の
上面中央に1灯配置され、残りは上面周縁部に等間隔で
配置されている。
The ultraviolet decomposing unit 1 is constructed by connecting two decomposing cells 6 in series in which a plurality of ultraviolet irradiation lamps composed of a low pressure mercury lamp 5 (FIGS. 2 and 3) are installed inside a stainless steel pipe. . The low-pressure mercury lamp 5 uses a synthetic quartz glass that transmits 80% or more of ultraviolet rays having a wavelength of 172 nm or more as a protective tube and consumes 13 W of power.
Then, an ultraviolet ray having a wavelength of 254 nm and an ultraviolet ray of 185 nm are irradiated. Further, as shown in FIG. 2, the low-pressure mercury lamp 5 is suspended from the upper surface of the decomposition cell 6, one lamp is arranged at the center of the upper surface of the decomposition cell 6, and the rest are arranged at equal intervals on the peripheral portion of the upper surface. .

【0014】汚染ガスは、図3に示すように、一方の分
解セル6の周壁上部において、直径の一端に形成された
ガス入口7から導入され、他方の分解セル6の周壁上部
において、直径の一端に形成されたガス出口8から取り
出される。そして、電解水生成装置4の陽極側と紫外線
分解ユニット1の各分解セル6とは酸性電解水供給パイ
プ9で接続され、分解セル6と酸性電解水供給パイプ9
との接続部分に設置されたバルブを開くと、分解セル6
中に強酸性電解水が噴霧されるようになっている。さら
に、電解水生成装置4の陰極側と紫外線分解ユニット1
の各分解セル6とはアルカリ電解水供給パイプ10で接
続され、分解セル6とアルカリ電解水供給パイプ10と
の接続部分に設置されたバルブを開くと、分解セル6中
に強アルカリ電解水が噴霧されるようになっている。
As shown in FIG. 3, the polluted gas is introduced from the gas inlet 7 formed at one end of the diameter in the upper part of the peripheral wall of one of the decomposition cells 6 and the upper part of the peripheral wall of the other decomposition cell 6 has the same diameter. It is taken out from a gas outlet 8 formed at one end. Then, the anode side of the electrolyzed water generator 4 and each decomposition cell 6 of the ultraviolet decomposition unit 1 are connected by an acidic electrolyzed water supply pipe 9, and the decomposition cell 6 and the acidic electrolyzed water supply pipe 9 are connected.
When you open the valve installed at the connection with, the disassembly cell 6
Strongly acidic electrolyzed water is sprayed inside. Furthermore, the cathode side of the electrolyzed water generator 4 and the ultraviolet decomposition unit 1
Each of the decomposition cells 6 is connected by an alkaline electrolyzed water supply pipe 10, and when a valve installed at a connection portion between the decomposition cell 6 and the alkaline electrolyzed water supply pipe 10 is opened, strong alkaline electrolyzed water is generated in the decomposition cell 6. It is supposed to be sprayed.

【0015】スクラバ2の上下部には、ポンプ12を有
する循環パイプ11の両端が接続され、紫外線分解ユニ
ット1を通過してスクラバ2の下部に流入したガスは、
ポンプ12で循環パイプ11内を押し上げられて、スク
ラバ2の上部に戻され、スクラバ2中を循環するように
なっている。また、スクラバ2にはpH測定装置25が
設けられ、このpH測定装置25によってスクラバ2内
に流入した汚染ガスのpHを測定できるようになってい
る。さらに、循環パイプ11は、それぞれバルブを介し
て酸性電解水供給パイプ9及びアルカリ電解水供給パイ
プ10と接続され、pH測定装置25で測定された汚染
ガスのpHに応じてバルブを開放することにより、スク
ラバ2中を循環するガスに強酸性電解水及び強アルカリ
電解水が選択的に噴霧され、ガス中に含まれる中間生成
物を中和し分解するようになっている。
Both ends of a circulation pipe 11 having a pump 12 are connected to the upper and lower parts of the scrubber 2, and the gas that has passed through the ultraviolet decomposition unit 1 and flowed into the lower part of the scrubber 2 is
The pump 12 pushes up the inside of the circulation pipe 11, returns it to the upper part of the scrubber 2, and circulates in the scrubber 2. A pH measuring device 25 is provided in the scrubber 2, and the pH of the pollutant gas flowing into the scrubber 2 can be measured by the pH measuring device 25. Further, the circulation pipe 11 is connected to the acidic electrolyzed water supply pipe 9 and the alkaline electrolyzed water supply pipe 10 via valves, respectively, and the valves are opened according to the pH of the pollutant gas measured by the pH measuring device 25. The strongly acidic electrolyzed water and the strongly alkaline electrolyzed water are selectively sprayed onto the gas circulating in the scrubber 2 to neutralize and decompose the intermediate products contained in the gas.

【0016】また、スクラバ2から延びる排水路13に
は排水中和タンク14が設置されると共に、排水中和タ
ンク14に酸性電解水供給パイプ9及びアルカリ電解水
供給パイプ10がそれぞれバルブを介して接続され、排
水中和タンク14に貯留された排水に強アルカリ電解水
又は強酸性電解水を添加して中和した後、排出するよう
になっている。活性炭吸着ユニット3には活性炭フィル
タが内蔵され、スクラバ2を通過したガスに含有される
微少な残留化合物はここで吸着除去される。また、活性
炭吸着ユニット3には、ポンプ15を有する排気パイプ
16が接続され、活性炭フィルタを通過した清浄なガス
が排気されるようになっている。
A drainage neutralization tank 14 is installed in the drainage channel 13 extending from the scrubber 2, and an acidic electrolyzed water supply pipe 9 and an alkaline electrolyzed water supply pipe 10 are provided in the drainage neutralization tank 14 via valves. Strong alkaline electrolyzed water or strongly acidic electrolyzed water is added to the wastewater connected and stored in the wastewater neutralization tank 14 to neutralize it, and then the wastewater is discharged. The activated carbon adsorption unit 3 has a built-in activated carbon filter, and the minute residual compounds contained in the gas passing through the scrubber 2 are adsorbed and removed here. Further, an exhaust pipe 16 having a pump 15 is connected to the activated carbon adsorption unit 3 so that the clean gas that has passed through the activated carbon filter is exhausted.

【0017】このガス状有機化合物の分解装置は次のよ
うに使用される。土壌から吸引された有機化合物を含む
汚染ガスを、ガス入口7を通して紫外線分解ユニット1
内へその直径に沿って導入し、電解水生成装置4で生成
された強酸性電解水、強アルカリ電解水のいずれか、又
は両方を電解セル6内へ噴霧して、汚染ガスと接触させ
ると共に、低圧水銀ランプ5を点灯して汚染ガスに紫外
線を照射する。すると、汚染ガスに含有される有機化合
物が紫外線照射によって分解され、強酸性電解水及び/
又は強アルカリ電解水により、分解反応が促進される。
The apparatus for decomposing gaseous organic compounds is used as follows. Contaminant gas containing organic compounds sucked from the soil is passed through the gas inlet 7 to the ultraviolet decomposition unit 1
Of the strong acidic electrolyzed water or the strong alkaline electrolyzed water produced by the electrolyzed water producing apparatus 4, or both of them are sprayed into the electrolysis cell 6 to be brought into contact with the polluted gas. The low pressure mercury lamp 5 is turned on to irradiate the polluted gas with ultraviolet rays. Then, the organic compounds contained in the polluted gas are decomposed by the ultraviolet irradiation, and strong acidic electrolyzed water and / or
Alternatively, the strong alkaline electrolyzed water accelerates the decomposition reaction.

【0018】紫外線分解ユニット1を通過してガス出口
8から取り出された汚染ガス中には、有機化合物が分解
された結果発生する中間生成物が含有されており、この
中間生成物を含む汚染ガスがスクラバ2へ流入する。ス
クラバ2へ流入した汚染ガスは、pH測定装置25によ
ってpHが測定されると共に、循環パイプ11を通って
一定時間スクラバ2内を循環する。そして、循環パイプ
11を通過する際に、pH測定装置25で測定されたp
Hに応じて、汚染ガスに強酸性電解水又は強アルカリ電
解水が噴霧されて、汚染ガスに含有される中間生成物が
中和される。
The pollutant gas taken out from the gas outlet 8 after passing through the ultraviolet decomposing unit 1 contains an intermediate product generated as a result of the decomposition of the organic compound, and the pollutant gas containing this intermediate product. Flows into the scrubber 2. The pH of the pollutant gas flowing into the scrubber 2 is measured by the pH measuring device 25, and the polluted gas circulates in the scrubber 2 for a certain period of time through the circulation pipe 11. Then, when passing through the circulation pipe 11, p measured by the pH measuring device 25
Depending on H, the pollutant gas is sprayed with strongly acidic electrolyzed water or strongly alkaline electrolyzed water to neutralize the intermediate product contained in the pollutant gas.

【0019】汚染ガスに含まれる有機化合物によって
は、中間生成物を含む汚染ガスが中性を示すこともある
ので、この場合は、強酸性電解水と強アルカリ電解水を
同時に噴霧して、中間生成物を分解する。また、紫外線
分解ユニット1を通過した後に僅かに残っている有機化
合物も、強酸性電解水や強アルカリ電解水を噴霧するこ
とによって、さらに分解が進む。分解されなかった中間
生成物の一部、或いは、中和によって生成された副生成
物の一部は噴霧された電解水に溶解されて、排水路13
へ排出される。
Depending on the organic compound contained in the polluted gas, the polluted gas containing the intermediate product may be neutral. In this case, strong acidic electrolyzed water and strong alkaline electrolyzed water are simultaneously sprayed to form an intermediate product. Decomposes the product. Further, even a small amount of the organic compound remaining after passing through the ultraviolet decomposing unit 1 is further decomposed by spraying strongly acidic electrolyzed water or strongly alkaline electrolyzed water. A part of the intermediate product which is not decomposed or a part of the by-product generated by the neutralization is dissolved in the sprayed electrolyzed water, and the drainage channel 13
Is discharged to.

【0020】スクラバ2から排水路13へ排出される水
は酸性又はアルカリ性を帯びていることが多いため、排
水中和タンク14内において強アルカリ電解水又は強酸
性電解水を添加して中和した後、外部へ排出する。スク
ラバ2内を一体時間循環したガスは、活性炭吸着ユニッ
ト3へ流入し、僅かに残留している中間生成物及び有機
化合物を活性炭フィルタで吸着除去した後、外界へ排気
される。
Since the water discharged from the scrubber 2 to the drainage channel 13 is often acidic or alkaline, strong alkaline electrolyzed water or strongly acidic electrolyzed water is added in the wastewater neutralization tank 14 for neutralization. Then, it is discharged to the outside. The gas that circulates in the scrubber 2 for an integrated time flows into the activated carbon adsorption unit 3, adsorbs and removes the slightly remaining intermediate products and organic compounds by the activated carbon filter, and then is exhausted to the outside.

【0021】なお、紫外線分解ユニット1を中間生成物
処理装置として利用することもある。この場合は、各電
解セル6にpH測定装置25を設け、pH測定装置25
で測定されたpHに応じて、接続された酸性電解水供給
パイプ9及びアルカリ電解水供給パイプ10から強酸性
電解水及び強アルカリ電解水を選択して噴霧し、紫外線
分解ユニット1内の汚染ガスに含まれる中間生成物を中
和し分解する。そして、中和のために噴霧した強酸性電
解水や強アルカリ電解水が、汚染ガスに含有される有機
化合物を分解することにもなる。この時、紫外線分解ユ
ニット1の下流にスクラバ2を設置しても、設置しなく
ても良い。また、紫外線分解ユニット1に酸性電解水供
給パイプ9及びアルカリ電解水供給パイプ10を接続せ
ず、紫外線のみによって紫外線分解ユニット1中の汚染
ガスに含有される有機化合物を分解し、その後、スクラ
バ2内に強アルカリ電解水及び強酸性電解水を選択的に
噴霧しても良い。
The ultraviolet decomposition unit 1 may be used as an intermediate product processing device. In this case, each electrolysis cell 6 is provided with a pH measuring device 25, and the pH measuring device 25
Contaminant gas in the UV decomposition unit 1 is selected by spraying strongly acidic electrolyzed water and strongly alkaline electrolyzed water from the connected acidic electrolyzed water supply pipe 9 and alkaline electrolyzed water supply pipe 10 according to the pH measured in The intermediate product contained in is neutralized and decomposed. Then, the strongly acidic electrolyzed water or the strongly alkaline electrolyzed water sprayed for neutralization also decomposes the organic compound contained in the polluted gas. At this time, the scrubber 2 may or may not be installed downstream of the ultraviolet decomposition unit 1. Further, without connecting the acidic electrolyzed water supply pipe 9 and the alkaline electrolyzed water supply pipe 10 to the ultraviolet decomposition unit 1, the organic compounds contained in the polluted gas in the ultraviolet decomposition unit 1 are decomposed only by the ultraviolet rays, and then the scrubber 2 Strong alkaline electrolyzed water and strongly acidic electrolyzed water may be selectively sprayed therein.

【0022】(実施例)図1に示すガス状有機化合物の
分解装置において、分解セル6の直径を200mm、長さ
を600mmとして、低圧水銀ランプ5を7灯セットし
た。そして、紫外線分解ユニット1に、トリクロロエチ
レン(以下、TCEと称する)を含む汚染ガスを導入す
ると共に、pH2.1〜2.4の強酸性電解水を毎分1
00ml噴霧した。また、スクラバ2には、pH11.
0の強アルカリ電解水を毎分1l噴霧し、流量12.5
l/minの流量で汚染ガスを循環させた。
(Example) In the apparatus for decomposing gaseous organic compounds shown in FIG. 1, the decomposition cell 6 had a diameter of 200 mm and a length of 600 mm, and seven low-pressure mercury lamps 5 were set. Then, a pollutant gas containing trichlorethylene (hereinafter referred to as TCE) is introduced into the ultraviolet decomposition unit 1, and a strong acidic electrolyzed water having a pH of 2.1 to 2.4 is added at a rate of 1 per minute.
00 ml was sprayed. In addition, the scrubber 2 has a pH of 11.
0 liters of strong alkaline electrolyzed water is sprayed every minute at a flow rate of 12.5
A pollutant gas was circulated at a flow rate of 1 / min.

【0023】試験1では、TCE濃度50ppmの汚染
ガスを、風量400l/minで紫外線分解ユニット1
のガス入口7に吹き込み、紫外線分解ユニット1の直
前、紫外線分解ユニット1とスクラバ2の間、スク
ラバ2と活性炭吸着ユニット3の間、活性炭吸着ユニ
ット3の後の4個所で、10分経過後及び30分経過後
に、TCE濃度、塩化水素濃度、ホスゲン濃度、塩素濃
度、オゾン濃度を測定し、その結果を図4に示す。ま
た、スクラバ2内のpHを試験開始時、10分経過後、
30分経過後に測定した結果を図5に示す。
In the test 1, the pollutant gas having a TCE concentration of 50 ppm and the air flow rate of 400 l / min were used for the ultraviolet decomposition unit 1.
Before the UV decomposition unit 1, between the UV decomposition unit 1 and the scrubber 2, between the scrubber 2 and the activated carbon adsorption unit 3 and at four points after the activated carbon adsorption unit 3 after 10 minutes and After 30 minutes, TCE concentration, hydrogen chloride concentration, phosgene concentration, chlorine concentration, and ozone concentration were measured, and the results are shown in FIG. In addition, the pH of the scrubber 2 is tested at the beginning of the test, 10 minutes later,
The result of measurement after 30 minutes is shown in FIG.

【0024】また、試験2において、TCE濃度100
ppmの汚染ガスを、風量400l/minでガス入口
7に吹き込み、試験1と同じように、、、、の
4個所で、10分経過後及び30分経過後に、TCE濃
度、塩化水素濃度、ホスゲン濃度、塩素濃度、オゾン濃
度を測定し、スクラバ2内のpHを試験開始時、10分
経過後、30分経過後に測定し、その結果をそれぞれ図
6及び図7に示す。試験1及び試験2の結果から、汚染
ガスに含有されるTCEは紫外線照射によって殆ど分解
され、残った有機化合物もスクラバ2を循環する間に非
常に低い濃度まで分解されることがわかった。また、紫
外線照射により有機化合物を分解した結果発生する中間
生成物は、スクラバ2内で大半が中和され、スクラバ2
を通過したガス中に含まれるきわめて微少な有機化合物
及び中間生成物も活性炭吸着ユニット3で完全に吸着除
去されることがわかった。
In Test 2, the TCE concentration was 100.
A ppm polluted gas was blown into the gas inlet 7 at an air flow rate of 400 l / min, and in the same manner as in Test 1, at 4 points of ,,, after 10 minutes and 30 minutes, TCE concentration, hydrogen chloride concentration, phosgene The concentration, chlorine concentration, and ozone concentration were measured, and the pH in the scrubber 2 was measured at the start of the test, 10 minutes later, and 30 minutes later, and the results are shown in FIGS. 6 and 7, respectively. From the results of Test 1 and Test 2, it was found that the TCE contained in the polluted gas was almost decomposed by the irradiation of ultraviolet rays, and the remaining organic compounds were decomposed to a very low concentration while circulating through the scrubber 2. In addition, most of the intermediate product generated as a result of decomposing the organic compound by ultraviolet irradiation is neutralized in the scrubber 2,
It was found that the extremely small organic compounds and intermediate products contained in the gas passing through were completely adsorbed and removed by the activated carbon adsorption unit 3.

【0025】さらに、試験3乃至試験9では、紫外線分
解ユニット1を用いて、有機化合物の内、7大悪臭物質
と称される硫化水素、アセトアルデヒド、ピリジン、ア
ンモニア、トリメチルアミン、酢酸、メチルメルカプタ
ンの7種類について、濃度10ppmの汚染ガスを、風
量400l/minでガス入口7に吹き込み、試験1と
同じように、、、、の4個所で有機化合物濃度
を計測し、、、の3個所で中間生成物濃度を測定
した。試験3では、硫化水素(HS)を含む汚染ガス
について分解試験を行い、スクラバ2へ強アルカリ電解
水を噴霧し、試験開始直後、10分後、30分後、50
分後及び90分後に濃度測定を行った。図8にHS濃
度の経時変化を、図9に中間生成物として生成されるS
濃度及びオゾン濃度の経時変化をそれぞれ示す。
Further, in Tests 3 to 9, using the UV decomposition unit 1, 7 of the organic compounds, which are 7 major malodorous substances, such as hydrogen sulfide, acetaldehyde, pyridine, ammonia, trimethylamine, acetic acid, and methyl mercaptan are used. Regarding the type, a pollutant gas with a concentration of 10 ppm was blown into the gas inlet 7 at an air flow rate of 400 l / min, and as in Test 1, the organic compound concentration was measured at four points ,,, and intermediate generation was performed at three points. The substance concentration was measured. In Test 3, a decomposition test was conducted on a pollutant gas containing hydrogen sulfide (H 2 S), strong alkaline electrolyzed water was sprayed onto the scrubber 2, and immediately after the test was started, 10 minutes, 30 minutes, and 50 minutes later.
Density measurements were taken after minutes and 90 minutes. FIG. 8 shows a change with time of the H 2 S concentration, and FIG. 9 shows S produced as an intermediate product.
The changes over time of the O 2 concentration and the ozone concentration are shown.

【0026】試験4では、アセトアルデヒド(CH
OH)を含有する汚染ガスを流し、スクラバ2へ強酸性
電解水を噴霧し、試験開始直後、10分後、30分後及
び50分後に濃度測定を行った。図10にアセトアルデ
ヒド濃度を、図11に中間生成物として予想される酢酸
(CH3COOH)濃度及びオゾン濃度を示す。なお、
中間生成物として酢酸を予想したが、図11からわかる
ように、実際には紫外線分解ユニット1を通過後の汚染
ガスに酢酸はほとんど含まれていないので、酢酸の中和
分解を考慮する必要はないものと思われる。
In Test 4, acetaldehyde (CH 3 C
OH) -containing polluted gas was flowed, and strongly acidic electrolyzed water was sprayed onto the scrubber 2, and the concentration was measured immediately after the start of the test, 10 minutes, 30 minutes, and 50 minutes later. FIG. 10 shows acetaldehyde concentration, and FIG. 11 shows acetic acid (CH3COOH) concentration and ozone concentration expected as intermediate products. In addition,
Although acetic acid was expected as an intermediate product, as can be seen from FIG. 11, the contaminated gas after passing through the ultraviolet decomposing unit 1 contains practically no acetic acid, so it is not necessary to consider the neutralization decomposition of acetic acid. It seems that there is no.

【0027】試験5は、ピリジン(CN)を含む
汚染ガスをガス入口7に吹き込み、スクラバ2へ強酸性
電解水を噴霧し、試験開始直後、10分後、30分後及
び50分後に濃度測定を行った。図12にピリジン濃度
を、図13に中間生成物として予想されるNOx濃度及
びオゾン濃度を示す。試験6では、アンモニア(N
)を含有する汚染ガスをガス入口7へ導入し、スク
ラバ2へ強酸性電解水を噴霧し、試験開始直後、10分
後、30分後及び50分後に濃度測定を行った。図14
にアンモニア濃度を、図15に中間生成物として予想さ
れるNOx濃度及びオゾン濃度を示す。
In Test 5, a pollutant gas containing pyridine (C 5 H 5 N) was blown into the gas inlet 7, and the strongly acidic electrolyzed water was sprayed onto the scrubber 2. Immediately after the start of the test, 10 minutes later, 30 minutes later, and 50 minutes later. After a minute, the concentration was measured. FIG. 12 shows the pyridine concentration, and FIG. 13 shows the NOx concentration and ozone concentration expected as intermediate products. In test 6, ammonia (N
A pollutant gas containing H 3 ) was introduced into the gas inlet 7, the strongly acidic electrolyzed water was sprayed onto the scrubber 2, and the concentration was measured immediately after the start of the test, 10 minutes, 30 minutes, and 50 minutes later. 14
15 shows the ammonia concentration, and FIG. 15 shows the NOx concentration and ozone concentration expected as intermediate products.

【0028】試験7では、トリメチルアミン((C
N)を含有する汚染ガスを流し、スクラバ2へ
強酸性電解水を噴霧し、試験開始直後、10分後、30
分後及び50分後に濃度測定を行った。図16にトリメ
チルアミン濃度を、図17に中間生成物として予想され
るNOx濃度及びオゾン濃度を示す。なお、中間生成物
としてアンモニアが予想されるが、トリメチルアミンと
の区別がしにくく、濃度を測定することができなかっ
た。また、試験5乃至試験7では、中間生成物としてN
Oxを予想したが、紫外線分解ユニット1を通過後の汚
染ガスにほとんどNOxが含まれていないので、その中
和分解は考慮しなくても良いと思われる。
In test 7, trimethylamine ((C
H 3) 3 N) flowing a contaminated gas containing, by spraying a strongly acidic electrolyzed water to the scrubber 2, immediately after the start of the test, after 10 minutes, 30
The concentration was measured after 50 minutes and after 50 minutes. FIG. 16 shows the trimethylamine concentration, and FIG. 17 shows the NOx concentration and ozone concentration expected as intermediate products. Although ammonia is expected as an intermediate product, it was difficult to distinguish it from trimethylamine, and the concentration could not be measured. In addition, in Tests 5 to 7, N was used as an intermediate product.
Although Ox was predicted, since the polluted gas after passing through the ultraviolet decomposing unit 1 contains almost no NOx, its neutralization decomposition may not be considered.

【0029】試験8では、酢酸(CHCOOH)を含
有する汚染ガスをガス入口7へ導入し、スクラバ2へ強
アルカリ電解水を噴霧し、試験開始直後、10分後、3
0分後及び50分後に濃度測定を行った。図18に酢酸
濃度を、図19に中間生成物として発生したオゾン濃度
を示す。試験9では、メチルメルカプタン(CH
H)を含有する汚染ガスをガス入口7へ導入し、スクラ
バ2へ強アルカリ電解水を噴霧し、試験開始直後、10
分後、30分後及び50分後に濃度測定を行った。図2
0にメチルメルカプタン濃度を、図21に中間生成物と
して予想されるSO濃度、HS濃度及びオゾン濃度
を示す。なお、この試験でも、中間生成物として予想さ
れたHSは、紫外線ユニット1を通過後のガスから検
出されなかった。試験3乃至試験9の結果から、本発明
の分解装置により悪臭物質もほとんど分解処理できるこ
とがわかった。
In Test 8, a pollutant gas containing acetic acid (CH 3 COOH) was introduced into the gas inlet 7, and strong alkaline electrolyzed water was sprayed onto the scrubber 2. Immediately after the start of the test, 10 minutes later, 3
The concentration was measured after 0 minutes and 50 minutes. FIG. 18 shows the acetic acid concentration, and FIG. 19 shows the ozone concentration generated as an intermediate product. In Test 9, methyl mercaptan (CH 3 S
Immediately after starting the test, a pollutant gas containing H) was introduced into the gas inlet 7, and the scrubber 2 was sprayed with strong alkaline electrolyzed water.
The concentration was measured after 30 minutes and 50 minutes. Figure 2
The methyl mercaptan concentration is shown in 0, and the SO 2 concentration, H 2 S concentration, and ozone concentration expected as intermediate products are shown in FIG. Even in this test, H 2 S expected as an intermediate product was not detected in the gas after passing through the ultraviolet unit 1. From the results of tests 3 to 9, it was found that almost all malodorous substances can be decomposed by the decomposition device of the present invention.

【0030】試験10では、紫外線の有機化合物分解効
果を調べるため、図22に示すように、気体混合槽17
の下流に、紫外線ランプ18を上面から10本吊り下げ
た容積180lの試験セル19を設置すると共に、試験
セル19の上流側と下流側とにそれぞれVOCモニタ2
0を設置した試験装置を用意し、この装置にTCE濃度
50ppmの汚染ガスを100l/min、200l/
min、300l/min、400l/minで連続的
に供給した。そして、紫外線ランプ18を10本点灯し
たパターン1,7本点灯したパターン2,6本点灯した
パターン3,3本点灯したパターン4,1本点灯したパ
ターン5において、紫外線分解ユニット2’の上流側と
下流側でTCE濃度を計測した結果を図23に示す。ま
た、TCE分解率を(1−下流濃度/上流濃度)×10
0%の式で求めて図24に示す。
In Test 10, in order to investigate the effect of ultraviolet rays on the decomposition of organic compounds, as shown in FIG. 22, a gas mixing tank 17 was used.
A test cell 19 having a volume of 180 l in which ten ultraviolet lamps 18 are suspended from the upper surface is installed downstream of the VOC monitor 2 and the VOC monitor 2 is provided on the upstream side and the downstream side of the test cell 19, respectively.
0 is installed, and a pollutant gas having a TCE concentration of 50 ppm is added to this device at 100 l / min and 200 l / min.
It was continuously supplied at min, 300 l / min, and 400 l / min. Then, in the pattern 1 in which 10 ultraviolet lamps 18 are turned on, the pattern in which 7 ultraviolet lamps are turned on 2, the pattern in which 6 ultraviolet lamps are turned on 3, the pattern 3 in which three ultraviolet lamps are turned on, and the pattern 5 in which one ultraviolet lamp 18 is turned on 23 shows the result of measuring the TCE concentration on the downstream side. Further, the TCE decomposition rate is (1-downstream concentration / upstream concentration) × 10
It is calculated by the formula of 0% and is shown in FIG.

【0031】試験11では、TCEに代えてテトラクロ
ロエチレン(PCE)を用いた以外は試験10と同様に
して実験を行い、PCE濃度を計測した結果を図25
に、PCE分解率を図26にそれぞれ示す。試験12
は、TCEに代えてcis−1,2−ジクロロエチレン
(cis−1,2−DCE)を用いた以外は試験10と
同様にして実験を行い、cis−1,2−DCE濃度を
計測した結果を図27に、cis−1,2−DCE分解
率を図28にそれぞれ示す。
In Test 11, an experiment was conducted in the same manner as in Test 10 except that tetrachloroethylene (PCE) was used instead of TCE, and the PCE concentration was measured.
26 shows the PCE decomposition rate, respectively. Test 12
Was tested in the same manner as in Test 10 except that cis-1,2-dichloroethylene (cis-1,2-DCE) was used instead of TCE, and the cis-1,2-DCE concentration was measured. FIG. 27 shows the cis-1,2-DCE decomposition rate, and FIG. 28 shows them.

【0032】また、試験13では、TCEに代えてモノ
クロロエチレンを用いた以外は試験10と同様にして実
験を行い、モノクロロエチレン濃度を計測した結果を図
29に、モノクロロエチレン分解率を図30にそれぞれ
示す。試験14は、TCEに代えて酢酸エチルを用いた
以外は試験10と同様にして実験を行い、酢酸エチル濃
度を計測した結果を図31に、酢酸エチル分解率を図3
2にそれぞれ示す。試験15では、TCEに代えてトル
エンを用いたトルエン濃度50ppmのガスを、試験1
0と同様の試験装置に100l/minで供給し、トル
エン濃度を計測した結果を図33に示す。試験10乃至
試験15の結果から、試験流量が少ない方が紫外線夜分
解率が高く、また、塩素数の多いテトラクロロエチレン
は紫外線によって分解されやすく、塩素を持たない酢酸
エチルやトルエンは紫外線で分解されにくいことがわか
った。
In Test 13, an experiment was conducted in the same manner as in Test 10 except that monochloroethylene was used instead of TCE, and the results of measuring the monochloroethylene concentration are shown in FIG. 29 and the monochloroethylene decomposition rate is shown in FIG. Shown respectively. Test 14 was conducted in the same manner as in Test 10 except that ethyl acetate was used instead of TCE, and the results of measuring the ethyl acetate concentration are shown in FIG. 31 and the ethyl acetate decomposition rate is shown in FIG.
2 respectively. In Test 15, a gas having a toluene concentration of 50 ppm was used in place of TCE instead of TCE.
FIG. 33 shows the results of measuring the toluene concentration by supplying 100 l / min to the same test apparatus as in No. 0. From the results of Tests 10 to 15, the smaller the test flow rate, the higher the night-time UV decomposition rate, and the more chlorine-containing tetrachloroethylene is easily decomposed by UV rays, and ethyl acetate and toluene without chlorine are less likely to be decomposed by UV rays. I understood it.

【0033】強アルカリ電解水、強酸性電解水、その混
合水を噴霧して紫外線を照射した時の分解促進効果を調
べるために、試験16を行った。試験16では、図34
に示すように、出力30Wで波長254nmの紫外線を照
射する紫外線ランプ18を、内径120mm、高さ130
0mmの試験セル19内に設置し、TCEガスと希釈用空
気とを混合したガスを試験セル19に3l/minの流
量で導入した。また、アトマイザー21を用いて、強酸
性電解水、強アリカル電解水、強酸性電解水と強アルカ
リ電解水とを1:1で混ぜた混合水、水道水のいずれか
を試験セル19内へ10l/minで噴霧し、TCE濃
度が安定した後、紫外線ランプ18の点灯と消灯を繰り
返し、試験セルの下流に形成された採取口22から採取
したガスのTCE濃度を10分間隔で測定した。その結
果及びTCE分解率を図35に示す。試験16の結果か
ら、強酸性電解水、強アリカル電解水、強酸性電解水と
強アルカリ電解水の混合水を噴霧すると、水道水を噴霧
した場合に比べて明らかに分解効率が高まることがわか
った。
Test 16 was carried out in order to investigate the effect of promoting decomposition when the strongly alkaline electrolyzed water, the strongly acidic electrolyzed water, and the mixed water thereof were sprayed and irradiated with ultraviolet rays. In test 16, FIG.
As shown in, an ultraviolet lamp 18 for irradiating an ultraviolet ray having a wavelength of 254 nm with an output of 30 W is provided with an inner diameter of 120 mm and a height of 130.
It was installed in a 0 mm test cell 19 and a gas in which TCE gas and dilution air were mixed was introduced into the test cell 19 at a flow rate of 3 l / min. Further, using the atomizer 21, either strongly acidic electrolyzed water, strongly alkaline electrolyzed water, mixed water in which strongly acidic electrolyzed water and strong alkaline electrolyzed water were mixed at a ratio of 1: 1, or tap water was placed in the test cell 19 in an amount of 10 l. After the TCE concentration was stabilized by spraying at / min, the UV lamp 18 was repeatedly turned on and off, and the TCE concentration of the gas sampled from the sampling port 22 formed downstream of the test cell was measured at 10-minute intervals. The results and the TCE decomposition rate are shown in FIG. From the results of Test 16, it was found that spraying strongly acidic electrolyzed water, strongly alkaline electrolyzed water, or a mixed water of strongly acidic electrolyzed water and strongly alkaline electrolyzed water clearly increased the decomposition efficiency as compared with the case of spraying tap water. It was

【0034】試験17では、図36及び図37に示すよ
うな試験装置を用いる。この試験装置は、上面に交換可
能な紫外線ランプ18が吊り下げられた試験セル19を
有する。試験セル19の周壁下部には、直径に沿ってガ
スを導入する第1のガス入口7aが形成されると共に、
接線に沿ってガスを導入する第2のガス入口7bが形成
され、試験セル19の周壁上部には、直径に沿ってガス
を取り出す第1のガス出口8aが形成されると共に、接
線に沿ってガスを取り出す第2のガス出口8bが形成さ
れている。
In Test 17, a test apparatus as shown in FIGS. 36 and 37 is used. The test apparatus has a test cell 19 with a replaceable ultraviolet lamp 18 suspended on the top surface. In the lower part of the peripheral wall of the test cell 19, a first gas inlet 7a for introducing gas along the diameter is formed, and
A second gas inlet 7b for introducing the gas is formed along the tangent line, and a first gas outlet 8a for taking out the gas along the diameter is formed on the upper part of the peripheral wall of the test cell 19, and along the tangent line. A second gas outlet 8b for taking out gas is formed.

【0035】そして、保護筒付きで波長185nmの紫外
線及び波長254nmの紫外線を照射する出力13Wの紫
外線ランプ18、或いは、保護筒無しで波長185nmの
紫外線及び波長254nmの紫外線を照射する出力40W
の紫外線ランプ18を用い、TCE濃度50ppmのガ
スを、流量100l/min、200l/min、30
0l/min、400l/minで、第1のガス入口7
aから第1のガス出口8aに至る流路に通した場合
と、第2のガス入口7bから第2のガス出口8bに至る
流路に通した場合について、試験セル19の上流側及
び下流側のTCE濃度を測定し、TCE分解率を求め
た。その結果を図38に示す。
Then, an ultraviolet lamp 18 with an output of 13 W for irradiating an ultraviolet ray having a wavelength of 185 nm and an ultraviolet ray of a wavelength of 254 nm with a protective tube, or an output lamp 40 W for emitting an ultraviolet ray of a wavelength of 185 nm and an ultraviolet ray of a wavelength of 254 nm without a protective tube.
Using the ultraviolet lamp 18 of No. 3, a gas having a TCE concentration of 50 ppm is supplied at a flow rate of 100 l / min, 200 l / min, 30
The first gas inlet 7 at 0 l / min and 400 l / min
a through the flow path from a to the first gas outlet 8a and through the flow path from the second gas inlet 7b to the second gas outlet 8b, the upstream side and the downstream side of the test cell 19 Was measured to determine the TCE decomposition rate. The result is shown in FIG.

【0036】試験17の結果から、汚染ガスをセル内へ
その直径に沿って断面中心に向かって導入すると、接線
方向に沿って導入する場合に比べて分解効率が高いこと
がわかった。これは、ガスをセルの接線方向に導入する
と、ガスがセルの壁面に沿って流れるため、紫外線照射
強度が弱くなると共に、セル内へ滞留する時間が短くな
ってしまうためと考えられる。
From the results of Test 17, it was found that when the pollutant gas was introduced into the cell along its diameter toward the center of the cross section, the decomposition efficiency was higher than that when it was introduced along the tangential direction. This is considered to be because when the gas is introduced in the tangential direction of the cell, the gas flows along the wall surface of the cell, so that the ultraviolet irradiation intensity is weakened and the residence time in the cell is shortened.

【0037】図39には、試験18乃至試験20に用い
る試験装置を示す。この試験装置は、紫外線ランプ18
を収納した内径45mm、長さ500mm、容積800ml
の試験セル19に、試験ガスの入ったテドラーバッグ2
3を接続し、ポンプ24で一定の濃度になるまでガスを
吸引して試験セル19に導入した。そして、紫外線ラン
プ18を20分間点灯して、ガス濃度の変化をVOCセ
ンサ20で観測した。紫外線ランプ18として、波長1
85nmの紫外線と波長254nmの紫外線を照射する東芝
製GLS6UN、波長254nmの紫外線を照射する東芝
製GLS6UJ及び波長300nm以上の紫外線を照射す
るブラックライト(ミヤタエレバム製)を用い、当初の
ガス濃度が10ppmの場合と100ppmの場合につ
いて試験を行った。
FIG. 39 shows a test apparatus used in tests 18 to 20. This test equipment uses an ultraviolet lamp 18
Internal diameter 45 mm, length 500 mm, volume 800 ml
Tedlar bag 2 containing test gas in test cell 19 of
3 was connected, and gas was sucked into the test cell 19 by the pump 24 until the gas had a constant concentration. Then, the ultraviolet lamp 18 was turned on for 20 minutes, and the change in gas concentration was observed by the VOC sensor 20. UV lamp 18 has a wavelength of 1
Toshiba GLS6UN that emits 85 nm UV light and 254 nm UV light, Toshiba GLS6UJ that emits 254 nm UV light, and black light (Miyata Elevum) that emits UV light having a wavelength of 300 nm or more, and the initial gas concentration is 10 ppm. And the case of 100 ppm were tested.

【0038】試験18では、試験ガスとしてトリクロロ
エチレンを用い、当初のガス濃度を10ppmとした時
のTCE濃度を図40の(イ)に、100ppmとした
時のTCE濃度を図40の(ロ)に示す。試験19は、
試験としてテトラクロロエチレンを用い、当初のガス濃
度を10ppmとした時のPCE濃度を図41の(イ)
に、100ppmとした時のPCE濃度を図41の
(ロ)に示す。試験20では、試験ガスとしてcis−
1,2−ジクロロエチレンを用い、当初のガス濃度を1
0ppmとした時のcis−1,2−DCE濃度を図4
2の(イ)に、100ppmとした時のcis−1,2
−DCE濃度を図42の(ロ)に示す。試験18乃至試
験20の結果から、紫外線の波長が300nm以上である
と、ブランク測定の値とほぼ同様の濃度変化しかせず、
有機化合物は分解されないことがわかった。
In Test 18, trichlorethylene was used as the test gas, the TCE concentration when the initial gas concentration was 10 ppm was shown in (a) of FIG. 40, and the TCE concentration when it was 100 ppm was shown in (b) of FIG. Show. Test 19
The PCE concentration when tetrachloroethylene was used as the test and the initial gas concentration was set to 10 ppm was shown in Fig. 41 (a).
41B shows the PCE concentration at 100 ppm. In test 20, cis- was used as a test gas.
Using 1,2-dichloroethylene, the initial gas concentration was 1
The cis-1,2-DCE concentration when 0 ppm is shown in FIG.
In (2) of 2 above, cis-1,2 at 100 ppm
-DCE concentration is shown in (b) of FIG. 42. From the results of Test 18 to Test 20, if the wavelength of the ultraviolet ray is 300 nm or more, the concentration change is almost the same as the blank measurement value,
It was found that organic compounds were not decomposed.

【0039】試験21では、化学兵器用毒ガスであるイ
ペリット(ClCHCHS)の紫外線分解効果
の可能性を検証した。波長185nmの紫外線及び波長2
54nmの紫外線を照射する紫外線ランプを500mlの
デュランビン内に設置し、イペリット擬剤としてクロロ
メチルメチルスルフィド(ClCHSCH,以下、
CMMSと称する)が収納されたテドラーバッグをこの
デュランビンに接続し、別に接続したポンプで吸引して
デュランビン内の空気をCMMSに置換した。その後、
紫外線ランプを点灯して、CMMS濃度を測定し、その
結果を図43に示す。試験21により、分解速度はそれ
ほど速くないものの、紫外線照射によってイペリットの
擬剤も半分程度まで分解できることがわかった。
In Test 21, the possibility of the ultraviolet decomposing effect of Yperit (ClCH 2 CH 2 ) 2 S, which is a poison gas for chemical weapons, was verified. Ultraviolet with wavelength 185nm and wavelength 2
An ultraviolet lamp for irradiating an ultraviolet ray of 54 nm was installed in 500 ml of durumbin, and chloromethyl methyl sulfide (ClCH 2 SCH 3 , hereinafter, as an iperit mimetic agent)
A Tedlar bag accommodating CMMS) was connected to this duran bin, and the air in the duran bin was replaced with CMMS by suctioning with a separately connected pump. afterwards,
The UV lamp was turned on to measure the CMMS concentration, and the result is shown in FIG. From Test 21, it was found that although the decomposition rate was not so high, the mimetic agent of Iperit could be decomposed to about half by irradiation with ultraviolet rays.

【0040】[0040]

【発明の効果】請求項1乃至3に係る発明によれば、汚
染ガスに含まれる有害な有機化合物を、波長300nm未
満の比較的高エネルギーの紫外線で分解し、その結果発
生する不安定な中間生成物を強アルカリ電解水及び強酸
性電解水で中和し分解するので、処理時間が短くて済
み、それほど大がかりな装置も必要としない。また、紫
外線照射では分解しきれない有機化合物も、強アルカリ
電解水や強酸性電解水を噴霧することによって、より低
レベルまで分解することができる。さらに、強アルカリ
電解水や強酸性電解水は人体に無害なので、環境を汚染
する心配がない。
According to the inventions of claims 1 to 3, the harmful organic compounds contained in the polluted gas are decomposed by ultraviolet rays of relatively high energy having a wavelength of less than 300 nm, resulting in an unstable intermediate product. Since the product is neutralized with strong alkaline electrolyzed water and strong acid electrolyzed water and decomposed, the treatment time is short and a large-scale device is not required. Further, even organic compounds that cannot be completely decomposed by UV irradiation can be decomposed to a lower level by spraying strong alkaline electrolyzed water or strongly acidic electrolyzed water. Furthermore, since strong alkaline electrolyzed water and strongly acidic electrolyzed water are harmless to the human body, there is no risk of polluting the environment.

【0041】請求項4に係る発明によれば、紫外線分解
ユニットにおける有機化合物の分解が促進されて、いっ
そう処理時間を短縮できる。請求項5に係る発明によれ
ば、汚染ガスが分解セル内に滞留する時間が長くなると
共に、汚染ガスに対する紫外線照射強度が強くなるた
め、分解効率がさらに向上する。請求項6に係る発明に
よれば、汚染ガスへ均一に、且つ、高い強度で紫外線が
照射されるので、有機化合物分解効率が良い。請求項7
に係る発明によれば、波長の短い紫外線が保護筒で遮断
されずに汚染ガスに照射されるので、有機化合物を短時
間で分解できる。
According to the invention of claim 4, the decomposition of the organic compound in the ultraviolet decomposition unit is promoted, and the processing time can be further shortened. According to the invention of claim 5, the pollutant gas stays in the decomposition cell for a longer period of time and the irradiation intensity of the ultraviolet rays to the pollutant gas becomes stronger, so that the decomposition efficiency is further improved. According to the invention of claim 6, the pollutant gas is uniformly irradiated with ultraviolet rays with high intensity, so that the organic compound decomposition efficiency is good. Claim 7
According to the invention, the ultraviolet rays having a short wavelength are irradiated to the polluted gas without being blocked by the protective cylinder, so that the organic compound can be decomposed in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示すガス状有機化合物の分
解装置の概略図
FIG. 1 is a schematic diagram of a device for decomposing a gaseous organic compound showing an embodiment of the present invention.

【図2】分解セルの側断面図FIG. 2 is a side sectional view of an exploded cell.

【図3】分解セルの平断面図FIG. 3 is a plan sectional view of the disassembly cell.

【図4】試験1における汚染濃度測定結果を示す図FIG. 4 is a diagram showing a result of measuring a contamination concentration in Test 1.

【図5】試験1におけるpH測定結果を示す図FIG. 5 is a diagram showing pH measurement results in Test 1.

【図6】試験2における汚染濃度測定結果を示す図FIG. 6 is a diagram showing a result of measuring a contamination concentration in Test 2.

【図7】試験2におけるpH測定結果を示す図FIG. 7 is a diagram showing pH measurement results in Test 2.

【図8】試験3における有機化合物濃度の経時変化を示
す図
FIG. 8 is a diagram showing changes over time in organic compound concentration in Test 3.

【図9】試験3における中間生成物濃度の経時変化を示
す図
FIG. 9 is a view showing a change with time of an intermediate product concentration in Test 3.

【図10】試験4における有機化合物濃度の経時変化を
示す図
FIG. 10 is a diagram showing changes over time in organic compound concentration in Test 4.

【図11】試験4における中間生成合物濃度の経時変化
を示す図
FIG. 11 is a view showing a time-dependent change in the concentration of the intermediate product compound in Test 4.

【図12】試験5における有機化合物濃度の経時変化を
示す図
FIG. 12 is a diagram showing changes in organic compound concentration over time in Test 5.

【図13】試験5における中間生成物濃度の経時変化を
示す図
FIG. 13 is a view showing a change with time of an intermediate product concentration in Test 5.

【図14】試験6における有機化合物濃度の経時変化を
示す図
FIG. 14 is a diagram showing changes over time in organic compound concentration in Test 6.

【図15】試験6における有機化合物濃度の経時変化を
示す図
FIG. 15 is a view showing a change with time of an organic compound concentration in Test 6.

【図16】試験7における有機化合物濃度の経時変化を
示す図
FIG. 16 is a view showing a time-dependent change in organic compound concentration in Test 7.

【図17】試験7における中間生成物濃度の経時変化を
示す図
FIG. 17 is a diagram showing a time-dependent change in the concentration of intermediate products in Test 7.

【図18】試験8における有機化合物濃度の経時変化を
示す図
FIG. 18 is a view showing a time-dependent change in organic compound concentration in Test 8.

【図19】試験8における中間生成物濃度の経時変化を
示す図
FIG. 19 is a diagram showing a time-dependent change in the concentration of intermediate products in Test 8.

【図20】試験9における有機化合物濃度の経時変化を
示す図
FIG. 20 is a diagram showing changes over time in organic compound concentration in Test 9.

【図21】試験9における中間生成物濃度の経時変化を
示す図
FIG. 21 is a view showing a change over time in the concentration of intermediate products in Test 9.

【図22】試験10乃至試験15に用いた試験装置の概
略図
FIG. 22 is a schematic diagram of a test apparatus used in tests 10 to 15.

【図23】試験10におけるTCE濃度の測定結果を示
す図
FIG. 23 is a diagram showing measurement results of TCE concentration in Test 10.

【図24】試験10におけるTCE分解率の計算結果を
示す図
FIG. 24 is a diagram showing calculation results of TCE decomposition rate in Test 10.

【図25】試験11におけるPCE濃度の測定結果を示
す図
FIG. 25 is a view showing a measurement result of PCE concentration in test 11.

【図26】試験11におけるPCE分解率の計算結果を
示す図
FIG. 26 is a diagram showing calculation results of PCE decomposition rate in Test 11.

【図27】試験12におけるcis−1,2−DCE濃
度の測定結果を示す図
FIG. 27 shows the measurement results of cis-1,2-DCE concentration in Test 12.

【図28】試験12におけるcis−1,2−DCE分
解率の計算結果を示す図
FIG. 28 is a diagram showing calculation results of cis-1,2-DCE decomposition rate in Test 12.

【図29】試験13におけるモノクロロベンゼン濃度の
測定結果を示す図
FIG. 29 is a view showing the measurement results of monochlorobenzene concentration in Test 13.

【図30】試験13におけるモノクロロベンゼン分解率
の計算結果を示す図
FIG. 30 is a diagram showing a calculation result of a decomposition rate of monochlorobenzene in Test 13.

【図31】試験14における酢酸エチル濃度の測定結果
を示す図
FIG. 31 shows the measurement results of ethyl acetate concentration in Test 14.

【図32】試験14における酢酸エチル分解率の計算結
果を示す図
FIG. 32 is a view showing a calculation result of an ethyl acetate decomposition rate in Test 14.

【図33】試験15におけるトルエン濃度の測定結果を
示す図
FIG. 33 shows the measurement results of toluene concentration in Test 15.

【図34】試験16に用いた試験装置の概略図FIG. 34 is a schematic diagram of a test apparatus used for test 16.

【図35】試験16で測定したTCE濃度及びTCE分
解率を示す図
FIG. 35 is a graph showing TCE concentration and TCE decomposition rate measured in Test 16.

【図36】試験17に用いた試験セルの側断面図FIG. 36 is a side sectional view of a test cell used in test 17.

【図37】試験17に用いた試験セルの平断面図FIG. 37 is a plan sectional view of a test cell used in test 17.

【図38】試験17におけるTCE分解率を示す図FIG. 38 is a view showing a TCE decomposition rate in Test 17.

【図39】試験18乃至試験20に用いた装置の概略図FIG. 39 is a schematic view of an apparatus used in tests 18 to 20.

【図40】試験18におけるTCE濃度の経時変化を示
す図
FIG. 40 is a diagram showing a time-dependent change in TCE concentration in test 18.

【図41】試験19におけるPCE濃度の経時変化を示
す図
FIG. 41 is a view showing a change over time in PCE concentration in Test 19.

【図42】試験20におけるcis−1,2−DCE濃
度の経時変化を示す図
FIG. 42 is a view showing a time-dependent change in cis-1,2-DCE concentration in Test 20.

【図43】試験21におけるCMMS濃度の変化を示す
FIG. 43 is a view showing a change in CMMS concentration in Test 21.

【符号の説明】[Explanation of symbols]

1 紫外線分解ユニット 2 スクラバ 3 活性炭吸着ユニット 4 電解水生成装置 5 低圧水銀ランプ 6 分解セル 7 ガス入口 8 ガス出口 9 酸性電解水供給パイプ 10 アルカリ電解水供給パイプ 11 循環パイプ 12 ポンプ 13 排水路 14 排水中和タンク 15 ファン 16 排気パイプ 17 混合気槽 18 紫外線ランプ 19 試験セル 20 VOCセンサ 21 アトマイザ 22 採取口 23 テドラーバッグ 24 ポンプ 25 pH測定装置 1 UV decomposition unit 2 scrubber 3 Activated carbon adsorption unit 4 Electrolyzed water generator 5 Low-pressure mercury lamp 6 Disassembly cell 7 gas inlet 8 gas outlets 9 Acidic electrolyzed water supply pipe 10 Alkaline electrolyzed water supply pipe 11 Circulation pipe 12 pumps 13 drainage channels 14 Drainage neutralization tank 15 fans 16 Exhaust pipe 17 Mixture tank 18 UV lamp 19 test cell 20 VOC sensor 21 Atomizer 22 Collection port 23 Tedlar bag 24 pumps 25 pH measuring device

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07B 37/06 G21K 5/00 W G21K 5/00 Z 5/10 F 5/10 B01D 53/34 117Z (72)発明者 寺嶋 高宏 東京都千代田区四番町7番地 興研株式会 社内 (72)発明者 中藤 誉子 東京都千代田区四番町7番地 興研株式会 社内 (72)発明者 新田 恒造 東京都千代田区四番町7番地 興研株式会 社内 (72)発明者 野口 真二 東京都千代田区四番町7番地 興研株式会 社内 Fターム(参考) 4D002 AA01 AA03 AA13 AA14 AA21 AA32 AA40 AC10 BA02 BA09 CA01 CA07 DA35 DA41 EA02 4D020 AA04 AA08 BA30 BB03 CB08 CB25 CD10 4G075 AA03 AA37 BA05 BA06 BB04 BD13 CA33 CA51 DA02 DA18 EB01 EB09 EB32 EC01 FB06 4H006 AA05 AC13 AC26 BA95 BD84Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C07B 37/06 G21K 5/00 W G21K 5/00 Z 5/10 F 5/10 B01D 53/34 117Z (72) Invention Person Takahiro Terashima 7th Yonbancho, Chiyoda-ku, Tokyo In-house (72) Inventor Yoshiko Nakato 7th Yonbancho, Chiyoda-ku, Tokyo In-house (72) Inventor Kozo Nitta Chiyoda-ku, Tokyo 7th Yonbancho Koken Stock Association In-house (72) Inventor Shinji Noguchi 7th Yonbancho Chiyoda-ku, Tokyo Koken Stock Association In-house F-term (reference) 4D002 AA01 AA03 AA13 AA14 AA21 AA32 AA40 AC10 BA02 BA09 CA01 CA07 DA35 DA41 EA02 4D020 AA04 AA08 BA30 BB03 CB08 CB25 CD10 4G075 AA03 AA37 BA05 BA06 BB04 BD13 CA33 CA51 DA02 DA18 EB01 EB09 EB32 EC01 FB06 4H006 AA05 AC13 AC26 BA95 BD84

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有機化合物を含有する汚染ガスに、波長
300nm未満の紫外線を照射して前記有機化合物を分解
する紫外線分解ユニットと、酸性電解水供給パイプ及び
アルカリ電解水供給パイプがそれぞれバルブを介して接
続され、前記有機化合物が分解されて生成された中間生
成物に、強アルカリ電解水及び強酸性電解水を選択的に
噴霧して、前記中間生成物を中和し分解する中間生成物
処理装置とを備えたことを特徴とするガス状有機化合物
の分解装置。
1. An ultraviolet decomposition unit for irradiating a pollutant gas containing an organic compound with ultraviolet rays having a wavelength of less than 300 nm to decompose the organic compound, an acidic electrolyzed water supply pipe and an alkaline electrolyzed water supply pipe are respectively provided with valves. The intermediate product treatment for neutralizing and decomposing the intermediate product by selectively spraying strong alkaline electrolyzed water and strongly acidic electrolyzed water on the intermediate product produced by decomposition of the organic compound. And a device for decomposing a gaseous organic compound.
【請求項2】 前記中間生成物処理装置を前記紫外線分
解ユニットの中間部に設けて、該紫外線分解ユニット内
の汚染ガスに強アルカリ電解水及び強酸性電解水を選択
的に噴霧する請求項1に記載のガス状有機化合物の分解
装置。
2. The intermediate product treatment device is provided in an intermediate portion of the ultraviolet decomposing unit, and strong alkaline electrolyzed water and strong acidic electrolyzed water are selectively sprayed to a pollutant gas in the ultraviolet decomposing unit. The apparatus for decomposing a gaseous organic compound according to 1.
【請求項3】 前記中間生成物処理装置を前記紫外線分
解ユニットの下流に接続して、該紫外線分解ユニットを
通過した汚染ガスに強アルカリ電解水及び強酸性電解水
を選択的に噴霧する請求項1に記載のガス状有機化合物
の分解装置。
3. The intermediate product treatment device is connected downstream of the ultraviolet decomposing unit, and strong alkaline electrolyzed water and strong acidic electrolyzed water are selectively sprayed onto the polluted gas passing through the ultraviolet decomposing unit. 1. The apparatus for decomposing a gaseous organic compound according to 1.
【請求項4】 前記紫外線分解ユニット内の汚染ガス
に、強アルカリ電解水及び/又は強酸性電解水が噴霧さ
れる請求項3に記載のガス状有機化合物の分解装置。
4. The apparatus for decomposing a gaseous organic compound according to claim 3, wherein the alkaline gas and / or the strongly acidic electrolyzed water is sprayed on the pollutant gas in the ultraviolet decomposition unit.
【請求項5】 紫外線分解ユニットは、内部に紫外線照
射ランプを設置した分解セルより成り、該分解セルの周
壁にガス入口が、前記分解セルの直径に沿って汚染ガス
を吹き込むように形成された請求項1乃至4のいずれか
に記載のガス状有機化合物の分解装置。
5. The ultraviolet decomposition unit comprises a decomposition cell having an ultraviolet irradiation lamp installed therein, and a gas inlet is formed in a peripheral wall of the decomposition cell so as to blow a pollutant gas along a diameter of the decomposition cell. The decomposition apparatus of the gaseous organic compound according to any one of claims 1 to 4.
【請求項6】 複数の前記紫外線照射ランプが、前記分
解セルの上面に等間隔で吊り下げられた請求項5に記載
のガス状有機化合物の分解装置。
6. The decomposition apparatus for a gaseous organic compound according to claim 5, wherein a plurality of the ultraviolet irradiation lamps are hung on the upper surface of the decomposition cell at equal intervals.
【請求項7】 前記紫外線照射ランプは、保護管が波長
172nm以上の紫外線を80%以上透過する合成石英ガ
ラスを素材としたものである請求項5又は6に記載のガ
ス状有機化合物の分解装置。
7. The apparatus for decomposing gaseous organic compounds according to claim 5, wherein the ultraviolet irradiation lamp is made of synthetic quartz glass whose protective tube transmits 80% or more of ultraviolet rays having a wavelength of 172 nm or more. .
JP2002098981A 2002-03-28 2002-04-01 Equipment for decomposing gaseous organic compounds Expired - Fee Related JP3699055B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002098981A JP3699055B2 (en) 2002-04-01 2002-04-01 Equipment for decomposing gaseous organic compounds
CNB021555478A CN100551467C (en) 2002-03-28 2002-12-05 The decomposer of organic compound
KR10-2002-0082589A KR100509400B1 (en) 2002-03-28 2002-12-23 System for decomposing organic compound
CA2419857A CA2419857C (en) 2002-03-28 2003-02-26 System for decomposing organic compound
AU2003200768A AU2003200768B2 (en) 2002-03-28 2003-02-28 System for decomposing organic compound
EP08020159A EP2022560A3 (en) 2002-03-28 2003-03-25 System for decomposing organic compound
EP03251880A EP1350561A3 (en) 2002-03-28 2003-03-25 System for decomposing organic compound
US10/397,166 US7364710B2 (en) 2002-03-28 2003-03-27 System for decomposing organic compound
US11/405,428 US7722830B2 (en) 2002-03-28 2006-04-18 System for decomposing organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098981A JP3699055B2 (en) 2002-04-01 2002-04-01 Equipment for decomposing gaseous organic compounds

Publications (2)

Publication Number Publication Date
JP2003290622A true JP2003290622A (en) 2003-10-14
JP3699055B2 JP3699055B2 (en) 2005-09-28

Family

ID=29240713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098981A Expired - Fee Related JP3699055B2 (en) 2002-03-28 2002-04-01 Equipment for decomposing gaseous organic compounds

Country Status (1)

Country Link
JP (1) JP3699055B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211704A (en) * 2004-01-27 2005-08-11 Koken Ltd Continuous air cleaning apparatus
JP2011036772A (en) * 2009-08-10 2011-02-24 Omega:Kk Mechanism for deodorizing and cleaning voc gas
JP2012200592A (en) * 2011-03-24 2012-10-22 Tsinghua Univ Toxic substance removing device and air cleaning device using the same
CN106268237A (en) * 2016-10-20 2017-01-04 湖南野森环保科技有限责任公司 A kind of high-concentration industrial waste gas purification discharge tower
US9830844B2 (en) 2010-01-06 2017-11-28 Apple Inc. Transparent electronic device
WO2020262478A1 (en) * 2019-06-28 2020-12-30 ウシオ電機株式会社 Gas treatment method and gas treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211704A (en) * 2004-01-27 2005-08-11 Koken Ltd Continuous air cleaning apparatus
JP2011036772A (en) * 2009-08-10 2011-02-24 Omega:Kk Mechanism for deodorizing and cleaning voc gas
US9830844B2 (en) 2010-01-06 2017-11-28 Apple Inc. Transparent electronic device
US10657857B2 (en) 2010-01-06 2020-05-19 Apple Inc. Transparent electronic device
JP2012200592A (en) * 2011-03-24 2012-10-22 Tsinghua Univ Toxic substance removing device and air cleaning device using the same
CN106268237A (en) * 2016-10-20 2017-01-04 湖南野森环保科技有限责任公司 A kind of high-concentration industrial waste gas purification discharge tower
WO2020262478A1 (en) * 2019-06-28 2020-12-30 ウシオ電機株式会社 Gas treatment method and gas treatment device
CN114126745A (en) * 2019-06-28 2022-03-01 优志旺电机株式会社 Gas processing method and gas processing apparatus

Also Published As

Publication number Publication date
JP3699055B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP4222786B2 (en) Deodorizing / purifying method and apparatus for exhaust or smoke
US7722830B2 (en) System for decomposing organic compound
US6444015B2 (en) Apparatus for treating gas containing substance to be decomposed and method of treating its gas
KR20170128760A (en) Wet scrubber using flushing water of dissolved oxygen
JP3699055B2 (en) Equipment for decomposing gaseous organic compounds
KR102284032B1 (en) Odor treatment device
KR100502946B1 (en) Method of treating substance to be degraded and its apparatus
KR101636421B1 (en) Circulation type apparatus for purifying air pollutant
JPH05269374A (en) Device for decomposing low boiling point organic halogen
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JP4254943B2 (en) Wastewater treatment system
JP2002219474A (en) Photooxidation reaction equipment
KR102431219B1 (en) Chemical cleaning type plasma oxidation complex deodorization device and method therefor
JP3739169B2 (en) Organochlorine compound decomposition equipment
JP3688651B2 (en) Liquid organic compound decomposition equipment
JP3501764B2 (en) Repair device and method for soil containing contaminants
KR20220140184A (en) Gas Scrubber Device
JP2003305362A (en) Fluid action apparatus and method for action on fluid
JP2001062288A (en) Method and device for decomposing pollutant
JP2004114005A (en) Method of purifying polluted water
JP2004188396A (en) Decomposition method for decomposing material, and decomposition apparatus used therefor
JP2005087393A (en) Air cleaner and air cleaning method
JPH08192175A (en) Method and apparatus for treating waste water containing organic matter
JP2002011484A (en) Apparatus for cleaning contaminated water
JP2002361270A (en) Cleaning method for contaminated water and cleaning equipment therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

R150 Certificate of patent or registration of utility model

Ref document number: 3699055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees